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Abstract—Multi-Label Continual Learning (MLCL) builds a
class-incremental framework in a sequential multi-label image
recognition data stream. The critical challenges of MLCL are
the construction of label relationships on past-missing and future-
missing partial labels of training data and the catastrophic
forgetting on old classes, resulting in poor generalization. To solve
the problems, the study proposes an Augmented Graph Convolu-
tional Network (AGCN++) that can construct the cross-task label
relationships in MLCL and sustain catastrophic forgetting. First,
we build an Augmented Correlation Matrix (ACM) across all seen
classes, where the intra-task relationships derive from the hard
label statistics. In contrast, the inter-task relationships leverage
hard and soft labels from data and a constructed expert network.
Then, we propose a novel partial label encoder (PLE) for MLCL,
which can extract dynamic class representation for each partial
label image as graph nodes and help generate soft labels to
create a more convincing ACM and suppress forgetting. Last,
to suppress the forgetting of label dependencies across old tasks,
we propose a relationship-preserving constrainter to construct
label relationships. The inter-class topology can be augmented
automatically, which also yields effective class representations.
The proposed method is evaluated using two multi-label image
benchmarks. The experimental results show that the proposed
way is effective for MLCL image recognition and can build
convincing correlations across tasks even if the labels of previous
tasks are missing.

Index Terms—Continual learning, Multi-label recognition, Par-
tial label encoder, Augmented correlation matrix.

I. INTRODUCTION

MACHINE learning approaches have been reported to
exhibit human-level performance on some tasks, such

as Atari games [1] or object recognition [2]. However, they
always assume that no novel knowledge will be input into
models, which is impractical in the real world. To meet the
scenario, continual learning develops intelligent systems that
can continuously learn new tasks from sequential datasets
while preserving learned knowledge of old tasks [3]. Recently,
class-incremental continual learning [4] builds an adaptively
evolvable classifier for the seen classes at any time, where the
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Fig. 1: The inference process of MLCL. An MLCL model can
recognize more labels by learning incremental classes given multi-
label images. With learning three classes at each task, the MLCL
model can recognize these labels continuously.

learner has no access to the task-ID at inference time [5] just
like the real-life applications. Compared to traditional continual
learning, a class-incremental model has to distinguish between
all seen classes from all tasks. Therefore is more challenging.
For privacy and storage reasons, the training data for old tasks is
unavailable when new tasks arrive. As the model incrementally
learns new knowledge, old knowledge is overwritten and gets
a drop in performance, known as catastrophic forgetting [6].
Thus, the major challenge of MLCL is to learn new tasks
without catastrophically forgetting previous tasks over time.

Due to many researchers’ efforts, many methods for
class-incremental continual learning have been proposed.
The rehearsal-based methods [7]–[11] stores samples from
raw datasets or generates pseudo-samples with a generative
model [12], [13], these samples are replayed while learning
a new task to prevent forgetting. The regularization-based
methods [6], [14]–[17] have an additional regularization term
introduced in the loss function, consolidating previous knowl-
edge when learning on new tasks. And the parameter isolation
methods [18]–[20] dedicates different model parameters to
each task to alleviate any possible forgetting. Moreover, some
recent transformer-based methods [21]–[24] have also achieved
good performance.

However, most existing methods for class-incremental con-
tinual learning only consider the input images are single-
labelled, and we call them Single-Label Continual Learning
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(SLCL). SLCL is limited in practical applications such as movie
categorization and scene classification, where multi-label data
is widely used. As shown in Fig. 1, an image contains multiple
labels, including “sky”, “grass”, “person” and “dog”, etc., which
shows the multi-label space is much larger than the single-label
space via label combination. Because of the co-occurrence of
multiple labels, the label space of the multi-label dataset is
much larger than that of the single-label one. In the recent,
using a neural network to tackle Multi-Label (ML) image
classification problems has achieved impressive results [25],
[26], which consider constructing label relationships to improve
the classification by using recurrent neural network [27], [28]
and graph convolutional network [29]–[31].

This paper puts the multi-task classification into an incremen-
tal scenario, i.e., class-incremental classification, and studies
how to sequentially learn new classes for Multi-label Continual
Learning (MLCL). The inference process of MLCL is in Fig. 1.
Given testing images, the model can incrementally recognize
multiple labels as new classes are learned continuously. Because
of the unavailability of data with future and past classes in
continual learning, the partial label problem poses a significant
challenge in building multi-label relationships and reducing
catastrophic forgetting in MLCL than SLCL. The partial label
problem means that each task in MLCL cannot be trained
independently since the label spaces for different tasks are
overlapped. For example, as shown in Fig. 1, the label “sky”
is present in all three tasks. It is one of the overlapped labels
for three tasks. For task 1, “sky” is the future latent label, and
for task 3, ”sky” is the past latent label. If the past latent label
is not annotated in the current training, the past-missing partial
label problem will occur, and similarly, the future-missing
partial label problem will occur. An MLCL model should
incrementally recognize multiple labels as new classes are
learned continuously.

Practically, we solve the MLCL problems in two real-world
labelling scenarios, i.e., the current training dataset has past
and current labels (Continuous Labelling MLCL, CL-MLCL) or
only current labels (Independent Labelling MLCL, IL-MLCL).
The IL-MLCL has past-missing and future-missing partial
label problems, while CL-MLCL has only the future-missing
partial label problem. As for both scenarios, the partial label
problem poses a significant challenge in building multi-label
relationships and keeping them from catastrophic forgetting. It
is crucial to study a feasible solution to solve the partial label
problem in MLCL. This motivates us to design a unified MLCL
solution to the sequential multi-label classification problem
by considering the label relationships across tasks in both
IL-MLCL and CL-MLCL scenarios.

This paper is an extension of our previous work, Augmented
Graph Convolutional Network (AGCN) [32], and we complete
the real-world scenario of MLCL (IL-MLCL and CL-MLCL)
and propose an improved version, AGCN++. Our AGCN++ has
three major parts. First, to relate partial labels across tasks, we
propose to construct an Augmented Correlation Matrix (ACM)
sequentially in MLCL. We design a unified ACM constructor.
For CL-MLCL, ACM is updated by the hard label statistics
from new training data at each task. For IL-MLCL, an auto-
updated expert network is designed to generate predictions

of the old tasks. These predictions are used as soft labels to
represent the old classes in constructing ACM. Second, due to
partial label problems, effective class representation is difficult
to build. In our early conference work, the AGCN model
utilized pre-given semantic information (i.e. word embedding)
as class representation. The fixed class representation will lead
to the accumulation of errors in constructing label relationships
due to partial label problems. Then, this will skew predictions
and lead to more serious forgetting. So in this work, AGCN++
utilizes a partial label encoder (PLE) to decompose each
partial image’s feature into dynamic class representations.
These class-specific representations will vary from image to
image and are input as graph nodes into AGCN++. Moreover,
unlike AGCN, which directly adds graph nodes manually,
PLE can automatically generate graph nodes for each partial
label image. Utilizing PLE to get the graph nodes can also
reduce the impact of the low quality of word embeddings. So
AGCN++ can generate a more convincing ACM and suppress
forgetting. Third, we propose to encode the dynamically
constructed ACM and graph nodes. The AGCN++ model
correlates the label spaces of both the old and new tasks
in a convolutional architecture and mines the latent correlation
for every two classes. This information will be combined with
the visual features for prediction. Moreover, to further mitigate
the forgetting, a distillation loss function and a relationship-
preserving graph loss function are designed for class-level
forgetting and relationship-level forgetting, respectively.

In this paper, we construct two multi-label image classifica-
tion datasets, Split-COCO and Split-WIDE, based on widely-
used multi-label datasets MS-COCO and NUS-WIDE. The
results on Split-COCO and Split-WIDE show that the proposed
AGCN++ effectively reduces catastrophic forgetting for MLCL
image recognition and can build convincing correlation across
tasks whenever the labels of previous tasks are missing (IL-
MLCL) or not (CL-MLCL). Moreover, our methods can
effectively reduce catastrophic forgetting in two scenarios.

This paper extends our AGCN [32] with the following new
contents:

1) We complete the real-world scenario of MLCL from IL-
MLCL to CL-MLCL scenarios, and a unified AGCN++
model is redesigned to capture label dependencies to
improve multi-label recognition in the data stream;

2) We propose a novel partial label encoder (PLE) to
decompose the global image features into dynamic
graph nodes for each partial label image, which reduces
the accumulation of errors in the construction of label
relationships and suppresses forgetting;

3) We propose a unified ACM constructor. The ACM is
dynamically constructed using soft or hard labels to build
label relationships across sequential tasks of MLCL to
solve the partial label problem for IL-MLCL and CL-
MLCL. The distillation loss and relationship-preserving
loss readjust to IL-MLCL and CL-MLCL to mitigate the
class- and relationship-level catastrophic forgetting;

4) More experimental results are provided, including ex-
tensive comparisons on two different scenarios settings
and more ablation studies, etc. More ablation studies and
new SOTA MLCL results are provided.
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II. RELATED WORK

A. Class-incremental continual learning

Class-incremental continual learning [4] builds a classifier
that learns a sequence of new tasks corresponding to different
classes. The state-of-art methods for class-incremental continual
learning can be categorized into three main branches to solve
the catastrophic forgetting problem.

First, the regularization-based methods [6], [14]–[17], this
line of work introduces additional regularization terms in
the loss function to consolidate previous knowledge when
learning new tasks. These methods are based on regularizing
the parameters corresponding to the old tasks, penalizing the
feature drift on the old tasks and avoiding storing raw inputs.
Kirkpatrick et al. [6] limits changes to parameters based on
their significance to the previous tasks using Fisher information;
LwF [16] is a data-focused method, and it leverages the
knowledge distillation combined with a standard cross-entropy
loss to mitigate forgetting and transfer knowledge by storing
the previous parameters. Thuseethan et al. [14] propose
an indicator loss, which is associated with the distillation
mechanism that preserves the existing upcoming emotion
knowledge. Yang et al. [15] introduce an attentive feature
distillation approach to mitigate catastrophic forgetting while
accounting for semantic spatial- and channel-level dependencies.
The regularization-based procedures can protect privacy better
because they do not collect samples from the original dataset.

Second, the rehearsal-based methods [4], [8], [9], [13],
[33]–[37], which sample a limited subset of data from the
previous tasks or a generative model as the memory. The
stored memory is replayed while learning new tasks to mitigate
forgetting. In ER [34], this memory is retrained as the extended
training dataset during the current training; RM [8] is a replay
method for the blurry setting; iCaRL [4] selects and stores
samples closest to the feature mean of each class for replaying;
AGEM [35] resets the training gradient by combining the
gradient on the memory and training data; Ye et al. [13]
propose a Teacher-Student network framework. The Teacher
module would remind the Student about the information learnt
in the past.

Third, the parameter isolation based methods [18]–[20], [38],
which generate task-specific parameter expansion or sub-branch.
When no limits apply to the size of networks, Expert Gate [20]
grows new branches for new tasks by dedicating a model copy
to each task. PackNet [18] iteratively assigns parameter subsets
to consecutive tasks by constituting binary masks.

Though the existing methods have achieved successes in
SLCL, they are hardly used in MLCL directly. The overlook of
the partial label problem means the inevitability of more serious
forgetting in MLCL, let alone the construction of multi-label
relationships and reducing the forgetting of the relationships.

B. Multi-label image classification

Compared with the traditional single-label classification
problem, multi-label classification is more practical in the real
world. Earlier multi-label learning methods [39] prefer to build
the model with the help of extra-label localisation information,
which is assumed to include all possible foreground objects.

And they aggregate the features from proposals to incorporate
local information for multi-label prediction. However, extra
localisation information is costly, preventing the models from
applying to end-to-end training approaches. More recent
advances are mainly by constructing the label relationships.
Some works [27], [28] use the recurrent neural network (RNN)
for multi-label recognition under a restrictive assumption that
the label relationships are in order, which limits the complex
relationships in label space. Furthermore, some works [29]–[31]
build label relationships using graph structure and use graph
convolutional network (GCN) to enhance the representation.
The standard limit of these methods is that they can only
construct the intra-task correlation matrix using the training
data from the current task and fail to capture the inter-task
label dependencies in a continual data stream. They rely on
prior knowledge to construct the correlation matrix, which
is the key of GCN that aims to gain the label dependencies.
These methods utilize the information of the whole training
dataset to capture the co-occurrence patterns of objects in an
offline way. Some recent methods focus on the partial label
problem [40]–[42] for offline multi-label learning. Compared
with this offline way, we construct the correlations and use soft
label statistics to solve the partial label problem for MLCL.
Kim et al. [10] propose to extend the ER [34] algorithm
using an improved reservoir sampling strategy to study the
imbalanced problem on multi-label datasets. However, the label
dependencies are ignored in this work [10]. In contrast, we
propose to model label relationships sequentially in MLCL and
consider mitigating the relationship-level forgetting in MLCL.

III. MULTI-LABEL CONTINUAL LEARNING

A. Definition of MLCL
Given T tasks with respect to training datasets
{D1

trn, · · · ,DT
trn} and test datasets {D1

tst, · · · ,DT
tst}, the

total class numbers increase gradually with the sequential
tasks in MLCL and the model is constantly learning new
knowledge. A continual learning system trains on the training
sets from D1

trn to DT
trn sequentially and evaluate on all seen

test sets at any time. For the t-th new task, the new and
task-specific classes are to be trained, namely Ct. MLCL
aims at learning a multi-label classifier to discriminate the
increasing number of classes in the continual learning process.
We denote Ctseen =

⋃t
n=1 Cn as seen classes at task t, which

contains old class set Ct−1seen and new class set Ct, that is,
Ctseen = Ct−1seen ∪ Ct, and Ct−1seen ∩ Ct = ∅.

B. MLCL scenarios
In this section, considering academic and practical re-

quirements, we introduce the two scenarios in MLCL. In
one scenario, we adopt strict continual learning and cannot
obtain the old class like most single-Label continual learning
methods [9], [10], [12], [13]. In the other scenario, we
consider the real-world setting. IL-MLCL setting has hard
task boundaries, so the old classes are unavailable. Conversely,
similar to the settings in [8] and [43], CL-MLCL setup makes
the task boundaries faint. It is closer to the real world, where
new classes do not show up exclusively. The difference between
the two scenarios is the training label space for old classes.
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1) Continuous labelling (CL-MLCL): CL-MLCL is a more
realistic scenario where the data distribution shifts gradually
without hard task boundaries. The annotator of CL-MLCL
needs to label all seen classes. The class numbers of training
data increase gradually with the sequential tasks, i.e., Ctseen
for training data of task t. As shown in Table I, the label
space Y ⊆ Ctseen. The past latent label is annotated, so the
old and new labels coexist for a current sample in CL-MLCL.
This scenario is labor-costly, especially when the class number
is large. Because the past latent label is annotated, only the
future-missing partial label problem will occur in CL-MLCL,
and no past-missing partial label problem will occur.

2) Independent labelling (IL-MLCL): In this scenario, the
annotator only labels the new classes in Ct for training data in
task t, as shown in Table I. This means the training label space
is independently labelled with sequential class-incremental
tasks. The old and new labels do not overlap in new task
samples in IL-MLCL. The training label space Y of IL-MLCL
at task t is right the task-specific label (new labels) set Ct.

TABLE I: Training and testing label sets of task t in two scenarios,
CL-MLCL and IL-MLCL.

CL-MLCL IL-MLCL

Trian Ctseen = Ct−1
seen ∪ Ct Ct

Test Ctseen = Ct−1
seen ∪ Ct Ctseen = Ct−1

seen ∪ Ct

IL-MLCL can reduce the labelling cost, but due to the lack of
old labels in the IL-MLCL label space, the past latent label is
not annotated, so a past-missing partial label problem will be
caused together with future-missing partial label.

3) Test phase and the goal: During the test phase, the ground
truth for each data point contains all the old classes Ct−1seen and
task-specific classes Ct for both CL-MLCL and IL-MLCL.
That is, as shown in Table I, the label space in the test phase is
the all seen classes Ctseen. This paper aims to propose a unified
approach to solve the MLCL problem in both IL-MLCL and
CL-MLCL scenarios.

IV. METHODOLOGY

A. Overview of the proposed method

In multi-label learning, label relationships are verified
effective to improve the recognition [29]–[31]. However, it
is challenging to construct convincing label relationships in
MLCL image recognition because of the partial label problem.
The partial label problem results in difficulty in constructing
the inter-task label relationships. Moreover, forgetting happens
not only at the class level but also at the relationship level,
which may damage performance.

For effective multi-label recognition, we propose an
AGCN++ to construct and update the intra- and inter-task label
relationships during the training process. As shown in Fig. 2 (a),
AGCN++ model is mainly composed of three parts: 1) Partial
label encoder (PLE) decomposes the image feature extracted
by the CNN into a group of class-specific representations, these
representations are used as graph nodes to feed the GCN model.
2) Augmented Correlation Matrix (ACM) provides the label
relationships among all seen classes Ctseen and is augmented to
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capture the intra- and inter-task label dependencies. 3) Graph
Convolutional Network encodes ACM and graph nodes Ht into
label representations ŷgph for label relationships. We construct
auto-updated expert networks consisting of CNNxpt and GCNxpt.
After each task has been trained, the model is saved as the
expert model to provide soft labels ẑ.

As shown in Fig. 2 (a) and (b), the most significant difference
between AGCN and AGCN++ is that AGCN++ can extract
graph nodes from the original image through PLE. GCN
encodes ACM and graph nodes to get ŷgph. By adding ŷcal
and ŷgph, the soft label generated by the model can better
replace the past-missing partial label, more convincing ACM
(see Fig. 8) can be developed for IL-MLCL, and the forgetting
of CL-MLCL and IL-MLCL can be reduced through knowledge
distillation. These can improve the performance of the model.

B. Partial label encoder

Due to the partial label problems in MLCL, effective class
representation is difficult to build. In AGCN, the model utilized
pre-given word embedding as fixed class representation, which
will lead to the accumulation of errors in the construction of
label relationships. Then, this will skew predictions and lead
to more serious forgetting.

Inspired by [44], we propose the partial label encoder (PLE),
which decomposes the global image features for each partial
label into dynamic representations continuously as classes
increment. These class-specific representations will vary from
image and are used as augmented graph nodes. PLE will
reduce the accumulation of errors in the construction of label
relationships and suppress forgetting. And the resulting graph
nodes are automatically augmented as the number of classes
increases in MLCL.

PLE initializes with image features and model parameters
and continuously updates graph nodes. As shown in Fig 3,
CNN(x) ∈ RD, CNNxpt(x) ∈ RD, D represents the image
feature dimensionality. We use a fully connected layer fc(·) to
achieve two goals. One is to get the prediction without adding
label dependencies ŷcal

ŷcal = fc(CNN(x)) ∈ R|C
t
seen|. (1)

The other is to make the image feature aware of class
information by doing Hadamard Product with its parameters.

Ht = Θ� cat(p, q) ∈ R|C
t
seen|×D, (2)

where � is the Hadamard Product. p and q are multiple copies
of respective image features. p = Duplicate(CNNxpt(x)) ∈
R|Ct−1

seen |×D, q = Duplicate(CNN(x)) ∈ R|Ct|×D. For example,
CNN(x) ∈ R1×D is copied D times to get q ∈ R|Ct|×D.
Θ ∈ R|Ctseen|×D represents the class-specific fc layer parameters.
The dimension of Θ is continuously expanded to accommodate
the class-incremental characteristic in continual learning. In
Eq. (2), Ht represents the class-aware graph node and au-
tomatically augments as the new task progresses. We then
encode Ht by Graph Convolutional Network (GCN) to get
graph representation ŷgph.

ŷgph = GCN(At,Ht) ∈ R|C
t
seen|, (3)

where At denotes the Augmented Correlation Matrix (ACM,
see the next section for details). GCN is a two-layer stacked
graph model similar to ML-GCN [29], [31]. ACM At and graph
node Ht can be augmented as the class number increments.
With the established ACM, GCN provides dynamic label
relationships to CNN for prediction.

Moreover, we introduce the prediction ŷcal without adding
label dependencies, which is combined with ŷgph as the final
multi-label prediction ŷ ∈ R|Ctseen| of our model:

ŷ = σ (ŷcal + ŷgph) , (4)

where σ(·) represents the Sigmoid function.
ACM represents the auto-updated dependency among all

seen classes in the MLCL image recognition system. The next
section will introduce how to establish and augment ACM in
AGCN++.

C. Augmented Correlation Matrix

Most existing multi-label learning algorithms [29]–[31] rely
on constructing the inferring label correlation matrix A by the
hard label statistics among the class set C: Aij = P (Ci|Cj)|i 6=j .
The correlation matrix represents a fully-connected graph.
When a new task comes, the graph should be augmented
automatically. However, in MLCL, the label correlation matrix
is hard to infer directly by statistics because of the partial
label problem.

To tackle the problem, as shown in Fig. 4 (b), we introduce
an auto-updated expert network inspired by [16] and [17],
which is used to provide missing past labels. The soft labels ẑ
is obtained by feeding data of the current task into the expert
model, i.e. ẑ = expert(x). Based on the soft labels, as shown
in Fig. 4 (a), we construct an Augmented Correlation Matrix
(ACM) At in IL-MLCL and CL-MLCL:

At =

[
At−1 Rt

Qt Bt

]
⇐⇒

[
Old-Old Old-New
New-Old New-New

]
, (5)

in which we take four block matrices including At−1 and Bt,
Rt and Qt to represent intra- and inter-task label relationships
between old and old classes, new and new classes, old and
new classes as well as new and old classes respectively. For
the first task, A1 = B1. For t > 1, At ∈ R|Ctseen|×|C

t
seen|. It is

worth noting that the block At−1 (Old-Old) can be derived
from the old task, so we focus on how to compute the other
three blocks in the ACM.
New-New block (Bt ∈ R|Ct|×|Ct|). As shown in Fig. 4 (a),
this block computes the intra-task label relationships among
the new classes, and the conditional probability in Bt can
be calculated using the hard label statistics from the training
dataset similar to the common multi-label learning:

Bt
ij = P (Cti ∈ Ct|Ctj ∈ Ct) =

Nij

Nj
, (6)

where Nij is the number of examples with both class Cti and
Ctj , Nj is the number of examples with class Ctj . Due to the
data stream, Nij and Nj are accumulated and updated at each
step of the training process. This block is shared by both IL-
and CL-MLCL because the new class data is always available.
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Old-New block (Rt ∈ R|Ct−1
seen |×|C

t|). As shown in Fig. 4 (b),
for CL-MLCL, this block can be directly obtained by the
hard label statistics. For IL-MLCL, given an image x, for old
classes, ẑi (predicted probability) generated by the expert can be
considered as the soft label for the i-th class. Thus, the product
ẑiyj can be regarded as an alternative of the cooccurrences
of Ct−1seen i and Ctj . Thus,

∑
x ẑiyj means the online mini-batch

accumulation

Rt
ij = P (Ct−1seen i ∈ C

t−1
seen |Ctj ∈ Ct)

=


Nij

Nj
, if CL-MLCL,∑

x ẑiyj
Nj

, if IL-MLCL,

(7)

where Nij is the accumulated number of examples with both
class Ct−1seen i and Ctj , Nj is the accumulated number of examples
with class Ctj .
New-Old block (Qt ∈ R|Ct|×|Ct−1

seen |). As shown in Fig. 4 (b),
for CL-MLCL, the inter-task relationship between new and
old classes can be computed using hard label statistics. For
IL-MLCL, based on the Bayes’ rule, we can obtain this block
by

Qt
ji = P (Ctj ∈ Ct|Ct−1seen i ∈ C

t−1
seen )

=


Nij

Ni
, if CL-MLCL,

P (Ct−1seen i|Ctj)P (Ctj)
P (Ct−1seen i)

=
Rt

ijNj∑
x ẑi

, if IL-MLCL,

(8)
where Nij is the accumulated number of examples with both
class Ct−1seen i and Ctj , Ni is the accumulated number of examples
with class Ct−1seen i.

Finally, we construct an ACM using the soft and hard label
statistics (IL-MLCL) or only the hard label statistics (CL-
MLCL). Based on the established ACM, the GCN can capture

Algorithm 1: Training procedure of AGCN++.
Input: Dt

trn
1 for t = 1 : T do
2 for (x,y) ∼ Dt

trn do
3 if t = 1 then
4 Compute A1 with y using Eq. (6);
5 H1, ŷcal = PLE(CNN(x));
6 ŷgph = GCN(A1,H1);
7 ŷ = σ (ŷcal ⊕ ŷgph);
8 ` = `cls(y, ŷ)
9 else

10 ẑ = expert(x);
// get soft labels.

11 Compute Bt with y using Eq. (6);
12 Compute Rt and Qt using Eq. (7) and (8);

13 At =

[
At−1 Rt

Qt Bt

]
;

// compute ACM of task t.
14 Ht, ŷcal = PLE(CNN(x));
15 ŷgph = GCN(At,Ht);

// get new graph represnetation.
16 y′gph = GCNxpt(A

t−1,Ht−1);
// get target represnetation.

17 ŷ = σ (ŷcal ⊕ ŷgph);
// get class prediction.

18 ` = λ1`cls(y, ŷ) + λ2`dst(ẑ, ŷold)
19 + λ3`gph(y

′
gph, ŷgph);

// compute the final loss.
20 end
21 Update AGCN++ model by minimizing `
22 end
23 Update expert model

// save parameters to the expert model.
24 end

the label dependencies across different tasks, improving the
performance of continual multi-label recognition tasks.
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D. Objective function

As mentioned above, The class-incremental prediction scores
ŷ for an image x can be calculated by Eq. (4). The prediction
ŷ = [ŷold ŷnew] ∈ R|Ctseen|, where ŷold ∈ R|Ct−1

seen | for old
classes and ŷnew ∈ R|Ct| for new classes when t > 1,
Ctseen = Ct−1seen ∪ Ct. By binarizing the ground truth to hard
labels y = [y1, · · · , y|C|], yi ∈ {0, 1}, we train the current task
using the Cross Entropy loss:

`cls(y, ŷ) = −
|C|∑
i=1

[
yi log (ŷi) + (1− yi) log (1− ŷi)

]
, (9)

where C = Ctseen in CL-MLCL and C = Ct in IL-MLCL.
However, like traditional SLCL, sequentially fine-tuning the
model on the current task will lead to class-level forgetting
of the old classes. To mitigate the class-level catastrophic
forgetting, based on the expert network, we construct the
distillation loss as

`dst(ẑ, ŷold) = −
|Ct−1

seen |∑
i=1

[ẑi log (ŷi) + (1− ẑi) log (1− ŷi)] ,

(10)
where ẑ is the soft labels used to represent the prediction on
old classes. The soft labels ẑ are used to be the target feature
for the old class prediction ŷold. Soft labels play two main
roles in our paper: 1) ẑ are used to be the target feature of old
classes to mitigate the class-level forgetting in IL-MLCL and
CL-MLCL scenarios; 2) IL-MLCL has the past-missing partial
label problem, soft labels are used as substitutes for old class
labels to build label relationships across new and old classes.

To mitigate relationship-level forgetting across tasks, we
constantly preserve the established relationships in the se-
quential tasks. We compute the old graph representation to
serve as a teacher to guide the training of the new GCN
model. The old graph representation in task t is computed
by y′gph = GCNxpt(A

t−1,Ht−1), t > 1. Then, we propose a
relationship-preserving loss as a relationship constraint:

`gph(y′gph, ŷgph) =

|Ct−1
seen |∑
i=1

∥∥y′gph,i − ŷgph,i
∥∥2 . (11)

By minimizing `gph with the partial constraint of old node
embedding, the changes of GCN parameters are limited. Thus,
the forgetting of the established label relationships is alleviated
with the progress of MLCL image recognition.

The final loss for the IL- and CL-MLCL model training is
defined as

` = λ1`cls(y, ŷ) + λ2`dst(ẑ, ŷold) + λ3`gph(y′gph, ŷgph), (12)

where `cls is the classification loss, `dst is used to mitigate the
class-level forgetting and `gph is used to reduce the relationship-
level forgetting. λ1, λ2 and λ3 are the loss weights for `cls,
`dst and `gph, respectively.

The AGCN++ algorithm for both IL-MLCL and CL-MLCL
scenarios is presented in Algorithm 1 to show the detailed
training procedure. Given the training dataset Dt

trn: (1) For the
first task, the intra-task correlation matrix A1 is constructed by
the statistics of hard labels y, After the input x is fed to the

(a) Split-COCO (b) Split-WIDE
task ID task ID

nu
m

be
r

nu
m

be
r

Fig. 5: Dataset construction of Split-COCO and Split-WIDE.
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Fig. 6: mAP (%) of different classes setting in both IL- and CL-MLCL.

CNN, the class-specific feature ŷcal and the graph nodes H1 is
obtained by PLE. Then the GCN encodes A1 and H1 to get
graph representation ŷgph. The prediction score ŷ is generated
by ŷcal and ŷgph (Line 4-8). (2) When t > 1, the ACM At is
augmented via soft labels ẑ and the Bayes’ rule. Based on the
At, GCN model can capture both intra- and inter-task label
dependencies. Then, ẑ and y′gph as target features to build `dst
and `gph respectively (Line 9-20). (3) The AGCN++ and expert
models are updated respectively (Line 21-23).

V. EXPERIMENTS

A. Datasets

1) Dataset description: We use two datasets, Split-COCO
and Split-WIDE, to evaluate the effectiveness of the proposed
method.

Split-COCO. We choose the 40 most frequent concepts
from 80 classes of MS-COCO [45] to construct Split-COCO,
which has 65082 examples for training and 27,173 examples
for validation. The 40 classes are split into ten different and
non-overlapping tasks, each containing four classes.

Split-WIDE. NUS-WIDE [46] is a raw web-crawled multi-
label image dataset. We further curate a sequential class-
incremental dataset from NUS-WIDE. Following [47], we
choose the 21 most frequent concepts from 81 classes of
NUS-WIDE to construct the Split-WIDE, which has 144,858
examples for training and 41,146 examples for validation. Split-
WIDE has a larger scale than Split-COCO. We split the Split-
WIDE into 7 tasks, where each task contains 3 classes.

2) Dataset collection: We enlist the curation details of Split-
COCO and Split-WIDE. In the previous continual learning
methods, Shmelkov et al. [48] selects 20 out of 80 classes to
create 2 tasks for SLCL, each with 10 classes. Nguyen et al.
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TABLE II: We report 7 metrics (%) for multi-label classification after the whole data stream is seen once on Split-WIDE in both IL-MLCL
and CL-MLCL scenarios. The Multi-Task is offline trained as the upper bound, and Fine-Tuning is the lower bound.

Method Split-WIDE IL-MLCL Split-WIDE CL-MLCL
mAP ↑ CP ↑ CR ↑ CF1 ↑ OP ↑ OR ↑ OF1 ↑ mAP ↑ CP ↑ CR ↑ CF1 ↑ OP ↑ OR ↑ OF1 ↑

Multi-Task 66.17 69.15 55.30 61.45 77.74 66.30 71.57 69.19 60.60 43.96 50.33 78.45 59.39 66.67
Fine-Tuning 20.33 15.21 37.85 19.10 25.15 61.62 35.72 41.82 44.48 34.73 39.00 52.94 42.97 47.43
Forgetting ↓ 40.85 36.95 27.20 31.20 27.22 12.14 15.10 18.20 20.23 41.83 28.07 3.29 16.63 11.56

EWC [6] 22.03 15.99 39.53 22.78 24.92 62.97 35.70 45.04 45.33 37.13 40.82 54.36 53.81 54.08
Forgetting ↓ 34.86 35.51 24.23 28.18 28.41 9.55 15.17 14.73 18.31 38.72 25.17 2.20 7.09 4.06

LwF [16] 29.46 21.65 46.96 29.64 30.77 69.70 42.69 46.44 51.05 33.01 40.09 54.24 46.40 50.01
Forgetting ↓ 20.26 29.21 17.02 18.99 20.94 3.84 5.73 12.68 9.08 42.93 26.05 2.23 14.33 9.31
AGEM [35] 32.47 23.26 58.44 33.28 26.36 74.40 38.93 46.83 50.48 27.67 35.75 47.93 35.18 40.58
Forgetting ↓ 16.42 28.09 8.67 15.71 26.55 6.95 9.73 11.91 10.05 48.36 33.55 11.21 21.56 17.22

ER [34] 34.03 24.64 60.02 34.94 26.62 75.57 39.37 48.08 54.33 31.16 39.61 53.40 38.84 44.98
Forgetting ↓ 15.15 26.18 7.14 11.80 26.45 6.25 8.61 9.24 7.13 45.32 27.58 2.96 19.28 14.53

PRS [10] 39.70 52.77 18.24 26.48 60.81 14.05 22.19 51.42 58.26 37.64 45.73 55.66 48.90 52.06
Forgetting ↓ 11.24 4.08 43.22 34.48 2.34 55.73 43.76 7.86 2.21 37.12 16.68 1.90 11.36 7.13

SCR [7] 35.34 28.33 54.34 35.47 32.21 70.28 41.92 49.23 53.87 36.86 43.77 50.16 47.58 48.84
Forgetting ↓ 14.26 21.29 9.56 10.17 23.09 7.26 8.04 8.34 7.89 39.22 20.56 6.62 13.56 10.78

AGCN 42.15 26.04 70.21 37.99 29.53 84.02 43.70 54.20 56.24 39.10 46.13 53.94 56.84 55.35
Forgetting ↓ 10.34 25.44 1.35 5.82 25.23 1.12 4.12 5.27 4.56 34.54 14.34 2.49 5.40 3.26
AGCN++ 45.73 33.08 61.57 43.04 32.29 75.62 45.26 57.07 55.07 54.26 54.66 49.03 74.96 59.29

Forgetting ↓ 8.32 17.28 7.44 2.13 22.11 5.52 3.98 4.45 3.56 19.48 10.64 6.13 0.18 1.02

TABLE III: We report seven metrics (%) for multi-label classification after the whole data stream is seen once on Split-COCO in both
IL-MLCL and CL-MLCL scenarios. The Multi-Task is offline trained as the upper bound, and Fine-Tuning is the lower bound.

Method Split-COCO IL-MLCL Split-COCO CL-MLCL
mAP ↑ CP ↑ CR ↑ CF1 ↑ OP ↑ OR ↑ OF1 ↑ mAP ↑ CP ↑ CR ↑ CF1 ↑ OP ↑ OR ↑ OF1 ↑

Multi-Task 65.85 71.64 54.31 61.79 77.24 58.03 66.27 68.33 73.06 49.82 61.49 89.31 64.99 74.98
Fine-Tuning 9.83 6.90 18.52 10.54 21.63 41.25 28.83 32.35 33.34 29.10 31.01 57.03 45.56 50.56
Forgetting ↓ 58.04 48.96 64.30 63.54 18.24 38.76 20.60 31.78 33.32 32.14 33.90 16.61 9.22 12.24

EWC [6] 12.20 9.70 17.54 12.50 23.63 39.84 29.67 35.83 31.88 33.05 32.18 57.62 46.98 51.60
Forgetting ↓ 45.61 42.68 60.50 55.44 15.34 40.59 19.85 27.66 37.82 26.29 30.29 16.24 7.18 10.16

LwF [16] 19.95 18.02 28.44 21.69 33.14 57.83 40.68 40.87 44.36 35.07 39.07 61.72 48.10 53.95
Forgetting ↓ 41.16 29.73 44.01 39.85 8.70 19.38 11.43 21.15 22.70 25.90 23.64 12.29 4.99 7.67
AGEM [35] 23.31 22.34 42.10 27.25 29.95 62.32 37.94 42.25 64.40 19.28 29.08 57.64 12.62 18.59
Forgetting ↓ 34.52 17.12 20.36 18.92 13.02 11.35 12.94 19.75 9.11 45.66 35.37 15.94 34.80 39.92

ER [34] 25.03 26.45 41.14 30.54 30.32 61.84 38.38 43.54 71.15 16.65 26.60 62.89 17.72 26.44
Forgetting ↓ 33.46 14.96 22.28 17.28 11.80 12.49 12.34 17.13 1.14 47.73 38.34 11.79 30.32 32.66

PRS [10] 31.08 56.07 22.74 32.27 57.87 14.24 22.25 46.39 58.56 29.41 38.20 58.84 50.54 54.25
Forgetting ↓ 28.82 1.32 50.59 16.21 0.34 58.37 30.43 13.07 13.52 31.23 24.56 14.21 6.09 6.36

SCR [7] 25.75 25.22 49.35 30.63 29.40 69.91 39.10 44.96 54.00 29.25 37.82 41.47 40.40 40.46
Forgetting ↓ 32.02 15.27 16.02 15.98 13.58 6.52 11.96 15.33 19.88 31.89 25.12 30.04 13.24 19.26

AGCN 34.11 31.80 47.73 35.49 34.38 67.72 42.37 48.82 55.73 30.83 39.18 74.27 47.06 56.76
Forgetting ↓ 23.71 12.21 17.81 14.79 8.03 9.86 8.16 10.40 18.72 30.39 22.38 1.63 6.71 3.97
AGCN++ 38.23 32.51 60.47 41.38 34.32 75.34 45.26 53.49 46.66 52.96 49.55 55.14 64.74 59.32

Forgetting ↓ 20.12 11.13 9.08 11.34 8.82 3.68 6.78 7.24 24.88 6.34 14.52 23.67 1.34 1.24

[49] tailor MSCOCO for continual learning of captioning. They
select 24 out of 80 classes to create two tasks. PRS [10] needs
more low-frequency classes to study the imbalanced problem.
They curate four tasks with 70 classes using MSCOCO.
Compared to these previous splitting, on the one hand, we
set more tasks to test the robustness of the algorithm over
more tasks to create a continual setting. On the other hand,
we selected more frequent concepts from the original dataset
to reduce the long-tail effect of the original data. Multi-label
datasets inherently have intersecting concepts among the data
points. Hence, a naive splitting strategy may lead to a dangerous
amount of data loss. This motivates us to minimize data loss
during the split. Moreover, to test diverse research environments,
the second objective is to keep the size of the splits balanced
optionally. To split the well-known MS-COCO and NUS-WIDE
into several different tasks fairly and uniformly, we introduce

two kinds of labelling in the datasets. 1) Specific-labelling: If
an image only has the labels that belong to the task-special
class set Ct of task t, we regard it as a specific-labelling image
for task t; 2) Mixed-labelling: If an image not only has the
task-specific labels but also has the old labels belonging to the
class set Ct−1seen , we regard it as a mixed-labelling image.

In IL-MLCL, because the model learns from the task-specific
labels Ct, the training data is labelled without old labels, so
IL-MLCL will suffer from the partial label problem, which
mainly appears in the mixed-labelling image. The IL-MLCL
and CL-MLCL share the same training images. A randomly
data-splitting approach may lead to the imbalance of specific-
labelling and mixed-labelling images for each task. We split two
datasets into sequential tasks with the following strategies to
ensure a proper proportion. We first count the number of labels
for each image. Then, we give priority to leaving specific-label
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Fig. 7: mAP (%) on two benchmarks in both IL- and CL-MLCL.

images for each task. The mixed-labelling images are then
allocated to other tasks. The dataset construction is presented
in Fig 5.

B. Evaluation metrics
Multi-label evaluation. Following these multi-label learning
methods [29]–[31], 7 metrics are leveraged in MLCL. (1) the
average precision (AP) on each label and the mean average
precision (mAP) over all labels; (2) the per-class F1-measure
(CF1); (3) the overall F1-measure (OF1). The mAP, CF1 and
OF1 are relatively more important for multi-label performance
evaluation. Moreover, we adopt 4 other metrics: per-class
precision (CP), per-class recall (CR), overall precision (OP)
and overall recall (CR).

OP =

∑
iN

c
i∑

iN
p
i

, CP =
1

C

∑
i

N c
i

Np
i

,

OR =

∑
iN

c
i∑

iN
g
i

, CR =
1

C

∑
i

N c
i

Ng
i

,

OF1 =
2× OP× OR

OP + OR
, CF1 =

2× CP× CR
CP + CR

,

where i is the class label and C is the number of labels. N c
i

is the number of correctly predicted images for class i, Np
i

is the number of predicted images for class i and Ng
i is the

number of ground-truth for class i.
Forgetting measure [50]. This metric denotes the above multi-
label metric value difference for each task between testing
when it was first trained, and the last task was trained. For
example, the forgetting measure of mAP for a task t can be
computed by its performance difference between task T and t
was trained. Ft, average forgetting after the model has been
trained continually up till task t ∈ {1, · · · , T} is defined as:

Ft =
1

t− 1

t−1∑
j=1

f tj , (13)

where f tj is the forgetting on task j after the model is trained
up till task t and computed as

f tj = max
l∈{1,··· ,k−1}

al,j − at,j , (14)

where a denotes every metric in MLCL like mAP, CF1 and
OF1. We evaluate the final forgetting (FT ) after training the
final task.

C. Implementation details

Following existing multi-label image classification methods
[29]–[31], we employ ResNet101 [51] as the image feature
extractor pre-trained on ImageNet [52]. We adopt Adam [53]
as the optimizer of network with β1 = 0.9, β2 = 0.999,
and ε = 10−4. Following [29], [30], our AGCN++ consists
of two GCN layers with output dimensionality of 1024 and
2048, respectively. The input images are randomly cropped
and resized to 448× 448 with random horizontal flips for data
augmentation. The network is trained for a single epoch like
most continual learning methods done [4], [8], [9], [33].

D. Baseline methods

MLCL is a new paradigm of continual learning. We
compare our method with several essential and state-of-art
continual learning methods, including (1) EWC [6], which
regularizes the training loss to avoid catastrophic forgetting;
(2) LwF [16], which uses the distillation loss by saving task-
specific parameters; (3) ER [34], which saves a few training
data from the old tasks and retrains them in the current training;
(4) AGEM [35] resets the training gradient by combining the
gradient on the memory and training data; (5) PRS [10], which
uses an improved reservoir sampling strategy to study the
imbalanced problem. PRS studies similar problems with us.
Still, they focus more on the imbalanced problem but ignore
the label relationships and the problem of partial labels for
MLCL image recognition. (6) SCR [7], which proposes the
NCM classifier to improve SLCL performance. SCR is an
algorithm designed to improve the top-1 accuracy of single-
label recognition. Similar to [7], [10], [17], we use a Multi-
Task baseline, which is trained on a single pass over shuffled
data from all tasks. It can be seen as the performance upper
bound. We also compare with the Fine-Tuning, which performs
training without any continual learning technique. Thus, it
can be regarded as the performance lower bound. Note that,
to extend some SLCL methods to MLCL, we turn the final
Softmax layer in each of these methods into a Sigmoid. Other
details follow their original settings.

E. Main results

1) Split-WIDE results: In Table II, with the establishment of
relationships and inhibition of class-level and relationship-level
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TABLE IV: We report 3 more important metrics (%) for multi-label classification after the whole data stream is seen once on 8-way
Split-COCO and 7-way Split-WIDE in both IL-MLCL and CL-MLCL scenarios.

Method Split-COCO (IL 8-way) Split-COCO (CL 8-way) Split-WIDE (IL 7-way) Split-WIDE (CL 7-way)
mAP CF1 OF1 mAP CF1 OF1 mAP CF1 OF1 mAP CF1 OF1

Multi-Task 72.24 64.34 72.35 74.63 68.87 79.74 64.71 58.86 53.82 68.84 58.64 60.23
Fine-Tuning 16.89 8.82 46.63 62.69 56.87 68.45 39.26 34.51 50.10 55.46 41.76 57.01

EWC [6] 23.47 11.03 47.82 63.10 56.91 68.60 39.56 33.20 47.69 56.73 51.46 66.07
LwF [16] 36.67 37.38 46.98 63.66 58.39 69.74 40.14 43.64 56.22 57.48 54.90 68.24

AGEM [35] 40.43 33.50 45.75 63.92 55.30 69.34 42.33 40.66 52.94 57.52 45.36 58.25
ER [34] 42.23 39.89 46.24 64.22 58.80 70.29 46.39 47.63 58.71 58.12 47.11 55.30

PRS [10] 61.56 47.81 33.09 66.61 60.13 70.89 47.45 44.71 60.55 58.15 54.39 68.92
AGCN 62.60 57.85 59.29 70.24 63.12 74.21 54.11 53.71 67.04 58.98 55.32 69.28

AGCN++ 65.92 60.02 68.82 73.41 68.55 74.54 56.63 57.51 73.58 61.04 60.22 72.40

TABLE V: Ablation studies (%) for ACM At and PLE on Split-WIDE and Split-COCO.

Split-WIDE Split-COCO
AGCN++ (w/ PLE) AGCN (w/o PLE) AGCN++ (w/ PLE) AGCN (w/o PLE)

At−1 & Bt Rt & Qt mAP ↑ CF1 ↑ OF1 ↑ mAP ↑ CF1 ↑ OF1 ↑ mAP ↑ CF1 ↑ OF1 ↑ mAP ↑ CF1 ↑ OF1 ↑

IL-MLCL
√

× 42.25 40.47 42.98 38.05 34.03 42.71 35.19 39.98 37.62 31.52 30.37 34.87√ √
45.73 43.04 45.26 42.15 37.99 43.70 38.23 41.38 45.26 34.11 35.49 42.37

CL-MLCL
√

× 54.72 50.41 48.84 49.47 44.73 52.13 51.51 47.13 56.97 44.53 35.55 53.57√ √
57.07 54.66 59.29 54.20 46.13 55.35 53.49 49.55 59.32 48.82 39.18 56.76

forgetting using distillation and relationship-preserving loss,
our method shows better performance than the other state-of-
art performances in both IL-MLCL and CL-MLCL scenarios.
In particular, AGCN and AGCN++ perform better than other
comparison methods on three more essential evaluation metrics,
including mAP, CF1 and OF1, which means the effectiveness in
multi-label classification. Also, in the forgetting value evaluated
after task T , we achieve a better forgetting measure, which
means the stability of the proposed method in MLCL. In the
IL-MLCL scenario, because we use soft labels to replace hard
labels in the old task label space and establish and remember
the label relationships, the AGCN++ outperforms the most state-
of-art performances by a large margin: 45.73% vs. 42.15% (+
3.58%) on mAP, 43.04% vs. 37.99% (+ 5.05%) on CF1 and
45.26% vs. 43.70% (+ 1.56%) on OF1, as shown in Table II.
Like IL-MLCL, CL-MLCL still needs to model complete label
dependencies between label relationships and reduce forgetting.
The AGCN++ shows better performance than the others in
CL-MLCL: 57.07% vs. 54.20% (+ 2.87%) on mAP, 54.66%
vs. 46.13% (+ 8.53%) on CF1 and 59.29% vs. 55.35% (+
3.94%) on OF1, as demonstrated in Table II, which suggests
that AGCN++ is effective in a large-scale multi-label dataset.

2) Split-COCO results: Split-COCO is split into ten tasks,
as mentioned in [54], compared with methods PRS [10] and
ER [34], our approach can protect privacy better because
AGCN++ does not collect data from the original dataset. As
shown in Table III, in IL-MLCL and CL-MLCL, AGCN++
achieves better performance than the others in most metrics.
AGCN++ also has a low rate of forgetting old knowledge. With
the AGCN++ combining intra- and inter-task label relationships,
the proposed AGCN++ outperforms the most state-of-art
performances in IL-MLCL: 38.23% vs. 34.11% (+ 4.12%) on
mAP, 41.38% vs. 35.49% (+ 5.89%) on CF1 and 45.26% vs.
42.37 (+ 2.89%) on OF1. This means soft labels can effectively
replace hard labels in the old task label space to alleviate the
partial label problem. AGCN++ is also better in CL-MLCL:

53.49% vs. 48.82% (+ 4.67%) on mAP, 49.55% vs. 39.18% (+
10.37%) on CF1 and 59.32% vs. 56.76% (+ 2.56%) on OF1.
This means ACM is effective for both IL-MLCL and CL-MLCL
scenarios in Split-COCO. As illustrated above, AGCN++ can
be a uniform MLCL method for IL-MLCL and CL-MLCL.

F. More MLCL settings

In order to prove the robustness of the method, we verify
the effectiveness of AGCN and AGCN++ under other MLCL
settings. First, as shown in Table IV, we increase the number
of classes of each task to verify that the proposed PLE and
ACM can effectively handle more label relationships in a task.
Specifically, 8-way for Split-COCO and 7-way for Split-WIDE.
As shown in Table IV, our AGCN and AGCN++ can still
achieve better results in three more important metrics, mAP,
CF1 and OF1. Take the mAP, for example. For Split-COCO,
65.92% vs. 62.60% (+ 3.32%) in IL 8-way and 73.41% vs.
70.24% (+ 3.17%) in CL 8-way. For Split-WIDE, 56.63% vs.
54.11% (+ 2.52%) in IL 7-way and 61.04% vs. 58.98% (+
2.06%) in CL 7-way. Second, considering in the real world,
different tasks often have different numbers of classes. So we
provide a different number of classes for each task in a random
manner. Specifically, the task setting is ”7 : 4 : 1 : 6: 2 : 2 : 5 :
7 : 3 : 3”. As shown in Fig 6, our method performs better than
other comparison methods in every task. These experiments
can prove the effectiveness of AGCN++ from more angles.

G. mAP curves

Similar to [7], [8], [17], we show the mAP trends of different
methods in Fig. 7 for sequential learning. These curves indicate
the performance along the MLCL progress. In two MLCL
scenarios, Fig. 7 illustrates the mAP changes as tasks are being
learned on two benchmarks. The mAP curves show that AGCN
and AGCN++ can perform better through the MLCL process.
In addition, their algorithm is applied after the first task for
most continual learning methods. Our AGCN and AGCN++
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TABLE VI: Ablation studies (%) for loss weights and relationship-preserving loss on Split-WIDE and Split-COCO for IL- and CL-MLCL.

Split-WIDE Split-COCO
λ1 λ2 λ3 mAP ↑ CF1 ↑ OF1 ↑ λ1 λ2 λ3 mAP ↑ CF1 ↑ OF1 ↑

IL-MLCL

0.10 0.90 0 42.04 38.76 42.12 0.15 0.85 0 36.77 39.95 39.10
Forgetting ↓ 10.48 5.24 6.42 Forgetting ↓ 22.34 12.73 13.32

0.10 0.90 104 45.73 43.04 45.26 0.15 0.85 104 38.23 41.38 45.26
Forgetting ↓ 8.32 2.13 3.98 Forgetting ↓ 20.12 11.34 6.78

CL-MLCL

0.70 0.30 0 55.68 51.58 49.24 0.40 0.60 0 50.98 46.82 54.70
Forgetting ↓ 5.04 12.56 10.24 Forgetting ↓ 12.87 22.80 6.62

0.70 0.30 103 57.07 54.66 59.29 0.40 0.60 104 53.49 49.55 59.32
Forgetting ↓ 4.45 10.64 1.02 Forgetting ↓ 7.24 14.52 1.24

Sp
lit

-C
O

C
O

Sp
lit

-W
ID

E AGCN

AGCN++ IL-MLCLOracle CL-MLCL AGCN IL-MLCL

d = 0

d = 0

d = 4.01 d = 4.18d = 5.64

d = 4.28 d = 4.54d = 4.89

Fig. 8: ACM visualization. It shows the intra- and inter-task label relationships are constructed well.

has modelled the label dependencies from the first task. As
distillation loss and relationship-preserving loss are applied to
subsequent tasks, the algorithm’s performance exceeds other
methods in each task.

H. Ablation studies

1) ACM and PLE effectiveness: We perform ablation exper-
iments on ACM to test the effectiveness of the intra- and inter-
task relationships for both AGCN and AGCN++. As shown
in Sec. IV-C, Rt (Old-New) and Qt (New-Old) are used to
model inter-task label dependencies cross old and new tasks,
Bt (New-New) is used to model intra-task label dependencies,
and while Rt and Qt are unavailable, neither are Rt−1 and
Qt−1 in block At−1, the At−1 that inherit from the old task
only build intra-task relationships. As shown in Table V, if we
do not build the label relationships across old and new tasks
(w/o Rt & Qt), the performance of AGCN (Line 1 and 3) is
already better than most non-AGCN methods. For example,
the comparison between AGCN (w/o Rt & Qt) and LwF (w/o
At−1 & Bt and Rt & Qt) on mAP is: 38.05% vs. 29.46%
(Split-WIDE, IL-MLCL), 49.47% vs. 46.44% (Split-WIDE,
CL-MLCL), 31.52% vs. 19.95% (Split-COCO, IL-MLCL) and

44.53% vs. 40.87% (Split-COCO, CL-MLCL), as shown in
Table V, Table II and Table III. AGCN is also better than
most non-AGCN methods on CF1 and OF1. This means only
intra-task label relationships are effective for MLCL image
recognition. When the inter-task block matrices Rt and Qt are
available, AGCN with both intra- and inter-task relationships
(Line 2 and 4) can perform even better in all three metrics. For
example, mAP comparisons of AGCN (w/ At−1 & Bt, Rt

& Qt) and PRS on two datasets in two scenarios: 42.15% vs.
39.70% (Split-WIDE, IL-MLCL), 54.20% vs. 51.42% (Split-
WIDE, CL-MLCL), 34.11% vs. 31.08% (Split-COCO, IL-
MLCL) and 48.82% vs. 46.39% (Split-WIDE, CL-MLCL), as
shown in Table V, Table II and Table III, which means the
inter-task relationships can enhance the multi-label recognition.

And AGCN++ (w/ PLE) outperforms AGCN (w/o PLE)
either (w/o Rt & Qt) or (w/ At−1 & Bt, Rt & Qt) in all
three metrics, which can prove the effectiveness of PLE. When
w/o Rt & Qt, for mAP, 42.25% vs. 38.05% (Split-WIDE, IL-
MLCL), 54.72% vs. 49.47% (Split-WIDE, CL-MLCL), 35.19%
vs. 31.52% (Split-COCO, IL-MLCL), 51.51% vs. 44.53%
(Split-COCO, CL-MLCL). When w/ At−1 & Bt, Rt & Qt, for
mAP, 45.73% vs. 42.15% (Split-WIDE, IL-MLCL), 57.07%
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vs. 54.20% (Split-WIDE, CL-MLCL), 38.23% vs. 34.11%
(Split-COCO, IL-MLCL), 53.49% vs. 48.82% (Split-COCO,
CL-MLCL).

2) Hyperparameter selection: Then, we analyze the influ-
ences of loss weights and relationship-preserving loss on two
benchmarks, as shown in Table VI. When the relationship-
preserving loss is unavailable, loss weight λ3 is set to 0. The
loss weights of others: λ1 = 0.10, λ2 = 0.90 for Split-WIDE
in IL-MLCL, λ1 = 0.70, λ2 = 0.30 for Split-WIDE in CL-
MLCL, λ1 = 0.15, λ2 = 0.85 for Split-COCO in IL-MLCL
and λ1 = 0.40, λ2 = 0.60 for Split-COCO in CL-MLCL, By
adding the relationship-preserving loss `gph, the performance
gets more gains, and the values of forgetting are also lower,
which means the mitigation of relationship-level catastrophic
forgetting is quite essential for MLCL image recognition, and
the relationship-preserving loss is effective. We select the best
λ3 as the hyper-parameters, i.e., λ3 = 104 for Split-WIDE in
IL-MLCL, λ3 = 103 for Split-WIDE in CL-MLCL, λ3 = 104

for Split-COCO in IL-MLCL and λ3 = 104 for Split-COCO
in CL-MLCL.

I. Visualization of ACM

As shown in Fig. 8, to verify the effectiveness of the
constructed ACM, we offer the ACM visualizations on Split-
WIDE and Split-COCO for IL-MLCL and CL-MLCL. We
introduce the oracle augmented correlation matrix (oracle ACM)
as the upper bound, which is constructed offline using hard label
statistics of all tasks from corresponding datasets. d represents
the Euclidean distance between the matrix and Oracle ACM.
A smaller value of d means that the matrix is closer to oracle
ACM, which proves that this ACM is better constructed. As
shown in Fig. 8, the proposed ACM in both scenarios is close
to the oracle ACM. This indicates constructing ACM with soft
or hard label statistics is effective. Note that in CL-MLCL, the
ACM is constructed using only hard labels from the dataset, the
ACMs of AGCN++ and AGCN are the same in the CL-MLCL
scenario under the same dataset. And in IL-MLCL, the ACM is
constructed with the soft labels produced by the model, so the
ACM of AGCN++ is better constructed. In IL-MLCL, we can
also observe that the ACM built in AGCN++ is closer to the
Oracle ACM than in AGCN, 4.01% vs. 4.18% (Split-COCO)
and 4.28% vs. 4.54% (Split-WIDE), which can prove that the
PLE has reduced the accumulation of errors in the construction
of label relationships.

VI. CONCLUSION

Multi-Label Continual Learning (MLCL) focuses on solving
multi-label classification in continual learning. It is challenging
to construct convincing label relationships and reduce forgetting
in MLCL because of the partial label problem. This paper
proposed a novel AGCN++ based on an auto-updated expert
mechanism to solve the problem of MLCL. The key of our
AGCN++ is to construct label relationships in a partial label
data stream and reduce catastrophic forgetting to improve
overall performance. We studied MLCL in both IL-MLCL and
CL-MLCL scenarios. In relationship construction, we showed
the effectiveness of leveraging soft or hard label statistics

to update the correlation matrix, even in the partial label
data stream. We also showed the effectiveness of PLE in
reducing the accumulation of errors in the construction of
label relationships and suppressing forgetting. In terms of
forgetting, we proposed an effective distillation loss and a novel
relationship-preserving loss to mitigate class- and relationship-
level forgetting. Extensive experiments demonstrate that the
proposed AGCN++ can capture well the label dependencies,
thus achieving better MLCL performance in the IL-MLCL
and CL-MLCL. Future work will study how to improve the
construction of the old-old block using the correlation of only
soft labels instead of inheriting the previously constructed ACM.
It is believed that the performance will be further enhanced.
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