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E-MLB: Multilevel Benchmark for Event-Based
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Abstract—Event cameras, such as dynamic vision sensors
(DVS), are biologically inspired vision sensors that have advanced
over conventional cameras in high dynamic range, low latency
and low power consumption, showing great application potential
in many fields. Event cameras are more sensitive to junction
leakage current and photocurrent as they output differential
signals, losing the smoothing function of the integral imaging
process in the RGB camera. The logarithmic conversion further
amplifies noise, especially in low-contrast conditions. Recently,
researchers proposed a series of datasets and evaluation metrics
but limitations remain: 1) the existing datasets are small in
scale and insufficient in noise diversity, which cannot reflect
the authentic working environments of event cameras; and 2)
the existing denoising evaluation metrics are mostly referenced
evaluation metrics, relying on APS information or manual
annotation. To address the above issues, we construct a large-
scale event denoising dataset (multilevel benchmark for event
denoising, E-MLB) for the first time, which consists of 100 scenes,
each with four noise levels, that is 12 times larger than the largest
existing denoising dataset. We also propose the first nonreference
event denoising metric, the event structural ratio (ESR), which
measures the structural intensity of given events. ESR is inspired
by the contrast metric, but is independent of the number of events
and projection direction. Based on the proposed benchmark and
ESR, we evaluate the most representative denoising algorithms,
including classic and SOTA, and provide denoising baselines un-
der various scenes and noise levels. The corresponding results and
codes are available at https://github.com/KugaMaxx/cuke-emlb.

Index Terms—Event camera, event denoising, nonreference
denoising metric.

I. INTRODUCTION

EVENT cameras, such as the Dynamic Vision Sensor
(DVS), are novel biologically inspired devices [1], [2].

In contrast to traditional frame-based cameras, which capture
global scene brightness at a fixed rate, event cameras can
asynchronously perceive the environmental brightness change
in each pixel and report log-intensity change signals at mi-
crosecond resolution [3], [4]. These features show great ap-
plication potential in many fields, such as optical flow estima-
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tion [5]–[7], high-speed video interpolation [8]–[10], feature
tracking/detection [11]–[13] and simultaneous localization and
mapping (SLAM) [14]–[19].

However, due to its differential imaging mechanism, the
event camera is sensitive to various types of noise [4], [20]. In
this paper, we are mainly concerned with background activity
(BA) noise [21], which is the main type of noise in event
cameras. As shown in Fig. 1 (a), with the overall brightness
reduction, the noise level in the event camera output will
gradually increase. More specifically, the input signal will be
disturbed due to the perturbation of incoming light before
the receiving photodiodes and junction leakage current of
the imaging circuit, as shown in Fig. 1 (b). In conventional
cameras, such noise input will be suppressed to a great extent
because of the smoothness of the integration function, thus
maintaining good imaging quality. However, in the event
camera, the noise is much more obvious due to the continuous
differential sampler, and the logarithmic operation will further
amplify the noise, leading to the production of BA, as shown
in Fig. 1 (c).

Several event denoising datasets [22]–[24] and denoising
metrics [22], [25], [26] have been proposed to date. Based on
these, various event denoising algorithms [22]–[37] have been
presented and have achieved remarkable progress. However,
existing event denoising datasets and denoising metrics still
have the following limitations: 1) the scale of existing datasets
is small, and the noise diversity is limited and unable to cover
authentic working environments of event cameras. Specifically,
the events in existing datasets are mainly captured in similar
lighting conditions, resulting in small variances in different
event sequences, which cannot cover the real noise distribution
in practical environments. 2) The existing denoising evaluation
metrics are mostly reference evaluation metrics, relying on
active pixel sensors (APS) and inertial measurement unit
(IMU) information [22] or manual annotation [25], [26]. How-
ever, APS information is not always available, and its quality
cannot be guaranteed, especially in low-light environments. In
addition, the microsecond event camera can output millions
of events per second, and it is impractical to label each event
manually.

To better study the influence of noise on event-based visual
cues and enable future research on event denoising, we pro-
pose a large-scale event denoising dataset and a nonreference
event denoising metric. First, we construct a novel large-
scale event denoising dataset, which has three advantages over
existing datasets: 1) Various scenes. The number of sequences
in the E-MLB dataset is 12 times larger than existing datasets.
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Fig. 1. The difference between event and RGB cameras in signal processing. (a) illustrates that the light intensity is inversely correlated to the noise level of
captured events, i.e., with the light intensity gradually decreasing, the noise level increases in the event frame1. (b)-(c) explain why the event camera generates
so much noise in poor lighting conditions. The main reason is that the continual sampling (or differential sampling) in the event camera cannot smooth noisy
signals in the integrated sampling manner of a frame-based camera, which makes the event-based denoising task unique and challenging.

2) Varying light conditions. To better cover the actual lighting
conditions in DVS working environments, we collected a
large number of event sequences at different times (from
day to night). We placed neutral density (ND) filters with
fractional transmittances of 1/4, 1/16 and 1/64 in front of
the event camera to simulate different light intensities. Thus,
four event sequences with different noise levels were obtained
for any given scene. 3) Multiple motion types. Our dataset
contains events generated by objects with different motion
types, including translation, rotation, and a combination of
both 2D and 3D with perspective changes.

Second, we propose a novel nonreference event denoising
metric, termed the event structural ratio (ESR), to reduce
the dependence of evaluation metrics on APS information
and manual annotation. It has the following advantages: 1)
Effective ranked noise level. The principle of ESR is to judge
the noise level of an event stream. Since each denoising
method leads to different noise levels, we can use ESR to
evaluate these denoising events and, as a result, distinguish
the denoising effect indirectly; 2) Reflect the intrinsic property
of events. The calculated ESR is not dependent on either the
number of events or the projection directions. Therefore, it is
an intrinsic property of the events alone. 3) Easy to calculate.
The only information needed to calculate ESR is the event
data, and only basic arithmetic operations are needed.

In summary, the main contributions of this paper are three-
fold:
• We construct a large-scale event denoising dataset Multi-

Level Benchmark (E-MLB) for the first time, which is
12 times larger than the largest existing dataset. Our
proposed dataset far exceeds existing datasets in rich real-
world scenes and multiple noise levels.

1The event frame is obtained by accumulating events for each pixel, where
red represents positive events and blue represents negative events.

• We propose the first nonreference event denoising metric,
the event structural ratio (ESR), which measures the
structural intensity of events without additional informa-
tion sources such as the APS frame and IMU data. The
proposed ESR is easy to calculate and faithfully indicates
the noise level of event data under various scenes and
lighting conditions.

• We conduct extensive experiments with 11 state-of-the-
art denoising methods on the E-MLB dataset and give
the ESR score of each algorithm. We hope that the com-
parative analysis will contribute to future event denoising
research.

The remainder of the paper proceeds as follows. In Sec-
tion II, we introduce relevant works on event denoising
datasets, metrics and algorithms. In Section III, we describe
the collection details of our E-MLB dataset. Then, we illustrate
our proposed event denoising metrics and provide a detailed
rigorous mathematical proof in Section IV. In Section V and
Section VI, we report the experimental results and give a
conclusion, respectively.

II. RELATED WORKS

A. Event Denoising Datasets

Some denoising datasets have been presented recently to
suppress the impact of noise on event cameras. DVSNOISE20
[22] provides 48 event sequences on 16 stationary scenes,
which were captured by a DAVIS 346 mounted in a gim-
bal restricted to rotation-only movement. It also provides
ground-truth labels representing event generation probability
by combining the APS and IMU information. ENFS [24]
contains 100 sequences. DAVIS 346 camera was mounted
on top of a table and shot a monitor playing the need-for-
speed (NFS) [38] dataset. RGB DAVIS [23] provides 20 real
event sequences from a DAVIS 240 camera, including indoor
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and outdoor scenes, as well as high-resolution frames from a
conventional RGB camera. Although these datasets provide a
large quantity of realistic noisy data, they were collected under
limited lighting conditions; some of them (e.g.DVSNOISE20
and ENFS) contain only restricted motion, which cannot cover
authentic camera working scenarios.

To solve the lack of ground truth labels, DND21 [39]
collected realistic pure noise and pure signal sequences and
then synthesized hybrid noisy sequences. Additionally, some
simulators, such as ESIM [40] and V2E [41], can be used to
generate synthetic DVS events from provided image or video
datasets and control noise generation. However, due to the
complexity of the actual noise distribution, the above methods
cannot reflect real situations.

B. Event-based Denoising Metrics

Percentage of signal/noise remaining (PSR/PNR) [25] treats
the events that fall in the manually generated bounding box as
signals, calculating the percentage of remaining events inside
(or outside) the bounding box. Noise in real (NIR) [26] and rel-
ative plausibility measure of denoising (RPMD) [22] annotate
the probability of each event. The former convolves the event
stream with a Gaussian kernel, and the latter combines APS
and IMU to calculate the probability of event occurrence in
each space-time coordinate. In addition, there are some metrics
designed on synthetic datasets. Event denoising precision
(EDP) [42] can briefly report the ratio of the total number
between the denoised event stream and the original event
stream. [39] plots receiver operating characteristic (ROC)
curves to compare different event data.

Although the aforementioned metrics can evaluate denoising
algorithm performance, some methods rely heavily on syn-
thetic data and this generalization to real event data is still
unclear. Others need ground truth data by either manually
labeling or introducing additional information sources, which
may become invalid in a practical environment where labels
are not always available.

C. Event-based Denoising Algorithms

Statistical methods were the earliest classical approaches
for event-based denoising. In [28], outliers are filtered by
calculating the density for each event in their local spatial-
temporal neighborhood and setting the threshold to judge low-
density events. Then, based on this theory, approaches such as
[29], [32], [39], [42], [43] reduce the operating complexity by
setting different event storage strategies. Other works, such
as [25], [26], [44], introduce additional process stages to
eliminate dead pixels or sharpen edges. However, these density
statistics methods are difficult to apply across a wide variety
of noise and require manually finetuning parameters to deal
with different scenarios.

Other algorithm filters conduct event denoising in the
context of surface fitting. EV-Gait [36] performs local plane
optical flow estimation and filters noisy events to smooth
the optical flow surface. Afterward, the guided event filter
(GEF) [23] combines the gradient of active pixel sensor
(APS) frames. In contrast, time surface (TS) [30], [34], [35]

transforms events from unit impulses into a representation
that is monotonically decreasing with time, which solves the
sparsity problem in the local plan fitting process. These fitting
methods are well suited for a single moving object but perform
poorly in low-light conditions or complex scenarios.

Learning-based methods have been widely used in event-
based denoising most recently. For example, a K-SVD method
[31] was proposed to extract the sparse features from several
noise-free event frames. In [39], a multilayer perceptron de-
noising filter (MLPF) was used to calculate the probability of
noise event-by-event. In addition, some convolutional neural
network (CNN) methods [22], [24], [45], [46] have also been
proposed recently. EDnCNN [22] trains a binary classification
network using the probability tag of each event, which is
estimated by combining APS and IMU information. EDnCNN
can classify individual events as signals or noise well but
is a time-consuming network. EventZoom [24] is a high-
efficiency U-Net that achieves event denoising in a noise-to-
noise fashion.

III. E-MLB DATASET

In this section, we introduce the collection details of our
E-MLB dataset. We first introduce our capture device. Then,
the shooting details and photographic accessories used are
presented. Finally, the comparison of E-MLB with the existing
datasets is given.

Event Sensor: The type of event camera we used was
a DAVIS346, which can simultaneously output a spatially
aligned event stream (120 dB) and intensity images (56 dB)
with a resolution of 346×260. In addition, to simulate different
lighting conditions, we placed three neutral density filters (ND
filters) with different transmittance in front of the lens, as
shown in Fig. 2 (a).

Collection Details: Benefiting from the high dynamic prop-
erty, the DVS is widely used in extreme light conditions, such
as low-light and overexposed conditions [47], [48]. However,
the noise level output by DVS gradually increases as the light
intensity increases/decreases, as shown in Fig. 1. To better
analyze the relationship between noise level and light intensity,
we place the ND filter to simulate the different light conditions,
as shown in Fig. 2 (a). For each scene, we first capture the
original scene in the natural light condition. Then, we add
the ND filter in front of the DVS and repeat the capture
process. In this paper, we use three kinds of ND filters with
different transmittance (1/4, 1/16, and 1/64), which are denoted
as ND4, ND16, and ND64, respectively. The captured samples
are shown in Fig. 2 (b). For each light condition, we repeatedly
shoot the scene 3 times. The simulated light intensity and
diversity are highly dependent on the original natural light
intensity. Thus, to further increase the light diversity, we
change the capture time from day to night to guarantee the
diversity of natural lighting conditions.

In addition to changing the light intensity, we also change
the shooting scene to guarantee the diversity of the content
of the captured event sequence. In this paper, we select 100
scenes, including both indoor and outdoor scenes and diverse
motion types (translation, rotation, and combination of both
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Fig. 2. (a) The event camera and ND filters were used for capturing event sequences. (b) The captured event stream with different ND filters2. The noise
level gradually increases with the amount of light entering the lens reduction. (c) Examples of event sequences in the E-MLB from daytime to night. In each
square, the lower-left is the converted event frame, and the upper-right is the hybrid image, including the event and APS frame.

TABLE I
THE COMPARISON OF OUR PROPOSED E-MLB WITH EXISTING EVENT DENOISING DATASET.

Datasets Camera Resolution APS IMU* Scenes Sequences Capture/s DoF Noise Level

DVSNOISE20 [22] DAVIS 346 346× 260 Gray X 16 48 807 Cam. -
RGBDAVIS [23] DAVIS 240 190× 180 RGB - 20 20 122 All. -
ENFS [24] DAVIS 346 224× 125 - - 1 100 4238 Obj. -
DND-21 [39] DAVIS 346 346× 260 - - - 8 - All. -
E-MLB DAVIS 346 346× 260 Gray X 100 1200 7300 All. 4

* Inertial Measurement Unit

in 2D and 3D with perspective change). In addition, we
provide the corresponding APS frame and IMU data for each
captured event sequence. It should be noted that the APS
quality will decrease as light intensity decreases. Considering
that the event camera has a superior high dynamic range,
we also include some special sequences that create more
challenges for denoisers, such as extremely low light scenes
(with high background activity and blurred edges), special
weather conditions (rainy and snowy days), and high-speed
objects. Some example sequences can be found in Fig. 2 (c).
A comparison of our E-MLB with the existing event denoising
dataset is reported in Tab. I.

IV. EVENT STRUCTURAL RATIO

In Section IV-A, we review the working principle of event
cameras and the event contrast measurement, in which event
contrast is the main inspiration of our denoising metric. In Sec-
tion IV-B, we introduce our proposed event structure ratio, and

2For consistency, ND1 is used to represent the data captured without any
ND filters

the relevant derivation and proof can be found in Section IV-C.
Evaluations on ESR are conducted in Section IV-D, including
both synthetic and real experiments, which demonstrate that
our proposed ESR is a good denoising indicator.

A. Preliminaries

Working Principle: In event cameras, each pixel works
asynchronously and will trigger an event ek := (xk, tk, pk)
when its logarithmic brightness change reaches the predefined
contrast threshold c, which can be defined as:

∆L
.
= L(xk, tk)− L(xk, tk −∆tk) = c · pk (1)

where xk := (xk, yk) is the pixel position of the k-th event.
tk is the timestamp, and ∆tk is the time interval since pixel
(xk, yk) last reaches the threshold. pk ∈ {−1,+1} is the
polarity, representing the decrease and increase in brightness,
respectively. L(xk, tk) := log I(xk, tk) denotes the log inten-
sity.
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Fig. 3. Since the event camera is responsive to edges, we will obtain an
image of the objects’ edges after projecting the events along the trajectories
to the 2D dimension, which helps us to analyze its statistical characteristics
more easily.

The difference between log intensity in a duration of t can
be obtained by integrating the sequences of events [49]:

L(x, t)− L(x, 0)
.
= c ·

∫ t

0

∑
k

ek(x, τ)dτ (2)

where ek(x, t) can be described by using Dirac function δ(·):

ek(x, t) = pk · δ(x− xk, t− tk) (3)

Event Contrast: Since event cameras are highly responsive
to the moving edges of an object [50], a set of events will
occur on the edge trajectories as long as relative movement
occurs between the camera and objects. In contrast, given a
set of events {ek}N , we can project (warp) these events to
a reference time tref along these trajectories by a warping
function W :

ek := (xk, tk, pk)
W7→ e′k := (x′k, tref , pk) (4)

After projecting, we obtain an accumulated 2D histogram, also
known as an image of warped events (IWE) [51]:

IWE(x) =

N∑
k=1

bkδ(x− x′k) (5)

where bk is the weight of the summation of ek. Here, we
set bk = 1 to facilitate the subsequent derivations. Usually,
the warping function can be modeled as linear motion (optic
flow), rotational motion, 4-DOF motion and so on [52]. If we
correctly model the warping function and estimate accurate
parameters, the IWE will form an edge-like image. Taking
Fig. 3 as an example, for some simple shapes performing
translation motion relative to the camera, we can project events
along the translation direction to obtain a clear and sharp edge-
like IWE.

Because edge strength is directly related to image contrast
[51], we can use IWE to measure scene contrast. Here, we
use an image-based contrast metric named the total sum of
squares (TSS):

TSS =
∑
x

IWE2(x), (6)

where the summation is carried over all the pixels. The area
of spatial support L (the total number of pixels that output
events) can be defined as:

L :=
∑

IWE(x)>0

1, (7)

TSS and L are inversely correlated most of the time. Given a
number of events, the more aggregated the events are in IWE,
the less spatial support L the event image has. In other words,
the event contrast will decrease when the data are influenced
by noise, which we believe is an important clue to judging the
impact of noise.

However, TSS and other contrast metrics are highly depen-
dent on the number of events, and they cannot be directly used
as event denoising metrics. Taking TSS as an example, it will
always assign the highest score for the denoising method that
outputs the maximum number of events. In practice, we cannot
guarantee that the different denoising methods keep the same
number of events.

B. Definition of ESR

To address the above issues, we extract an invariant from
the TSS, which is called the normalized TSS (NTSS):

NTSS :=

K∑
i=1

ni(ni − 1)

N(N − 1)
(8)

where K is the total number of pixels in the IWE. N is
the total number of events, and ni is the sum of all events
that occur on pixel (xi, yi). NTSS is used to represent the
relative contrast of the scene regardless of the number of
events. Nevertheless, due to the intrinsic deficiency of the
contrast metric, the NTSS tends to assign a higher score to the
method that performs overdenoising. An extreme case is that
if only one event remains, the calculated NTSS will reach the
upper bound and fail to faithfully represent the noise situation.
Therefore, we add a penalty coefficient before NTSS, which
is defined as:

LN := K −
K∑
i=1

(1− M

N
)ni (9)

where LN is the number of nonzero pixels (or the area of
spatial support) in the IWE. M is the reference number of
events used for interpolation, which is fixed during the entire
evaluation process. In this way, the normalized contrast of any
N events can be interpolated to that of fixed M events. Based
on the invariant representation of scene contrast NTSS and
penalty coefficient LN , we can finally define the proposed
ESR as:

ESR :=
√

NTSS · LN , (10)

C. Proof of NTSS and LN
For small duration ∆t, the probability of a given number

of events follows the Poisson distribution [32]:

P (Nx(t) = m) = e−λxt
(λxt)

m

m!
(11)

where P (Nx(t) = m) is the probability of m events occurring.
Event rate λx is the rate of triggering events at pixel per unit
time [49], which can be derived from Eq. (2) as:

λx :=
1

∆t
· L(x, t)− L(x, 0)

c
=

∫ t
0

∑
k ek(x, τ)dτ

∆t
(12)
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then we can obtain the uniform event rate as:

px =
λx∑
x λx

, (13)

where px represents the relative portion of event rate λx,y and
sums to 1. Given the sum of the number of events, the joint
probability distribution of the number of events in different
pixels follows a multinomial distribution, provided the number
of events in each pixel follows the Poisson distribution and all
the pixels are independent. Therefore, events can be viewed
as drawn from a multinomial distribution provided that the
number of events is fixed. Let the total number of pixels of the
event image be K, and use flattened index i ∈ {1, 2, ...K} =
(xi, yi) to represent different pixels for simplicity of notation;
then we have:

(n1, ...nK)|Y = N ∼Multinomial(N, (p1, ...pK)), (14)
ni|Y = N ∼ Binomial(N, pi), (15)

Y =
K∑
i=1

ni, (16)

ni = Nxi
(t). (17)

After deriving the uniform event rate px, we can further
derive the NTSS and LN . The expectation of TSS is:

E[TSS|Y = N ] =

K∑
i=1

E[n2i |Y = N ]. (18)

Because the distribution of Ni(t) conditioned on M(t) is
binomial, we introduce

f(x, p) = (px+ (1− p))N , (19)

then from Eq. (15), we have:

E[n2i |Y = N ] =

N∑
k=1

k2
(
N

k

)
pk(1− p)N−k (20)

= (x
∂

∂x
)2 ◦ f(x, pi)|x=1 = Npi +N(N − 1)p2i .

(21)

so for TSS, there is:

E[TSS|Y = N ] =

K∑
i=1

Npi +N(N − 1)p2i (22)

= N +N(N − 1)

K∑
i=1

p2i . (23)

∑K
i=1 p

2
i is an inherent property of the scene and is invariant

with respect to the number of events N . In effect, it can be
estimated by:

K∑
i=1

p2i ≈
K∑
i=1

ni(ni − 1)

N(N − 1)
. (24)

∑K
i=1 p

2
i can be viewed as the normalized TSS, and its

estimation is denoted as NTSS:

NTSS :=

K∑
i=1

ni(ni − 1)

N(N − 1)
. (25)

Fig. 4. The effect of event number and noise level on ESR. The NTSS and
LN are robust to the number of events, as in (a) and (b), which results in the
obtained ESR also being robust to the number of events, as in (c). (d) shows
that the proposed ESR is inversely correlated to the noise level, and a higher
noise level corresponds to a lower ESR.

The expectation of L is:

E[L|Y = N ] = E[

K∑
i=1

1ni>0|Y = N ] =

K∑
i=1

P (ni > 0|Y = N)

(26)

= K −
K∑
i=1

P (ni = 0|Y = N) ≈ K −
K∑
i=1

e−Npi .

(27)

There is no simple scene invariant from the expression because
N and pi are tightly coupled; however, by introducing a new
random variable αni , we can interpolate the resultant L to
any given number of M as if it were calculated by exactly M
events. The expectation of this new random variable is:

E[αni |Y = N ] =

N∑
k=1

αkpki (1− pi)N−k
(
N

k

)
(28)

= (1 + (α− 1)pi)
N ≈ e(α−1)Npi . (29)

Thus, by setting (α−1)N = −M , or equivalently α = 1−M
N ,

we can interpolate any L when Y = M from N events, defined
as:

LN := K −
K∑
i=1

(1− M

N
)ni . (30)

D. Experimental Verification

To verify that the proposed NTSS, LN and ESR are in-
dependent of the number of events, we conduct experiments
on real-world event sequences. We conduct three experiments
with N = 15,000, 17,500, and 20,000. M is set to 15, 000
in all three experiments. Events in the whole sequence are
split into packets of events with equal sizes of N . Then, we
compute the NTSS, LN , and ESR values for each event packet
with predefined parameters and draw the NTSS, LN , and ESR
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Fig. 5. The effect of projection directions on ESR. Although events are
projected along different directions, the ESR values are relatively close.

curves of the entire sequence. As shown in Fig. 4 (a-b), when
the number N changes from 15,000 to 20,000, the NTSS and
LN curves are very close, which verifies their independence
from the event number N . As a result, the ESR curve is also
independent of N , as shown in Fig. 4 (c). Then, we test the
relationship between the ESR and noise level. We manually
add random noise (the noise ratio is set to 10%, 20%, and
40%) to the original sequence and calculate the corresponding
ESR curve. As shown in Fig. 4 (d), the noisy ESR curves have
the same shape as the original curve, and the noisier the ESR
curve is, the lower the ESR value, which validates that it can
indicate the noise level and can be used as an event-based
denoising evaluation metric.

The proposed ESR is calculated in the event frame to
simplify the calculation, whereas the existing algorithms adopt
different projection methods during the process. For example,
EventZoom uses projections along the time axis, and GEF uses
projections along the motion axis, which leads to a change
in the event distribution after denoising. Therefore, we need
to test the influence of different projection methods on the
ESR value to verify its robustness on different algorithms. As
shown in Fig. 5, we calculate the ESR value of the same event
packet in different projection directions; the resultant ESR
values are quite close, so the proposed ESR is also invariant
to the change in projection direction. In conclusion, although
the calculation is performed in the frame space, the resultant
ESR is independent of the number of events and the projection
method only represents the event quality, which is thus, an
intrinsic property of events.

V. EXPERIMENTAL RESULTS

In this section, we first provide the mean ESR (MESR)
score of each representative denoiser in both our E-MLB and
other existing datasets and present some typical visualization
results. Then, a comparison of ESR with another denoising
metric is given, which proves the superiority of ESR.

A. Event Denoising Baselines

We select the 11 most representative event denoising meth-
ods for comparison:

• BAF [28], KNoise [32] & DWF [39] follow the same
denoising theory. The background activity filter (BAF)
counts the density of each incoming event in its eight
neighborhood pixels within a time interval and filters
out noise events according to a predetermined thresh-
old. KNoise improves on this basis by allocating two
blocks of memory to store the latest events of rows
and columns, which gains the advantage of O(N) space
complexity. The double window filter (DWF) further
reduces the memory footprint by using a first-in-first-out
(FIFO) queue, which stores only a few recent events and
determines whether to insert a new event into this queue
by comparing it with in-queue events.

• TS [30] & IETS [34] convert a sparse event stream
into a dense representation. First, the time surface (TS)
converts the Dirac function of time into a logarithmic
decay representation, in which case the effective events
form a regular manifold called the time surface. Then, it
eliminates events that destroy the smoothness of the sur-
face. The inceptive event time surface (IETS) introduces
predefined time thresholds to eliminate redundant events
within the same edge.

• EvFlow [36] calculates the gradient by local plane fitting
to attain optical flow and then achieves event denoising
by filtering all the events with abnormal flow values.

• YNoise [26] calculates the density of each incoming event
in its spatiotemporal domain and then achieves event
denoising by passing events with high density.

• MLPF [39] is a kind of multilayer perceptron (MLP)
method with a single hidden layer, which is trained by
adding simulated noise events in the noise-free sequences.

• EDnCNN [22] is a convolutional neural network. The
probability of an event can be calculated by fusing APS
and IMU data, which are used as the labels for each
training event.

• GEF [23] provides two denoising modes. In the frame-
guide mode, the guided event filter (GEF) extracts mutual
structures between the event frame (project along optical
flow) and the gradient of the APS image (by Sobel op-
erator), then deletes unreasonable events and reallocates
back to spatiotemporal space. When the APS quality is
not high, GEF changes to self-guide mode, aligning two
adjacent event frames and erasing inconsistent events.

• EventZoom [24] follows a noise-to-noise fashion that
utilizes paired noisy event sequences to train a U-net
and performs event reconstruction guidance using good
quality videos on the network branch.

Experimental Details: All sequences in the E-MLB dataset
are tested with the above denoising algorithms. To ensure a fair
comparison, we manually fine-tune the adjustable parameters
of all methods in each sequence. It should be noted that
EDnCNN trained on our dataset performs inferior to the
pretrained EDnCNN. The reason is that EDnCNN is highly de-
pendent on its exclusive event noise probability labels, which
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TABLE II
THE MEAN ESR (MESR) RESULTS OF DIFFERENT DENOISING METHODS ON BOTH E-MLB DATASET AND PUBLIC AVAILABLE EVENT DENOISING

DATASETS. WE MARK THE BEST AND SECOND BEST.

E-MLB (Daytime) E-MLB (Night) RGB DAVIS DVS NOISE20 ENFS DND21
ND1 ND4 ND16 ND64 ND1 ND4 ND16 ND64 Indoor Outdoor - - -

Raw 0.821 0.824 0.815 0.786 0.890 0.824 0.786 0.768 0.905 0.776 0.524 0.843 0.869
BAF [28] 0.861 0.869 0.876 0.890 0.946 0.973 0.992 0.942 0.943 0.891 0.600 1.119 0.920
KNoise [32] 0.846 0.837 0.830 0.807 0.954 0.956 0.871 0.817 0.934 0.895 0.550 0.945 0.887
DWF [39] 0.878 0.876 0.866 0.865 0.923 0.962 0.988 0.932 0.923 0.890 0.458 1.108 0.905
EvFlow [36] 0.848 0.878 0.868 0.833 0.969 0.983 0.889 0.797 0.829 1.061 0.667 1.131 1.006
YNoise [26] 0.866 0.863 0.857 0.821 1.009 0.943 0.875 0.792 0.825 1.077 0.654 1.178 0.966
TS [30] 0.877 0.887 0.870 0.837 1.033 0.944 0.886 0.797 0.837 1.120 0.745 1.241 0.985
IETS [34] 0.772 0.785 0.777 0.753 0.950 0.823 0.804 0.711 0.762 0.988 0.733 0.982 0.900
GEF [23] 1.051 0.938 0.935 0.927 1.027 0.955 0.946 0.935 1.031 0.986 1.010 1.152 0.932
MLPF [39] 0.851 0.855 0.846 0.840 0.926 0.928 0.910 0.906 0.983 0.932 1.041 1.132 0.944
EDnCNN [22] 0.887 0.908 0.903 0.912 1.001 1.024 1.079 1.086 0.982 1.014 0.862 1.232 0.977
EventZoom [24] 0.996 0.988 0.996 0.970 1.055 1.007 1.010 0.988 0.930 1.135 0.899 1.417 1.059

are restricted to stationary scenes with rotation-only camera
motion; otherwise, it will be trained with incorrect training
data, and our dataset does not strictly meet this requirement.
Therefore, we choose a pretrained network on their DVS-
NOISE20 dataset and then fine-tune it on our rotation-only
sequences. In terms of GEF, we set the frame-guide model in
ND1 sequences while changing to self-guided in ND4, ND16
and ND64 sequences. As mentioned in Section 3, in ND1
sequences frame-guide performs better because of the high-
quality frames. However, in ND4 to ND64 frames, the quality
falls and the self-guided mode can provide more reasonable
denoising results. Considering that we do not provide similar
paired noise sequences as in the ENFS dataset, we only trained
EventZoom on its ENFS dataset sequences.

To calculate MESR, we slice the event sequence E := {ek}
consecutively along the time, which can make the set of
nonoverlapping event groups {{ek}1, {ek}2, . . . , {ek}G ⊆ E},
where G is the number of event groups. Each group is a
subset that belongs to the original sequence. In the experiment,
we specified that each event group contains 30,000 events;
therefore, we chose M = 20, 000 and N = 30, 000 for all
sequences for a fair comparison.

B. Experimental Results

Quantitative Evaluation: The mean ESR (MESR) results
are reported in Table II. As shown in the first row, the
MESR score of the E-MLB dataset decreases as the noise
level increases (from ND1 to ND64), which again verifies the
inverse correlation between the ESR value and noise level. The
only exception is that the MESR score of ND1 is slightly lower
than that of ND4 in the daytime sequences. We also provide
MESR scores in some other event-based denoising datasets,
i.e., RGB DAVIS, DVSNOISE20, ENFS and DND21. Their
ESR results are similar to those sequences in our daytime E-
MLB dataset because they were all captured under normal
light conditions.

For the different denoising methods, it is clear that almost all
the denoised sequences report better ESR scores compared to
the raw sequences, especially in the higher score improvement
in the night sequences. Overall, we can determine that BAF,

Knoise and DWF receive approximate ESR scoring results
as they follow a similar denoising principle. Considering that
IETS eliminates a large number of effective signals, it reports
the poorest score. GEF outperforms other denoising methods
when the APS quality is good, namely, in ND1 sequences
of E-MLB and other datasets that provide related frames.
Nevertheless, the denoising score drops to the second tier
when GEF enters the self-guided mode. EventZoom reports
the highest MESR score in almost all normal light sequences,
e.g., E-MLB in the daytime, while EDnCNN presents the best
performance when the noise level is higher, as shown in the
ND4 to ND64 columns at night E-MLB.

It is also worth noting that our ESR still works effectively
for algorithms that can generate new possible events (such
as EventZoom and GEF). However, the other existing event-
based denoising metrics almost fail to evaluate such self-
generated events from denoisers, providing lower scores de-
spite good denoising performance.

Qualitative Evaluation: First, we visualize the denois-
ing results of different algorithms in some challenging ND1
sequences to determine the performance boundary of each
denoiser, as shown in Fig. 6 (Daytime) and Fig. 7 (Night).

Generally, BAF remains noisy after denoising because it
only performs simple density statistics on the event stream but
can preserve the edges from being damaged. Although KNoise
and DWF follow the same denoising principles as BAF, they
perform inferiorly in some complex structural scenes such
as Fig. 6 (a). This is because they limit the memory space,
resulting in a large number of valid events being filtered
out rapidly owing to memory limitations and the high noise
density. EvFlow performs well when the scene motion type
is limited to a single object motion such as Fig. 6 (a). To
some extent, YNoise and TS perform similarly, but they have
distinguished denoising strategies. In detail, TS removes as
much noise as possible by local plane fitting, which may
damage the texture and details. In contrast, YNoise is a kind
of kernel density estimation method that can preserve more
structural information. However, YNoise may become invalid
in some high-intensity mono-polar noise sequences such as
in Fig. 6 (a); additionally, YNoise actually costs much more
human labor on adjustment. As a denoising method for fast
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Fig. 6. The visual comparison from different denoising algorithms in some representative daytime sequences, including (a) a static object shoot against strong
sunlight, in which case a lot of single polarity noise will be generated, and (b) multiple fast-moving objects in a noise-free environment, which is challenging
for speed-sensitive denoisers.
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Fig. 7. The visual comparison from different denoising algorithms in some representative night sequences, including (a) a vehicle under a street light and (b)
nonrigid body motion. Note that in night sequences, we have no choice but to increase exposure times as much as possible to acquire visible frames, which
creates some inevitable problems such as smear or blur.
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Fig. 8. Visual comparison of different denoising algorithms on multiple noise levels of the E-MLB dataset. (a)-(c) contain a cyclist who maintains the same
movement at an almost consistent distance from the event camera; as the noise level increases, the edges become more blurred, and details disappear.

corner detection, IETS destroys the distribution of real events.
Although it is highly suppressed in background activities, the
edge of the target is no longer obvious. Benefiting from the
addition of APS information, the GEF output contains sharp
edges and rich texture details, as shown in Fig. 6 (a) and
(b). However, when the quality of the APS image is poor,
the quality of output events also decreases drastically. For
example, in Fig. 7 (a), we can see that GEF cannot generate
a reasonable event distribution because motion blur occurs.

For neural networks, since MLPF has a simple structure
(only 2 hidden layers), it can be difficult to extract global

information, resulting in poor performance in complicated
scenes such as Fig. 6 (a). However, MLPF has the lowest
computational and parameter costs compared with other net-
works. Although EDnCNN can preserve edges well, it loses
some texture information of the scene. In addition, we can
see EDnCNN’s weakness in dealing with object motion in
Fig. 7 (a) or extreme noise environment in Fig. 7 (b). Compar-
atively, EventZoom has more robust performances in various
sequences; however, it can cause time and pixel jittering in
each event, such as in Fig. 6 (a).

Second, we present the denoising results in the same scene
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Fig. 9. The comparison of ESR with RPMD. (a) shows a normal light se-
quence, and both methods give reliable scores. (b)-(c) provide an overexposed
and a low light sequence correspondingly, which leads to the unexpected
results of RPMD, but the proposed ESR still works.

with different lighting conditions in Fig. 8. As seen in Fig. 8,
the performance of all methods decreases as the noise level
increases, and most fail in ND64 sequences. For BAF, NN and
KNoise, their denoising sequences are contaminated as the
noise level increases, but they have the least computational
consumption. As GEF switches to self-guide mode due to
the poor quality of the APS frames, it only performs well
under moderate noise levels (ND4 and ND16). When the
noise level continues to increase (ND64), GEF loses many real
events. TS, IETS and YNoise outperform the other methods
at medium noise levels and below in Fig. 8 (a)-(b), but IETS
loses performance at extreme noise conditions in Fig. 8 (c).
With regard to EDnCNN and EventZoom, each has its own
merits: EDNcNN performs well in texture preservation, while
EventZoom can retain more edge information. However, both
of them may have undesirable performance in some high-noise
scenes, specifically compared with TS and YNoise in Fig. 8
(c).

Comparison between ESR and RPMD: The proposed
ESR in this paper is the first nonreference event denoising
metric, which solves the difficulties in obtaining real event la-
bels. In Fig. 9, we provide a comparison with another common
public reference metric, RPMD. Since other methods are not
suitable for evaluation on our E-MLB dataset (PSR/PNR and
NIR require manual labeling, EDP and ROC require noise-free
reference), we do not provide them here.

We visualize the MESR and RPMD scores on 3 represen-
tative scenes under normal light, overexposed, and low light
conditions in Fig. 9. As seen, the denoised event frames look
better for all the sequences by human perception. However,
RPMD fails to give a better score under overexposed and
low light sequences. This is because the correct calculation
of RPMD requires high-quality and properly aligned APS and
IMU data, which is not always met when the event camera is
used in the real world. In comparison, the proposed ESR is
not dependent on additional information sources and faithfully

represents the noise level under all circumstances. Overall, our
metric could ignore the restriction to lighting conditions and
give more reasonable scores.

VI. DISCUSSION

In this paper, we propose a large-scale event denoising
dataset E-MLB and a nonreference event denoising metric
ESR for the first time. The scale of E-MLB is 12 times
larger than the largest existing event-denoising dataset and
rich in noise levels and scene types. The ESR represents
the intrinsic property of events without needing any other
information sources. With the proposed dataset and event
denoising metric, we conduct extensive experiments with 11
state-of-the-art denoising methods and present a comparative
analysis on event denoising.

However, there are still some limitations that need to be
noted. As discussed in [41], the dominant event noise source
changes from random photocurrent fluctuation to structural
junction leakage current as light intensity increases. However,
due to the complexity of the scene light sources, we do not
discuss and classify the sources of various noise types in
our proposed dataset. The proposed metric is easily affected
by hot pixels, which are events emitted on some pixels at
abnormally high rates. Therefore, we recommend eliminating
these unexpected pixels in preprocessing. In future work,
we will work on solving the above problems. We hope all
these contributions can contribute to the event community to
advance future research on event denoising.
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