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HODN: Disentangling Human-Object Feature
for HOI Detection
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Abstract—The task of Human-Object Interaction (HOI) detec-
tion is to detect humans and their interactions with surrounding
objects, where transformer-based methods show dominant ad-
vances currently. However, these methods ignore the relationship
among humans, objects, and interactions: 1) human features are
more contributive than object ones to interaction prediction; 2)
interactive information disturbs the detection of objects but helps
human detection. In this paper, we propose a Human and Object
Disentangling Network (HODN) to model the HOI relationships
explicitly, where humans and objects are first detected by two
disentangling decoders independently and then processed by an
interaction decoder. Considering that human features are more
contributive to interaction, we propose a Human-Guide Linking
method to make sure the interaction decoder focuses on the
human-centric regions with human features as the positional
embeddings. To handle the opposite influences of interactions
on humans and objects, we propose a Stop-Gradient Mechanism
to stop interaction gradients from optimizing the object detection
but to allow them to optimize the human detection. Our proposed
method achieves competitive performance on both the V-COCO
and the HICO-Det datasets. It can be combined with existing
methods easily for state-of-the-art results.

Index Terms—Human-Object Interaction Detection, Trans-
former, Visual Attention, Disentangling Features.

I. INTRODUCTION

INSTANCE-LEVEL detection no longer satisfies the re-
quirement of understanding the visual world, but the rela-

tionships inference among instances has attracted considerable
research interest recently, where Human-Object Interaction
(HOI) detection plays a major role. In addition, other high-
level semantic understanding tasks, such as activity recog-
nition [39], [42] and visual question answering [26], [35],
can benefit from HOI. The goal of HOI detection aims to
detect humans and surrounding objects and infer the interactive
relations between them, which can be typically represented as
triplets of ⟨human, object, interaction⟩. Hence, HOI detection
consists of three parts: human detection, object detection, and
interaction classification.
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Based on variants of RCNN [10], [31], conventional meth-
ods usually detect instances firstly and enumerate all human-
object pairs to predict secondly [3], [6]–[8], [12], [13], [18]–
[20], [27], [36], [37], [48], or directly identify the pairs that
are likely to interact [15], [22], [40], [49]. These methods
suffer from the lack of contextual information due to the
locality of convolutional layers and pooling layers. Nowadays,
transformer-based HOI detectors [4], [16], [33], [45], [51] are
proposed to handle this problem in an end-to-end manner.
Benefiting from the attention mechanism, these networks can
extract global features rather than local ones. However, in
the very beginning, the transformer-based methods [33], [51]
utilize a simple pipeline with a single encoder-decoder pair
to detect the triplets of HOI, which struggles with han-
dling localization and classification simultaneously. To deal
with this problem, recent methods [4], [16], [45] disentangle
the HOI task as tasks of instance detection and interaction
classification. These methods usually utilize two decoders,
whether parallel [45] or cascaded [4], [16], to handle the
corresponding tasks. Among them, DisTR [50] takes a further
step to disentangle both encoders and decoders for the two
sub-tasks. The disentanglement of sub-tasks lets different
modules focus on their corresponding tasks and improve the
whole performance. However, for the instance detection task,
previous works regard a pair of human and object as one
instance, and process the instance features as a whole, which
ignores the distinct effects between humans and objects. We
argue that humans and objects play different roles in HOI
detection, and the mutual effect among humans, objects, and
interactions should also be analyzed.

To dig out the comprehensive relationships among humans,
objects, and interactions, we conduct experiments and analyze
from two respects, i.e., 1) how humans and objects impact in-
teractions and 2) how interactions impact humans and objects.
In Section IV-B, we analyze these by masking the regions of
different parts in the images and removing the module for
interaction prediction. The results show that: 1) both humans
and objects make contributions to interaction prediction, but
humans contribute much more; 2) human detection needs the
help of interactions while object detection will be disturbed.

Motivated by the different effects between humans and
objects, we emphasize the necessity of utilizing disentan-
gled human-object features. Hence, we propose an end-to-
end transformer-based framework, termed Human and Object
Disentangling Network (HODN), to explicitly model the rela-
tionships among humans, objects, and interactions. A simple
comparison with previous works is visualized in Figure 1.
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Fig. 1. Comparison of recent disentangling transformer-based methods. Previous works usually disentangle the HOI task into instance detection and interaction
prediction by introducing two decoders. (a) Parallel methods [4], [16] adopt two relatively independent decoders. (b) Cascaded methods [45] handle these
parts in series. (c) DisTR [50] takes a further step based on parallel methods, where both encoder and decoder are disentangled. (d) Our HODN contains two
parallel detection decoders for human and object features and one interaction prediction decoder. Enc: Encoder; Dec: Decoder; Inst: Instance; Inter: Interaction.

As depicted, we use two separate detection decoders, i.e.,
human decoder and object decoder, to extract human and
object features independently, which will be processed by
an interaction decoder. To make sure the human features
contribute more there, a Human-Guide Linking (HG-Linking)
method is utilized for the interaction decoder to focus on the
human-centric regions. In particular, the interaction decoder
receives the human features as the positional embeddings
for all attention layers. These position embeddings, a.k.a.,
interaction queries, are used to guide the decoder where to
focus on. To link humans with the surrounding objects, object
features are fed into the first layer of the interaction decoder to
provide prior knowledge. With this, the interaction decoder can
not only make use of the information of humans and objects
but also make the human features dominant and the object
ones auxiliary. Furthermore, due to another HOI relationship
that interactive information obstructs object detection but
helps human detection, we propose a training strategy, termed
Stop-Gradient Mechanism (SG-Mechanism) to process inter-
action gradients separately. During back-propagation, the SG-
Mechanism stops interaction gradients from passing through
the object decoder but maintains them into the human decoder
the same as the common practice. This not only inhibits the
negative impact of interactions on object detection but keeps
the slightly positive on human detection, which brings the best
detection performance for both humans and objects.

To evaluate the performance of our method, we conduct
extensive experiments by following the previous works on the
widely used datasets, i.e., V-COCO [9] and HICO-Det [3],
where our method achieves competitive results. Moreover, we
combine two latest works [23], [47] with our method, bringing
2.40% and 0.91% relative gains respectively, to achieve the
state-of-the-art performance. Visualization experiments also
verified that our method can localize humans and objects more
preciously and can focus on the interaction regions. We owe
these to the disentangling of different parts and the established
comprehensive relationships among them.

Concretely, we summarize our work as: 1) we found that
humans contribute more to interaction prediction, and in-
teractions have opposite influences on the detection of hu-
mans and objects. 2) We propose HODN to explicitly model
the relationships, where an HG-Linking is utilized by the
interaction decoder to make human features dominant and

object ones auxiliary, and an SG-Mechanism is proposed to
handle interaction gradients differently. The HODN achieves
competitive experimental results and can be easily combined
with existing methods for state-of-the-art performance.

II. RELATED WORK

Based on the used detector, HOI methods can be categorized
into two main streams: traditional methods and transformer-
based methods, where the former are based on variants of
R-CNN [10], [31] and the latter are on DETR [2].

Traditional Methods

Traditional methods can be further divided into two-stage
and one-stage methods. Two-stage methods [3], [7], [8],
[18] rely on an off-the-shelf object detector to localize all
instances, including humans and objects. Then they enumerate
all human-object combinations, crop the features inside the
localized regions, and process cropped features by multi-
stream networks. Typically, the multi-stream networks include
a human stream, an object stream, and a pairwise stream. To
improve the performance, some works introduce extra streams
with extra knowledge, including spatial features [12], [27],
[36], word embeddings [6], [13], human postures [19], [20],
[37], [48], or above in combination. Another line of works also
introduces graph neural networks to model the relationship of
human-object pairs [25], [28], [36], [38], [43]. However, two-
stage methods suffer from finding the interactive human-object
pairs in an overwhelming number of permutations.

To alleviate the number of redundant non-interactive pairs,
one-stage methods introduce the concept of interaction point
as the anchor to directly identify the pairs that are likely to
interact [15], [22], [40], [49]. By parallelly processing the
instance detection branch and the interaction point prediction
branch, they can match the most similar combination between
the two independent branches to complete HOI detection. In
particular, the introduced interaction point is the midpoint of
the center points of human and object [22], [22], or the center
point of the human-object pair union box [15]. Instead of using
one interaction point, GGNet [49] infers a set of points to
predict interactions more robustly. However, either one point
or a set of points, such a concept may introduce a lot of useless
regions and even some misleading information, i.e., one-stage
methods may not work in situations when the human and
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the object in the interaction are far apart or when multiple
instances are overlapping.

In summary, no matter the one-stage or the two-stage
methods, traditional methods are highly dependent on the
quality of object detection and can not capture the interactive
relationships accurately due to the lack of contextual informa-
tion in CNNs.

Transformer-based Methods
Considering that transformer architectures have succeeded

in many computer vision tasks [5], [34], recent works intro-
duce the transformer into the HOI detection task based on
DETR [2]. Instead of relying on a pre-trained object detector,
transformer-based methods generate a set of HOI triplets. The
attention mechanism in the transformer encoder can extract the
global feature, including humans, objects, and context. During
the transformer decoder stage, these methods introduce a set
of anchor-like learnable positional embeddings, a.k.a queries,
to predict HOI triplets directly in an end-to-end manner. With
the global feature, the network can easily mine the interactive
information between humans and objects so that transformer-
based methods can get quite advanced performance. Moreover,
as the number of queries determines that of predicted results,
transformer-based methods address the problem of a large
number of redundant human-object pairs suffered by the two-
stage ones. And due to the learnable nature of queries, the
regions where the network is interested can be optimized to
solve the problem faced by the one-stage methods.

In the beginning, transformer-based works examine how
to design the transformer decoders, of which there exist
two main streams, i.e., single-decoder and two-decoder meth-
ods. The single-decoder methods, e.g., QPIC [33] and HOI-
Transformer [51], use only one decoder to handle HOI detec-
tion. The mixed features may make the decoder unable to focus
on target regions. Some works have realized the differences
between attention regions of instances (the pairs of humans
and objects) and interactions, and then they disentangle the
HOI task into two sub-tasks: i.e., instance detection and
interaction prediction. These two-decoder works can be further
divided into cascaded methods [45] and parallel ones [4], [16].
By providing instance features to guarantee the performance of
interaction prediction, the cascaded method CDN [45] detects
instances firstly and predicts interactions secondly. However,
object detection will be disturbed by interactions due to the
cascaded linking way. To keep the instance decoder away from
interaction impacts, HOTR [16] and AS-Net [4] use two par-
allel decoders to deal with instance detection and interaction
prediction independently. However, these methods still suffer
from mis-grouped instance-interaction pairs. Recent parallel
work, DisTR [50], utilizes an attention module to fuse in-
stance features into interaction representations to provide joint
configurations of them. With the connection of instances and
interactions, DisTR proposes to further disentangle features,
where the transformer encoder and decoders are decoupled.
Another work, HOD [46], disentangles the decoder into three
independent parts. Then, HOD introduces random erasing
for the object decoder to improve generalization and pose
information for the human decoder to augment representations.

No matter how the decoders are designed, all existing
methods ignore the differences between humans and objects,
i.e., they do not dig out the relationships among humans,
objects, and interactions, indicating that there exists much
space for them to improve.

Some other transformer-based methods also try to intro-
duce additional information to boost performance. OCN [44],
PhraseHOI [21] and GEN-VLKT [23] use word embeddings
to assist in interaction prediction. Besides linguistic features,
STIP [47] also adopts spatial features with graph methods.
These methods also fail to explore the relationships among
humans, objects, and interactions. We argue that our method
is flexible so that can combine with them easily to achieve
higher performance.

III. METHOD

The overall architecture of our proposed HODN is shown
in Figure 2 and stated in Section III-A. Our framework is
proposed to model the relationships among humans, objects,
and interactions based on: 1) human features make more
contributions to interaction prediction than object ones; 2)
interactive information disturbs object detection but assists in
human detection. We propose a Human-Guide Linking method
(HG-Linking) in Section III-B to help the interaction decoder
predict interactions by holding the former relationship. In
Section III-C, we introduce the detail of a training strategy
named Stop-Gradient Mechanism (SG-Mechanism), which is
proposed to satisfy the latter one.

A. Overall Architecture

1) Global Feature Extractor: Given an image x ∈
R3×H×W , the CNN backbone extracts the visual feature map
zb ∈ RC×H′×W ′

from it, where H and W are the height
and width of the input image, H ′ and W ′ are those of the
feature map, and C is the number of channels. Then the
visual feature map zb is reduced in channel dimension from
C to d by a projection convolution layer with a kernel size of
1×1. Next, the spatial dimensions of it are collapsed into one
dimension by using a flatten operator. The processed feature
map zsrc ∈ Rd×(H′×W ′) combined with a positional encoding
p ∈ Rd×(H′×W ′) is fed into the transformer encoder to get
the global memory feature ze. In this stage, the multi-head
self-attention can focus on not only regions of humans and
objects but also global contextual information.

2) The HOI Decoders: The global memory feature ze,
along with the positional encoding p, is then utilized by two
parallel decoders to provide contextual information. The two
parallel decoders, the human decoder and the object decoder,
are used to detect their corresponding targets independently.
The human decoder transforms a set of randomly initialized
learnable positional embeddings QH =

{
qh
i | qh

i ∈ Rd
}N
i=1

(human queries) into Qout
H (human features) layer by layer,

where d is the channel dimension of the encoder and N is
the number of positional embeddings. So does the object
decoder, which transforms another set of learnable positional
embeddings QO (object queries) with the same size as
QH into Qout

O (object features). In this stage, the human
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Fig. 2. Overview framework of Human and Object Disentangling Network (HODN). Given an input image, the global memory feature ze is extracted by the
CNN backbone and the transformer encoder. Then two parallel decoders, i.e., human decoder and object decoder, introduce two sets of learnable positional
embeddings (QH and QO) to obtain human features and object features (Qout

H and Qout
O ). The interaction decoder receives them to mine interactive

information by the Human-Guide Linking method (described in Section III-B). Finally, the outputs of three decoders are sent into corresponding FFNs to get
HOI predictions. During the back-propagation stage of training, the Stop-Gradient Mechanism (presented in Section III-C) is used to process the interaction
gradients in a particular way.

features and the object features with the same subscript
are considered as the human-object pair automatically,
i.e., the human-object pair features can be represented as{(

qh,out
i , qo,out

i

)
| qh,out

i ∈ Qout
H , qo,out

i ∈ Qout
O

}N

i=1
. Note

that to guarantee this, the two sets of queries, QH and QO,
are initialized to be equal. Then, the interaction decoder
receives the human-object pair features, i.e., Qout

H and Qout
O ,

to query possible human-object pairs and dig out interaction
knowledge between them. The output from the interaction
decoder is denoted as Qout

A .
3) Final Prediction Heads: The final part of our framework

includes four feed-forward networks (FFNs), i.e., a human-
box FFN, an object-box FFN, an object-class FFN, and an
interaction FFN. The outputs of three decoders, i.e., Qout

H ,
Qout

O , and Qout
A , are then fed into the corresponding FFNs

to get human-box vectors, object-box vectors, object-class
vectors as well as interaction-class vectors. These vectors share
the same length in design, which is the same size of queries.
Therefore, we can get a set of HOI predictions with the size
of N , each of which is presented as ⟨human box, object box,
object class, interaction class⟩. With these HOI predictions,
we follow previous works [16], [33], [45], [51] for training
and inference.

B. Human-Guide Linking

We follow DETR [2] to design the human decoder and the
object decoder. However, unlike the human or object decoder
which only processes one kind of information, the interaction
decoder needs to fuse both human features and object features.
Considering that human features contribute more than objects,
we argue that naively taking the addition of two features
as inputs will not bring satisfactory performance. Hence, a
specific link method between the interaction decoder and the
others two decoders is non-trivial.

We first review the architectural details of the vanilla
transformer decoder, which takes a set of learnable positional
embeddings, the global memory feature ze, and the positional
encoding p as inputs to localize the bounding boxes and
predict the classes of targets, where the learnable positional
embeddings, a.k.a., queries, are designed to learn the potential
target regions. The transformer decoder is a stack of decoder
layers, each of which is composed of three main parts: a self-
attention module, a cross-attention module, and a feed-forward
network (FFN). The self-attention module in the i-th layer can
be formulated by the following:

Aself
i = softmax

((
Qout

i−1 +Q
)(
Qout

i−1 +Q
)T

√
d

)
Qout

i−1, (1)

where d denotes the channel dimension of the decoder, Q is
the queries, and Qout

i−1 is the outputs of the previous decoder
layer. Note that the Qout

0 is initialized with zeros, so the self-
attention module in the first layer is meaningless and can be
skipped as mentioned in DETR [2]. From Eq. 1, it can be seen
that with the help of the queries, the self-attention module can
capture the relationships among outputs of the previous layer
and inhibit duplicate ones. The cross-attention module in the
i-th layer can be formulated as:

Across
i = softmax

((
Aself

i +Q
)(
ze + p

)T
√
d

)
ze, (2)

where p is the positional encoding used by the encoder and ze
is the global memory feature output from the encoder. During
the cross-attention module, Aself

i is aggregated with the highly
responsive parts in ze and is further refined to improve the
detection of targets, where the queries provide information
of the attention position. Note that both in self-attention and
cross-attention, the queries are utilized to supply the spatial
information of the distinct regions. Hence, we argue that the
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Fig. 3. The details of the Human-Guide Linking depicted in Section III-B.

queries act as a guide to force the decoder where to focus on,
which is also verified by DETR [2].

Different from the vanilla transformer decoder, including
the human decoder and the object decoder, the interaction
decoder needs to model the HOI relationships. As analyzed
before, there is a strong correlation between interactions and
humans. Hence, based on the functionality of two attention
modules, we propose a Human-Guide Linking method to make
human features more contributive. The detail of this specific
linking method is given in Figure 3. In particular, we regard the
human features Qout

H from the human decoder as the positional
embeddings, a.k.a., interaction queries, which are utilized by
all attention layers to guide the interaction decoder where
to concentrate on. With this, the attention of the interaction
decoder can be around humans. However, just making the
interaction decoder pay attention to human-centric regions is
not sufficient. Object features Qout

O should also be considered
albeit less contributive than human ones. Instead of enumer-
ating permutations that may generate N × N possible pairs,
we consider a one-to-one same-subscript matching strategy
to assign the human-object pairs. So we regard the additions
of Qout

H and Qout
O as assigned pairs and feed them into the

self-attention module in the first layer to dig out the relation
between them and remove duplication prediction. Particularly,
we change the attention formula of the self-attention in the
first layer as below:

Aself
1 = softmax

((
Qout

H +Qout
O

)(
Qout

H +Qout
O

)T
√
d

)
Qout

O .

(3)

Unlike the vanilla decoder where the self-attention in the
first layer is meaningless, we make full use of it, which can
construct the relationship between humans and objects quickly.
The attention modules in the following decoder layers only
take human features into account, not object features anymore.

With human features dominant and object ones auxiliary,
the interaction decoder can effectively model the interaction
relationships between humans and objects.

C. Stop Gradient Mechanism

Considering another HOI relationship that interactions have
a negative influence on object detection but a positive influence
on human detection, we propose a special training strategy,
Stop Gradient Mechanism (SG-Mechanism), to handle the
relationship. As shown in our framework, the outputs from the
HOI Decoders are fed into the Final Prediction Heads, i.e., the
Qout

A are sent into the interaction FFN, the Qout
H are sent into

the human-box FFN, and the Qout
O are sent into the object-

box and object-class FFN. The final loss to be minimized is
calculated in four parts: location loss of human boxes Lh

loc,
that of object boxes Lo

loc, object classification loss Lo, and
interaction classification loss La, formulating as:

Ltotal = Lh
loc + Lo

loc + λoLo + λaLa, (4)

where λo and λa are the weights of two classification losses,
and Lloc is computed by box regression L1 loss and the GIoU
loss [32] with weighting coefficients λreg and λgiou, which
can be formulated as:

Lloc = λregLreg + λgiouLgiou. (5)

The gradients w.r.t. Lo
loc and Lo update the parameters of the

object decoder towards the optimal direction of object detec-
tion. In general, the gradients w.r.t. La will pass through both
the human decoder and the object decoder since the interaction
decoder receives the outputs from the two decoders. However,
considering the negative influence on object detection, we stop
the gradients w.r.t. La propagating into the object decoder to
keep optimal updates for object detection, which means the
update of parameters of the object decoder is only computed
by losses related to objects:

wo ← wo − α (∇wo
(Lo

loc + λoLo)) , (6)

where wo denotes the parameters of the object decoder and α
is the learning rate. For the learnable nature of the positional
embeddings, the update of the object queries QO can be
represented as:

QO ← QO − α (∇QO
(Lo

loc + λoLo)) . (7)

Since human detection is not disturbed by interaction gradients
but benefits from them, we maintain the update for the human
decoder with parameters wh as:

wh ← wh − α
(
∇wh

(
Lh
loc + λaLa

))
. (8)

So does the update for learnable human queries:

Qh ← Qh − α
(
∇Qh

(
Lh
loc + λaLa

))
. (9)

With SG-Mechanism, the detection of both humans and
objects can achieve the best performance. And with better
detection performance, the following interaction prediction can
be further improved.
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Fig. 4. The interaction category of both (a) and (b) is “throw obj”. For human
understanding, it is easy to determine the interaction class in (a) but hard in
(b). And in (c), the mAP results based on the V-COCO test set demonstrate
that the HOI detection with masked humans is much worse than that with
masked objects and the gap becomes larger with higher masking probability.

IV. EXPERIMENT

A. Experiment Setup

1) Dataset: We follow the evaluation of most previous
works and report the mean average precision (mAP) on two
public benchmarks, i.e., V-COCO [9] and HICO-Det [3]. V-
COCO dataset, a subset of MS-COCO [24], contains 10,346
images (5,400 in the trainval set and 4,946 in the test set).
The images in it are annotated with 80 object classes and 29
action classes. Among these action classes, four of them are
not associated with semantic roles, so the role mAP of the
V-COCO test set is only computed with the other 25 action
classes. In HICO-Det, there are 38,118 images for training
and 9,658 for testing annotated with 80 object classes and
117 action classes.

2) Metric: We use the mean average precision (mAP) to
report performance. An HOI category is defined as an action
class for V-COCO while a pair of an object class and an
action class for HICO-Det. Same as the standard evaluation
scheme, a detection is judged as a true positive if the predicted
human boxes and object boxes both have IoUs larger than 0.5
with the corresponding ground-truth boxes and if the predicted
HOI category is also correct. And the AP is calculated per
HOI category. For the V-COCO dataset, we report the role
mAP in two scenarios, where scenario 1 needs to predict the
cases in which humans interact with no objects while scenario
2 ignores these cases. For the HICO-Det dataset, we report
performance in two settings: default setting and known object
setting. In the former setting, the performance is evaluated on
all test images while in the latter one, each AP is calculated
on images that contain the target object class. And in each

TABLE I
COMPARISON OF HUMAN AND OBJECT DETECTION PERFORMANCE ON

V-COCO TEST SET WITH OR WITHOUT ACTION BRANCH BY QPIC [33],
DISTR [50], AND OUR HODN. R AND P REPRESENT RECALL RATE AND

PRECISION RATE RELATIVELY. THE SUBSCRIPTS O AND H DENOTE
OBJECTS AND HUMANS RESPECTIVELY. THE “GAP” ROW IS CALCULATED

AS THE SUBTRACTION OF RESULTS WITHOUT AND WITH ACTION.

Ro Po mAPo Rh PH APh

QPIC 73.72 21.51 43.69 98.67 6.92 74.95
w/o action 76.10 (↑) 24.54 (↑) 45.34 (↑) 98.46 (↓) 1.53 (↓) 71.02 (↓)
gap 2.38 3.03 1.65 -0.21 -5.39 -3.93

DisTR 77.11 23.51 44.84 98.64 4.99 73.80
w/o action 78.03 (↑) 23.72 (↑) 45.20 (↑) 98.44 (↓) 4.00 (↓) 72.67 (↓)
gap 0.92 0.21 0.36 -0.20 -0.99 -1.13

HODN 85.20 25.10 53.20 98.93 5.77 81.68
w/o action 86.01 (↑) 25.28 (↑) 53.31 (↑) 98.78 (↓) 5.04 (↓) 80.59 (↓)
gap 0.81 0.18 0.11 -0.15 -0.73 -1.09

setting, based on the number of HOI categories in the training
set, we design three evaluation types: full, rare, and non-rare.

3) Implementation Details: We adopt ResNet-50 [11] fol-
lowed by a six-layer transformer encoder as our global feature
extractor. For HOI decoders, the layer number of the human,
object, and interaction decoder are all set to 6. Layers in en-
coder and decoders have 8 heads, and the dimension inside the
transformer architecture is 256. The query size N is set to 100
for V-COCO and 64 for HICO-Det since the average number
of variant human-object pairs per image in V-COCO is larger
than that in HICO-Det, which is as mentioned in CDN [45].
The parameters of our proposed network are initialized with
MS-COCO pre-trained DETR [2]. For the missing parameters,
we initialize them randomly. During training, the AdamW [29]
optimizer with the batch size of 16, weight decay of 10−4, the
initial learning rate of 10−5 for the backbone, and 10−4 for
other parts is used. For V-COCO, to eliminate overfitting, we
train our HODN for 90 epochs, with learning rates decaying by
10 times every 10 epochs after the 60th epoch and freeze the
parameters of the backbone. And for HICO-Det, We train the
whole HODN for 90 epochs where learning rates are decayed
by 10 times at the 60th epoch. The hyper-parameters weight
coefficients in training loss λreg, λgiou, λo and λa are set to 1,
2.5, 1, 1, respectively. And the threshold of pair-wise NMS is
set as 0.7 in inference, the same as CDN. As for application
experiments, all experimental settings are the same as those
used in the original paper [23], [47] for a fair comparison.

B. Relationships among humans, objects, and interactions

In this sub-section, we first verify whether humans and
objects have different mutual effects on the interactions. In
terms of how humans and objects impact interactions, we
argue that humans make more contributions to interaction
prediction than objects since human feature contains more
information (such as human postures and facial expression)
that is strongly related to interactions [1], [8], [25]. It can be
easily verified by masking the regions of humans or objects
in the images and inferring what the interaction is. As in
Figure 4a, although we can not see the object, it is still easy
to infer that a man is throwing something. On the contrary, in
Figure 4b, it is quite hard to determine whether the interaction
is “hit obj” or “catch obj” or any else with only the “sports
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ball” visible. To further verify the hypothesis, we use a pre-
trained HOI detector, QPIC [33], to observe differences in
results by masking humans and objects on the test set of V-
COCO [9] respectively. Note that the average of human areas
and that of object areas are similar, which means that masking
humans or objects may cause the same degree of information
missing, so the performance comparison between the two is
principally fair. Results in Figure 4c show that, without either
humans or objects, the performance drops sharply. Regardless
of probability, the performance with masked humans is always
lower than that with masked objects. Furthermore, the perfor-
mance gap becomes larger as the degree of masking increases.
That is to say, both of them make contributions to interaction
prediction, but humans contribute much more than objects.

To further explore whether interactions impact humans and
objects differently, we modify QPIC by removing the action-
class feed-forward network which is used to classify the
interactions, and we train it with the same setting as QPIC.
The V-COCO benchmark serves as the training set and test set.
Without the interaction classification, all features are directly
optimized for human detection and object detection so that the
detection performance of both should be improved intuitively.
However, things do not turn out that way. We report the results
with and without interaction classification in Table I, along
with the gaps as the subtraction of results without interaction
and results with interaction. As shown in Table I, without
actions, object detection can be improved a lot (recall rate,
precision rate, and mAP are increased by 2.37, 3.03, and 1.65,
respectively), implying that object detection is disturbed by
actions. On the contrary, the performance of human detection
declines, with metrics decreasing by 0.21, 5.39, and 3.93,
demonstrating the necessity for interactions. We also conduct
similar experiments on DisTR [50] and our HODN since both
methods claim the disentanglement for instances and interac-
tions. From Table I, the slight performance discrepancies of ob-
ject detection in DisTR indicate that separating detection from
interactions is an efficient way to improve object detection.
The better results compared with QPIC verify this. However,
human detection in DisTR shows inadequate performance
since the relatively independent instance detection stream stops
interactions assisting human detection. From the results of
QPIC and DisTR, we can conclude that interactions influence
human detection and object detection quite differently and
instance-level disentanglement only helps object detection. In
terms of HODN, it shows significant superiority in both human
and object detection. The gap between HODN and HODN
without action is also less than other methods, we owe this
to our disentangled human and object decoders and our SG-
Mechanism strategy.

As analysis and experimental results above, we conclude
the HOI relationships are: 1) for interaction prediction, human
features make more contributions than object ones; 2) for
human and object detection, interactive information assists in
the former but obstructs the latter.

C. Quantitative Analysis
1) Performance Comparisons: We first evaluate the perfor-

mance of our method on the HICO-Det test set with ResNet-

50 [11] as the backbone, and report result in Table II. Our
method achieves a competitive result, e.g., 33.14 mAP on
the full evaluation for the default setting. Compared with
transformer-based single-decoder works HoiTransformer [51]
and QPIC [33], our HODN has achieved 41.26% and 14.00%
relative mAP gain. Even when comparing PhraseHOI [21],
OCN [44], and SSRT [14] which introduce prior knowledge
of language, our method still attains relative improvements
of 13.14%, 7.21%, and 9.16%. We argue that this gap comes
from the limitation of the single-decoder that can not explicitly
model the HOI relationships regardless of adopting auxiliary
knowledge. Among multiple-decoders methods, our method
outperforms 32.03% by HOTR [16], 14.79% by AS-Net [4],
4.28% by CDN [45], and 4.38% by DisTR [50]. Even with
multiple decoders, these methods ignore the different poten-
tiality between humans and objects, showing unsatisfactory
performance. We can conclude that except for the GEN-
VLKT [23] that introduces extra semantic information, our
method achieves the best performance. We then conduct
performance comparison experiments on the V-COCO test set.
From Table III, our method achieves 67.0 role mAP in scenario
1 and 69.1 in scenario 2, outperforming all existing methods
without extra knowledge. In particular, compared to methods
only appearance feature referred to, we promote the state-
of-the-art work, DisTR [45], with about 1.21% and 0.88%
performance improvement under the two scenarios. Moreover,
compared to methods with extra knowledge, our method is
still competitive with similar performance with state-of-the-
art method STIP [47] (67.0 of ours compared with 66.0 of
STIP in scenario 1 and 69.1 compared with 70.7 in scenario
2). Note that both GEN-VLKT and STIP introduce extra
knowledge and complicated structures. However, their per-
formance varies on the two datasets. GEN-VLKT introduces
the text encoder in CLIP [30] to initialize the weights of
the interaction classifier FFN, which provides abundant prior
knowledge on HICO-Det. However, for V-COCO with a large
number of categories, the training samples are insufficient to
train which leads to inefficiency. STIP uses graphs to construct
the relationships among humans and objects. It is easy to form
interactive relationships when dealing with a few HOI triplets.
Nevertheless, it becomes quite hard when the number of
triplets increases. Therefore, it performs excellent results on V-
COCO, while showing insufficiency on dense triplets’ datasets
like HICO-Det. We argue that our method considers less
extra knowledge which makes our method more generalized.
Our method performs consistently on both benchmarks with
somehow similar performance to the best one on each dataset,
which implies the practicality of our method.

2) Application to Existing Works: As we analyzed before,
many existing works only disentangle HOI detection into
instance detection and interaction prediction, i.e., they only
construct the relationships between instances and interactions,
not distinguish humans and objects. Note that our motivation
and method are orthogonal to them. We can combine HODN
with them by further disentangling instances into humans
and objects and adopting our proposed HG-Linking and SG-
Mechanism. Almost all two-decoder transformer-based meth-
ods can combine with ours. Here we take STIP [47] and GEN-
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TABLE II
PERFORMANCE COMPARISON ON HICO-DET DATASET. EACH LETTER IN THE FEATURE COLUMN STANDS FOR A: APPEARANCE/VISUAL FEATURE, S:

SPATIAL FEATURES [7], L: LINGUISTIC FEATURE OF LABEL SEMANTIC EMBEDDINGS, P: HUMAN POSE FEATURE.

Default Known Object
Method Backbone Feature Full Rare NonRare Full Rare NonRare

Traditional Methods:
iCAN [7] ResNet-50 A+S 14.84 10.45 16.15 16.26 11.33 17.73
iHOI [41] ResNet-50-FPN A+S 13.39 9.51 14.55 - - -
TIN [20] ResNet-50 A+S+P 17.22 13.51 18.32 19.38 15.38 20.57
DRG [6] ResNet-50-FPN A+S+P+L 19.26 17.74 19.71 23.40 21.75 23.89
VCL [12] ResNet-50 A+S 19.43 16.55 20.29 22.00 19.09 22.87
VSGNet [12] ResNet-152 A+S 19.80 16.05 20.91 - - -
FCMNet [27] ResNet-50 A+S+P 20.41 17.34 21.56 22.04 18.97 23.12
ACP [17] ResNet-152 A+S+P 20.59 15.92 21.98 - - -
PastaNet [19] ResNet-50 A+P 22.65 21.17 23.09 24.53 23.00 24.99
ConsNet [28] ResNet-50-FPN A+S+L 22.15 17.12 23.65 - - -
IDN [18] ResNet-50 A+S 23.36 22.47 23.63 26.43 25.01 26.85
UnionDet [15] ResNet-50-FPN A 17.58 11.72 19.33 19.76 14.68 21.27
IP-Net [40] Hourglass-104 A 19.56 12.79 21.58 22.05 15.77 23.92
PPDM [22] Hourglass-104 A 21.73 13.78 24.10 24.58 16.65 26.84
GG-Net [49] Hourglass-104 A 23.47 16.48 25.60 27.36 20.23 29.48

Transformer-based Methods:
HoiTransformer [51] ResNet-50 A 23.46 16.91 25.41 26.15 19.24 28.22
HOTR [16] ResNet-50 A 25.10 17.34 27.42 - - -
AS-Net [4] ResNet-50 A 28.87 24.25 30.25 31.74 27.07 33.14
QPIC [33] ResNet-50 A 29.07 21.85 31.23 31.68 24.14 33.93
CDN [45] ResNet-50 A 31.78 27.55 33.05 34.53 29.73 35.96
PhraseHOI [21] ResNet-50 A+L 29.29 22.03 31.46 31.97 23.99 34.36
OCN [44] ResNet-50 A+L 30.91 25.56 32.51 - - -
SSRT [14] ResNet-50 A+L 30.36 25.42 31.83 - - -
DisTR [50] ResNet-50 A 31.75 27.45 33.03 34.50 30.13 35.81
STIP [47] ResNet-50 A+S+L 32.22 28.15 33.43 35.29 31.43 36.45
GEN-VLKT [23] ResNet-50 A+L 33.75 29.25 35.10 36.78 32.75 37.99

HODN ResNet-50 A 33.14 28.54 34.52 35.86 31.18 37.26
HODN + GEN-VLKT ResNet-50 A+L 34.56 30.26 35.84 37.86 33.93 39.03

KLVT [23] as examples, which are state-of-the-art methods on
V-COCO and HICO-Det, respectively. As shown in the last
row of Table II, combined with our work, the performance of
GEN-VLKT increases by 2.40% and 2.94%, attaining 34.56
mAP and 37.86 mAP under default and known objects settings
on HICO-Det. As for STIP in the last row of Table III, STIP
can achieve 66.5 mAP and 71.5 role mAP V-COCO, gaining
improvements of 0.91% and 1.13%. Both verify that existing
methods can benefit easily from our method and achieve new
state-of-the-art results.

D. Ablation Study

1) HG-Linking: The specialness of HG-Linking (Sec-
tion III-B) is to hold one of the HOI relationships, i.e., making
Qout

H (human features) as the principal and serving Qout
O

(object features) as the auxiliary. To prove its effectiveness,
we first verify the difference between the contributions of
humans and objects. Particularly, we treat them as the same
by passing the addition of Qout

H and Qout
O into the interaction

decoder. Here, we adopt two strategies to link: 1) the interac-
tion decoder takes the addition as the positional embeddings
(interaction queries) like a vanilla decoder; 2) the interaction
decoder introduces a set of randomly initialized learnable
positional embeddings and receives the addition as an extra
input of the 1st self-attention module. For convenience, we
name the first strategy as “addition-guide” and the second as

“random-guide” and report the results in the first row and the
second row of Table IV, respectively. We observe a perfor-
mance decline of more than 1.3% and 3.7%, respectively, in-
dicating the necessity of disentangling the features of humans
and objects. The sharper performance drop of the “random-
guide” compared to the “addition-guide” also indicates the
non-trivial effect of the positional embeddings. Then we verify
the superior contribution of humans compared with objects by
oppositely treating human and object features, i.e., “object-
guide”. In the 3rd row of Table IV, with “object-guide”, the
performance decreases with a margin of 3.8 and 3.9 role mAP,
implying the more contributive potentiality of human features.
The degradation of performance with replaced link methods
proves the effectiveness and verifies that humans and objects
have different degrees of contributions to interactions, and the
former are more helpful ones.

2) SG-Mechanism: We further conduct the ablation study
for SG-Mechanism (Section III-C). We design SG-Mechanism
by holding another HOI relationship: interactions will aid hu-
man detection but interfere with object detection. To check its
effectiveness, we remove SG-Mechanism to allow interaction
gradients to optimize the object decoder. The performance
gap is shown in the 4th row of Table IV indicates that this
mechanism does protect object detection from being disturbed
by interactions. As we stated, SG-Mechanism can eliminate
the negative impact of interaction on objects, and better
object detection can bring more accurate interaction prediction.
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TABLE III
PERFORMANCE COMPARISON ON V-COCO DATASET. AP#1

role AND AP#2
role

ARE ROLE MAP IN SCENARIO 1 AND 2. IN THE BACKBONE COLUMN, R
AND HOG REPRESENT RESNET AND HOURGLASS, RESPECTIVELY. EACH
LETTER IN THE FEATURE COLUMN STANDS FOR A: APPEARANCE/VISUAL
FEATURE, S: SPATIAL FEATURES [7], L: LINGUISTIC FEATURE OF LABEL

SEMANTIC EMBEDDINGS, P: HUMAN POSE FEATURE.

Method Backbone Feature AP#1
role AP#2

role

Traditional Methods:
iCAN [7] R50 A+S 45.3 52.4
iHOI [41] R50-FPN A+P 45.8 -
TIN [20] R50 A+S+P 48.7 -
DRG [6] R50 A+S+P+L 51.0 -
VCL [12] R50 A+S 48.3 -
VSGNet [12] R152 A+S 51.8 -
FCMNet [27] R50 A+S+P 53.1 -
ACP [17] R152 A+S+P 53.2 -
PastaNet [19] R50 A+P 51.0 57.5
ConsNet [28] R50-FPN A+S+L 53.2 -
IDN [18] R50 A+S 53.3 60.3
UnionDet [15] R50-FPN A 47.5 56.2
IP-Net [40] HOG104 A 51.0 -
PPDM [22] HOG104 A - -
GG-Net [49] HOG104 A 54.7 -

Transformer-based Methods:
HoiTransformer [51] R50 A 52.9 -
HOTR [16] R50 A 55.2 64.4
AS-Net [4] R50 A 53.9 -
QPIC [33] R50 A 58.8 61.0
CDN [45] R50 A 62.3 64.4
PhraseHOI [21] R50 A+L 57.4 -
OCN [44] R50 A+L 64.2 66.3
SSRT [14] R50 A+L 63.7 65.9
DisTR [50] R50 A 66.2 68.5
STIP [47] R50 A+S+L 66.0 70.7
GEN-VLKT [23] R50 A+L 62.4 64.5

HODN R50 A 67.0 69.1
HODN+STIP R50 A+S+L 67.5 71.9

TABLE IV
ABLATION EXPERIMENTS ON V-COCO TEST SET, WHERE ROW 1 TO 3 ARE

ABLATION STUDIES FOR HG-LINKING INTRODUCED IN SECTION III-B,
AND ROW 4 TO 5 FOR SG-MECHANISM DEPICTED IN SECTION III-C. FOR
HG-LINKING, WE COMPARE DIFFERENT STRATEGIES TO LINK DECODERS,

WHICH INCLUDES TAKING THE ADDITION OF HUMAN FEATURES AND
OBJECT FEATURES (ROW 1), RANDOM LEARNABLE VECTORS (ROW 2),
AND OBJECT FEATURES (ROW 3) AS POSITIONAL EMBEDDINGS OF THE

INTERACTION DECODER, RESPECTIVELY. FOR SG-MECHANISM,
ABLATION EXPERIMENTS INVOLVE SG-MECHANISM REMOVAL (ROW 4)

AND SG-MECHANISM ADOPTION TO THE HUMAN DECODER (ROW 5).

#Row Ablation Item AP#1
role AP#2

role

HODN 67.0 69.1

1 human-guide → addition-guide 65.1 (↓ 1.9) 67.2 (↓ 1.9)
2 human-guide → random-guide 62.7 (↓ 4.4) 64.8 (↓ 4.3)
3 human-guide → object-guide 63.3 (↓ 3.8) 65.2 (↓ 3.9)

4 w/o SG-Mechanism 64.7 (↓ 2.3) 66.9 (↓ 2.2)
5 SG-Mechanism to Human 64.3 (↓ 2.7) 66.6 (↓ 2.5)

Moreover, we also apply SG-Mechanism to the detection of
humans and show the result in row 5 of Table IV. Note that
by adopting SG-Mechanism only for humans, the interaction
gradients will backpropagate to the object decoder while not to
the human decoder, which means not only the object decoder
will be disturbed but also the human decoder can not benefit
from interaction prediction. The larger degradation of the role
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Fig. 5. Performance comparison based on the different number of parameters.
All results are conducted under scenario 1 on the V-COCO test set. The
light blue dashed line, representing the performance of the state-of-the-art,
OCN [44], with the role mAP of 64.2, is viewed as the baseline to measure
against. Our HODN with tiny, small, and base parameter settings is signified
by three red stars. And the three red stars locate higher than the light blue
dashed line, demonstrating all HODNs outperform previous methods.

mAP (from 64.7 to 64.3 and from 66.9 to 66.6) implies that
interactions assist in human detection though slightly. We can
conclude that only by adopting SG-Mechanism to objects, as
our HODN does, the detection of both humans and objects
can achieve the best performance.

E. Parameters vs. Performance

Considering that the disentangling decoders introduce more
parameters, we conduct experiments about the performance
versus the number of parameters on the V-COCO test set.
Here we adopt two other smaller networks, named HODN-tiny
(HODN-T) and HODN-small (HODN-S). In particular, two
parameter-shared 3-layer decoders for humans and objects,
as well as a 3-layer interaction decoder, are included in the
HODN-T. And two shared 6-layer decoders and one 3-layer
interaction decoder are adopted in the HODN-S. Note that we
still utilize independent queries to disentangle the features of
humans and objects even when parameters are shared. The
comparison result is shown in Figure 5 by reporting the role
mAP under scenario 1 since some of the existing works do
not support evaluation for scenario 2. As shown in Figure 5,
HODN outperforms previous works under various settings
of the number of parameters. Even though the improvement
compared with OCN [44] is slight, HODN-T introduces much
fewer parameters (HODN-T with 39.8M and 41.8M with
OCN). The role mAP rises dramatically as the number of
parameters increases and reaches an optimal performance at
HODN setting. Note that even compared to CDN-L (63.9
mAP in scenario 1), which introduces much more parameters
(about 67.0M), our HODN (with about 57.9M parameters) still
maintains a significant advantage. We conclude that there is no
direct correlation between performance and the number of pa-
rameters. Our efficiency comes more from our well-designed
framework than from the larger number of parameters.

F. Qualitative Results

The performance of HOI detection relies on the accuracy
of instance location and interaction prediction. We argue that
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Fig. 6. Visualization samples with ground-truth (left), as well as the detection results of QPIC (middle) and HODN (right). Bounding boxes of humans and
objects are drawn with blue and yellow boxes. Interaction categories with confidence are depicted with blue characters. For clearer visualization, we zoom in
interaction categories to the left-top corner of images with black characters for correct predictions and red for incorrect ones.
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Fig. 7. Visualization of attention maps of decoders in QPIC and HODN with the corresponding ground-truth bounding boxes. The interaction categories are
depicted on the left side of the images. As can be seen from the figure, decoders in HODN can capture finer areas according to targets, while QPIC mixes
all of them and is biased toward object regions. H-dec: the human decoder, O-dec: the object decoder, I-dec: the interaction decoder.

HODN can detect much more objects, especially occluded
ones or overlapping ones. We visualize some examples and use
a classical HOI detector QPIC [33] for comparison. On one
hand, the location of objects will be disturbed if introducing
interaction gradients and that of humans will be improved,
as we previously examined. As shown in the left-top images
of Figure 6, QPIC locates two “surfboards” in one box, while
our HODN does not conflate a bunch of objects. In the left-
middle images, QPIC only locates a little part of the “bed”,
while our HODN can predict the entire “bed” even though
most parts of it are occluded by a human. Furthermore, in the
left-bottom images, even with only the legs visible, HODN
can still locate the man entirely with the help of interactions,
whereas QPIC fails. We owe this to SG-Mechanism, which
assists in human detection and protects object detection from
negative influence by interactions. On the other hand, with
information like posture, human features are more vital to
interaction prediction. However, object features, albeit helpful
for interaction prediction, may introduce bias due to the

imbalanced data distribution. Therefore, the prediction of
interactions is likely to overfit objects if the network pays too
much attention to object features. For example, in the right-top
images of Figure 7, QPIC mispredicts the interaction “hold”
as “ride” when recognizing the “motorcycle”, since “A person
is riding a motorcycle” happens with a high probability. A
similar situation happens in the right-middle and the right-
bottom images of Figure 7, where interaction “lay” has a high
correlation with “bed” and “using snowboard” has a strong
association with “snowboard”, misleading the predictions of
QPIC. On the contrary, HODN predicts interactions accurately.
We owe this to HG-Linking, which makes the interaction
decoder pay more attention to humans and less attention to
objects.

We also visualize the attention maps extracted from the
last layer of the decoder of QPIC and decoders of HODN in
Figure 7. To see more clearly, we also draw the ground truth
bounding boxes of humans and objects. Our three decoders can
concentrate on their own goal regions, i.e., the human decoder
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pays attention to humans, the object decoder to objects,
and the interaction decoder to the regions that contribute to
understanding actions. For example, in the left-bottom images,
the human decoder focuses on the man’s head and limbs, while
the attention of the interaction decoder becomes more fine-
grained after combining object features: the highlight parts
become the man’s hands and the sports ball. In the right-
bottom images, the interaction decoder shifts attention from
the head and limbs of the man to the interaction regions
where humans and horses come into contact. On the contrary,
QPIC uses only one decoder to handle human detection, object
detection, and interaction prediction. Consequently, it can not
distinguish their difference. As in the visualization of attention
maps, QPIC only focuses on object-around regions the most
of time. Therefore, the missing objects or incorrect location
may cause QPIC to fail to find the correct HOI triplets. This
also explains why our method performs much better than it.

V. CONCLUSION

In this paper, we analyze the relationships among humans,
objects, and interactions in two aspects: 1) for interaction,
human features make more contributions; 2) for detection,
interactive information helps human detection while disturbing
object detection. Accordingly, we propose a Human and
Object Disentangling Network (HODN), a transformer-based
framework to explicitly model the relationships, which con-
tains two parallel detection decoders for human and object
features, and one interaction decoder for final interactions. A
Human-Guide Linking method is used by the interaction de-
coder to make human features dominant and object ones aux-
iliary. Particularly, human features are sent into the interaction
decoder as positional embeddings to make the decoder focus
on human-centric regions. Finally, considering that interactive
information has the opposite influence on human detection
and object detection, we propose Stop-Gradient Mechanism,
where interaction gradients are not utilized to optimize object
detection but human detection. Since our method is orthogonal
to the existing methods, they can be easily combined with our
method and benefit from it. Extensive experiments conducted
on V-COCO and HICO-DET demonstrate that our method
brings a significant performance improvement over the state-
of-the-art HOI detection methods.
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