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Abstract—The amount of multimedia content shared everyday,
combined with the level of realism reached by recent fake-
generating technologies, threatens to impair the trustworthi-
ness of online information sources. The process of uploading
and sharing data tends to hinder standard media forensic
analyses, since multiple re-sharing steps progressively hide the
traces of past manipulations. At the same time though, new
traces are introduced by the platforms themselves, enabling the
reconstruction of the sharing history of digital objects, with
possible applications in information flow monitoring and source
identification. In this work, we propose a supervised framework
for the reconstruction of image sharing chains on social media
platforms. The system is structured as a cascade of backtracking
blocks, each of them tracing back one step of the sharing chain
at a time. Blocks are designed as ensembles of classifiers trained
to analyse the input image independently from one another by
leveraging different feature representations that describe both
content and container of the media object. Individual decisions
are then properly combined by a late fusion strategy. Results
highlight the advantages of employing multiple clues, which allow
accurately tracing back up to three steps along the sharing chain.

I. INTRODUCTION

ASSIVE amounts of multimedia data are uploaded

every day to social media platforms by nearly 4 billion
active users: according to recent estimates, 3.2 billion images
are shared every day [1] and 500 hours of video are uploaded
to YouTube every minute [2]. At the same time, easy-to-
use editing tools that allow modifying such multimedia data
have become widely available. While this enables for an
unprecedented ease in sharing information, it also entails
serious implications for the trustworthiness and reliability of
digital media.

Such concerns reached a critical level with the recent
development of tools based on artificial intelligence (Al) that
allow even inexperienced users generating almost automat-
ically highly realistic fakes, especially when dealing with
images and videos depicting faces [3l], [4]. Indeed, advanced
tools like AI and photo/video editing used to be restricted to
skilled users and researchers but are nowadays available to a
much wider public, likely going beyond the primary purpose of
entertainment. As for any other technology, a reasonable risk
exists for malicious misuse, e.g., conveying misinformation
to bias people and influence social groups [S]. Moreover,
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multimedia data are responsible for the viral diffusion of
information through social media and web channels, and play
a key role in the digital life of individuals and societies.
Therefore, developing tools to preserve the trustworthiness of
shared images and videos is a necessary step that our society
can no longer ignore.

Several works in media forensics have investigated the
detection of manipulations and the identification of the digital
source, providing promising results in laboratory condition and
well-defined scenarios [6]. More recently, the research com-
munity has also pursued the ambition to scale forensic analyses
to real-world web-based systems, which involve routinely
applied operations such as the act of sharing through social
media platforms [7]. This extension requires the ability to face
significant technological challenges related to the (possibly
multiple) uploading/sharing processes, and hence the need for
methods that can reliably work under more general conditions.
Retrieving information about the life of a digital object in
terms of provenance, manipulations and sharing operations,
would indeed represent a valuable asset: on one hand, it could
support law enforcement agencies and intelligence services in
tracing perpetrators of deceptive visual contents; on the other
hand, it could help in preserving the trustworthiness of digital
media and countering the effects of misinformation.

The process of uploading to web platforms represents
nowadays a key phase in the life of a digital object, and
the dynamics of shared visual content can be analyzed for
different purposes [8]], [9]. While this sharing process typically
hinders the ability to perform conventional media forensics
tasks, it also introduces new traces itself, allowing to infer
additional information. As a matter of fact, data can be up-
loaded in different ways, multiple times, on diverse platforms
and from different systems. In this context, the possibility of
reconstructing the sharing history of a given object, known as
platform provenance analysis [1l], could help monitoring the
information flow by tracing back previous uploads, and thus
supporting source identification by narrowing down the search.

Distinct traces are left on a digital image when uploaded to a
web platform or a social network, depending on the operations
that are involved in the process. As firstly observed in the
case of Facebook [[10], compression and resizing are typically
applied to reduce the size of uploaded images, and this is
performed differently on different platforms and depending
on the resolution of the original image. As known in media
forensics, such operations can be detected and characterized by
analyzing the image content or signal (i.e., the values in the
pixel domain or in various transformed domains). A signal-
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Fig. 1. Visual representation of the media recycling problem where we aim at reconstructing the sharing history of a given image. In this work we consider
up to three sharing steps on three different platforms, namely Facebook (FB), Flickr (FL) and Twitter (TW). Three examples of reconstruction of the sharing
history are presented: the red one has been shared first on TW and then on FB; the green one on TW, FB and FL; the yellow only on TW (note that the

reconstruction proceeds backwards, starting from the most recent sharing step).

based approach for platform provenance analysis can lever-
age the Discrete Cosine Transform (DCT) coefficients [11],
[12], the PRNU noise or combinations of the two [14].
Moreover, provenance can also be inferred as a by-product
of detectors developed to analyse image manipulations in the
pixel domain, as shown in [13]].

Meaningful information can be extracted as well from
the image container, such as metadata. While signal-based
forensic analysis is usually preferable (as data structures can
be erased or falsified more easily than signals), such clues play
a relevant role in platform provenance analysis, being typically
related to the platform itself rather than to the acquisition
device [16]. In the authors consider several popular
platforms (namely Facebook, Google+, Flickr, Tumblr, Imgur,
Twitter, WhatsApp, Tinypic, Instagram, Telegram), observing
two main facts: (i) the uploaded files are renamed with
distinctive patterns which can even allow to reconstruct the
file’s web URL; and (ii) both resizing and JPEG compression
adopt platform-specific rules. Therefore, the authors propose
a feature representation that includes image resolution and
quantization table coefficients, which can be extracted from
the file without decoding.

An even more challenging scenario consists in the recon-
struction of sharing chains, meaning that the target of the
analysis goes beyond the identification of the latest sharing
platform and aims at reconstructing the history of a digital
object that has been re-shared multiple times, possibly on
different platforms. We denote this scenario as media recy-
cling. Since forensic traces tend to decay as we keep applying
new operations on an image, the problem of media recycling
requires the combination of multiple detection strategies to be
solved. Hybrid approaches where clues are extracted from both
signal and metadata have been proposed in [18]], [19], [20],
showing promising results in the identification of sharing steps

beyond the most recent one.

In this paper we address the image recycling problem by
proposing a novel multi-clue detection system able to recon-
struct the sharing history of images on various platforms. The
proposed framework is designed as a cascaded architecture,
which allows tracing back one sharing platform at a time,
leveraging the knowledge of the previously detected steps to
reconstruct the whole sequence step by step (Figure [I). The
system employs an effective fusion mechanism to combine
multiple classifiers, thus allowing to successfully exploit both
content and container of the inspected image, and being open
to possible integration with other sets of features. As an
additional contribution, we present a novel set of container-
related features extracted from the JPEG header, which allows
significantly boosting performances when combined to other
detectors.

The proposed framework is evaluated on a published dataset
of images shared on different platforms. Experiments, con-
ducted including both single detectors and fused ones, show
that the combination of heterogeneous traces is beneficial
in media recycling detection. Thanks to the novel set of
container-based features, the identification of the last sharing
step reaches 100% accuracy on the test data. Moving further
back in the history, the system allows reconstructing the
sharing chain with high accuracy up to the third step.

A repository with the implementation of the presented
system is publicly availableﬂ

The paper is structured as follows: Section [MI] formally
defines the image recycling problem and describes the ar-
chitecture of the proposed reconstruction system; Section [[II
presents a set of forensic traces that provide meaningful
information in the context of the image recycling scenario,
along with the adopted strategy for fusing such multiple

Uhttps://github.com/Flake22/sharing- chains-reconstruction
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descriptors; Section [[V] discusses the experimental setting and
the obtained results, and reports a feature separability analysis
for the presented descriptors; finally, Section draws the
conclusions.

II. MULTI-STEP RECONSTRUCTION OF SHARING CHAINS

The problem of image recycling involves media data that
have been shared one or more times through (possibly differ-
ent) social media and web platforms.

The key assumption is that a given image x € Z underwent
a number ¢ > 1 of sharing steps, forming a sharing chain.

Definition 1: Given a set S of sharing platforms, a sharing
chain of length ¢ is a sequence of sharing platforms, which
we can be represented as a vector C in S =S x ... x S.

————

¢
For the sake of convenience, we will index the components
of C in reverse order, so that the temporal succession of
sharing platforms goes as follows:

Cl-({-1)]—... = C[-1] = C[0], (1)

and thus C[0] corresponds to the last sharing step in C.
Definition 2: For a generic chain C € S, the set B(C)
contains all the chains of length /41 whose last £ components
are identical to the ones of C; in other words, chains in 5(C)
differ from C by one additional previous sharing step, C[—/].
Let us also define €2, as the set of all possible sharing
chains of length up to ¢ obtained through the combination
of platforms in S,
o= s ©))

1<i<t

In our formulation, the goal of a recycling analysis is to
devise a system Jj that assigns a certain image x to the
sharing chain it went through, up to a predefined maximum
chain length L.

A. Cascaded architecture

Given a predefined number L of sharing steps, our purpose
is to devise a system Fp : Z — ) that takes in input an
image x and associates it to the correct chain of maximum
length L.

In our approach, we propose to structure F7, as a multi-step
cascade of backtracking blocks F_,, each of them tracing back
one step of the sharing chain at a time.

In particular, we define:

e Fp: T -0 =S8

This first backtracking block assigns x to the platform in
S that corresponds to the last sharing step.
oFLg:IXQg—)QeJrl, gzl,...,L—l
For ¢ > 1, based on the knowledge of the previous
blocks’ decisions, each backtracking block inspects a
possible preceding sharing operation. This process is
recursively performed until ¢ reaches L — 1, and the last
block provides the final output.

Formally, we can express the whole system as

Fr(x) =F_(p-1)(x,..., Foa(x, FLi(x, Fo(x))...)  (3)

By defining the intermediate chains C_, as the output of
F_y ie, C_p = F_y(x,F_(_1)(x)), we can represent the
multi-step process as in Figure

[ Ffoeq
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Fig. 2. Schematic representation of the multi-step cascade. Backtracking
blocks are represented in squares; black dashed lines indicate input arguments
to the blocks, solid red lines the output of the blocks.

Each intermediate backtracking block assigns x to a po-
tentially longer chain, in the case a previous sharing step
is detected. This is done through an ensemble of classifiers,
each one specialized in dealing with a specific output of
the previous block. If no additional steps are detected, the
intermediate chain does not increase in length and is regarded
as the final output. By dropping the subscript for the sake of
simplicity and indicating as C € 2, an arbitrary intermediate
chain determined at the previous backtracking block, we can
formulate a generic intermediate block F_, as follows:

C it CeQyy

fg(x) if CeQy \ Q1 @

F 7Z(X7 C) = {

The first case corresponds to the situation where no back-
ward step is detected at the previous backtracking block (i.e.,
the length of C is lower than /), therefore no additional
steps should be added to the current chain. In the second
case, the functions f?z(-) are specialized detectors trained to
disambiguate among the set containing the chain C and all
the ones that include a previous sharing step. Thus, by design,
one detector fC, : T — {C} U B(C) is needed for each
C € Qp \ Q_1. By design, we indicate fo(x) = Fo(x).

The way specialized detectors assign x to either C or a
longer chain involves the combination of different recycling
traces. The description of the employed traces and the fusion
technique adopted to combine the associated detectors is the
subject of the next section.

For the sake of clarity, we report in Figure [3] a visual
example of how the system F; works for the case L = 3
and S = {FB, TW, FL}, which refer to Facebook, Twitter and
Flickr, respectively.

III. EXTRACTION AND FUSION OF RECYCLING TRACES

Traces of media recycling can be found on image data under
investigation exploiting different domains. In our case, we de-
fine multiple feature representations extracted from both image
signal and image container. As far as signal-based features are
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Fig. 3. Visual example of a run of the system F, with L = 3 and

S = {FB, TW, FL}. Backtracking blocks are annotated in gray on the left;
black dashed lines represent arguments that are given in input to specialized
detectors, while solid red lines indicate the outputs of specialized detectors.
In this case, the chain (TW,FB) is reconstructed: after Fy(x) identifies
Facebook as last sharing platform Cg, the block F_1(x,Cyp) calls the

specialized detector fSFlB)(x), which detects a previous sharing on Twitter

and returns the chain C_; = (TW,FB); then, the block F_o(x,C_1)
calls the specialized detector f(_TQW ’FB)(X), which returns again the chain

C_s = (TW,FB), thus fixing the chain length to 2. The final output of
the system is therefore F3(x) = C_o = (TW,FB).

concerned, we focus on the histograms of DCT coefficients
(denoted as DCT and described in Section [II-A), which
have been successfully adopted in the literature to address
several media forensics problems [18]], [21], [22]. Regarding
container-based information, two different feature vectors are
defined: META, which encodes metadata mostly related to
the last JPEG compression settings, and HEADER, which
contains information on the overall structure of the JPEG
header; these feature descriptors are described in Section
In particular, the latter represents a recycling trace that we
propose for the first time in this work and is capable of
boosting the overall performance when combined to other
features.

A. Content-based features

The set of content-based features, denoted as DCT, encodes
the forensic traces left on the image signal by the lossy
compression of JPEG standard, which is currently the most
common format for images uploaded on social networks. The
specific processing, however, is peculiar to the needs of each
platform. In particular, the target image quality is controlled by
the integer quantization in the DCT domain, which is reflected
in the statistics of the quantized coefficients.

Following the scheme in [11], the 8 x 8 block-based DCT
is first computed on the whole image; then, normalized his-
tograms of dequantized DCT coefficients are extracted from
the first 9 AC frequencies, in zigzag order. We retained for
each histogram the 41 bins corresponding to the range of
integers between —20 and 20. Finally, the concatenation of
the histograms provides a 369-dimensional feature vector.

B. Container-based features

The first set of container-based features, denoted as META,
exploits the information about the JPEG compression settings

Fig. 4. Example of JPEG header representation as extracted by ExifTool. In
this case, the image has been shared once through Twitter.

contained in the metadata of the image under investiga-
tion. These features, as proposed in [19], consist of a 152-
dimensional vector encoding the following information:

o Quantization tables (128), for luminance and chromi-

nance channels, reflecting the JPEG quality factor
o Huffiman encoding tables (2), number of tables used for
AC and DC component

o Component information (18), describing component id,
horizontal/vertical sampling factors, quantization table
index and AC/DC coding table indices, for each YCbCr
component

o Optimized coding and progressive mode (2), binary fea-

tures indicating the use of the two modes

o Image size (2), the image dimensions

The second set of features, denoted as HEADER, is a novel
contribution of this work and encodes structural properties of
the JPEG header.

Previous approaches in [23]], [16] observed that the EXIF
information of JPEG files can contain useful information
for forensics purposes, such as authentication and source
identification. More recently, authors in [24] proposed an
efficient container-based method to verify the integrity of
videos, showing also the possibility to identify the social media
platform on which the video was uploaded.

A similar idea is exploited in this work, adapted to the
image recycling scenario. In fact, while sharing platforms
usually strip out optional metadata fields (like acquisition time
and device, GPS coordinates, etc.), we observed that different
platforms retain different EXIF fields in the downloaded JPEG
files, which can be extracted through several possible tools and
be employed as feature descriptors.

Our implementation is based on ExifTool [23], a free and
open-source software library for reading, writing, and editing
image containers. In particular, ExifTool encodes the header
of a JPEG file into an HTML page, as exemplified in Figure 4]

Every extracted file contains header markers indicating the
beginning of a specific kind of segment. Those can be found
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Fig. 5. Comparison of HEADER features extracted from the same image
shared on different platforms.

multiple times throughout the header, and their frequency
represents a discriminative property for detecting the upload
on a sharing platform.
For this purpose, a set of 8 markers was selected, as detailed
below:
e DHT: encapsulates the information regarding the Huff-
man Table
o unused: unused data blocks for maintaining a fixed size
e APPI3: provides a number of methods for managing
Photoshop/IPTC data without dealing with the details of
the low level representation
e APP2: used to store the ICC profile
e SOFO: Start Of Frame (Baseline DCT), indicates a base-
line DCT-based JPEG, and specifies the width, height,
number of components, and component subsampling
e SOF2: Start Of Frame (Progressive DCT), indicates a
progressive DCT-based JPEG, and specifies the width,
height, number of components, and component subsam-
pling
e cmp3: comment section
e JPEG DRI: Define Restart Interval.

For each image file, the frequency of the listed segments is
computed throughout the JPEG header, providing a 8-element
feature vector. An example is reported in Figure [5] where the
feature vector is extracted for the same image when subject
to a sharing operation on different platforms. The resulting
HEADER descriptor is therefore low-dimensional and does
not require to decode the image, since information are read
directly from the file header. In addition to being computa-
tionally efficient, HEADER provides an extremely accurate
identification of the last sharing step, and remains informative
enough to boost the performance of other descriptors in further
steps of the chain, as demonstrated in Section

C. Fusion of classifiers

The described feature representations can be employed to
train specific classifiers that discriminate among pre-defined
sets of sharing chains. However, in order to implement the
functions fS,(x) described in @), we need to combine the
output of such classifiers into a single overall decision. For
easier reading, from now on we will simplify the notation by
removing any reference to the block index ¢ and the previous

output C, so that we can discuss the implementation of a
generic function f(x).

The above scenario is typically referred to in the literature
as combination of multiple experts (CME) [26]], [27], where
each classifier is regarded as an “expert” who analyses one
specific aspect of the object under investigation, and the final
response is obtained by properly merging all the individual
decisions.

Formally, the CME problem involves K experts (or clas-
sifiers) denoted by ex, £ = 1,..., K, which share the same
set of mutually exclusive output classes. The function f(x)
combines the individual decisions (the outputs of the K
classifiers) by means of a fusion function g, and provides an
overall classification,

f(x):g(el(x)ve2(x)"'~aeK(x)) %)

Note that the individual decisions and the combined one all
belong to the same set of chains (which depends on the block
index and the result of the previous block). Regardless of the
specific set, however, the number of chains is always |S| + 1,
since we can either add a new step from S to the partial chain
or not.

The CME problem, i.e., the implementation of the fusion
function g, is addressed in our work by means of a method
known as behavior-knowledge space (BKS) [28], [29], which
allows building prior knowledge about the behavior of the indi-
vidual classifiers without requiring the statistical independence
of the same.

A BKS is a K-dimensional space where each dimension is
related to the decisions of one classifier. Each classifier has
the same number of decisions, chosen from a given set, and
the intersection of the decisions of individual experts identifies
a unit of the BKS.

Given an input x, for which we have e (x), k=1,..., K,
i.e., the individual decisions, the corresponding unit in the
BKS has coordinates (e1(x), e2(X),...,ex(x)) and is called
the focal unit for x. Given that, in our case, the number of
output classes for each classifier is |S| + 1, it follows that the
BKS contains exactly Q = (|S| + 1) units, denoted by u,,
qg=1,2,...,Q.

In practice, the BKS is implemented as a lookup table
that associates each unit (i.e., each combination of individual
decisions) to a probability distribution over the set of output
classes. Such distributions are estimated by accumulating the
number of incoming samples for each class on a dedicated
training set (different from the one used to train the individual
classifiers [30]).

Let us define y € {1,2,...,|S| 4+ 1}, a set of numerical
labels associated to the output classes. A representation of
a BKS lookup table is given in Table [I} each unit ug,
qg=1,...,Q, corresponds to a unique combination of clas-
sifier decisions, and néq) is the number of training samples
belonging to class y that have fallen into the g-th unit.

Let us assume that the input x is mapped into a set of
decisions e(x), k = 1,..., K, that corresponds to the focal
unit u, of the BKS. From the lookup table, we can derive the
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Fig. 6. Framework architecture for multi-clue reconstruction of sharing chains. The input image x is fed into a cascade of backtracking blocks, F_,, each
one dedicated to identifying chains of length up to £ 4 1. Every step consists of an ensemble of parallel classifiers, which analyse x by also taking into
account the information from previous steps, and a fusion module that provides the overall decision. Stopping conditions intervene when F_, receives a chain

of length ¢ — 1, i.e., the end of the chain has been reached.

TABLE I
BKS LOOKUP TABLE.

BKS units
ul us - Ug uQ
R ) (@)
% nél) néz) C. né‘l) n;Q)
O : : : :
(1) (2) (a) (Q)
Tsi+1 Ms|+1 s+ s(+1

posterior probability of associating input x to a label y given
the focal unit u, as follows

P(f(X):yIu):i ©)
RS
The optimal combined decision is therefore
§ = argmax P (f(x) = y | u,) ™)

Y

In BKS fusion, there is also the possibility of an input x
being rejected, meaning that while the individual decisions are
valid their combination is impossible. In practice, a rejection
occurs when the focal unit is empty, i.e., no training samples
have been mapped into u,, or when the maximum value of
the estimated distribution néq) is non-unique.

In the cascade architecture, a rejection from the fusion
module stops the reconstruction process seamlessly, since its
effect is equivalent to the case when the end-point of a sharing
chain is reached (see Equation [).

Figure [6| depicts a comprehensive representation of the
cascaded architecture, exemplified by two backtracking blocks,
including the fusion modules and the stopping conditions;
the classifiers related to the three adopted descriptors (DCT,
META, HEADER) are denoted by ep, ens, ex.

IV. EXPERIMENTS AND RESULTS

A. Experimental setting

The presented framework is highly flexible, being adaptable
to a different number K of feature classifiers, set S of sharing
platforms, and length L of the longest detectable sharing chain.

In our experiments, we implemented the system with the
following configuration:

e K = 3 feature descriptors (DCT, META, HEADER);

o & = {FB,FL, TW}, where the labels denote Facebook,
Flickr and Twitter, respectively;

o L = 3, therefore the system JFj is composed of three
backtracking blocks, Fy, F_1, F_o.

It follows that the set of all possible sharing chains identified
by the system is Q3 = S US? U S, where:

« S? = {(FB,FB), (FL,FB), (TW,FB), ...},

« S8% = {(FB,FB,FB), (FL,FB,FB),...},

and thus |Q3] = 39.

1) Dataset description: the framework was trained and
tested on the R-SMUD dataset [19]], containing images shared
on the three social platforms in S. Images are generated
starting from the RAISE dataset [31] by cropping 50 raw
format images on the top-left corner, with fixed aspect ratio
of 9:16 and different resolutions: 377x600, 1012x1800 and
1687x3000. Each of the obtained crops was then compressed
with six quality factors (50, 60, 70, 80, 90, 100) and then
shared up to a maximum of 3 times through different combi-
nations of the three platforms in S, providing a total of 35100
images and Q3] = 39 classes. The dataset was then divided
into training, validation and test subsets, with a 60/20/20 split.

2) Classifiers and training: as described in Section [[II-C]
each backtracking block contains an ensemble of trained
classifiers, one for each combination of feature descriptor and
output of the previous block.

Given the number K of feature descriptors, and given that
one detector f?z is needed for each partially reconstructed

|S?| = 9;
|S3| = 27;



chain C € Q \ Q,_; (see Section [[I-A)), we can derive the
number of classifiers needed at each backtracking block:

o« Fy —m K =3

. F_1 —)K|Q1|=9

. F_2 — K- |QQ\Ql‘ =27

We also recall from Section that the number of output
classes of each detector, regardless of the step index ¢ and
the partial chain C, is equal to |S| + 1 = 4. For instance, if
Fy(x) = Cy = FB, then the output of F_;(x,Cy) can either
be C_; =FB or C_; = (*,FB) € B(Cy), where * indicates
whatever element in S.

Each detector was implemented as a Random Forest Classi-
fier (RFC), with fixed hyper-parameters. In particular, we used
a number of estimators equal to 10, balancing accuracy and
model complexity.

Classifiers were trained on the training subset of R-SMUD,
containing 21060 images equally distributed among the 39
classes. Detectors belonging to Fy and F_;, which are ded-
icated to the classification of shorter chains than F_5, were
trained after re-mapping the original 39 classes as follows:

e Fj is trained on chains in 1,
(C[-2], C[-1], CI0)) € Q35 — CJ0] € Qy;
e F_q is trained on chains in 9,
(C[-2], C[-1], C[0]) € Q3 — (C]-1], CJ0]) € Q.

Such training strategy allows fully exploiting the amount of
samples in the dataset and at the same time recreating a more
realistic scenario: as an example, the detection of CJ0] at step
Fy is carried out among chains of different lengths, having
CJ0] as their last step.

Since steps F_y, £ > 0, discriminate chains that are
known up to C[—(¢ — 1)], the related classifiers need to be
trained on smaller subsets of samples, obtained by fixing
C[0],C[-1],...,C[—(£ — 1)]. In general, the fraction of
training samples available to train step F_y is 1/|Q.,\0,_,|. For
instance, at step F_; we have to split the training according
to the possible outputs of Fp, and thus we get 1/jQ,| = 1/3,
corresponding to 7020 images; similarly, at step F_, we get
1/19,\Q.| = 1/9, corresponding to 2340 images.

As for the fusion part, the number of BKS modules required
at each backtracking block equals the number of classes output
by the related previous block, similarly to the classifiers.
Each fusion module was trained on the validation subset of
R-SMUD (7020 images) to prevent biasing the interaction
between classifiers and fusions (Section [[II-C). The same
dataset partitioning described above for steps F_;, ¢ > 0,
was carried out for the training of fusion modules.

Finally, the end-to-end system was evaluated on the test set,
containing 7020 images. The experimental results are reported
and commented in the next paragraphs.

B. Reconstruction results

Each step of the cascade architecture was evaluated sepa-
rately, in order to observe the reconstruction behavior through-
out the pipeline. In detail, we ran the system on the test set of
R-SMUD and measured the detection accuracy at the output

TABLE II
PER-STEP PERFORMANCE OF THE CASCADE SYSTEM.

Fo F_q F_o
3 classes 12 classes 39 classes
Single classifiers ~ACC ACC ACC
DCT 0.8634 0.4620 0.1849
META 0.9296 0.5350 0.2959
HEADER 1.0000 0.5994 0.2289
Random guess 0.3333 0.0833 0.0256
Fused classifiers ~ ACC REJ ACC REJ ACC REJ
per+mera 09296 0.0000 0.6096 0.0198 0.3475 0.1849
META+HEADER ~ 1.0000 0.0000 0.7934 0.0188 0.5576 0.2325
pcr+META+HEADER ~ 1.0000  0.0000 0.7981 0.0208 0.5465 0.1949
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Fig. 7. Detection performance of backtracking block Fp, which identifies
the last platform in the sharing chain, C[0]; tests carried out with individual
feature sets (a—c), pair fusions (d—e) and triplet fusion (f).

of each backtracking block, F_,, ¢ = 0,1,2. We recall that
the number of output classes at each block is equal to |Qs1],
hence: 3 classes at Fjy; 12 classes at F_1; 39 classes at F_o.

Additionally, we ran the experiments by including different
subsets of feature descriptors in the system, to better assess
the individual contributions: first, we tested DCT, META and
HEADER features by themselves; then, the fusion of pairs of
features; and finally, the fusion of all the three.

Table |l reports an overview of accuracy values for each
step of the cascade and for all feature configurations; for
fused classifiers, we also report the rejection rates, i.e., the
percentage of test samples rejected by the BKS fusion. At
a macroscopic level, we can observe the following: (i) fused
classifiers perform better than (or on par with) single ones,
suggesting that the usage of heterogeneous feature descriptors
is beneficial for platform provenance analysis; (ii) HEADER
features allow a deterministic identification of the last sharing
platform, which is preserved even when fused with other
classifiers; (iii) the overall accuracy values tend to decrease as
we proceed through the cascade, while rejection rates increase.

To deeper investigate these preliminary observations, the
following paragraphs illustrate in details, with the aid of con-
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Fig. 8. Detection performance of backtracking block F_1, which identifies the last two platforms in the sharing chain, (C[—1], C[0]); tests carried out with
individual feature sets (a—c), pair fusions (d—e) and triplet fusion (f). Red squares highlight the subsets of classes having C[0] in common; note how most
confusions are confined within the diagonal squares (all of them, when HEADER is used).

fusion matrices, the performance at each step of the cascade.

1) Fy step: Figure []] shows the 3-by-3 confusion matrices
obtained at step F with different feature configurations.

The last sharing step is unsurprisingly the easiest one to be
identified, since the forensic traces related to that platform are
still intact, while they tend to vanish or blend as we move
backwards along the sharing chain. In fact, all standalone
detectors are able to reach high accuracy values by themselves
(Figure [Jp—c). Nevertheless, one can observe some interesting
results. First, HEADER features are able to detect the last
step C[0] with deterministic accuracy; in fact, the presence
and frequency of JPEG header markers are closely related
to the processing carried out by the last sharing platform
during upload. Secondly, we can note that BKS preserves the
performance of the best classifiers among those included in
the fusion: when DCT and META descriptors are combined,
the results are identical to the ones obtained with META alone
(Figure [7d); when HEADER is present in the fusion, instead,
perfect detection is preserved (Figure [7e—f). This characteristic
of HEADER features is key at the first backtracking block
of the cascade, as it guarantees to precisely identify the last

step of the chain, thus avoiding the propagation of errors
throughout the pipeline.

2) F_y step: Figure [§]shows the 12-by-12 confusion matri-
ces obtained at step F_; with different feature configurations;
the red grid in overlay is meant to highlight the sub-squares
related to chains having C[0] in common.

The reconstruction of C[—1] allows observing additional
interesting results on the behavior of the cascaded system. The
results obtained with the individual feature sets (Figure E}a—c)
show that classification errors mostly occur among sharing
chains having the same platform as last step. For instance, by
looking at the top-left 4-by-4 square of the DCT confusion ma-
trix (Figure[8p), which is related to the chains with C[0] = FB,
we can observe how confusions are mostly confined within
it; the same result appears in the other sub-squares and for
all descriptors. This is a direct consequence of the cascaded
approach, which is preserving the performance of the first
step throughout the rest of the pipeline. In particular, we
can re-observe the perfect classification of C[0] obtained with
HEADER features: in Figure [8c, 100% of classifications is
confined within the three respective 4-by-4 squares; however,
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Fig. 9. Detection performance of backtracking block F_o, which identifies the last three platforms in the sharing chain, (C[—2], C[—1], C[0]) and constitutes

the final output of the implemented system F. The test is carried out with the fusion of all three feature descriptors (see Table E

for the results with different

feature configurations). The overall 39-by-39 confusion matrix is reported by means of the three diagonal blocks related to chains with C[0] in common,
namely Facebook (a), Flickr (b) and Twitter (c); all elements outside the diagonal blocks are empty, meaning that the last sharing step is always detected

correctly.

HEADER alone provides a poor classification of C[—1],
specially for chains ending in FB and TW (top-left and bottom-
right squares). Nevertheless, the fusion function is able to
compensate this problem by exploiting the information from
the other classifiers: as we can see in Figure [Bf and in
Table [T} the fusion of all the three descriptors allow reaching
an overall accuracy close to 80%, with a rejection rate of only
2%. Also, we observe that most of the errors occurring in
fused configurations fall in the bottom-right square, which is
related to sharing chains with C[0] = TW (more on this in

Section [[V-C).

3) F_ step: Figure[D]shows one of the 39-by-39 confusion
matrices obtained at step F'_s; due to the considerable size of
the matrices at this step, we only report the one related to the
fusion of all three classifiers; also, since the matrix is perfectly
empty outside the three main blocks on the diagonal, which
contain chains having C[0] in common, we just report said
blocks separately, in Figure Ph—c.

At the last step of the pipeline, the final classification
involves sharing chains of any length up to L = 3, which
corresponds to |23] = 39 classes. Despite the high number
of classes, the system is able to reach a 55% overall accu-
racy (random guess is 2.56%) with the fusion of all feature
descriptors. However, we also observe a dramatic increase
in the rejection rate with respect to the previous steps (see
Table [T). Moreover, Figure Pc highlights a clear performance
drop in the TW-related square, with respect to the other two,
suggesting that sharing chains with C[0] = TW are somehow
more difficult to distinguish. To explain these results, we first
analysed the per-class rejection distribution, discovering that
100% of rejections occurred in sharing chains having TW as
their last step, which is also in agreement with the performance
drop in Figure [9.

Such initial clues on the difficulties introduced by the
presence of Twitter in sharing chains motivated us to conduct

a deeper analysis on feature separability, which is the topic of
Section [V-C|

4) State-of-the-art comparison: Table reports a com-
parison of state-of-the-art methods for the image recycling
problem. Solutions in [11], [12] employ histograms of DCT
coefficients combined with a deep learning approach based
on convolutional neural networks (CNNs). In [19] the authors
propose a patch-based CNN in two different configurations:
the first one receives only DCT features in input (P-CNN),
while the second one operates a feature fusion of DCT coef-
ficients and metadata (P-CNN-FF). For the proposed method,
we report the results related to the fusion of DCT, META and
HEADER features. All results are obtained on the R-SMUD
dataset [[19]] and reported separately for chains of up to one
(Cyp), two (C_1) and three (C_5) sharing steps.

TABLE III
METHOD COMPARISON FOR IMAGE RECYCLING.

Accuracy on R-SMUD [19]

Co C_ C_o

Method 3 classes 12 classes 39 classes
(1] 0.9370 0.3991 0.1729
112] 0.9481 0.4518 0.1695
P-CNN [19] 0.8963 0.4324 0.1932
P-CNN-FF [19] 0.9987 0.6591 0.3618
Proposed 1.0000 0.7981 0.5465

C. Separability analysis

To formally study feature separability, we started from the
definition of the ratio of intra/extra-class nearest-neighbor
distance [32]], which is formulated as

Doy d(xi, NN (xi) € yi)

Y1 d(xi, NN(x;) ¢ i)’
where n is the number of samples in the dataset and NN (x;)
is the nearest neighbour of a given sample x;. Note that

IER =

®)
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Fig. 10. Average Local Set Radius (LSR) for each sharing chain and for each of the three feature sets, namely DCT, META and HEADER (a), and boxplots

showing LSR values computed for DCT features and aggregated by platform

(b—d); each boxplot represents, from left to right, the chains ending with a

specific sharing platform, the two possible sets of chains having that same platform in C[—1], and all the other classes (Q*). The boxes represent the lower
and upper quartile, with whisker showing the minumum and maximum values, the median represented as a yellow line and the mean as a green triangle. Low
LSR values are associated to chains ending in or containing Twitter, which makes them hardly separable in the feature space.

N N(x;) can either belong to the same class of x; (NN (x;) €
y;) or not (NN (x;) ¢ y;).

This measure of feature separability, however, has limita-
tions related to the shape of the samples distribution; also,
in our case, d(x;, NN(x;) ¢ y;) is frequently equal to zero,
meaning that for several samples the nearest enemy (sample
from a different class) is overlapped with the sample itself.
Therefore, we decided to focus on the denominator of (]g[),
which is also known as the Local Set Radius (LSR), i.e., the
radius of the hypershpere centered in one sample and tangent
to the nearest enemy:

LSR = d(Xz‘, NN(XZ) ¢ yi) (9)

In Figure [T0h it is possible to observe that the average LSR
is closer to zero for chains having Twitter as their last sharing

step (right-most part of the graph), thus suggesting a lower
separability of such classes.

To further highlight this, Figure [TOb—d reports the LSR
values aggregated in subset related to the specific platforms,
for the DCT features (META exhibits the same trend and
HEADER is rather uninformative as the LSR is equal to zero
in the majority of cases). Figure [I0d demonstrates how the
presence of Twitter in the sharing chain affects the average
LSR: in fact, all groups have values lower than *, which
contains all classes that do not include Twitter in C[0] or
C[—1]. Moreover, in Figure @)—c, it is possible to see how the
lowest values of LSR for chains having Facebook or Flicker
in C[—1] do occur when Twitter is in C[0].

From this analysis it is clear that, while Twitter is perfectly
recognizable when occurring as the last sharing step, chains
that contain Twitter in C[0] or C[—1] are not separable with
the employed sets of features. In general, we can state that



TABLE IV
PER-STEP PERFORMANCE OF THE INFORMED CASCADE SYSTEM.

Fo F_q F_o
3 classes 9 classes 21 classes
Single classifiers ~ACC ACC ACC
DCT 0.8634 0.6219 0.5104
META 0.9296 0.7302 0.6141
HEADER 1.0000 0.8046 0.5623
Random guess 0.3333 0.1111 0.0476
Fused classifiers ~ ACC REJ ACC REJ ACC REJ

0.9296  0.0000
1.0000  0.0000
1.0000 0.0000

0.7496  0.0000
0.9011  0.0000
0.9057 0.0010

0.6399 0.0056
0.7774  0.0000
0.8105 0.0377

DCT+META
META+HEADER
DCT+META+HEADER

Twitter is particularly disruptive with regard to the forensic
traces left by the previous sharing platforms, at least for the
set of traces considered in this work.

The detection of Twitter at a generic step F_, of the recon-
struction pipeline should therefore be regarded as a stopping
point, given the unacceptable performance of previous sharing
detectors. Accordingly, we designed an informed version of
the cascade architecture that stops the reconstruction process
when it encounters Twitter, as discussed in the following final
section.

D. Informed framework

The informed framework only differs from the standard
system described in Section [[I] by the introduction of an
additional stopping condition.

As formulated in (@), a backtracking block F_, interrupts
the reconstruction process when it receives from the previous
step a chain of length ¢ — 1, meaning that the end of the chain
has been reached. A second stopping condition is introduced
by the BKS fusion modules, which may reject input samples
that fall outside of the learned distribution.

In the informed framework, we simply modify @) by
introducing an additional condition:

C if CeQy
or C[-({—-1)] =TW

fS,(x) otherwise

Fy(x,C) = (10)

This way, when F_, receives a chain that contains Twitter
in C[—(¢ —1)], i.e., the last detected step, the reconstruction
stops. Clearly, this modification results in a reduced number
of classifiable sharing chains.

In the specific implementation evaluated in this work (with
L = 3 backtracking blocks), all chains of the form (*,*, TW)
and (* TW,*) collapse in the classes TW and (TW,*),
respectively, thus obtaining 21 classes at the output of F_s.

Table [IV] reports the overall accuracy values and rejection
rates for each step of the informed system (note that Fjy is not
affected by the modification), while Figure |'1;1'| shows the final
21-by-21 confusion matrix in output of the F_» backtracking
block of the informed system.

In Figure [IT] we can observe how confusions typically
occur when the same platform is concatenated multiple
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Fig. 11. Detection performance of backtracking block F_2 in the informed
cascade system, which identifies up to the last three platforms in the sharing
chain, (C[—2], C[—1], C[0]); test carried out with the fusion of all three
feature descriptors (see TablelIEIfor the results with different feature subsets);
note that all chains of the form (*,*, TW) and (*, TW, *) are condensed in
TW and (TW, *), respectively.

times: (FB, FB) gets mistaken for (FB, FB, FB); (FL, FB) and
(FB,FL) are confused with (FL,FL,FB) and (FB,FB,FL),
respectively; the only notable exception is FL being confused
with (TW,FL).

With the informed cascade, accuracy values are significantly
higher than with the standard framework, reaching 90% at
step F_; and 81% at step F_o, with the fusion of all three
descriptors. More importantly, rejection rates are dramatically
reduced, especially at step F_o, confirming that most rejec-
tions were due to the non-separability of Twitter-related sub-
chains.

V. CONCLUSIONS

The possibility to reverse engineer the history of a digital
content in terms of sharing operations can represent a valuable
resource in tracing perpetrators of deceptive visual contents,
thus playing a significant role in preserving the trustworthi-
ness of digital media and countering misinformation effects.
In this work we addressed the media recycling scenario,
with the purpose of reconstructing the sharing history of
images through multiple uploads on different social media
platforms. We proposed a framework that allows the fusion
of heterogeneous feature descriptors, combining them in a
cascaded classification system that identifies one step of the
sharing chain at a time. Also, we introduced a novel set
of container-based features extracted from the header of the
image file. Experiments demonstrated that the combination of
content- and container-based features outperforms the single
classifiers in the identification of the various sharing steps. As



a side result, we observed by means of a feature separability
analysis that uploads on Twitter turn out to be particularly
disruptive towards the traces left by previous platforms, at
least for the considered forensic features, thus hampering the
reconstruction of the sharing chain. Taking this into account,
and therefore interrupting the process at the first detection of
an upload on Twitter, the reconstruction achieves an overall
81% accuracy for chains of up to three steps. Given the
flexibility of the proposed method, future works may extend
the presented architecture with additional platforms, allowing
to reconstruct more complex and diversified sharing chains.
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