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LIF-Seg: LiDAR and Camera Image Fusion for 3D
LiDAR Semantic Segmentation

Lin Zhao, Hui Zhou, Xinge Zhu, Xiao Song, Hongsheng Li, Wenbing Tao

Abstract—Camera and 3D LiDAR sensors have become indis-
pensable devices in modern autonomous driving vehicles, where
the camera provides the fine-grained texture, color information
in 2D space and LiDAR captures more precise and farther-away
distance measurements of the surrounding environments. The
complementary information from these two sensors makes the
two-modality fusion be a desired option. However, two major
issues of the fusion between camera and LiDAR hinder its
performance, i.e., how to effectively fuse these two modalities
and how to precisely align them (suffering from the weak
spatiotemporal synchronization problem). In this paper, we pro-
pose a coarse-to-fine LiDAR and camera fusion-based network
(termed as LIF-Seg) for LiDAR segmentation. For the first issue,
unlike these previous works fusing the point cloud and image
information in a one-to-one manner, the proposed method fully
utilizes the contextual information of images and introduces a
simple but effective early-fusion strategy. Second, due to the weak
spatiotemporal synchronization problem, an offset rectification
approach is designed to align these two-modality features. The
cooperation of these two components leads to the success of
the effective camera-LiDAR fusion. Experimental results on the
nuScenes dataset show the superiority of the proposed LIF-Seg
over existing methods with a large margin. Ablation studies and
analyses demonstrate that our proposed LIF-Seg can effectively
tackle the weak spatiotemporal synchronization problem.

Index Terms—LiDAR and Camera, LiDAR Segmentation,
Contextual Information, Weak Spatiotemporal Synchronization.

I. INTRODUCTION

W ITH the rapid development of autonomous driving,
3D scene perception has received more and more

attention in recent years, especially in computer vision and
deep learning. LiDAR has become an indispensable 3D sensor
in autonomous driving. Point clouds acquired by LiDAR,
compared with data from other sensors (e.g., cameras and
radars), can provide rich geometric, scale information, accurate
distance measurements and fine semantic descriptions, which
are quite helpful in understanding 3D scenes for autonomous
driving planning and execution.

LiDAR point cloud semantic segmentation aims to assign
a special semantic category for each 3D point, which is a
critical task for autonomous driving. This task can help the
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Fig. 1. Example scenes from the nuScenes [4] dataset. In the left case, the
LiDAR points become too sparse and difficult to identify a car in the distance.
The right case shows that the bus and two constructions appear very similar
in the point cloud, which makes it difficult for the segmentation model to
distinguish the bus from the background.

perception system to recognize and locate dynamic objects
and drivable surfaces. Although the classic task of 3D object
detection has developed relatively mature solutions [1], [2], [3]
to support real-world autonomous driving, it has difficulty to
recognize and locate the drivable surfaces. In general, LiDAR
point clouds are sparse, and their sparseness usually increases
as the reflection distance increases, which makes it difficult
for the semantic segmentation model to segment small objects
in the distance, as illustrated in the left of Fig. 1.

As mentioned above, although LiDAR points can provide
accurate distance measurements and capture the structures
of objects, they are usually sparse, unordered, and unevenly
distributed. Recently, some methods [5], [6], [7], [8] based
only on LiDAR have significantly improved the performance
of 3D semantic segmentation, but the performance of these
methods are still limited because of lacking dense and rich
information on the objects such as their colors, and textures,
as depicted in the right of Fig. 1. Compared with point clouds,
camera images contain more regular and dense pixels and
have much richer semantic information (e.g., color, texture)
to distinguish different semantic categories, while suffering
from the lack of depth and scale information. Therefore, the
complementary information from LiDAR and camera makes
the two modalities fusion be a desired option. However, how to
effectively fuse these two modalities so that we can make full
use of the advantages of these two sensors to generate better
and more reliable accurate semantic segmentation results.
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Fig. 2. Example scenes from the nuScenes [4] dataset. The LiDAR points are
projected into the camera image, and some of the projected points fall outside
the instance object because of the weak spatiotemporal synchronization
problem between the LiDAR and cameras.

Recently, some autonomous driving datasets containing Li-
DAR point clouds and images have emerged, such as KITTI
[9] and nuScenes [4]. These datasets not only provide the
possibility to combine the advantages of point clouds and
images, but also play an important role in promoting the de-
velopment of point cloud semantic segmentation in academia
and industry. However, as illustrated in Fig. 2, there is a weak
spatiotemporal synchronization problem between the LiDAR
and the cameras. Some strategies can be used to alleviate this
problem. For example, the KITTI and nuScenes realign the
point clouds and images with time-stamped sensor metadata,
but there is still a certain deviation. The weak spatiotemporal
synchronization problem also limits the performance of the
fusion between the camera and LiDAR.

Motivated by above findings, we propose a coarse-to-fine
framework, named LIF-Seg, to fuse the LiDAR and cam-
era for 3D LiDAR point cloud semantic segmentation. For
the first issue, unlike these previous works fusing the point
cloud and image information in a one-to-one manner, in the
coarse stage, LiDAR points are projected into each camera
image, and the 3 × 3 contextual information of each pixel
is concatenated to the intensity measurement of the LiDAR
points. The concatenated LiDAR points are fed into a UNet
segmentation sub-network (e.g., Cylinder3D [6]) to obtain
coarse LiDAR point features. For the weak spatiotemporal
synchronization problem, an offset rectification approach is
designed to align the coarse features and image semantic
features. Specifically, an image semantic segmentation sub-
network (e.g., DeepLabv3+ [10]) is used to extract image
semantic features. The coarse features are projected into each
image. The projected coarse features are further fused with
image semantic features to predict an offset between each
projected point and the corresponding image semantic pixel.
The predicted offset is used to compensate and align these
two-modality features, and then the aligned image semantic
features are fused with the coarse features. In the refinement
stage, the fused features are fed into a sub-network to refine
and generate more accurate predictions. The LIF-Seg not only
fuses the LiDAR point features and the different level image
features but also effectively tackles the weak spatiotemporal
synchronization problem between the LiDAR and cameras.

The main contributions of this work are as follows: (1) We
fully utilize the low-level image contextual information and
introduce a simple but effective early-fusion strategy. (2) We
propose an offset rectification method to address the weak

spatiotemporal synchronization problem between the LiDAR
and cameras. (3) We construct a coarse-to-tine LiDAR and
camera fusion-based network LIF-Seg for LiDAR semantic
segmentation. Experimental results on the nuScenes dataset
demonstrate the effectiveness of our method.

II. RELATED WORK

In this section, we will briefly review existing works related
to our method: deep learning for 3D point clouds, LiDAR
point cloud semantic segmentation, LiDAR and camera fusion
methods, image semantic segmentation. Especially, we mainly
focus on the LiDAR-only and fusion-based methods.

A. Deep learning for 3D Point Clouds

Different from 2D image processing methods, point clouds
processing is a challenging task because of its irregular and
unordered properties. PointNet [11] is one of the first works
of directly learning the point features based on the raw point
clouds through a shared Multi-Layer Perceptron (MLP) and
max-pooling. Some subsequent works [12], [13], [14], [15],
[16], [17], [18], [19], [20] are often based on the pioneering
works (e.g., PointNet, PointNet++) and further promote the ef-
fectiveness of sampling, grouping and ordering to improve the
performance of semantic segmentation. Other methods [21],
[22], [23] extract the hierarchical point features by introducing
a graph network. Although these methods have achieved
promising segmentation results on indoor point clouds, most
of them cannot be directly trained or scaled up to large-scale
outdoor LiDAR point clouds due to the varying density and
large range of scenes. Moreover, a large number of points
also cause these methods to have expensive computational and
memory consumption when adapting to outdoor scenes.

B. LiDAR Point Cloud Semantic Segmentation

As the availability of public datasets [4], [24] increasing,
LiDAR point cloud semantic segmentation research is devel-
oping. Currently, these methods can be grouped into three
main categories: projection-based, voxel-based and multi-view
fusion-based methods.

Projection-based methods focus on mapping the 3D point
clouds to a regular and dense 2D image so that 2D CNN
can be used to process the pseudo image. SqueezeSeg [25],
SqueezeSegv2 [26], RangeNet++ [27], SalsaNext [28] and
KPRNet [5] utilize the spherical projection mechanism to
convert the point clouds into a range image, and adopt an
encoder-decoder network to obtain semantic information. For
instance, KPRNet [5] presents an improved architecture and
achieves promising results by using a strong ResNeXt-101
backbone with an Atrous Spatial Pyramid Pooling (ASPP)
block, and it also applies KPConv [29] as segmentation head
to replace the inefficient KNN postprocessing. PolarNet [30]
utilizes a polar Birds-Eye-View (BEV) instead of the standard
2D grid-based BEV projections. However, these projection-
based methods inevitably loss and alter the original topology,
leading to the failure of geometric information modeling.

Voxel-based methods convert point clouds into voxels and
then apply vanilla 3D convolutions to obtain segmentation
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results. More recently, some works [31], [32] are proposed to
accelerate the 3D convolution, and improve the performance
with less computational and memory consumption. Following
the previous works [31], [32], 3D-MPA [15], PointGroup [33]
and OccuSeg [34] achieve significant segmentation results
on indoor point clouds. As mentioned above, these methods
cannot be directly used for outdoor LiDAR point cloud seg-
mentation because of the inherent properties of outdoor point
clouds, including sparsity and varying density. Furthermore,
Cylinder3D [6] utilizes cylindrical partition and designs an
asymmetrical residual block to further reduce computation.

Multi-view fusion-based methods combine voxel-based,
projection-based and/or point-wise operations for LiDAR point
clouds segmentation. To extract more semantic information,
some recent methods [35], [36], [37], [38], [39], [40], [41], [7],
[8] blend two or more different views together. For instance,
[38], [39] combine point-wise information from BEV and
range-image in early-stage, and then feed it to the subsequent
network. AMVNet [37] utilizes the uncertainty of different
view outputs to do late-fusion. PVCNN [35], FusionNet
[40] and (AF )

2-S3Net [7] use point-voxel fusion scheme to
achieve better segmentation results. RPVNet [8] proposes a
deep fusion network to fuse range-point-voxel three views by
a gated fusion mechanism. However, the performance of these
methods is also limited due to the LiDAR point clouds lacking
rich colors and textures.

C. LiDAR and Camera Fusion Methods

To make full use of the advantages of the camera and
LiDAR sensors, some methods [42], [43], [44], [45], [46],
[47], [48], [49], [50] have been proposed for the camera
and LiDAR fusion, especially in 3D object detection task.
PI-RCNN [47] fuses the camera and LiDAR features by
conducting point-wise convolution on 3D points and apply-
ing a point-pooling with an aggregation operation. CLOCs
[48] operates on the combined output candidates before non-
maximum suppression of any 2D and any 3D detector. 3D-
CVF [49] combines the camera and LiDAR features by using
a cross-view spatial feature fusion strategy for better detection
performance. EPNet [50] proposes a LiDAR guided Image
Fusion module to enhance the LiDAR point features with
corresponding image semantic features in multiple scales.
PointPainting [46] projects lidar points into the output of an
image-only semantic segmentation network and appends the
class scores to each point, and then feeds it to a LiDAR
detector. These methods have achieved promising performance
in 3D object detection. However, there are a few previous
works which focus on 3D semantic segmentation by combin-
ing the advantages of camera and LiDAR, and tackle the weak
spatiotemporal synchronization problem of sensors between
the camera and LiDAR.

D. Image Semantic Segmentation

Image semantic segmentation is an important fundamental
task in computer vision and has achieved much progress.
FCN [51] is the pioneering work of directly adopting fully
convolutional layers to generate image semantic segmentation

Context 
Sampler

Lxyz

L: N x D

Point Cloud

L’

Projection
Context

Reshape

D + 3w2

N x w x w x 3

UNet

Fcoarse : N x C0

Coarse Stage

Fig. 3. Illustration of coarse feature extraction stage. LiDAR points and
low-level image contextual information are fused in this stage. The context
sampler is used to extract the image contextual information at the position of
each projected point.

results. The family of DeepLab [10] utilizes atrous convolution
and ASPP modules to capture the contextual information of
the image. STDC2 [52] reduces the inference time-consuming
by using a detail guidance module to encode low-level spatial
information, but with relatively low performance. Trade-off
between efficiency and performance, we adopt DeepLabv3+
[10] as our image segmentation submodel in this work.

III. PROPOSED METHOD

Exploiting the advantages of LiDAR and camera to comple-
ment each other is very important for accurate LiDAR point
cloud semantic segmentation. However, most existing methods
do not make full use of the camera image context information
and ignore the weak spatiotemporal synchronization problem
between the LiDAR and cameras, limiting the ability of
the fusion model to recognize fine-grained patterns. In this
paper, we propose a coarse-to-fine framework named LIF-
Seg to improve the performance of LiDAR segmentation from
two aspects including low-level image contextual information
fusion in early-stage and aligned high-level image semantic
information fusion in mid-stage. The LIF-Seg accepts LiDAR
points and camera images as input and predicts the semantic
label of each point. It consists of three main stages: coarse
feature extraction stage, offset learning stage and refinement
stage. We will give a detailed introduction of those three
aspects in the following subsections.

A. Coarse Feature Extraction Stage

LiDAR points can provide accurate distance measurements
and capture the structures of objects, and camera images
contain more regular and dense pixels and have much richer
semantic information. Some methods [46], [47], [48] attempt
to blend LiDAR and camera views together in different stage
(e.g., early-fusion, mid-fusion and late-fusion) for 3D object
detection. Most of these methods only fuse the low-level or
high-level image information in a one-to-one manner. How-
ever, the contextual information of the image is also important
when fusing the views from LiDAR and the camera. In the
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Algorithm 1 LIF-Seg(L, I, T ,K)

Input:
LiDAR points L ∈ RN×D with N points and D ≥ 3.
Images I = {Ii|i = 1, 2, . . . , n} with n cameras.
Transformation matrixes T = {Ti|i = 1, 2, . . . , n}.
Camera matrixes K = {Ki|i = 1, 2, . . . , n}.
Where Ii ∈ RH×W×3, Ti ∈ R4×4 and Ki ∈ R3×4.

Output:
Segmentation scores S ∈ RN×C with C classes.

1: # Coarse Feature Extraction Stage
2: Let Idx = List(), Mask = List()
3: Let P = Zeros([N, 3w2]) with w × w context.
4: for i = 1 to n do
5: idx = PROJECT (Ki, Ti, Lxyz) # idx ∈ RN×2

6: mask = (0 < idx[:, 0] < H and 0 < idx[:, 1] < W )
7: idx = idx[mask, :] # idx ∈ RNi×2, Ni ≤ N

8: p = Context(Ii, idx, w) # p ∈ RNi×w×w×3

9: P [mask, :] = Reshape(p, [Ni, 3w
2])

10: Idx.append(idx), Mask.append(mask)
11: end for
12: L

′
= Concatenate ([L,P ] , axis = 1)

13: Fcoarse = UNetcoarse(L
′
) # Fcoarse ∈ RN×C0

14:
15: # Offset Learning Stage
16: Fimage = Seg.Net(I) # Fimage ∈ Rn×H×W×C1

17: Let Fpoints = Zeros([n,H,W,C0])
18: for i = 1 to n do
19: idx = Idx[i], mask =Mask[i]
20: Fpoints[i, idx[:, 0], idx[:, 1], :] = Fcoarse[mask, :]
21: end for
22: Foffset = Concatenate([Fimage, Fpoints], axis = 3)
23: Offset = Convs(Foffset) # Offset ∈ Rn×H×W×2

24: Let F
′

image = Zeros([N,C1])
25: Let O = Zeros([N, 2]) # Point-wise offset
26: for i = 1 to n do
27: idx = Idx[i], mask =Mask[i]
28: o = Offset[i, idx[:, 0], idx[:, 1], :]
29: O[mask, :] = o
30: idx = idx+ o # Update the index of points
31: F

′

image[mask, :] = Fimage[i, idx[:, 0], idx[:, 1], :]
32: end for
33:
34: # Refinement Stage
35: F = Concatenate([Fcoarse, F

′

image], axis = 1)
36: S = UNetrefine (F ) # F ∈ RN×(C0+C1), S ∈ RN×C

coarse stage, we fuse the LiDAR points and low-level image
contextual information to obtain the coarse features.

As depicted in Fig. 3 and Algorithm 1, each point in LiDAR
points L has spatial location (x, y, z) and reflectance r etc. The
LiDAR points are transformed info each camera image by a
homogenous transformation and a projection. This process can
be formulated as follows:

idx = KiTiLxyz, (1)

Back 
Projection

Convs

offsets
Offset

: N x C1F’image

: N x 2OC1

Fpoints Foffset

Fimage

C0 2C0 + C1

Offset Learning Stage

Seg.Net

Fcoarse : N x C0

Projection

Fig. 4. Illustration of offset learning stage. The prediction Offset is used to
compensate and update the position of projected points in image semantic
features. The back-projection operation is used to generate point-wise image
semantic features F

′
image and point-wise offset O.

where Ki and Ti are camera intrinsic matrix and homogenous
transformation matrix corresponding to camera image Ii,
respectively. idx ∈ RN×2 is the index (pixel coordinates)
of LiDAR points L on camera image Ii, where N is the
number of LiDAR points. The general transformation is given
by Tcam←lidar. For nuScenes dataset, the complete transfor-
mation to each camera is:

Ti = T(cam←egoi)T(egoi←g)T(g←egos)T(egos←lidar), (2)

with transforms: LiDAR frame to the ego-vehicle frame for
the timestamp of the sweep T(egos←lidar); ego frame to the
global frame T(g←egos); global frame to the ego-vehicle frame
for the timestamp of the image T(egoi←g); and ego frame to the
camera T(cam←egoi). After the LiDAR points are transformed
to the camera coordinate, the corresponding camera matrix Ki

projects the points into the image Ii. Afterwards, the w × w
(e.g., 3×3) image context information of each projection point
position is reshaped and concatenated to the corresponding
LiDAR point. The concatenated points are fed into a UNet
semantic segmentation sub-network (e.g., Cylinder3D [6]) to
obtain the coarse features Fcoarse.

B. Offset Learning Stage

Although the methods of early-fusion and mid-fusion have
achieved promising results in benchmark datasets, the perfor-
mance of these methods is also limited because of the weak
spatiotemporal synchronization problem between the LiDAR
and cameras. To address the problem mentioned above, our
proposed LIF-Seg predicts an offset between the projected
LiDAR point and corresponding pixel. The predicted offset
is used to compensate and update the position of projected
point features, and then the aligned image semantic features
are fused with the coarse features for better segmentation.

In this stage, as illustrated in Fig. 4 and Algorithm 1, we first
utilize an image semantic segmentation sub-network to ob-
tain the high-level image semantic features Fimage. Trade-off
between efficiency and performance, we adopt DeepLabv3+
[10] as our image segmentation sub-network to extract image
features. Simultaneously, the coarse features Fcoarse are also
projected into the image feature map and form a pseudo-image
feature map Fpoints with the same size as the image features.
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Coarse Stage

Offset learning Stage

UNet

Refinement Stage
F: N x [C0+C1]

Fig. 5. An overview of the connection between different stages and the
illustration of the refinement stage.

The feature map Fpoints is further fused with the image
semantic features Fimage to predict an offset between the
projected LiDAR point and corresponding pixel. The predicted
Offset can be used to compensate and update the position of
the projected point in image features. Afterwards, according
to the updated position, the image semantic features Fimage

are back-projected into 3D space and generate the point-wise
features F

′

image. The point-wise image features F
′

image are
used to fuse with the coarse features Fcoarse to improve the
performance of LiDAR segmentation.

C. Refinement Stage

The refinement stage is illustrated in Fig. 5. After the coarse
feature extraction stage and offset learning stage, we fuse
the point-wise image features F

′

image and the coarse features
Fcoarse by concatenation. Then, the concatenated features F
are fed into a UNet segmentation sub-network to obtain more
accurate prediction results. For convenience, in the refinement
stage, we use the same segmentation sub-network as in the
coarse feature extraction stage.

At the training time, we use a semantic segmentation loss
Lsem to supervise the learning of LIF-Seg. The semantic
segmentation loss Lsem consists of two items, including the
classical cross-entropy loss and lovasz-softmax loss [53] to
maximize the point accuracy and the intersection-over-union
score, respectively. For the offset prediction in the subsection
III-B, taking the nuScenes [4] dataset as an example, there
is no directly available supervision information for the offset
learning because camera images corresponding to LiDAR
point clouds do not provide pixel-level semantic or instance
annotation. In this work, we utilize an auxiliary loss Laux to
supervise offset learning. Specifically, For points belonging to
the foreground categories, we constrain their learned point-
wise offset O ∈ RN×2 by a L1 regression loss Lreg:

Lreg =
1∑
imi

∑
i

‖oi − (ĉi − pi)‖ ·mi, (3)

where m = {m1, . . . ,mN} is a binary mask. mi = 1 if point i
is in a 2D bounding box on image plane and mi = 0 otherwise.
ĉi is the centroid of the 2D bounding box that point i belongs
to. Thus, the ĉi can be formulated as follows:

ĉi =
1

NB
g(i)

∑
j∈Bg(i)

pj , (4)

where g (i) maps point i to the index of its corresponding
2D bounding box that contains point i. NB

g(i) is the number
of points in 2D bounding box Bg(i). To ensure these points

move towards their corresponding centroid in the horizontal
direction, we utilize a direction loss Ldir to constrain the
direction of predicted point-wise offset O. Following [33], the
Ldir is formulated as the average of minus cosine similarities:

Ldir = − 1∑
imi

∑
i

oi
‖oi‖2

· ĉi − pi
‖ĉi − pi‖2

·mi. (5)

Thus, the auxiliary loss can be formulated as Laux = Lreg +
Ldir. The training objective of our network is

L = Lsem + αLaux, (6)

where α is the weight of auxiliary segmentation loss and set
to 0.01 in our experiments.

IV. EXPERIMENTS

In this section, we evaluate our approach on nuScenes [4]
dataset to demonstrate the effectiveness of the proposed LIF-
Seg. In the following, we first present a brief introduction
to the dataset and evaluation metric in subsection IV-A.
Then, the implementation details are provided in subsection
IV-B. Subsequently, we exhibit the detailed experiments about
LiDAR-camera fusion and the comparisons with state-of-the-
art methods on the nuScenes dataset in subsection IV-C. Fi-
nally, we conduct ablation studies to validate the effectiveness
of offset learning in subsection IV-D.

A. Dataset and Evaluation Metric

The newly released nuScenes [4] dataset is a large-scale
multi-modal dataset for LiDAR semantic segmentation, with
more than 1000 scenes collected from different areas of Boston
and Singapore. The scenes are split into 28,130 training
frames and 6,019 validation frames. The annotated dataset
provides up to 32 classes. After merging similar classes
and removing rare classes, total 16 classes for the LiDAR
semantic segmentation have remained. The dataset is collected
by using a Velodyne HDL-32E sensor, cameras and radars with
complete 360 coverage. In this work, we use the LiDAR point
clouds and RGB images from all 6 cameras. Furthermore, this
dataset has an imbalance challenge in different categories. In
particular, classes like cars and pedestrians are most frequent,
while bicycles and construction vehicles have relatively limited
training data. Moreover, the nuScenes dataset is challenging
as it is collected from different locations and diverse weather
conditions. The point clouds of nuScenes are also less dense,
because the sensor has fewer number of beams and lower
horizontal angular resolution.

To evaluate the LiDAR semantic segmentation performance
of our proposed approach, the mean intersection-over-union
(mIoU) over all classes is taken as the evaluation metric. The
mIoU can be formulated as

mIoU =
1

C

C∑
i=1

IoUi, (7)

IoUi =
pii

pii +
∑

j 6=i pij +
∑

k 6=i pki
, (8)

where C is the number of classes, and pij denotes the number
of points from class i predicted as class j.
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TABLE I
EXPERIMENT RESULTS OF DIFFERENT EARLY-FUSION AND MID-FUSION ON NUSCENES VALIDATION SET. REPR IS OUR REPRODUCED CYLINDER3D.
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Cylinder3D (RePr) 74.3 74.8 39.0 91.0 87.9 45.8 78.5 78.6 62.5 62.7 82.9 96.4 69.1 73.5 72.9 87.1 86.7
C+1×1 74.8 75.9 37.7 89.6 88.3 50.9 79.4 78.9 68.2 60.1 82.7 96.4 69.8 72.9 71.2 87.9 87.1
C+3×3 75.5 75.8 39.9 87.4 88.6 53.3 81.7 78.5 69.7 63.2 82.1 96.4 68.4 73.4 74.0 88.0 87.4
C+5×5 75.0 75.1 36.4 90.6 88.4 54.8 77.5 78.7 68.0 59.1 82.4 96.3 70.4 73.6 74.2 88.0 87.2
C+Sem. 75.7 75.5 45.4 91.3 87.5 50.4 83.4 81.3 67.9 61.4 81.0 96.3 68.7 73.4 74.3 88.6 85.5

C+3×3+Sem. 76.4 74.7 46.2 91.9 87.2 50.5 79.2 80.6 70.7 66.4 82.7 96.3 72.8 73.4 74.7 88.2 86.9

C+Mid. 74.8 72.9 49.9 85.4 89.6 47.5 79.1 79.8 63.3 58.5 80.3 96.4 71.3 73.7 73.8 88.6 87.2

C+3×3+Mid. 75.1 75.6 45.7 89.0 91.4 49.6 74.4 80.4 69.3 57.9 80.9 96.2 69.8 73.0 73.9 88.4 86.7
C+3×3+Mid.+Ref. 77.6 76.6 49.9 92.2 88.8 56.8 83.7 81.6 71.5 67.2 84.2 96.5 69.7 74.3 73.7 88.2 87.0

B. Implementation Details

Image Semantic Network Details. For the image seman-
tic segmentation sub-network DeepLabV3+ [10], it takes a
ResNet [54] network as backbone to generate features at
stride 16 and a FCN [51] segmentation head to generate
full-resolution semantic features Fimage ∈ Rn×H×W×C1 ,
where n = 6 is the number of cameras and C1 = 16
is the dimension of features. However, there is no public
segmentation pretrain model on nuScenes so we train the
DeepLabV3+ 1 by using the nuImages 2 dataset. The nuImages
consists of 100k images annotated with semantic segmentation
labels. Note that all classes of nuImages are part of nuScenes.
Moreover, the images of nuImages hardly exist in the image set
corresponding to LiDAR point clouds of the nuScenes dataset.

LiDAR Network Details. For the LiDAR point clouds
segmentation sub-network in coarse and refinement stages,
we adopt Cylinder3D [6] as the sub-network in these two
stages. For the nuScenes dataset, cylindrical partition splits
the LiDAR point clouds into 3D representation with the size
480 × 360 × 32, where three dimensions indicate the radius,
angle and height, respectively. Besides, the feature dimension
C0 of coarse features Fcoarse is set to C0 = C, where C is the
number of categories. The window size w of image contextual
information is set to 3.

C. Performance Results and Analyses

In this sub-section, we first conduct extensive experiments
on the validation set of nuScenes [4] dataset to validate
the effectiveness of different LiDAR-camera fusion strategies
including early-fusion of between LiDAR and different context
of the camera image, mid-fusion of between the LiDAR
point features and image semantic features. Afterwards, we
exhibit the comparisons with state-of-the-art methods on the
nuScenes dataset. For all experiments, we adopt the retrained
DeepLabV3+ [10] to extract image features and the Cylin-
der3D [6] to take as LiDAR segmentation baseline. For a
fairer and clearer comparison, we retrain the baseline network
Cylinder3D 3 by using the code at GitHub published by the

1https://github.com/VainF/DeepLabV3Plus-Pytorch
2https://www.nuscenes.org/images.
3https://github.com/xinge008/Cylinder3D

author, and if there are no extra notes, we use the same fusion
strategy to fuse LiDAR and camera image in all models.

Early-fusion and Mid-fusion. For the early-fusion, LiDAR
points are projected into camera images by transformation
matrixes and camera matrixes. According to the position of
projected points, we can query the contextual information of
the image with the window size w×w such as 1×1, 3×3 and
5×5. The w×w contextual information is reshaped to a vector
and concatenated to the corresponding LiDAR point. The
concatenated points are fed into the baseline network Cylin-
der3D to obtain the segmentation results, and the models of
different contextual information fusion are denoted as C+1×1,
C+3×3 and C+5×5, respectively. Besides, the channel-wise
image semantic features obtained by DeepLabV3+ are also
appended to each LiDAR point to enhance the point features
(denoted as C+Sem.). Moreover, we also fuse the 3×3 image
contextual information and image semantic features in early-
fusion (denoted as C+3×3+Sem.). For the mid-fusion, the
image semantic features are fused with LiDAR point features
obtained by baseline network by concatenation (denoted as
C+Mid.). The fused features are applied to two convolu-
tional layers to generate the segmentation results. Besides,
we also fuse the 3 × 3 image contextual information in
early-stage based on the mid-fusion method C+Mid. (denoted
as C+3×3+Mid.). Finally, Cylinder3D is also taken as a
refinement sub-network to replace the two convolutional layers
in C+3×3+Mid. (denoted as C+3×3+Mid.+Ref.).

The LiDAR semantic segmentation results of different
LiDAR-camera fusion strategies are depicted in Table I. Com-
pared with the baseline method Cylinder3D and the C+1×1,
we can see that direct fusion of the LiDAR and image
information can improve the performance of LiDAR seman-
tic segmentation. Compared with the early-fusion methods
C+1×1, C+3×3 and C+5×5, the C+3×3 achieves the best
mIoU score because of the fusion image contextual informa-
tion. The fusion method C+1×1 lacks contextual information,
limiting its ability to recognize fine-grained patterns. The
context window size of fusion method C+5×5 is too large,
and too much redundant information limits the recognition of
the central point semantic category. Similar to the 3D detector
PointPainting [46], the early-fusion method C+Sem. can also
improve the performance of LiDAR segmentation. Besides,
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TABLE II
EXPERIMENT RESULTS OF OUR PROPOSED METHOD LIF-SEG AND OTHER LIDAR SEGMENTATION METHODS ON NUSCENES VALIDATION SET.
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#Points (k) - 1629 21 851 6130 194 81 417 112 370 2560 56048 1972 12631 13620 31667 21948

(AF )2-S3Net [7] 62.2 60.3 12.6 82.3 80.0 20.1 62.0 59.0 49.0 42.2 67.4 94.2 68.0 64.1 68.6 82.9 82.4
RangeNet++ [27] 65.5 66.0 21.3 77.2 80.9 30.2 66.8 69.6 52.1 54.2 72.3 94.1 66.6 63.5 70.1 83.1 79.8

PolarNet [30] 71.0 74.7 28.2 85.3 90.9 35.1 77.5 71.3 58.8 57.4 76.1 96.5 71.1 74.7 74.0 87.3 85.7
Salsanext [28] 72.2 74.8 34.1 85.9 88.4 42.2 72.4 72.2 63.1 61.3 76.5 96.0 70.8 71.2 71.5 86.7 84.4
Cylinder3D [6] 76.1 76.4 40.3 91.2 93.8 51.3 78.0 78.9 64.9 62.1 84.4 96.8 71.6 76.4 75.4 90.5 87.4
LIF-Seg (Ours) 78.2 76.5 51.4 91.5 89.2 58.4 86.6 82.7 72.9 65.5 84.1 96.7 73.2 74.4 73.1 87.5 87.6

Ground Truth Cylinder3D Ours

unlabeled barrier bicycle bus
car

construction
motorcycle

pedestrian
trafficcone trailer

truck
driveable other

sidewalk
terrainmanmadevegetation

Fig. 6. Comparison results of Cylinder3D and our method in LiDAR semantic segmentation tasks on nuScenes dataset validation set. Best viewed in color.
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TABLE III
ABLATION RESULTS ON NUSCENES DATASET VALIDATION SET.

Method mIoU

Remove the offset learning stage 77.6
LIF-Seg (Ours) 78.2

the C+3×3+Sem. indicates fusing the LiDAR points, image
contextual information and semantic features can effectively
improve the performance of semantic segmentation. The fusion
methods C+Mid. and C+3×3+Mid. are also slightly better
than the baseline because of lacking the well-designed mid-
fusion module. The experiment results of C+3×3+Mid.+Ref.
indicates well-designed mid-fusion module can effectively
improve the performance of segmentation. These experimental
results show that the image context information and image
semantic features are helpful for LiDAR segmentation. In this
work, LiDAR points and image contextual information are
fused in the coarse stage, and the point features and aligned
image semantic features are fused in the refinement stage.

Comparison with the SOTA Methods. Following [6], we
conduct experiments on nuScenes [4] dataset to evaluate the
effectiveness of our method. Table II presents the LiDAR
semantic segmentation results on nuScenes validation set.
The RangeNet++ [27] and Salsanext [28] perform the post-
precessing. From Table II, we can see that our proposed
method achieves better performance than other methods and
is dominant in many categories. Specifically, the proposed
method outperforms Cylinder3D [6] by 2.1 mIoU. Moreover,
compared with the state-of-the-art projection-based methods
(e.g., RangeNet++ and Salsanext), the LIF-Seg achieves about
6% ∼ 12% performance gain. Note that the points of nuScenes
are very sparse (35k points/frame), especially for bicycles,
motorcycles, traffic-cones, and pedestrians, etc. Therefore, the
LiDAR segmentation task is more challenging. From Table II,
we can see that our method significantly outperforms other
approaches in those sparse categories, because the LIF-Seg
effectively fuses the LiDAR points, the camera image con-
textual information and image semantic features by a coarse-
to-fine framework. Qualitative results of LiDAR segmentation
are presented in Fig. 6.

D. Ablation Studies

In this sub-section, we conduct ablation experiments on the
validation set of nuScenes [4] dataset to validate the effective-
ness of offset learning. For a fairer and clearer comparison,
if there are no extra notes, we use the same configuration
and sequential fusion strategy for all models. Detailed ablation
experiments results are presented in Tabel III. We remove the
offset learning stage from the full pipeline LIF-Seg, which
causes the performance of LiDAR segmentation to drop from
78.2 to 77.6 mIoU. The offset prediction results are presented
in Fig. 7. From Fig. 7, we can see that the projected points
move towards their corresponding centroid in the horizontal
direction, which makes these points fall on the instance

Fig. 7. Example scenes from the nuScenes [4] dataset. The red point is the
position of the original LiDAR point projected onto the camera image, and
the cyan point is the updated position by using the predicted offset.

object as much as possible. These results demonstrate the
effectiveness of our method.

V. CONCLUSION

In this paper, we propose a coarse-to-fine framework LIF-
Seg to improve the 3D semantic segmentation performance
from two aspects including low-level image contextual infor-
mation fusion in early-stage, and aligned high-level image se-
mantic information fusion by tackling the weak spatiotemporal
synchronization between the LiDAR and camera. The LIF-Seg
consists of three main stages: coarse stage, offset learning
stage and refinement stage. In the coarse stage, the LiDAR
points and low-level image contextual information are fused
and fed into a UNet sub-network to generate coarse features.
The coarse features and image semantic features obtained by
an image segmentation sub-network are fused to predict an
offset between each projected LiDAR point and image pixel.
The predicted offsets are used to align the coarse features and
image semantic features. In the refinement stage, the coarse
features and aligned image semantic features are fused and
fed into a UNet sub-network to obtain more accurate se-
mantic segmentation results. Extensive experimental results on
nuScenes dataset demonstrate the effectiveness of our method.
In the future, unsupervised learning methods can be added
into our LIF-Seg to predict a transformation matrix between
the LiDAR and camera to address the weak spatiotemporal
synchronization problem completely and further improve the
performance of LiDAR segmentation.
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