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Abstract—Whistle contour extraction aims to derive animal
whistles from time-frequency spectrograms as polylines. For
toothed whales, whistle extraction results can serve as the basis
for analyzing animal abundance, species identity, and social
activities. During the last few decades, as long-term recording
systems have become affordable, automated whistle extraction
algorithms were proposed to process large volumes of recording
data. Recently, a deep learning-based method demonstrated supe-
rior performance in extracting whistles under varying noise con-
ditions. However, training such networks requires a large amount
of labor-intensive annotation, which is not available for many
species. To overcome this limitation, we present a framework
of stage-wise generative adversarial networks (GANs), which
compile new whistle data suitable for deep model training via
three stages: generation of background noise in the spectrogram,
generation of whistle contours, and generation of whistle signals.
By separating the generation of different components in the
samples, our framework composes visually promising whistle
data and labels even when few expert annotated data are
available. Regardless of the amount of human-annotated data,
the proposed data augmentation framework leads to a consistent
improvement in performance of the whistle extraction model,
with a maximum increase of 1.69 in the whistle extraction mean
F1-score. Our stage-wise GAN also surpasses one single GAN
in improving whistle extraction models with augmented data.
The data and code will be available at https://github.com/Paul-
LiPu/CompositeGAN WhistleAugment.

Index Terms—Data Augmentation, Generative Adversarial
Networks.

I. INTRODUCTION

A. Background

Spectrograms in the time × frequency domain can show
signal structure and are frequently used in audio analysis [1] .
Patterns in spectrograms are used for sound event classification
[2], bird song recognition [3], music genre classification [4],
automatic music transcription [5], speech emotion recognition
[6], and other tasks. Many acoustic signals have frequency-
modulated (FM) components that are visible in spectrograms.
Examples include human speech [7], human singing [8], cries
of newborns [9], vocal melodies [10], and whale calls [11]. In
this paper, we concentrate on whistles, the characteristic FM
tonal calls of toothed whales.

Whale calls are used to study species identity [12] [13],
individual identity [14], behavior [15] [16], communication
and social activities [17], and density and abundance [18].
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Fig. 1. Examples of spectrogram patches of (i) real samples (left); (ii) samples
generated by our stage-wise GAN; (iii) samples generated by a single GAN.
Multiple 64×64 patches are concatenated for better visualization.

Because whistles appear in spectrograms as characteristic
contour shapes (Fig. 1 top left), experts can manually rec-
ognize animals’ occurrence and label whistles as polylines
on spectrograms. Whistle extraction algorithms [11] [19] [20]
[21] [22] [23] aim to automate this process and identify
each whistle as a polyline. Such extraction is challenging
because of the high spatial and temporal variation of ocean
sounds. Signals to be analyzed can be affected by recording
device characteristics, sea state and propagation conditions,
animal behavior, vocalizations from non-target species, and
anthropogenic sounds, such as shipping and sonar.

Traditional methods (e.g., graph search [11]) first extract
the spectral peaks, i.e., bins with local maximum energy
on spectrogram, and then track the trace of whistle signals
on the spectrogram by polynomial fitting of peaks [11] or
probabilistic modeling [22]. Recently, [19] adapted convolu-
tional neural networks (CNNs) to extract whistles and achieved
improved performance. Instead of using spectral peaks, [19]
predicts the confidence associated with the probability that a
whistle signal appears in each time × frequency bin, which
is similar to semantic segmentation in computer vision. [19]
then uses graph search [11] to connect bins that are likely
to contain a signal. By learning from a large set of annotated
samples, the whistle extraction model can recognize noise and
whistle patterns, and improve on graph search and probabilistic
model results by a large margin. However, the performance
of learning-based methods may degrade significantly as the
amount of annotated data decreases, and large datasets are
not always available because whistle annotation is expensive
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and time-consuming. This motivates us to explore ways to
synthesize whistle data cheaply with existing data by applying
learning-based data generation methods.

B. Objectives

The primary focus of this work was to develop methods
that improve whistle extraction models when data are limited,
thereby reducing the amount of data annotation required to
recognize whistles. Therefore, our experiments mainly ad-
dressed situations with few data, and we sought to mitigate
the effect of overfitting and improve the model’s transferability
for recognizing tonal signals. Although there are many ways
to reduce overfitting, e.g., semi-supervised learning [24] and
regularization [25], we focused on data augmentation methods
for two reasons. First, we seek a method that can be applied
to all datasets of frequency-modulated signal, including those
containing no unannotated data. Semi-supervised learning may
not be applicable in this scenario. Second, we are interested in
characterizing the distribution of whistle data and exploring the
effect of novel data on extraction of tonal signals. Regulariza-
tion terms may not provide insight in this context. We note that
our data augmentation method may be combined with a semi-
supervised framework or loss function regularization to further
improve the system performance. Though it is interesting to
have these techniques involved, it is beyond the scope of this
work.

Common audio or image data augmentation methods usu-
ally transform existing data to acquire new data, e.g., by
adding Gaussian noise [26], and the augmented samples may
implicitly act as a regularizer for the training of deep models
[27]. But the distribution of the augmented samples may
not be similar to that of the original data; e.g., generated
whistle data may have abnormal contour shapes or unrealistic
background noise. Previous work [19] generated novel samples
by adding whistle contours to negative samples (background
noise that contains no whistle signals), which simulated the
situation where the same whistles occur in different ocean
environments. However, the generated data did not include
novel whistle shapes or background noise patterns, which
restricted the variance in the data.

In this paper, our goal is to generate novel pairs of whistle
data and labels. Although changes in noise affect vocalizations
of many taxa [28], including toothed whales [29], we make the
simplifying assumption that background noise is independent
of whistle contours (contour-shape segmentation of whistles,
which indicates the location of whistles on spectrogram and
the whistles’ frequency modulation). On the basis of this
assumption, we decouple the synthesis of background noise
and whistle contours. The generated whistle contours are used
as labels for the model in [19]. Next, we add generated whistle
signals with the desired contour shape to the spectrogram of
background noise; i.e., we generate corresponding whistle data
for the whistle contour.

We design our whistle generation algorithm as a series of
three generative adversarial network (GAN) modules. The first
GAN learns the ocean noise environment; it maps random
numbers that have a Gaussian distribution to spectrograms

representing background noise. The next GAN learns to map
random inputs to spectrograms with whistle-like FM sweeps.
The third GAN combines the outputs of the first two GAN
modules, synthetic background noises and whistles, to obtain
a synthetic whistle spectrogram. The generated whistle should
follow the whistle contour’s shape in the input. We employ
an unpaired domain transfer framework, CycleGAN [30], to
learn how synthetic noise and whistles can be merged into
a synthetic spectrogram. While the original CycleGAN can
generate slightly misaligned whistle signals from the desired
contours, we exploit the whistle extraction network learned
from annotated data to enforce the bin-wise consistency be-
tween generated whistles and input contours.

Another challenge is that GANs may not learn well with
limited data. This may lead to corrupted synthesis, especially
of the whistle contours. We observe that corrupted data have
less confident predictions: the predicted probability is neither
close to 0 nor close to 1, and thus the entropy is high.
Accordingly, we introduce a method to prune such low-
quality generated samples. Furthermore, because imperfect
learning by GANs with few data may lead to discrepancies
between the distributions of real data and generated data, we
employ auxiliary batch normalization (ABN) layers [31] which
separate the statistics of real and generated data to reduce the
possible harmful effect of training with generated data.

C. Contributions

We made three contributions. First, we proposed the stage-
wise composite GANs to generate novel whistle extraction
data, including spectrograms and corresponding whistle con-
tour labels. Our experiments showed that the proposed stage-
wise GAN surpassed the vanilla GANs with respect to the
visual quality of the generated data (Fig. 1 middle and right).
Second, we designed a comprehensive strategy to use GAN-
generated samples to improve whistle-extraction models. We
set criteria to remove corrupted data and we redesigned the
whistle extraction network by adding ABN layers to opti-
mize the training with generated data. Third, we applied our
proposed data augmentation methods to varied amounts of
whistle extraction data and observed consistent and significant
improvements. Although GAN frameworks have been used
for spectrogram generation and data augmentation in audio
recognition tasks [32], to our knowledge, this is the first
work to apply GAN-based augmentation to audio spectrogram
segmentation data.

II. RELATED WORKS

A. Whistle Contour Extraction

There are three main classes of methods for extracting whale
frequency-modulated whistles. The first is models that predict
the probability of whistle peaks conditioned on past obser-
vations. Examples of this class include tests of hypothesized
spectrogram region distributions [33], Bayesian inference [34],
Kalman filters [20], and Monte-Carlo density filters [11] [35]
[36] [22]. The second class, trajectory-search methods, seeks
energy peaks along the frequency dimension and connects
those peaks along the time dimension on the basis of trajectory
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Fig. 2. Sketch of the proposed stage-wise GAN frameworks. The first
two generators produce a spectrogram patch of background noise and a
spectrogram patch of foreground whistle contour, respectively. These patches
serve as inputs for the third generator.

estimation [12] [11] [37]. Improved trajectory-search methods
reduce excessive numbers of false positives by applying ridge
regression to local contexts [38] or energy minimization algo-
rithms to ridge regression maps [39].

In recent years, the third class, deep learning methods,
has been applied to process tonal information. Early works
included extraction of information from human speech [40]
and music [41]. Deep neural networks were also applied
to toothed whale whistles [13] [42], but the goal of these
works was to classify a time segment to species or call type
rather than to extract detailed time × frequency information.
In [19], we proposed a deep neural network to extract time
× frequency contours of individual whistles. We apply our
proposed data augmentation system to the training of whistle
extraction model developed in [19].

B. Generative adversarial networks

Generative adversarial networks (GANs) are a category
of generative models. GANs are widely used for artificial
image generation, e.g., face manipulation [43], compression
noise removal [44], and generating images of people [45].
We adapted the methods from these computer vision tasks
to generate realistic spectrograms that served as our novel
training data. The landmark work on GANs [46] proposed
one generator network that synthesizes samples (G : X → Y ,
where X is a random vector and Y is a generated sample)
and one discriminator network that learns to distinguish be-
tween generated samples and real samples. These networks
are coupled in a zero-sum game with each network trying

to outperform the other. Following [46], researchers have
improved the network architecture of GANs [47] and objective
functions [48] to stabilize the training of GANs. Those GANs
implicitly learn the distribution of real samples, and novel data
can be sampled from the distribution. We employ this type
of GAN to generate novel spectrogram noises and whistle
contours.

Another type of GAN tackles the image-to-image translation
problem, aiming to learn a mapping (F : x→ y, where x ∈ X ,
y ∈ Y ) between a source domain X and a target domain
Y , e.g., transfer a horse in the image to a zebra. CycleGAN
[30] extends this idea by leaning two mappings (F : x → y,
G : y → x, where x ∈ X , y ∈ Y ) without the need for
pairwise correspondence between the elements of X and Y .
This idea can be adapted to our task to generate spectrograms
containing whistles, where X is the domain containing pairs
of desired whistle contours and spectrograms with background
noise, and Y consists of spectrograms with whistles and noise.
Recent work improved the idea of [30] by adding a spatial
attention mechanism [49] and image quality assessment term
[50].

C. GAN-based augmentation

GANs provide an option to generate novel data by learning
the distribution of existing data and sampling data from the
distribution, which is a valuable addition to the common
augmentation techniques that are based on data transforma-
tion. Vanilla GAN models, which map random numbers to
generated samples, have been used for data augmentation.
[51] trained a GAN model to augment computed tomogra-
phy (CT) images of livers for the classification of lesions.
[52] applied a conditional GAN to augment samples from
given categories and restore the balance of imbalanced image
classification data. [53] applied progressively grown GANs
(PGGANs) to a brain segmentation task, and the generator
learned to synthesize the generated sample and corresponding
segmentation labels. Domain transfer GANs have also been
used for data augmentation. [54] applied CycleGAN to day-
to-night image translation, which helped to improve the object
detection model.

Despite the success of GANs in synthesizing visually ap-
pealing samples and augmenting existing data, there are still
limitations of GANs for synthesizing high-quality augmented
data, especially for pixel-wise regression tasks such as se-
mantic segmentation. First, GANs usually suffer from mode
collapses [55]: the generated samples may have lower variance
than the real samples. Second, GANs may generate samples
with artifacts or failure regions [56], which may especially
hamper the training of pixel-wise regression tasks. A sample
selection method may be required to choose high-quality
samples from the GAN-generated samples [57]. Third, the
training of GANs can be unstable, which results in different
distributions of generated samples and real samples [58].

Therefore, GAN-based data augmentation usually requires
improving the quality of generated samples. A common so-
lution is to use real samples or computer graphics models in
the generator network. In [59], the GAN learned to generate
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samples conditioned on real samples and random numbers.
Similarly, [60] transferred synthetic images built by computer
graphics models to realistic images, and the augmented sam-
ples improved models in estimation of gazes, hand poses, and
animal poses. Another way to improve training of the GAN is
to use supervision from target tasks. [61] added an auxiliary
classification head on the discriminator of GAN and used
the classification loss to guide discriminator and generator
learning.

Recently, stage-wise GANs were proposed to augment data
for pixel-wise regression tasks. [62] employed a two-stage
GAN augmentation of cell nuclei segmentation data. Their
framework generates a cell nuclei segmentation mask in the
first stage and images of nuclei in the second stage. Our
proposed method is closely related to [62], and we further
separate the learning of object appearance and the segmen-
tation mask. This separation can be extended to other se-
mantic segmentation scenarios. For example, when generating
a scene containing road and cars, our framework may first
generate the appearance of the road and car independent of
the segmentation mask, then generate an image of the scene
according to the segmentation mask and the appearance of the
objects (road and cars). In this way, our framework explores
the distribution of object appearance and provides variance in
the appearance of objects in the generated image of the scene.
Another improvement is that we employ the knowledge from
segmentation networks to regularize bin-wise correspondence
between generated samples and labels.

III. METHODS
The objective of this work is to develop a data augmentation

approach to generate novel data for whistle extraction. We treat
the cropped patches from the time-frequency spectrograms as
data samples, and we employ stage-wise GANs, which we call
WAS-GANs (Whistle Augmentation Stage-wise Generative
Adversarial Networks), to generate both negative samples
(noise only) and positive samples (whistles in the presence
of noise). Our techniques can be extended to other acoustic
tasks or computer vision tasks, e.g., sound classification and
semantic segmentation.

Fig. 2 illustrates the three stages of our sample generation
approach. In Stage 1, a Wasserstein GAN with gradient penalty
(WGAN-gp) [48] learns to produce the negative samples
containing background noises. In Stage 2, we train another
WGAN-gp model with the real whistle contour annotations
to generate whistle contour segmentation masks. In Stage 3,
we use a CycleGAN [30] to generate positive samples. The
whistle signals are added to the negative samples obtained
in Stage 1 according to contour shapes defined in Stage 2.
The positive samples and segmentation masks are used as the
whistle extraction data and labels, respectively. Both generated
negative samples and positive samples are used to train the
whistle extraction model, and the resulted whistle extraction
performance is used to assess our GAN-based augmentation.

A. GAN-based negative sample synthesis
We assume that the underwater background noise (negative

samples) follows an implicit distribution. The generator learns

Fig. 3. Illustration of whistle contour selection. Low-quality generated
patches are highlighted by red bounding boxes. Multiple 64×64 patches are
concatenated.

the mapping between a multivariate Gaussian distribution and
the distribution of negative samples. While many GAN models
can learn this mapping, we chose WGAN-gp because its
training is relatively stable [48]. The model includes a gen-
erator network, G, and a discriminator network, D. Network
G maps a multivariate Gaussian random variable to generate
negative samples. Network D estimates the Wasserstein dis-
tance between real samples and generated background noise
(negative) samples. We denote Pr as the distribution of real
data x; Pg as the distribution of generated data implicitly
defined by x̃ = G(z), where z is a random vector following
the standard multivariate Gaussian distribution; and x̂ as a
randomly weighted sum of x and x̃. The loss function for the
discriminator network is defined as

L = Ex̃∼Pg
[D (x̃)]− Ex∼Pr

[D (x)] +

λEx̂∼Px̂

[
(||∇x̂D (x̂) ||2 − 1)2

]
(1)

where ∇x̂D (x̂) is the gradient of discriminator D’s out-
put on x̂. This loss function encourages the discrimina-
tor to maximize the estimated Wasserstein distance be-
tween real and generated samples. The gradient penalty
term Ex̂∼Px̂

[
(||∇x̂D (x̂) ||2 − 1)2

]
enforces a soft version of

Lipschitz constraint on the discriminator network. The loss
function for the generator network is

LG = Ez [−D (G(z))] (2)

which encourages the generator to generate samples that have
a small estimated Wasserstein distance from the real samples,
i.e., to follow a distribution similar to that of the real data.

B. GAN-based positive sample synthesis

We split synthesis of positive samples (spectrograms con-
taining whistles) into two stages: generation of whistle con-
tours and injection of the whistle into synthetic background
noise. In the first stage, we employ the same networks and
loss functions as in Section III-A, given the assumption that
the shape of whistle contours is independent of the underwater
environments.
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In the second stage, we aim to generate positive samples
according to the synthetic background noise and whistle con-
tours. We treat this as an unpaired domain transfer task, which
can be solved effectively by CycleGAN [30]. Our source
domain, A, consists of pairs of negative samples and whistle
contours, and the target domain B includes positive samples.
We adopt the CycleGAN from [30] for our experiments, but
any improved model readily can be used in our framework.

There are two sets of generator and discriminator networks
in CycleGAN. GA denotes the generator network that transfers
samples from domain A to domain B, i.e., generates whistle
with the desired shape on the background noise spectrogram.
DA denotes the discriminator network that distinguishes be-
tween real and generated spectrograms in domain B. GB

is the network that transfers samples from domain B to
domain A, effectively separating the whistle contour from the
background noise. Because we assume that the whistle contour
and background noise are independent, we do not use a single
DB network for the joint distribution of whistle contours and
background noise. Instead, we use two DB networks for the
marginal distributions, one to discriminate negative samples
and one to discriminate whistle contours.

Instead of directly generating positive samples by GA,
we let GA predict a residual term (whistle signals without
background noises) to be added to the negative samples. By
denoting a negative sample as IN , a whistle contour as IW ,
and the generated positive sample as I ′P , the process can be
described as

I ′P = IN + γGA(IN , IW ) (3)

where γ is a factor that controls the signal strength and
accounts for variability in the received signal level. This
parameter can simulate the variation in signal strength caused
by variation in signal source strength or the distance between
the animal and recording devices.

To enforce the bin-wise correspondence between generated
positive samples and whistle contours, i.e., to avoid misalign-
ment between generated whistle extraction data and labels,
we use the whistle extraction models, which are trained on
the same set of real samples as CycleGAN, to design a
regularization term for GA training. We call this term a loss
function for the pixel-wise consistency, and represent it as

Lconsistence = ||f(I ′P )− IW ||1 (4)

where f denotes the whistle extraction model and f(x) is the
model’s output, a confidence map indicating the presence of
whistle energy in each bin of the spectrogram, with an input
x. This loss encourages the whistle signals to appear at the
same position as the desired whistle contour.

To guarantee that the generated positive samples have the
same background magnitude as the input negative samples, we
also include the identity loss,

Lidentity = ||GA(IN , 0)||1 + ||GB(IN )− (IN , 0)||1 (5)

where 0 indicates an empty whistle contour input, i.e., we
do not want the CycleGAN to generate any whistles. We
denote (IN , 0) as the concatenated IN and empty whistle
segmentation map. GA should produce residuals of zero when

there are no input whistle contours. We also use adversarial
loss, LDA

, LDB
, LGA

, LGB
, and cycle consistence loss (Lcyc)

from CycleGAN

LDA
= (DA(IP )− 1)

2
+ (DA(I

′
P ))

2 (6)

LDB
= (DB(IN , IW )− 1)

2
+ (DB(GB(IP )))

2 (7)

LGA
= (DA(I

′
P ) − 1)

2 (8)

LGB
= (DB(GB(IP ))− 1)

2 (9)

Lcyc = ||GB(I
′
P )− (IN , IW ) ||1+

||GA(GB (IP ))− IP ||1 (10)

where IP refers to real positive samples. We simplify the
notation of two DB networks in one DB function in the above
equation. The full objective for generators is

LG = LGA
+LGB

+ λ0Lcyc + λ1Lconsistence + λ2Lidentity

(11)
where λ0, λ1, and λ2 control the relative importance of the
corresponding loss items. The full objective of the discrimi-
nator is

LD = LDA
+ LDB

(12)

Ideally, DA, DB will assign 1 to real samples and assign 0 to
generated samples with this training objective. GA, GB will
try to fool the discriminators and generate realistic samples.

C. Whistle extraction model

We use the whistle extraction model from [19] as our
baseline. This model, which is similar to a selective edge
detection model, produces a confidence map of the whistle
signals. Although the generated samples are visually similar to
real samples (Fig. 3), the distributions of the real and generated
whistle contour may differ due to the imperfect training of
GAN when data are limited. This discrepancy decreases the
accuracy of our whistle extraction model when we use the
generated samples for data augmentation. Therefore, we use
ABN layers [31]; i.e., we use auxiliary BatchNorm (BN) layers
for forwarding generated samples and normal BN layers for
real samples. We share the same convolutional layers for real
and generated samples. By denoting the input sample as x,
the whistle signal label as y, and the whistle extraction model
as f , the loss without ABN can be described as

L = ||y − f(x))||2 (13)

The loss with ABN is

L =
1

(1 + λ)
(||(yreal − f(xreal))||2+

λ||yfake − fabn(xfake))||2) (14)

where xreal, yreal are the real samples and labels, respec-
tively, and xfake, yfake are the generated samples and labels,
respectively. λ is a factor to adjust the weights of real data
and generated data in loss calculation. fabn(x) denotes the
output of the whistle extraction model for input x when the
auxiliary BN layer is used in forwarding. We empirically find
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Fig. 4. Illustration of whistle extraction. (Top) spectrogram visualized by
Silbido [11]; (Bottom) extracted whistles, where each whistle is highlighted
with a different color.

that ABN layers improve the whistle extraction performance
when the distributions of the generated and real samples may
be different.

The quality of GAN-synthesized samples is affected by the
number of real samples available for training. The generator
may synthesize poor-quality samples when the number of
real examples used in GAN training is low. Fig. 3 provides
examples of synthetic whistle contours when 2500 real positive
samples are used for GAN training, including whistle contours
that are of poor quality. Therefore, we designed two heuristic
conditions for selecting high-quality generated samples. De-
noting the value of an individual bin in the whistle contour
patch as p, we select the sample for training the whistle
extraction model when∑

−plogp < Te (15)

and ∑
δ(p− Tc) > Tp (16)

where

δ(x) =

{
0 x ≤ 0
1 x > 0

(17)

Te is a threshold for the sum of the pixel entropy, so the first
condition removes generated whistles with diffuse medium-
intensity signals (high entropy). The second condition chooses
samples in which more than Tp bins have intensity above Tc,
allowing samples with short whistle fragments to be removed.

IV. DATA AND IMPLEMENTATION

A. Datasets

We used the whistle extraction data from the 2011 work-
shop on detection, classification, localization, and density
estimation of marine mammals (DCLDE 2011, available on

Fig. 5. Mean spectral peak detection F1-score (upper) or mean whistle
extraction F1-score (lower) against the number of real positive samples in
the training set. Optimal Dataset Scale (ODS) is an edge detection metric that
assesses peak detection. ”w/o GAN” and ”w GAN” indicates the performance
without and with GAN augmentation, respectively.

the MobySound Archive [63]). These data contain record-
ings of calls made by five toothed whale species: long-
beaked common dolphins (Delphinus capensis), short-beaked
common dolphins (Delphinus delphis), bottlenose dolphins
(Tursiops truncatus), melon-headed whales (Peponocephala
electra), and spinner dolphins (Stenella longirostris). Whistle
contours were annotated by trained analysts across the 5-50
kHz bandwidth as described in [11]. We use 30 recordings
from the 5 species to train and 12 recordings from 4 species
to test. Short-beaked common dolphins are removed from
evaluation because some of the files had annotation errors. The
training data consisted of approximately 127 min of recordings
with 12,539 annotated whistles. The test data (∼43 min of
acoustic data) contained 6,011 annotated whistles.

We computed log-magnitude spectrograms for the whistle
extraction model and the GAN-based data synthesis. We
employed series of discrete Fourier transforms in spectrogram
computation. 8 ms Hamming-windowed frames (125 Hz band-
width) were computed every 2 ms, and we empirically re-
stricted the dynamic range of the log10 magnitude spectrogram
to the range [0, 6] (an intensity range of 0 to 120 dB rel.), i.e.,
we transformed the values <0 to 0, and those >6 to 6. We
divided the spectrogram values by 6 which made them within
[0, 1], and discarded the spectrogram values outside of the
annotation frequency range of 5-50 kHz (361 frequency bins),
which covers the frequency range of most delphinid whistles
and their harmonics.

For network training, we partitioned the spectrogram into
64 × 64 patches, where each patch covered a time interval of
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128 ms and frequency interval of 8 kHz. For the training data,
we selected the positive patches with a sliding window with a
25 pixel step size across portions of spectrograms containing
whistles, which led to 115,968 positive patches available for
training. We randomly selected the same number of negative
patches, which only contain noise, and combined them with
positive patches as our training data (referred to as the full
dataset). Most of our experiments used a subset of the full
data (referred to as a reduced dataset). We describe the details
of generating the reduced dataset in Section V-A.

B. Networks and Algorithms

1) Whistle extraction network: We used the same network
architecture as [19]. The model has 10 convolutional layers,
including 1 input layer, 4 residual blocks (each block contains
two convolution layers), and 1 output layer. The input layer
and output layer use kernel size 5 and padding size of 2, and
other layers use a kernel size of 3 and a padding size of 1.
All hidden layers have 32 channels. The model input is a one-
channel spectrogram and the output is a confidence map of
whistle occurrence. The size of the output confidence map is
the same as that of the input spectrogram.

We trained the whistle extraction model with an Adam
optimizer (initial learning rate=1×10−3, betas = [0.9, 0.999],
weight decay=5× 10−4) for 1× 106 and 3× 105 iterations on
the full dataset and reduced datasets, respectively. The learning
rate was multiplied by 0.1 every 4×105 and 1×105 iterations
for the full and reduced datasets, respectively. We set the batch
size to 64, and we used 64 real samples and 64 generated
samples in each iteration for data augmentation experiments.
We used λ=1 in the loss function of Eq. 14 for our experiments
with generated data, which make the generated samples have
the same contribution of loss as real examples.

2) WGAN: We used the same WGAN architecture for the
generation of whistle contours and negative samples. The
generator network uses a fully-connected layer to output fea-
ture maps of size (512,4,4) from a 128-dimensional standard
Gaussian distribution. Four groups of convolutional layers and
pixel shuffle layers are used to gradually enlarge the feature
map to 64 × 64. A Tanh layer is used to output the 64 × 64
patch. The discriminator network takes the generated samples
and real samples as input, and outputs the Wasserstein distance
estimation. It contains 4 convolutional layers with a stride of
2 and a fully connected layer. The networks are optimized by
Adam optimizers (initial learning rate = 1 × 10−4, betas =
[0.5, 0.9], batch size = 64) for 3× 104 and 5× 104 iterations
on the reduced and full datasets, respectively. In each WGAN
training iteration, the discriminator is optimized for 5 steps
while the generator is optimized for 1 step, where the network
parameters are updated by applying the optimizer to one mini-
batch of data in each step. For sample selection, we used
Te=70, Tc=0.5, Tp=64.

3) CycleGAN: The GAN model that we used to add whis-
tles on synthetic noise employs the CycleGAN architecture of
[30]. The generators follow the U-Net [64] architecture, which
has 6 U-Net blocks with a basic width of 64. InstanceNorm
layers are used in the U-Net blocks. The discriminator is

a fully convolutional network with 3 convolutional layers.
We trained the generators and discriminators with Adam
optimizers (learning rate = 2 × 10−4, betas = [0.5, 0.999],
batch size = 64) for 25,120 iterations (160 epochs for 10,000
real positive samples) for the reduced dataset and 50 epochs
for the full dataset. We set λ0=10, λ1=0.5, and λ2=0.5 for
Eq. 11. We apply a random γ following a unified distribution
between (0.5, 1.5) in Eq. 3.

4) Graph Search: We adapted the graph search [11] al-
gorithm to the outputs of the whistle extraction network to
predict individual whistles. This algorithm maintains sets of
graphs, the nodes of which indicate the trace of predicted
whistle contours. Multiple crossing whistles can be represented
by a single graph. At each time step, local maximum points
(peaks) on the confidence map are selected along the frequency
dimension, and peaks with confidence greater than 0.5 are
retained as candidate points. For each candidate point, the
algorithm either initiates a new graph or extends terminating
nodes of existing graphs. Extensions are made when the new
node is along a reasonable trajectory predicted by a low-order
polynomial fit of the graph path near a terminating node.
Graphs that have not been extended within a specified time
are considered closed. Closed graphs are removed from the
current graph set. When a graph is of a shorter duration than
a settable minimum whistle duration, it is discarded. Otherwise
individual whistles are extracted from the graph on the basis
of an analysis of graph vertices.

C. Metrics

1) Evaluation of confidence maps: We first assessed the
quality of the whistle-energy confidence maps predicted by
the whistle-extraction model. To do this, we utilized the
BSDS 500 benchmark tools and protocol [65] to calculate
the highest dataset-scale F1-score across various thresholds
(referred to as the “Optimal Dataset Scale,” or ODS). We
thinned each ground-truth whistle to a width of one pixel
and compared them to predicted confidence maps that were
binarized using 50 evenly distributed thresholds between 0
and 1. All default parameters within the benchmark tool were
used in our evaluation.

2) Evaluation of whistle extraction: We used Silbido [11] to
evaluate the quality of whistle extraction after the graph search
was applied to the confidence map. This library calculates
recall, the percentage of validated whistle contours that were
detected; and precision, the percentage of detections that were
correct. Then we calculated the precision, recall, and F1-score
on testing files of each species and averaged them among
all species. We determined the success or failure of whistle
extraction results by examining the set of expected analyst
annotations as described in [11]. We checked whether any of
the detections overlapped with the analyst-annotated whistle
contour in time. If so, we examined whether each overlapping
detection matched the analyst’s annotation. When the average
deviation in frequency between the detected contour and
annotation was < 350 Hz and the analyst detections had
lengths ≥ 150 ms, with a signal-to-noise ratio ≥ 10 dB over
at least 30% of the whistle, we classified the overlapping
detections as matched detections. When an annotated whistle



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

Fig. 6. Real background noise samples (upper left); Our GAN generated background noise samples (upper right); Real whistle samples (bottom left); Our
GAN generated whistle samples (bottom right). Multiple 64 × 64 patches are concatenated in each category for better visualization of the data variance.

TABLE I
PERFORMANCE OF WHISTLE EXTRACTION

Na Mean ODS Mean F1-score Mean Precision Mean Recall
w/o GANb w GAN w/o GAN w GAN w/o GAN w GAN w/o GAN w GAN

1000 69.80±2.41c 71.33±2.58 79.74±2.94 80.73±1.89 85.01±3.54 76.86±3.99 84.82±3.44 78.32±3.58
2500 75.37±1.50 77.78±0.89 83.04±1.10 84.73±0.90 85.88±1.92 86.38±1.77 81.29±2.26 83.72±1.32
10000 78.64±0.67 79.38±0.38 84.70±1.11 85.21±0.80 87.55±1.52 87.13±1.86 82.67±1.52 83.85±1.13

all 80.85±0.23 81.23±0.10 87.42±0.44 87.88±0.14 89.27±0.20 89.60±0.31 86.04±0.67 86.63±0.36
a We denote the number of real positive samples for whistle extraction model and GAN training as N; “all” indicate that the

full dataset is used.
b w GAN and w/o GAN indicate the performance of whistle extraction model with or without our GAN generated samples,

respectively. The whistle extraction model is the same as [19].
c We conduct repeated experiments for each setting, and we report performance average ± standard deviation for each metric.

Refer to Section IV-C for more details.

did not meet the above criteria (too short or low intensity), we
discarded any matching detections, and they did not contribute
to the metrics. We classified unmatched detections as false
positives.

V. EXPERIMENTS AND RESULTS
A. Varied number of annotated samples

We first studied the effect of varying the amount of training
data for our whistle extraction network. Because annotation
is expensive, a key motivation for data augmentation is to
reduce the number of annotations required. Training effective
deep-learning models requires a considerable amount of high-
quality annotated data [66]. For the whistle extraction task in
this paper, it remains unclear how the whistle models perform
when the amount of annotated data varies. To address this
issue, we conducted 6 experiments that selected n positive
patches and n negative patches, where n = 500, 1000, 2500,
5000, 7500, or 10000. Random selection of patches was
structured to ensure that smaller datasets were subsets of larger
ones. We repeated this process five times to obtain 5 datasets
for each n. For each dataset, we trained whistle extraction
models 5 times, and report average performance.

The experimental results are shown in Fig. 5. The black
curves show the performance of the confidence map (ODS)
and whistle extraction (F1-score) (upper and lower plots,
respectively) with respect to the quantity of training data.
While the ODS quantifies the performance of the whistle
extraction model in detecting the presence and shape of the
whistles, the results suggest that, with more training data, the
average ODS increases. The increase in whistle extraction F1-
score follows the same trend as ODS. Our results show that
increasing the amount of annotated data substantially improves
the performance of whistle detection. At the same time, as the
amount of data increases, the rate of performance improvement
decreases, which means that exponentially more data may be
needed to increase performance by 1 unit when the initial
dataset is larger.

B. Data augmentation

We also studied the effect of varying dataset size on GAN
training and data augmentation. In this set of experiments, we
applied the proposed augmentation method to augment n =
1000, 2500, and 10000 positive samples and negative samples.
In each experiment, we generated 10 × n samples with our
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Fig. 7. Positive samples (left) and corresponding whistle contour (right) generated by vanilla GAN. Multiple 64 × 64 patches are concatenated.

WAS-GAN. All GAN networks were randomly initialized and
trained once per dataset. For each augmented dataset, we
trained the whistle extraction model with ABN for 5 times.

Fig. 6 shows examples of samples generated by our WAS-
GAN (n = 2500). By visually comparing the real samples and
generated samples, we see that the noise patterns and whistle
signal patterns are well simulated by our GAN networks,
e.g., the clicks (wide vertical band of high energy across the
frequency domain) are simulated well, as are the width and
strength of whistle signals.

Table I reports the experiment’s ability to correctly predict
time-frequency peaks associated with whistles (mean ODS)
and to correctly extract whistles from these predictions (mean
F1-score). Consistent performance improvements were ob-
tained for both measures. Our methods obtained gains of 1.53,
2.41, and 0.74 in mean ODS, and 0.99, 1.69, and 0.51 in
mean F1-score for the three augmentation experiments when
n=1000, 2500, and 10000 training patches, respectively. We
also obtained improvements of 0.38 and 0.46 in the mean ODS
and mean F1-score, respectively, when we used WAS-GAN on
the full dataset. In comparison to experiments using n=10000,
we utilized over 100,000 additional annotated samples in our
full dataset experiment. These samples were manually labeled
as opposed to our GAN augmented samples, and this led to an
increase of 2.72 in the whistle extraction F1-score. Without our
GAN-generated samples, in order to achieve a 0.46 increase in
the F1-score by adding more human-annotated samples to our
current dataset, we would have to annotate tens of thousands
more samples. The training stability was notably improved
(with a reduction in the variance of the F1 metrics) with the
addition of the generated data. These improvements highlight
the effectiveness of our proposed stage-wise, GAN-based data
augmentation method: the use of augmented data improves
spectral peak detection results, which in turn also improves
whistle contour extraction results.

C. Ablation study

We conducted a set of ablation experiments to examine
the contributions of different components of the proposed
method. We chose datasets with n = 2500 samples for these
experiments. The quantitative results are shown in Table III.

1) Residual learning: In this ablation experiment, we
trained the CycleGAN in stage 3 to directly generate positive
samples rather than adding the residual to the negative samples

(Eq. 3). While we can change the whistle signal magnitude
by altering the weight in Eq. 3 when the generator outputs
residual, the whistle signal’s magnitude is determined by the
generator model in this setting. In contrast to the proposed
WAS-GAN, we observed a decrease of 1.43 in mean ODS and
a decrease of 1.44 in mean whistle extraction F1-score when
we removed residual learning. This performance drop might be
caused by the fact that the GAN needed to output background
noise, which might increase the difficulty and instability of
learning. Moreover, the variance of generated data decreases
when the magnitude of whistle signals cannot be adjusted by
the multiplier of the residual.

2) Patch selection: This ablation experiment removed the
quality assurance filter (Eq. 15 and Eq. 16) for whistles
generated by the GAN. As a result, generated whistles similar
to those surrounded by the red bounding boxes (Fig. 3) were
included in the training data. The mean ODS dropped by
1.21 and the mean F1-score decreased by 1.44 after this
change. This indicates that low-quality samples may reduce
the performance of the whistle extraction network training,
and our simple heuristic selection method effectively selects
samples for the whistle extraction task.

TABLE II
ABLATION STUDY

Experiments Mean ODS Mean F1-score
2500+GANa 77.78 84.73
- residualb -1.43 -1.44
- select -1.21 -1.44
- ABN -0.68 -0.98

- ABN, - select -0.86 -1.97
- residual, - select, - ABN -2.01 -5.21

vanilla GANc -0.57 -1.04
Random Additiond -0.36 -0.65

Random Addtion + Gaussian Blure -0.37 -0.67
a GAN augmentation from 2500 real positive samples and 2500 nega-

tive samples. We report the whistle extraction performance with our
proposed GAN method in this row and the change of performance
compared to this row in the following rows.

b -XXX means that component XXX is removed. The components in-
clude: (i) residual: residual learning; (ii) select: selection of synthetic
whistles with entropy and duration criteria; (iii) ABN: auxiliary batch
normalization.

c We replace stage-wise GANs with a single WGAN-gp [48] for
sample synthesis.

d We remove the third GAN model (CycleGAN) and directly add the
output of the first two GANs with random weights.

e We apply random Gaussian blurring to the generated whistle contour
before it is added to background noise.
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Fig. 8. Outputs of whistle extraction models. Models with the best whistle
extraction F1-score among all parallel experiments in each training setting are
visualized. (a) Spectrograms that are used as model input. (b) Ground truth.
(c) Output of model trained with 2500 real positive patches and negative
patches. (d) Output of model trained with 2500 positive patches and negative
patches and GAN synthesized data. (e) Same as d, but the model does not
have auxiliary batch normalization (ABN).

3) ABN: Because ABN stores statistics of real samples
and generated samples separately, it may better stabilize the
training when the generated samples and real samples have
different distributions [31]. We evaluated the functionality of
applying ABN with and without patch selection to our whistle
extraction task; patch selection affects the generated sample
distribution. After removal of ABN, the whistle extraction F1-
score dropped by 0.98 with patch selection and by 1.97 without
patch selection. This suggests that our patch selection method
contributes to generating samples that are closer to the actual
distribution of whistles. The performance change is consistent
with our hypothesis that generated samples and real samples
have a different distribution when few data are included in
GAN training.

We also observed decreases in ODS of 0.68 with patch
selection and 0.86 without patch selection after removal of
ABN, which is a less decrease compared to whistle extraction
F1-score. While ODS demonstrates the whistle extraction
model’s performance at the spectrogram bin level, this metric
does not always linearly correlate to the whistle extraction per-
formance, because it ignores the signal continuity among bins.
We observed that removing ABN frequently resulted in poorer
continuity of predicted patches (e.g., Fig. 8d and 8e, first and
third examples) and a greater number of false positives (e.g.,
Fig. 8d and 8e, second example). The whistle extraction F1-
score also indicates the model’s ability to recognize whistle
signals under varying noise conditions or suppress false posi-
tives in the high-energy region of spectrogram according to
the context information (signals in the neighborhood). The
generated whistle contour and signals may be less continuous

than the real samples, which will train the whistle extraction
model to ignore context information and make discontinuous
predictions when ABN is removed. The comparison among
Fig. 8 (c), (d), (e) rightmost column also shows that use of
our generated data reduces false positives.

4) Stage-wise GAN: Instead of decomposing the sample
generation into multiple stages, we used a single WGAN-gp
with two output channels to generate whistle data, the spec-
trogram samples and their labels, similar to [53]. To deal with
the increased learning difficulty of one WGAN, we increased
the WGAN-gp capacity of the generator by using twice the
number of hidden layers for each convolutional layer output
as that in Section IV-B2. Examples of samples generated by
this model are shown in Fig. 7. We saw clear artifacts and
unnatural, sudden changes in the magnitude in adjacent bins
on the spectrogram. The visual quality of generated samples
was substantially worse than those generated by our stage-
wise GAN in Fig. 6. We also observed a decrease of 1.04
in the whistle extraction F1-score compared to our proposed
framework. Data augmentation with the low-quality samples
still permitted the performance of the model to surpass that
without augmentation for the time-frequency detection task.
The negative effect of using corrupted data might be mitigated
by the ABN layer.

5) The third GAN: In this ablation study, we remove the
third GAN and instead generate positive sample I ′P by simply
adding the generated whistle contour IW to the generated
background noise IN . Following the work of Li et al. [19],
we apply Gaussian blur G with random deviation parameter
σ to the whistle contour, and we add the blurred contour to
the background noise:

I ′P = IN + λCLIP (IW +G(Y, σ)) (18)

where the clipping function CLIP (x) is

CLIP (x) =


0, x ∈ (−∞, 0)
x, x ∈ [0, 1]

1, x ∈ (1,+∞)

(19)

We also try a simple version which does not contain Gaussian
blur:

I ′P = IN + λIW (20)

where λ is a random weighting parameter. We use the same
parameter setting as Li et al. [19], where λ and σ are
uniform random numbers within the ranges of [0.03, 0.23]
and [0.3, 1.3], respectively. As shown in Table III, both
methods in Equation 19 and Equation 20 lead to inferior per-
formance compared to the proposed stage-wise GAN method
(“2500+GAN”) that uses the third GAN. Considering that we
use the same set of background noise and whistle contour
shapes, this ablation study indicates that our proposed stage-
wise GAN method generates more realistic whistle signals
with a appearance which contributes to the improved training
of the whistle model.

D. Comparison with other whistle extraction methods

In addition to our previous work on network-based whis-
tle extraction [19], we have selected two representative and
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TABLE III
COMPARISON OF WHISTLE EXTRACTION METHODS

Method F1-score Precision Recall
Roch et al., 2011 [11] 75.95 81.125 72.275

Gruden et al., 2020 [22] 83.40 76.55 92.45
Gruden et al., 2020 (≥150ms) 74.38 95.85 60.875

Li et al., 2020 [19] 87.42 89.27 86.04
Li et al., 2020 + our GAN 87.88 89.60 86.63

competitive whistle extraction methods for comparison. Both
methods identify whistle candidate points by determining if
the Signal-to-Noise Ratio (SNR) values are above a thresh-
old on the denoised spectrogram. The Graph-Search method
developed by Roch et al. [11] employs graphs consisting
of candidate points, which are extended with new points
based on how well these new candidate points align with the
existing graph through polynomial fitting results. As a point of
comparison, Gruden et al. [22] uses a probabilistic approach
based on the sequential Monte-Carlo probability hypothesis
density (SMCPHD). In addition to the result of all SMCPHD
predictions, we also present the results of predictions that are
longer than 150ms, as both Graph-Search and our method
apply this length criterion for detection.

Our approach outperforms SMCPHD and Graph-Search in
the whistle extraction F1-score by 4.48 and 11.93, respectively.
Additionally, our GAN-generated samples improve the method
in [19] by 0.46 in F1-score, 0.33 in precision, and 0.59 in
recall. SMCPHD demonstrates the highest recall but the lowest
precision in this comparison, which indicates its aggressive
strategy of making more whistle predictions. By removing
whistle detections by SMCPHD that are shorter than 150ms,
the precision of SMCPHD is improved by 19.3, while the
recall is decreased by 31.57. This study suggests that SM-
CPHD prefers shorter segments of whistles in its predictions.
Our GAN-generated samples help the learning-based model
achieve a competitive performance advantage on this whistle
extraction task, however, it should be noted that optimizing the
other algorithms for this specific dataset may diminish these
advantages.

VI. CONCLUSION AND DISCUSSION
We present a framework of stage-wise generative adversarial

networks to generate training samples for whistle extraction.
The data generation process consists of three stages: (i) gen-
erate time x frequency spectrogram patches containing back-
ground noise (ii) generate whistle contours and automatically
discard poor quality contours (iii) fuse whistle signals with
the background noise. Each stage is completed by one trained
generative adversarial network. Compared to using a single
vanilla GAN generating whistle extraction data and labels, our
stage-wise GANs can generate samples with fewer artifacts
which results in increased whistle extraction performance. We
examined our data generation method by a series of exper-
iments employing differing quantities of real and generated
data, and note that using the generated data lead to consistent
performance gains.

The stage-wise design may mainly contribute to the success
of our data generation method. It separates the modeling of

different components and the relationship between compo-
nents, which eases the learning of the GANs in each stage
as well as provides a straightforward way to explore different
combinations of components. In our case, we generated the
background noise separately and we were able to add different
whistle signals to the same background. If we directly apply
this idea to semantic segmentation data generation of natural
images, we may first generate the appearance of background
scene, then generate objects on it according to a desired
segmentation map. If we extend this idea, we may generate
the appearance of different objects separately and then add
them to the background. In this way, we may fully explore
combinations of varying objects and background appearances
in the same segmentation layout. In our whistle extraction
experiments, we did not use this extended idea, because
the appearance of our foreground object (the whistles) is
relatively simple, i.e., the variance of appearance is mainly
rooted in the whistle contour shape and whistle magnitude.
Therefore, we directly add whistle signals to the background
using the third GAN in our framework. Our framework can be
readily extended to extract calls of other whale species (e.g,
baleen whales) and to other similar tasks (e.g., semantic image
segmentation).

Though it may not affect the main contributions of this
work, our data generation method can be improved in three
aspects in the future. Firstly, we may use improved gener-
ative neural network architecture and training strategies. For
example, we may use a generator architecture based on a style-
transfer network which improves the generated sample quality
[67]. The discriminator augmentation mechanism proposed in
[68] may help stabilize training in limited data regimes. We
may also explore generating larger patches of high quality
with the method in [69]. Secondly, we may use real data in
the data generation process to enrich the data variance. The
real background and annotated whistle contours can be used as
the input data of our GAN in the third stage, and we can gen-
erate whistle signsals of novel shapes on real background or
generate whistle signals of annotated contour shapes on GAN-
generated background. Thirdly, we may improve the sample
selection method. In this paper, we use a simple yet effective
pixel-wise entropy method to select whistle contour of good
quality. Metric measuring texture or semantic information like
[70] may better measure the quality of our generated samples
and improve the sample selection process.
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