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Abstract—Recent advances in Transformer architectures [1]
have brought remarkable improvements to visual question an-
swering (VQA). Nevertheless, Transformer-based VQA models
are usually deep and wide to guarantee good performance, so
they can only run on powerful GPU servers and cannot run on
capacity-restricted platforms such as mobile phones. Therefore,
it is desirable to learn an elastic VQA model that supports
adaptive pruning at runtime to meet the efficiency constraints
of different platforms. To this end, we present the bilater-
ally slimmable Transformer (BST), a general framework that
can be seamlessly integrated into arbitrary Transformer-based
VQA models to train a single model once and obtain various
slimmed submodels of different widths and depths. To verify
the effectiveness and generality of this method, we integrate the
proposed BST framework with three typical Transformer-based
VQA approaches, namely MCAN [2], UNITER [3], and CLIP-
ViL [4], and conduct extensive experiments on two commonly-
used benchmark datasets. In particular, one slimmed MCANgst
submodel achieves comparable accuracy on VQA-v2, while being
0.38x smaller in model size and having 0.27 x fewer FLOPs than
the reference MCAN model. The smallest MCANgst submodel
only has 9M parameters and 0.16G FLOPs during inference,
making it possible to deploy it on a mobile device with less than
60 ms latency.

Index Terms—Visual question answering, Slimmable network,
Transformer, Multimodal learning, Efficient deep learning.

I. INTRODUCTION

Hanks to recent progress on deep neural networks, ma-
chines are able to address complicated multimodal tasks
that require a fine-grained understanding of both vision and
language cues, such as image-text matching [S][6], visual
captioning [7], visual grounding [8][9]], and visual question
answering (VQA) [2]][10]. Among these tasks, VQA is chal-
lenging because it requires performing visual reasoning over
multimodal data to predict an accurate answer.
Current state-of-the-art VQA approaches can be roughly
categorized into two lines of research based on whether they
are trained from scratch (e.g., MCAN [2] and MUAN [11]
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Fig. 1: Accuracy vs. number of model parameters on the
VQA-v2 test—dev split to compare with the state-of-the-
art methods. The methods are split into two classes depending
on whether they are (a) trained from scratch [14][LS]{1L[2]
or (b) pretrained with external data [16][17][12)[13[3]. By
integrating the BST framework with three typical VQA mod-
els, namely MCAN [2], UNITER [3], and CLIP-ViL [4],
the resulted slimmable MCANggr, UNITERzsr and CLIP-
ViLgst models (marked with red lines) either outperform their
counterparts with similar model sizes or achieve comparable
performance with smaller model sizes, showing the efficiency
of our framework. Each red hexagon in the line represents a
submodel sharing a portion of parameters of its full model
(the rightmost one), showing the elasticity of our framework.

in Fig. or pretrained with external multimodal data (e.g.,
LXMERT [12], UNITER [3], CLIP-ViL [4], and ALBEF
[13] in Fig. [Ib). Although these two lines of research use
different training paradigms, they share the same model ar-
chitecture, i.e., Transformer [1]], which was initially proposed
for language modeling and has since become the foundational
architecture for the VQA task.

Despite the effectiveness of the Transformer-based VQA
methods described above, they typically require large models
(e.g., ~200M) to guarantee good performance. This severely
limits their applicability in capacity-constrained platforms
with specific efficiency constraints (e.g., FLOPs and model
size). To address this issue, a series of model compression
strategies have been investigated to learn efficient Transformer
architectures, including low-rank decomposition [[18], weight
sharing [19][20], model pruning [21][22], and knowledge
distillation [23[][24]][25][26][27]. However, these approaches
focus on only one specific scenario and obtain one compact



IEEE TRANSACTIONS ON MULTIMEDIA

Q
— ey
M(d,1/3L)
— ||CPU
VQA training data M(1/2d0)
VQA model 9 —
MCAN, UNITER, y —
CLIP-ViL, etc. M(1/28,1730) >

any Transformer-based

multiple submodels suitable
VQA architectures

w/o retraining devices

Fig. 2: The schematic diagram of the proposed Bilaterally
Slimmable Transformer (BST) framework. The BST frame-
work is general enough to be seamlessly applied to arbitrary
Transformer-based VQA models that supports training a single
BST-based VQA model only once and then pruning it to
obtain multiple efficient submodels to meet the requirements
of different platforms at inference time.

model. In practice, there are a wide variety of hardware
platforms, e.g., GPUs, CPUs, and mobile devices. To meet
the efficiency requirements of different platforms, compres-
sion methods need to redesign the model architectures and
then retrain the models, which is both engineer-expensive
and computation-expensive. This motivates us to devise an
elastic-and-efficient framework that supports training a single
Transformer-based VQA model, and then adaptively pruning
the model to fit different platforms without retraining. Com-
pared with the aforementioned model compression approaches,
the introduced framework has the following two advantages:
1) it reduces the model design costs as the submodels of
different sizes can naturally meet the requirements of different
platforms; 2) it also reduces the training cost as the model
is trained once and adaptive slimming can be performed at
inference time.

Inspired by the slimmable neural network that trains an
elastic CNN model with multiple width multipliers to fit
different efficiency constraints at runtime [28], we present a
bilaterally slimmable Transformer (BST) framework to support
model slimming in both the width and depth directions of the
Transformer, where the width is the hidden dimensionality of
each layer and the depth is the number of layers. As shown
in Fig. 2} the BST framework can generally be seamlessly
integrated with arbitrary Transformer-based VQA models to
support training a single model only once and then pruning it
to obtain multiple efficient submodels of various widths and
depths at inference time. It is worth noting that each resulting
submodel directly inherits a specific portion of the parameters
of the full model and does not require further model finetuning.
We take three typical Transformer-based VQA approaches,
i.e., MCAN [2]], UNITER [3], and CLIP-ViL [4], as the
reference models to incorporate into the BST framework,
resulting in the slimmable MCANggt, UNITERgs:, and CLIP-
ViLggsr models, respectively. As shown in Fig. E], the resulting
slimmable models either outperform their existing state-of-the-
art counterparts at similar model sizes or achieve comparable
performance at much smaller model sizes.

To the best of our knowledge, our study is the first attempt
to explore efficient and elastic models for VQA. The most
closely related studies to our work is the DynaBERT approach
[29] and the RWSAN approach [30]. DynaBERT also investi-
gates slimmable Transformer architectures. In contrast to our
BST framework, which supports arbitrary Transformer-based
architectures for VQA, DynaBERT focuses on pretrained
BERT model for NLP tasks. In terms of methodology, our
BST is different from DynaBERT in terms of the slimming
strategy and training strategy, resulting in better model perfor-
mance and less training time. RWSAN investigates lightweight
VQA models by introducing residual weight-sharing attention
(RWSA) layers, resulting in a VQA model with many fewer
parameters. In contrast to our BST framework, RWSAN
cannot reduce computational costs and fit the efficiency con-
straints of different platforms adaptively.

Our main contributions are summarized as follows:

o Regarding the motivation, orthogonal to the pursuit of
model accuracy, we introduce a new direction to the VQA
research to learn an efficient and elastic model once and
obtain various efficient submodels that can be adaptively
fit different platforms.

o Regarding the methodology, we present a general bilat-
erally slimmable Transformer (BST) framework which
can transform any Transformer-based VQA model into
a slimmable model to adjust the width and depth at
runtime. Compared with DynaBERT [29] which intro-
duces a slimmable BERT model for NLP tasks, our BST
framework differs in terms of slimming strategies and
training strategy.

o Regarding effectiveness and generality, we integrate the
BST framework with three typical VQA models and con-
duct extensive experiments on two commonly used VQA
datasets. The results show that the slimmed submodels
either outperform the state-of-the-art approaches with
similar model sizes or achieve comparable performance
with smaller model sizes.

o Regarding practicability, this study is the first attempt
to explore efficient VQA models on different hardware
platforms including mobile devices. In particular. our
smallest submodel can run on a non-latest mobile device
with less than 60 ms latency, showing its potential in a
wide range of applications such as robotics, automatic
driving, and assistance for visually impaired people.

II. RELATED WORK

In this section, we first briefly review previous studies on
VQA, especially the approaches with Transformer architec-
tures. After that, we discuss related work on efficient neural
networks and slimmable neural networks.

Visual Question Answering (VQA). The VQA task, which
aims to answer a free-form question in natural language with
respect to a given image, has attracted increasing interest over
the last few years. The core of VQA lies in two lines of
research, namely multimodal fusion and attention learning.
For multimodal fusion, early methods used linear models
with elementwise summation or multiplication to fuse features
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from different modalities [31][32]. To better characterize the
second-order interactions between multimodal features, Fukui
et al. [33]], Kim et al. [34], and Yu et al. [|35] devised different
multimodal bilinear pooling models. For attention learning,
question-guided visual attention over image regions became a
standard component of many early VQA approaches [36[][37].
Yang et al. proposed a stacked attention network to iteratively
learn visual attention on different levels [36]]. More recently,
co-attention models that consider both textual and visual atten-
tion have been proposed. Lu et al. introduced a hierarchical
co-attention learning paradigm to learn image attention and
question attention iteratively [38]]. Yu et al. decoupled the co-
attention learning into a question self-attention stage and a
question-conditioned visual attention stage and optimized the
two stages in an end-to-end manner [35]. The aforementioned
co-attention models are coarse-grained in that they neglect
the multimodal interactions at a fine-grained level (i.e., word-
region pairs). To this end, Nguyen et al. [39], Kim et al. [15],
and Liu et al. [40] introduced dense co-attention models that
establish dense interactions among word-region pairs.
Transformer-Based VQA. The Transformer architecture is
initially proposed for machine translation in the NLP commu-
nity [1]]. It consists of a sequence of self-attention modules to
model complex and dense interactions within a group of input
features. This architecture is general enough to be used in
various unimodal tasks [41][42][43]] and multimodal tasks in
image [44][2] and video domains [45][46]][47]. For the VQA
task, Gao et al. [48] and Yu et al. [2][S] devised models
based on the Transformer architecture and deliver new state-
of-the-art performance on VQA benchmark datasets at the
time of their publication. Besides these studies on general-
purpose VQA, there is also a growing trend towards exploring
more granular VQA tasks with specific reasoning skills, e.g.,
scene-text understanding [49][50], casual reasoning [S1][52],
knowledge utilization [S3]][154]].

More recently, a BERT model that integrates the
Transformer architecture with a self-supervised pretraining
paradigm has shown great success in a wide range of NLP
tasks. Mirroring the success of BERT, recent studies have
naturally extended its framework to the multimodal domain
to perform vision-language pretraining (VLP) to learn generic
multimodal representations [38][12][3[55]]. In particular, they
first pretrain Transformer-based models on large image-text
corpora to learn task-agnostic representations, and then fine-
tune the models on downstream tasks such as VQA. Early VLP
approaches designed different pretraining tasks to learn multi-
modal Transformers on top of preextracted region-based visual
features [17[3][55][56][57]. Motivated by the success of pre-
trained visual backbones, e.g., ViT [43] and CLIP [58], recent
VLP methods tend to exploit these visual backbones to obtain
grid-based visual features and perform multimodal pretraining
from raw image and language inputs in an end-to-end man-
ner [S9)][13)][60][4][61]. To summarize, Transformer-based ap-
proaches dominate the VQA task at present, due to their
excellent capability for modeling the complex interactions
among multimodal input features. However, Transformer-
based VQA models are usually computationally expensive
(i.e., have a large number of parameters and FLOPs), hindering

their deployment on mobile devices with limited memory
and computation consumption. This motivates us to explore
efficient Transformer architectures for VQA.

Efficient Neural Networks. There has been broad interest
in building efficient neural networks in the literature. Existing
approaches can be generally categorized as either compressing
pretrained networks [62][63]][64] or training efficient networks
directly [63)][66][67]. The efficient neural networks above
mainly focus on ConvNet architectures. Due to the popularity
of Transformer in recent years, efficient Transformer archi-
tectures have been investigated in different respects, e.g., low-
rank decomposition [[18], weight sharing [[19][20], model prun-
ing [21][22], and knowledge distillation [23]][24/][25][26)[27].
Low-rank decomposition methods decompose a full-rank pa-
rameter matrix into low-dimensional matrices while weight
sharing approaches reuse one parameter matrix in different
layers of the network. Model pruning methods aim to cut
out redundant parameters in the model to obtain a smaller
model, and knowledge distillation techniques aim to transfer
knowledge from a large teacher model to a small student
model. Despite the success of these approaches, their efficient
models are dedicated to one specific scenario, and cannot
adapt to different efficiency constraints or different hardware
platforms at runtime.

Slimmable Neural Networks. Orthogonal to the approaches
to efficient neural networks above, slimmable neural networks
aim to design dynamic models that can adaptively fit different
efficiency constraints at runtime. Given a deep neural network,
network slimming can be performed on both the depth and
width dimensions. For depth slimming, the methods of Wu
et al. [68], Liu et al. [64], and Huang et al. [69] learn
controllers or gating modules to adaptively drop layers from
deep ConvNets. For width slimming, Yu et al. introduced a
general framework for a family of ConvNets (e.g., ResNet
[70] or MobileNet [66]) that supports a predefined set of
width multipliers [28]. After that, they further improved the
framework to support model slimming with arbitrary widths
[71]. To take a further step, Cai et al. introduced a once-
for-all (OFA) method to support width and depth slimming
simultaneously in a unified framework [72]]. All of the methods
above are only for ConvNet architectures, and their strategies
cannot be directly applied to Transformer architectures.

The most closely related study to our work is DynaBERT
[29], which also investigates slimmable Transformer architec-
tures. In contrast to our BST framework, which supports ar-
bitrary Transformer-based architectures for VQA, DynaBERT
focuses on pretrained BERT model for NLP tasks. Regarding
the methodology, our BST is different from DynaBERT in
terms of slimming strategy and training strategy, obtaining
significant advantages in terms of a higher compression ratio
and less training time.

III. BILATERALLY SLIMMABLE TRANSFORMER (BST)

In this section, we describe the bilaterally slimmable Trans-
former (BST) framework in detail. Before presenting the BST
framework, we first revisit the core components of the Trans-
former architecture [1l]. Then, we introduce the BST frame-
work, including the slimming strategies for width and depth.
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We take three typical VQA models, MCAN [2], UNITER
[3], and CLIP-ViL[4] as examples and integrate then with
the proposed BST framework. Without loss of generality, our
BST framework can be applied to arbitrary VQA models of
Transformer-based architectures. After that, we introduce the
BST training strategy which consists of submodel architecture
selection strategy and a knowledge distillation training stage.
Finally, we provide in-depth comparisons to DynaBERT [29]]
in terms of methodology.

A. Preliminaries

Transformer is a multi-layer network in which each layer

consists of the multi-head attention (MHA) and feed-forward
network (FFN) modules [[1]].
Multi-Head Attention. Denote m query features and n key-
value paired features as Q € R™*P, K ¢ R"*P, and
V € R*"*P where D is the hidden dimensionality of these
features. The multi-head attention module calculates the at-
tended features F € R™*P by using H paralleled attention
functions as follows:

F =MHA(Q, K, V) = [head;, heads, ..., head g |W°
head; = ATT(QW].Q, KWjK’ VWJ.V) 1)

where VVjQ7 WJK , ij € RP*Pu gare the projection matrices
for the j-th head, and Dy is the dimensionality of the features
from each head. W° € RH-PuxD jg the projection matrix
used to aggregate the output features from different heads.
We set Dy = D/H so that the model sizes remain constant
as H varies. The attention function for each head is defined
as the scaled dot-product of the query with all keys:
T

VDu

which calculates the scaled dot-product of each query with
all keys to obtain the attention weights, and then performs
weighted summation over the values.

Feed-Forward Network. The feed-forward network module
is a two-layer MLP model applied to the output features of the
MHA module to perform a pointwise nonlinear transformation.
Given input features X € R™*D  the transformed features
F € R™P are obtained as follows:

F =FFN(X) = ReLU(XW, + by )W + by (3)

where Wy, Wy € RP*4D,

ATT(Q, K, V) = softmax( W )

Transformer Layer. A typical Transformer layer usually
consists of a MHA module and an FEN module as follows:

F = Transformer-layer(X)
= LN(FFN(F) + F) 4)

F =1NMHA(X, X, X))+ X)
where residual connection [70] and layer normalization (LN)
[73] are applied after the MHA and FFN modules. The LN

module takes a D-dimensional feature x € X as its input and
performs normalization as follows to obtain the output feature:

T —p
2

y=LN(z) =y +8 5)

o° — €

where p, 0% € R are the mean and variance calculated on z.
v, 8 € RP are the learnable parameters of the scale and shift
terms, respectively.

Transformer Architectures. Depending on the composition
strategies of the Transformer layers above, existing Trans-
former architectures can be categorized into three classes,
namely encoders [41][74], decoders [75][76], and encoder-
decoders [L][77].

Taking a sequence of input tokens, the original Transformer
[1] adopts an encoder-decoder architecture. The encoder is
composed of a cascade of Transformer layers in depth to
obtain the bidirectional representations by jointly conditioning
on both the left and right contexts, and the decoder takes the
representations from the last encoder layer as input to guide
the learning of unidirectional representations by conditioning
only on the left context. After that, pure encoder architectures
(e.g., BERT [41]]) and pure decoder architectures (e.g., GPT
[75]) are introduced and integrated with the self-supervised
pretraining paradigm, which has been used in a wide range of
NLP tasks.

B. The BST Framework

Let an L-layer Transformer with hidden dimensionality D

be the reference model, where D and L denote the width and
depth of the model, respectively. The goal of BST is to obtain
a single slimmable Transformer model that can adaptively
adjust to a set of submodels of different widths and depths in
the inference stage. In the following, we introduce the width
slimming and depth slimming strategies. An overview of the
BST framework is shown in Fig. [3a]
Width Slimming. With width slimming, we aim to make each
Transformer layer adapt to a set of width slimming ratios
with respect to the hidden dimensionality d of the reference
model. To achieve this goal, we split the parameters of the
reference model into different submodels, with each sharing a
specific portion of its model parameters. As shown in Eqs.(T),
(3), and (@), the learnable parameters in the MHA and FFN
modules are all linear projections, which can be simply split
into submatrices with respect to the given ratios. Inspired by
the settings in [29], we define the candidate width set as
D ={1/4D,1/2D,3/4D, D}.

Given a slimmed width d € D, we need to prune the model
parameters in the MHA, FFN, and LN modules according to d.
In the MHA module, the query, key, and value parameters over
H heads can be represented as tiled matrices W@, WX WV ¢
RP*Du*H  Given the slimmed width d, we keep Dy as a
constant and adjust the input dimensionality D and the number
of heads H accordingly. This results in the slimmed model
parameters € R¥*Pu*H where H = H * d/D refers to the
reduced number of heads with the last few heads neglected.
The model parameters W°, Wy, Ws, «, and (3 in the FFN and
LN modules are adjusted in a similar manner by slimming the
dimensionality of the input and output features to d.

In addition to the strategy introduced above, another width
slimming strategy was investigated in [29]. In contrast to our
slim-all strategy that slims the dimensionality of the input,
output, and intermediate representations simultaneously, they
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Fig. 3: (a) The overall diagram of the proposed Bilaterally Slimmable Transformer (BST) framework, which consists of width
slimming and depth slimming. (b) The integration of the BST framework and three typical Transformer-based VQA models,
namely MCAN [2], UNITER [3], and CLIP-ViL [4], respectively. The parameters in the input and output embedding layers
(yellow background) are not slimmable as dimensionality of the input and output features remains the same.

introduced an alternative slim-intermediate strategy that slims
the dimensionality of the intermediate representation while
keeping the rest unchanged. The slim-intermediate strategy
results in a bottleneck structure with a low dimensional inter-
mediate representation. This may break the carefully-designed
structure of the Transformer (e.g., the D — 4D — D structure
in FEN).

Depth Slimming. With depth slimming, we aim to make the
slimmed submodels adapt to a set of depth slimming ratios
with respect to the maximum depth of the reference model.
As the depth of a typical Transformer model is usually set
to a multiple of 6, we define the candidate depth set as £ =
{1/6L,1/3L,2/3L, L}. Compared with the settings in [29],
we explore the submodels with much shallow depth, resulting
in more compact submodels suitable for mobile devices.

To perform depth slimming, we first need to determine
which layers are to be slimmed given a specific slimming
depth [ € L. As shown on the right side of Fig. [3a we
first assign an importance score to each layer using certain
scoring strategies. After that, we select the top-I layers with
the largest scores and keep their original order. Here, we
introduce three scoring strategies, which result in three types
of slimming strategies: 1) the slim-random strategy is the most
straightforward strategy, as it simply sets the importance scores
to random values; 2) the slim-first (or slim-last) strategy sets
the importance scores in ascending (or descending) order;
3) the slim-middle strategy sets the smallest scores to the
middlemost layer and gradually increases the scores as it move
toward the top and bottom layers. This strategy was inspired
by the empirical studies in [78], in which the layers closer
to the input and output are more important than the middle
layers in the Transformer. We use the slim-middle strategy as
the default option.

C. Integrating BST with Off-the-Shelf VOQA Models

BST is a general framework that can be integrated with
arbitrary Transformer-based VQA models in theory. In this
paper, we choose three typical Transformer-based models, i.e.,

MCAN [2f], UNITER [3] and CLIP-ViL[4], shown in Fig. |§_5L
to integrate with the proposed BST framework. Without loss
of generality, the BST framework can also be applied to other
Transformer-based models beyond the VQA task. Due to space
limitations, we will not expand the description further.
MCANgsr. MCAN was the winning solution in the VQA
Challenge 2019. It introduces an encoder-decoder-based
Transformer architecture to model complex multimodal inter-
actions and perform accurate visual reasoning. Specifically, the
input question is encoded as a sequence of word embeddings
using pretrained GloVE embeddings followed by an LSTM
network. The input image is encoded as a group of object
embeddings using a pretrained object detector [[7]. After that,
the multimodal embeddings are passed through an L-layer
encoder-decoder to obtain the attended output features. In
the L-layer question encoder, the word embeddings are trans-
formed with a self-attention mechanism to obtain the attended
question features of the same word length. The attended word
features and visual embeddings are further fed into an L-layer
image decoder to obtain the attended image features with a
guided-attention mechanism. On top of the attended question
features and image features, two attentional reduction modules
are devised to obtain a question feature and an image feature,
respectively. Finally, the two feature vectors are simply fused
and then fed to a linear classifier to predict the answer. The
MCAN model can be trained from scratch in an end-to-end
manner on a specific VQA dataset such as VQA-v2 [79].
Since MCAN’s core components are the standard Trans-
former layers, the model can be seamlessly integrated with
the BST framework to obtain a slimmable MCANgzgr model.
The width slimming strategy can be directly applied to each
encoder and decoder layer in MCAN, and different depth
slimming strategies can also be applied to drop a portion of the
encoder and decoder layers simultaneously. Furthermore, the
model parameters in the attention reduction module on top of
the encoder-decoder are derived from two-layer MLPs, which
can also be slimmed in width.
UNITERgsr. UNITER is a representative vision-and-language
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pretraining (VLP) approach with an L-layer Transformer en-
coder as its backbone. In contrast to MCAN’s training-from-
scratch mechanism, UNITER utilizes a vision-language pre-
training strategy to learn a generalized backbone model from
massive image-text pairs, and then finetunes the backbone to
adapt to different multimodal tasks. Specifically, for the VQA
task, a task-specific head is appended on top of the backbone
so that the representation of the predefined [cls] token is
fed to a linear classifier to predict the answer. Based on the
finetuned UNITER model for VQA, both width slimming and
depth slimming are applied to its backbone to transform it into
UNITERg;7.
CLIP-ViLggr. CLIP-ViL shares the same Transformer archi-
tecture with UNITER but introduces a more powerful visual
encoder to extract visual representations. Specifically, its visual
encoder corresponds to a pretrained ResNet-50x4 model,
which is pretrained on 400M image-text pairs by CLIP [58].
Note that the embedding layers in the above models are
not slimmable, making the input dimensionality of the first
Transformer layer unadjustable. This contradicts our width-
slimming strategy. To address this issue, we insert a slimmable
linear layer Weyp, € RP*D petween the embedder and
backbone, and make it slimmable in width to adapt to the
BST frameworkl!]
Submodel Complexity Analysis. Given a reference MCAN
(UNITER or CLIP-ViL) model of width D and depth L, its
model size and FLOPs are both approximately proportional to
O(D?L) . This indicates that the computational cost of the
smallest submodel a(1/4D,1/6L) can be up to 96x smaller
than that of the reference model. In practice, the scaling
ratio between the submodels and the reference model is not
that large. As shown in Fig. the slimming strategies are
only performed in the backbone while the embedders and
the classifier are not involved. Their existence introduces an
inescapable cost for all the slimmed submodels, limiting the
computational overhead of the small submodels. More detailed
results are given and analyzed in section

D. Training Strategy for BST Models

The training procedures of BST consists of a submodel ar-
chitecture selection stage and a knowledge distillation training
stage.

Submodel Architecture Selection. By combining each width
in D with each depth in £, we obtain a set of submodel
architectures A of different widths and depths as follows:

A = combination(D, L) (6)

where |A| = |D|*|L]. Each architecture a(d,l) € A cor-
responds to a combination of a specific width d € D and
depth [ € L. In contrast to previous works that maintain
all possible submodel architectures [80][29], we hypothesize
that not every submodel architecture is effective. By the
effectiveness of a submodel architecture, we mean the extent
to which its computational cost (e.g., in terms of FLOPs or

IFor the UNITERpst and CLIP-ViLggr models with pretrained model
parameters, Wep,p, is initialized with an identity matrix and updated with
the entire model in an end-to-end manner.

L

1/4D, L 1/2D, L 3/4D, L D,L

1/4D,2/3L|1/2D, 2/3L | 3/4D, 2/3L| D,2/3L

1/4D,1/3L|1/2D,1/3L | 3/4D, 1/3L| D, 1/3L

1/4D, 1/6L | 1/2D, 1/6L | 3/4D, 1/6L| D, 1/6L

- gég

selected submodel archs.

reference arch.  all possible submodel archs.
Fig. 4: The diagram of submodel architecture selection by
using the triangle selection filtering strategy. The selected
submodel architectures (highlighted with yellow background)
follow the deep-and-narrow principle, which is considered to
be more effective than the rest (white background).

model size) matches its delivered performance after model
training. Therefore, devising a heuristic strategy to eliminate
such ineffective architectures before BST training can reduce
the training costs while improving the performance of the
remaining submodels.

According to previous studies on designing efficient Trans-
formers [81][29], deep and narrow architectures usually de-
liver better performance than shallow and wide architectures
under constrained computational costs. This principle can be
explained in two ways: 1) The Transformer requires a rela-
tively deep model to guarantee good performance; and 2) the
computational cost of a Transformer model is proportional to
O(LD?), suggesting that increasing depth is more economical
than increasing width.

To quantize this deep-and-narrow principle, we introduce
a simple triangle selection strategy to filter out the shallow
and wide submodel architectures. As shown in Fig. fi] we
introduce a 2-D indicator matrix I € {0, 1}PIXI£l to track
the selection status for all the submodel architectures .A.
I(d,l) = 1 indicates that the submodel architecture a(d,)
is selected, and it is O otherwise. The indicator matrix I is
first initialized with all-one values and then converted to an
upper-triangle matrix. This strategy allows us to obtain six
shallow and wide submodel architectures, which correspond to
the matrix elements above the main diagonal. The submodel
architectures S selected from A are defined as follows:

S =upper-triangle(A) = {a(d,l)|I(d,l) =1} (7)

Knowledge Distillation Training. After obtaining the selected
submodel architectures S, we train a slimmable model Mggr
that can elastically adapt to any submodel architecture a € S,
where M refers to any of the above VQA models. Given the
BST model Mgsr and a submodel architecture a, the obtained
submodel is denoted as M.%).

To obtain the BST model, we introduce a knowledge-
distillation (KD) training mechanism as follows. In general,
we first train an ordinary model M. ,cner as the teacher model
without model slimming and freeze its model parameters.
After that, the BST model Mzg is initialized with the model
parameters from M, oacner, and it can be viewed as the student
model. Each slimmed submodel Még% shares a specific portion
of the model parameters from Mpgr and is trained with the
supervision of the teacher model using the KD strategy [82].
Specifically, given a training sample, we feed it through the
teacher model and each slimmed submodel simultaneously.
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The predicted answer distribution from the teacher model is
regarded as a soft label, and a proper loss function is imposed
on the soft label and each submodel prediction to train the
corresponding rnode

Unlike the existing approaches [29] that decouple the width
slimming and depth slimming into two training stages, we use
a simpler one-stage training paradigm for BST with standard
mini-batch SGD. In each iteration, we select KX submodel
architectures from S and feed the same input samples to both
the teacher model and the selected K submodels to obtain
(K + 1) predictions in total. After that, we apply the KD
loss between the predictions of the teacher and each of the
K student models and use the accumulated back-propagated
gradients to update the model parameters of K. To stabilize
the BST training, the K selected submodels consist of two
determined submodels (the smallest one and the largest one)
and another (K -2) randomly sampled submodels. We use K=4
as the default setting in our experiments.

The whole BST training process is shown in Algorithm [I]

Algorithm 1: Training procedure for BST.

Input: A reference Transformer architecture with width D
and depth L. Two predefined sets D and L define the
slimming widths and depths w.r.t. D and L, resp.
The number of sampled submodel architectures K
per training iteration. as and a; refer to the smallest
and largest submodel architectures, respectively.

Output: An optimized BST model MpsT.

Stage I: Submodel Architectures Selection;

A = combination(D, L);

S = upper-triangle(A);

Stage II: Knowledge Distillation Training;

Train M:cacher to obtain its optimized model parameters 6;

Initialize the model parameters Ogsr for Mpsr with 6;

for i = 1 to max-iter do

Randomly sample a mini-batch of data x;

Initialize the sampled architecture set ) = §;

# add the smallest and largest submodel architectures.

Q«« QU {as,ai};

# add another K — 2 architectures via random sampling.

for j =1to K —2 do

Randomly sample a submodel architecture a ~ S\q ;

Q<+ QUa
end

# submodel training using knowledge distillation.
Feed-forward the teacher model: y = Micacher();
Freeze M:cacner by stopping gradients: y.detach();
foreach a € (2 do

Feed-forward the submodel: § = M%) (z);
Compute loss: loss = KD(y, §);
Accumulate backward gradients: loss.backward();
end
Update model parameters Opsr.

end

E. In-Depth Comparison of BST and DynaBERT

As mentioned above, our BST framework has close connec-
tions with DynaBERT [29]. We conduct an in-depth compar-
ison and describe their differences in terms of methodology.

2Different loss functions (e.g., BCE and KL-divergence) can be used as the
KD loss flexibly, depending on the loss function used in the teacher model.

In terms of the width-slimming strategy, DynaBERT adopts
a slim-intermediate strategy that only reduces the dimension-
ality of the intermediate representation while keeping the
input and output representations unchanged, which may break
the carefully designed bottleneck structure in the original
Transformer architecture. In contrast, we use a slim-all strategy
that reduces all the dimensionalities, keeping the bottleneck
structure to achieve better performance.

In terms of the depth-slimming strategy, DynaBERT uses a
simple slimming strategy by slimming the layers uniformly. In
contrast, BST introduces a slim-middle strategy that considers
the layer importance and prefers to slim the middlemost layers
first, which facilitates model performance.

In terms of the training strategy, DynaBERT uses a two-
stage training paradigm in which the width and depth slimming
are learned separately, with all submodels being updated in
each training step. In contrast, BST uses a simpler one-
stage training paradigm to learn width and depth slimming
simultaneously and sample a small number of submodels in
each step, which significantly improves the training efficiency.
Moreover, DynaBERT maintains the submodel architectures
of all the width-height combination during training which
may include redundant ones. In contrast, BST additionally
introduces a submodel selection strategy to remove ineffective
submodel architectures before training. This strategy not only
reduces the training costs but also improves the performance
of the remaining submodels

To summarize, BST has advantages over DynaBERT in
terms of training efficiency and model performance. More
quantitative comparisons are provided in section

IV. EXPERIMENTAL RESULTS

In this section, we present experiments to evaluate the
performance of our BST framework on two benchmark VQA
datasets, namely, VQA-v2 [32] and GQA [83]. As mentioned
above, we integrate BST with three typical Transformer-based
VQA models, namely, MCAN [2f], UNITER [3], and CLIP-
Vil [4], to demonstrate the effectiveness and generality of
BST. Furthermore, we conduct extensive ablation experiments
on VQA-v2 to explore the effects of different components.

A. Datasets

VQA-v2 is the most commonly used VQA dataset [79].
It contains human-annotated QA pairs for MS-COCO images
[84]. The dataset is split into three sets: train (80k images
with 444k questions); val (40k images with 214k questions);
and test (80k images with 448k questions). The test
set is further split into test-dev and test-std sets.
The reported results include three per-type accuracies (yes/no,
number, and other), as well as an overall accuracy.

To make a fair comparison among the compared models,
we follow the dataset splitting strategy in UNITER that further
splits the val set into a minival subset of 5k images and
a trainval subset of the remaining 35k images [3]. All
the results reported in the experiments come from the models
that are trained on the augmented train+trainval+vg
sets, where vg denotes the augmented VQA samples from
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TABLE I: Comparison to the state-of-the-art approaches on VQA-v2. For a fair comparison, the compared methods are split
into two groups depending on whether they are trained from scratch or pretrained on external data (separated by a double-line).
The number of parameters is calculated from an entire model, including the backbone, input and output embedding layers.
The number of FLOPs is calculated from one single sample. t: the UNITERpyy model refers to another slimmable model that
integrates UNITER and DynaBERT [29], which is reimplemented by ourselves.

‘ ‘ test-dev ‘ test-std
# | model | #params  #FLOPS | o) y/N' Num Other | Al YN Num Other
From-scratch training with augmented Visual Genome data
1 | UpDn [7] 22M 1.1G | 65.32 81.82 4421 56.05 | 65.67 8220 4390 56.26
2 | MFB [35] 68M 24G | 68.40 84.78 49.05 58.82 - - - -
3 | MFH [14] 102M 2.5G | 68.76 8427 49.56 59.89 - - - -
4 | BAN [13] 112M 12.3G | 69.66 85.46 50.66 60.50 - - - -
5 | MUAN [11]] 83M 173G | 70.82 86.77 54.40 60.89 | 71.10 - - -
6 | MCAN(D=512,L=6) [2] 58M 5.5G | 70.63 86.82 53.26 60.72 | 70.90 - - -
7 | MCAN(1/4D,1/3L)) 2] 10M 0.2G | 67.19 8338 49.75 57.31 - - - -
8 | RWSAN ([30] 20M 6.5G | 70.19 86.45 52.18 60.38 - - - -
9 | MCANgs:(D, L) 58M 5.5G | 71.05 87.39 5296 61.19 | 71.28 87.36 52.77 61.52
10 | MCANgs:(1/2D, L) 22M 1.5G | 7045 86.84 52.89 6043 - - - -
11 | MCANgs:(1/2D,1/3L) 14M 0.6G | 69.42 8568 5196 59.48 - - - -
12 | MCANgg:(1/4D,1/3L) 10M 0.2G | 68.16 84.84 50.27 57.95 - - - -
Vision-language pretraining with massive external data
13 | ViLBERT [17] 221M 18.7G | 70.55 - - - 70.92 - - -
14 | VLBERT [16] 116M 20.7G | 71.16 - - - - - - -
15 | LXMERT [12] 183M 20.3G | 72.42 - - - 72.54 8820 5420 63.10
16 | OSCAR [53] 116M 38.6G | 73.16 - - - 73.44 - - -
17 | ALBEF [13] 210M 779G | 75.84 - - - 76.05 91.67 5543 67.19
18 | UNITER(D=768,L=12) [3] 117M 20.2G | 72.70 88.86 55.10 62.87 | 72.95 89.00 5537 63.01
19 | UNITER(1/4D,1/3L)) [3] 33M 0.8G | 66.89 8325 4997 56.74 - - - -
20 | CLIP-VIL(D=768,L=12) [4] 237TM 82.1G | 76.44 91.38 58.12 67.86 | 76.74 91.60 58.09 68.07
21 | CLIP-ViL(1/4D,1/3L)) [4] 153M 59.3G | 70.32 8540 52.12 61.59 - - - -
22 | TUNITERyy (D, L) 117M 20.2G | 73.19 89.02 56.39 63.46 - - - -
23 | TUNITERyy(3/4D,1/2L) 64M 8.1G | 71.99 87.87 54.76 62.34 - - - -
24 | TUNITERpyy(1/4D,1/2L) 43M 3.1G | 7048 86.37 52.72 60.93 - - - -
25 | UNITERgs:(D, L) 117M 20.2G | 73.27 89.01 56.73 63.57 | 73.46 89.17 56.28 63.73
26 | UNITERgs:(1/2D, L) 53M 5.6G | 72.11 87.83 55.59 6242 - - - -
27 | UNITERgs:(1/2D,1/3L) 39M 22G | 70.65 8647 53.47 61.02 - - - -
28 | UNITERgsr(1/4D,1/3L) 33M 0.8G | 69.68 8549 5226 60.12 - - - -
29 | CLIP-VILgs (D, L) 237TM 82.1G | 76.44 9144 58.27 67.78 | 76.70 91.54 58.71 67.90
30 | CLIP-VILgs:(1/2D, L) 172M 649G | 75.17 90.29 5731 66.30 - - - -
31 | CLIP-VILgs:(1/2D,1/3L) 158M 60.8G | 73.86 89.20 5543 64.95 - - - -
32 | CLIP-VILgsr(1/4D,1/3L) 153M 59.3G | 72.34 8741 54.11 63.63 - - - -

Visual Genome [85]. The obtained models are validated on
the minival set offline, and evaluated on the test-dev
and test—std sets online.

GQA is a challenging VQA dataset that requires more
complex reasoning skills [83]. It consists of 113K images
and 1.2M balanced question-answer pairs of assorted types
and varying compositionality degrees, measuring performance
on an array of reasoning skills such as object and attribute
recognition, spatial reasoning, logical inference, and compar-
isons. The dataset is split into the following four sets: train

(72k images with 943k questions), val (10k images with
132k questions), test-dev (398 images with 12k questions),
and undisclosed test-challenge (1.6k images with 50k
questions). Following the suggestions in the official GQA
guidelineﬂ all the models are trained on the train+val sets
and evaluated on the test-dev set.

3https://cs.stanford.edu/people/dorarad/gqa/evaluate.html
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TABLE II: Accuracies of the state-of-the-art methods on GQA.
All entries use the officially provided object features for
images and are evaluated on the test-dev split.

model | #params #FLOPs | accuracy
UpDn [7] 30M 2.8G 51.62
BAN [15] 120M 14.9G 55.81
MCAN(D=512,L=6) [2] 59M 6.5G 56.64
MCAN;s: (D, L) 5OM  65G | 57.83
MCAN;s: (1/2D, L) LM 19G | 57.67
MCANg¢:(1/2D, 1/3L) ISM  08G | 57.09
MCANger(1/4D,1/3L) | 10M  04G | 56.38

B. Experimental Setup

The model architectures and training hyperparameters of
the MCANgsr, UNITERgr, and CLIP-ViLzsr models are the
same as those in their original models [2]][3][4], respectively.

For MCANgsr, the hidden dimensionality D, number of
heads H, and number of layers L are set to 512, 8, and
6, respectively. The MCANgzsr models are trained on the
VQA-v2 and GQA datasets using slightly different settings.
On VQA-v2, binary cross-entropy (BCE) is used as the loss
function for both the teacher and the BST model, and both
models are trained for up to 15 epochs with a batch size
of 64 and a base learning rate of le-4. The learning rate is
warmed-up for 3 epochs and decays by 1/5 every 2 epochs
after 10 epochs. On GQA, the learning rate and batch size are
the same as those on VQA-v2. KL-divergence is used as the
loss function and the teacher and BST models are trained for
11 epochs. The learning rate is warmed-up for 2 epochs and
decays by 1/5 every 2 epochs after 8 epochs.

For UNITERgsr and CLIP-Vilgsr, we adopt the network
architecture from the BERT-base model with D = 768,
H =12, and L = 12. Given a model the finetuned on VQA-
v2 as the teacher, UNITERzs: and CLIP-VilLgg are initialized
from their corresponding teacher models and trained using
the AdamW optimizer. UNITERgs is trained for up to 130k
iterations with a batch size of 5,120 and a base learning rate
of 1.5e-4. CLIP-Vilygt is trained for up to 15 epochs with a
batch size of 32 and a base learning rate of 2e-4. To reduce
the usage of GPU memory, we freeze the model parameters
in the visual encoder during BST training.

C. Main Results

In Tables [l and we compare MCANggr, UNITERzsT,
and CLIP-VilLgsr to the state-of-the-art VQA methods on
VQA-v2 and GQA, respectively. For MCANjgsr, the compared
methods include UpDn [7], MFB [35], MFH [14], BAN
[15], MUAN [11], and MCAN [2], which were the best-
performing solutions in the VQA Challenge in recent years. In
addition, we introduce the lightweight VQA model RWSAN
[30] into the comparison. For UNITERzsr and CLIP-VilLggr,
the compared methods include ViLBERT [17], VLBERT [16],
LXMERT [12], OSCAR [55], ALBEF [13], UNITER [3]] and
CLIP-ViL [4], which are representative vision-language pre-
training methods. Moreover, although DynaBERT [29] is not
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Fig. 5: Accuracy vs. #FLOPs on the VQA-v2 test-dev
split. For each VQA model (i.e., MCAN [2]], UNITER [3]}, and
CLIP-ViL [4]), we report the results of ten submodels obtained
from BST training and independent training, respectively.
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Fig. 6: Total number of parameters (left) and total training
time (right) of the 10 submodels obtained by BST training
and independent training, respectively. The training time is
measured on a single Nvidia TitanV GPU.

specifically designed for VQA, we reimplement it ourselves
to integrate it with UNITER, resulting in a slimmable VQA
model UNITERpyy for comparison. Due to space limitations,
we do not show the results of all the submodels (i.e., the ten
submodels selected by the triangle selection strategy in Fig.
in these tables. Instead, four typical submodels are selected
for comparison with the state-of-the-art approaches.

From the results in the upper part of Table |I, we have
the following observations: 1) With the same model ar-
chitecture, the largest submodel MCANggr(D, L) and the
smallest submodel MCANgs7(1/4D,1/3L) outperform their
independently-trained counterparts, respectively (#9 vs. #6,
#12 vs. #7). This improvement is a benefit of the synergistic
effect of the weight-sharing submodel architectures and KD
training strategy. 2) With only 0.38 x the model size and 0.27 x
the FLOPs, MCANgs:(1/2D, L) is still competitive with the
reference MCAN model (#10 vs. #6), showing the potential
of width slimming. In contrast to RWSAN [30], which has
a similar model size, MCANggr(1/2D, L) achieves higher
accuracy and 0.25x the FLOPs. 3) By slimming the depth
to 1/3L (#11), its corresponding model size and FLOPs are
respectively reduced to 0.6x and 0.4 those of its counterpart
in #10, respectively, at the expense of a 1-point accuracy
drop. Compared with MFB [35], MFH [14], and BAN [15],
MCANgsz(1/2D,1/3L) achieves superior or comparable per-
formance with up to 0.125x the model size and 0.05x the
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TABLE III: Runtime latency (ms) of three typical MCANgsr submodels on three platforms, namely GPU, CPU, and mobile.

For each platform, we report the results on three device.

platforms | GPU | CPU | mobile
device ¢ RTX RTX GTX Intel Intel AMD Qualcomm MediaTek Qualcomm
evice type 3090 2080Ti 1650 | E5-2620v4 I3-10100 R7 4800H | Snapdragon 888  Dimensity 1100  Snapdragon 660
1| (D, L) 2 29 40 51 101 127 167 361 439
2 | (1/4D,L) 21 29 35 30 44 50 87 127 197
3| (1/4D,1/6L) | 5 7 12 11 14 22 58 93 160

FLOPs. 4) MCANgs:(1/4D,1/3L) still outperforms UpDn
[7] by 2.8 points with an extremely small model size of 10M.
This model size is close to the lower bound of MCAN, which
includes 7.8M uncompressible model parameters in the input
and output embedding layers.

From the results in the lower part of Table [ we obtain
similar observations to those on MCANgzsr. The slimmable
UNITERzs: and CLIP-ViLgsr models attain superior or com-
parable performance to their reference independently-trained
counterparts (#25 vs. #18, #28 vs. #19, #29 vs. #20, #32 vs.
#21). The slimmed submodels in #26-28 and #30-32 attain
significant reduction in computational costs at the expense
of a drop in accuracy. Compared with the slimmable model
UNITERpyvs of DynaBERT [29] (#22-24), our UNITERgg:
achieves higher performance with similar model sizes (#22
vs. #25, #23 vs. #26, #24 vs. #27). Additionally, the total
training time for DynaBERT is 3.6x longer than ours. These
results verify that our slimming and training strategies are
more effective than those of DynaBERT.

To further examine the generalization of BST, we compare
MCANG;st to the state-of-the-art methods on GQA. Table
shows that MCANgs (D, L) is 1.2 points higher than the refer-
ence MCAN model without BST. Furthermore, with 0.17 x the
model size and 0.06x the FLOPs, MCANgs1(1/4D,1/3L)
achieves comparable results to the reference MCAN model,
surpassing the rest of its counterparts by a distinct margin.

Next, we show the results of all the ten submodels in
terms of BST training and standard independent training. By
independent training, we mean that each submodel is trained
independently without sharing its model parametersﬂ From the
results in Fig.[5] we can see that all the ten submodels obtained
by BST training deliver better performance than their counter-
parts obtained by independent training. This corroborates the
results in Table [l

Finally, the submodels obtained by BST are slimmed from
one single model without retraining, outperforming the same
submodels obtained by independent training in terms of both
the total model size and total training time. From the results
in Fig. [fl we can see that the total model size of the ten
submodels obtained by BST training is ~25% of that obtained
by independent training. Furthermore, the total training time
for BST training is ~50% of that for independent training,
revealing the synergistic effect of different weight-sharing
submodels in BST training.

4For the independent training for UNITER and CLIP-ViL, each submodel
is first initialized with a specific portion of the model parameters from the
pretrained model and then finetuned independently.

To summarize, these observations above verify the effec-
tiveness and generality of the proposed BST in terms of
different Transformer architectures, training paradigms, and
visual encoders.

D. Runtime Latency on Different Hardware Platforms

To precisely measure the efficiency of different submodels,
we report the runtime latency on different hardware platforms
in Table Specifically, we deploy three typical submodels
of a MCANgsr model (i.e., the largest submodel, the small-
est submodel, and a deep and narrow submodel) on three
commonly-used platforms (GPU, CPU, and mobile devices).
For each platform, we choose three devices with different
computational capabilities.

From the results in Table we can see that: 1) For
each submodel, different platforms and device types lead to
significant discrepancies in terms of runtime latency, which
stems from their diverse computational capabilities. 2) When
width slimming is performed (#1 vs. #2), the latency on the
GPU platform is not reduced significantly, while the latency
on the CPU platform decreases prominently. This suggests
that the GPU has no significant advantage over the CPU for
these narrow models. 3) When depth slimming is also further
performed (#1 vs. #3), the latencies on the GPU and CPU
platforms are not distinct. This suggests that computational
capabilities of the GPU and CPU platforms are excessive for
such small submodels. 4) The smallest submodel in #3 can
be deployed on a non-latest cellphone with a Snapdragon 888
chip. The 58 ms latency can support applications with real-
time requirements.

E. Ablation Studies

We run a number of ablations on MCAN3gst to analyze the
effectiveness of the key component in BST. The results are
shown in Table [[V] and Fig. [7] and discussed in detail below.
Width Slimming. In Table [[Va] we show the results of
the MCANgsr variants trained with different width slimming
strategies, i.e., the slim-all strategy introduced in this paper
and the slim-intermediate strategy introduced in [29]. By
comparing two submodels of similar FLOPs, we see that our
slim-all strategy delivers better model performance than the
slim-intermediate strategy under different model depths.
Depth Slimming. In Table we compare the MCANggy
variants with different depth slimming strategies (mentioned
in Section [[II-B) in terms of average accuracy over the ten
submodels. From the results, we can see that the slim-middle
strategy achieves the best performance among the counterparts,
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TABLE IV: Ablations of the MCANGggr variants models evaluated on the minival split of VQA-v2. The default setting and

the best result are bolded.

slimming strategy | submodel | #FLOPs accuracy (%) slimming strategy | average accuracy (%)
slim-all (1/2D,L) 1.5G 67.98 slim-random 66.98
slim-interm. [29]] (1/4D,L) 1.6G 67.86 slim-first 66.99
slim-all (1/2D,1/3L) | 0.6G 66.95 slim-last 67.07
slim-interm. [29] | (1/4D,1/3L) 0.8G 66.83 slim-middle 67.14

(a) Width Slimming. Under the same model depth and similar number
of FLOPs, the obtained submodels trained with the slim-all strategy
outperform the slim-intermediate strategy, showing the significance of

keeping the ratio of input-output dimensionality in width slimming.

(b) Depth Slimming. The slim-middle strategy outperforms all
the counterparts in terms of average accuracy, verifying that the
middle layers in Transformer are less important than the first
and last ones. More evidence is shown in Fig. @

#sampled submodels | average accuracy (%)

training time (h)

training strategy ‘ average accuracy (%)

K=3 66.88 64
K=4 67.14 68
K=5 67.15 73
K=6 67.16 79

w/ random init, w/o KD 65.89
w/ random init, w/ ID [71] 65.55
w/ random init, w/ KD 66.95
w/ teacher init, w/ KD 67.14

(c) Number of Sampled Submodels. K'=4 is a good trade-off between the
average accuracy and training time. Further increasing K does not bring

prominent performance improvement but takes more training time.
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Fig. 7: Submodel Selection. The accuracies vs. FLOPs
on VQA-v2 minival split are reported to compare two
MCANggr variants with 10 and 16 submodels, respectively.
The network architectures of the 10 submodels (red squares)
correspond to a subset of the 16 submodels (blue squares) after
discarding 6 ineffective submodels (red crosses) by using our
triangle selection strategy.

suggesting that the bottom and top layers of the Transformer
are more important than the middle layers. This observation
is consistent with the results in [78|]. We also provide visual-
ization results in section [[V-F by introducing a simple score
function based on the magnitudes of the output features of each
layer. The calculated layer scores are consistent with those
obtained by the slim-middle strategy, verifying its effectiveness
from a side view.

Number of Sampled Submodels. In Table we ablate the
effects of different numbers of sampled submodels during the
BST training. The results suggest that =4 is a good trade-
off between the average accuracy and training time. Further

(d) Training Strategy. The teacher initialization and KD strate-
gies show advantages over the random initialization and ID
strategies in terms of average accuracy, respectively.

increasing K does not bring a great performance improvement
but takes much more training time. The fast saturation with
such a small K is facilitated by the weight-sharing strategy of
different submodels.

Training Strategy. Our default training strategy uses the
model parameters from a teacher model for initialization and
then trains the submodels using a KD training strategy to
exploit the implicit knowledge from the teacher model. The
results in Table [[Vd| show that both the teacher model initial-
ization and the KD training improve the obtained MCANgst
model, compared to the model variants trained with random
initialization or supervised by the ground-truth answer. In
contrast to our KD training strategy that uses a fixed teacher
model, an alternative strategy introduces a special inplace dis-
tillation (ID) training strategy that takes the largest submodel
as the dynamic teacher to perform knowledge distillation [71].
We note that the ID-based strategy results in worse perfor-
mance than the KD training strategy (65.55% vs. 66.95% in
terms of average accuracy), and even underperforms standard
training without knowledge distillation (65.55% vs. 65.89%).
This suggests that a stable teacher model plays a key role in
BST.

Submodel Selection. In Fig. [7, we compare two MCANgs:
variants with 10 and 16 submodels. From the results, we have
the following observations: 1) all the ineffective submodels,
which require more FLOPs but obtain lower accuracies than
some other submodels, are precisely detected by our sim-
ple triangle selection strategy, 2) removing such ineffective
submodel architectures before the BST training brings im-
provements to all the remaining submodels, and 3) taking the
submodel (3/4D, 2/3L) as the reference model, the submodel
(3/4D, L) outperforms (D, 2/3L) with fewer FLOPs, verifying
our hypothesis that increasing depth is more economical than
increasing width for the Transformer.
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Fig. 8: Visualizations of the calculated layer importance scores
given trained MCAN, UNITER, and CLIP-ViL models, re-
spectively. A darker color indicates a larger score of the layer.
The layer scores for all the three models exhibit a “heavy ends
and light middle” phenomenon, which are consistent with the
layer scores achieved by the slim-middle strategy.

F. Visualization Analysis

As discussed in section the method of measuring the
layer importance plays key role in depth slimming. Here, we
introduce a data-driven strategy to measure the importance of
each layer. Specifically, given a trained MCAN (UNITER or
CLIP-ViL) model without model slimming, we first feed all
the training samples through the network and memorize the
output features for each layer. For the output features obtained
from each layer, mean pooling is performed on each flattened
feature vector to obtain its unnormalized score. Using this
strategy, we show the importance scores for each layer of the
MCAN, UNITER, and CLIP-ViL models in Fig. @ From the
visualized results, we see that the layer scores of all models
exhibit “heavy tails and a light middle”, which is consistent
with the layer scores achieved by the slim-middle strategy.

To better understand the behaviors of the weight-sharing
submodels learned by BST, we show the attention maps from
three MCANgst submodels in Fig. E[ Due to space limitations,
we only show one example and visualize the attention maps
from the first and last layers of the question encoder and
image decoder, respectively. To better understand the effect
of the attention mechanism, we highlight some representative
attention maps with blue bounding boxes. From the results, we
have the following observations. In general, the slimmed sub-
models MCANgs1(1/4D,L) and MCANgs(1/4D,1/3L) have
fewer redundant heads (i.e., similar attention maps within one
layer) than the full-sized model MCANgs(D,L). This verifies
the feasibility and necessity of our BST framework. Moreover,
the three submodels, which have different widths and depths,
all predict the correct answer. This verifies the effectiveness
of both the width and depth slimming strategies, as well as
the training paradigm. Furthermore, the attention maps from
the different submodels have similar properties to the attention
maps in the original MCAN paper [2]]. Almost all the attention
maps from the first layer of the question encoder (i.e., enc-1)
attend to the column of words such as ‘what’, which act as
the question type classifiers. In contrast, some attention maps
from the last layer of the question encoder (i.e., enc-6) and
image decoder (i.e., dec-1 and dec-6) focus on the columns of
keywords such as ‘head’.

V. CONCLUSION

In this paper, we present a new direction for the VQA task:
learning efficient and elastic models that can adaptively fit
different platforms. To this end, we present a general bilat-
erally slimmable Transformer (BST) framework that can be
seamlessly integrated with any Transformer-based VQA model
in theory. By integrating the BST framework with three typical
Transformer-based VQA approaches, the resulting slimmable
models outperform state-of-the-art methods with similar model
sizes, or achieve comparable performance to that of much
smaller models on both VQA-v2 and GQA datasets. Moreover,
the quantitative experiments on diverse hardware platforms
and devices show the practicability and necessity of BST.

To the best of our knowledge, the proposed BST framework
is the first attempt to explore efficient and elastic models for
VQA. We hope our general framework can serve as a baseline
to inspire future research on efficient multimodal learning.
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