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Skeleton-based Gesture Recognition with Learnable
Paths and Signature Features
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Abstract—For the skeleton-based gesture recognition, graph
convolutional networks (GCNs) have achieved remarkable per-
formance since the human skeleton is a natural graph. However,
the biological structure might not be the crucial one for motion
analysis. Also, spatial differential information like joint distance
and angle between bones may be overlooked during the graph
convolution. In this paper, we focus on obtaining meaningful joint
groups and extracting their discriminative features by the path
signature (PS) theory. Firstly, to characterize the constraints and
dependencies of various joints, we propose three types of paths,
i.e., spatial, temporal, and learnable path. Especially, a learnable
path generation mechanism can group joints together that are not
directly connected or far away, according to their kinematic char-
acteristic. Secondly, to obtain informative and compact features,
a deep integration of PS with few parameters are introduced.
All the computational process is packed into two modules, i.e.,
spatial-temporal path signature module (ST-PSM) and learnable
path signature module (L-PSM) for the convenience of utilization.
They are plug-and-play modules available for any neural network
like CNNs and GCNs to enhance the feature extraction ability.
Extensive experiments have conducted on three mainstream
datasets (ChaLearn 2013, ChaLearn 2016, and AUTSL). We
achieved the state-of-the-art results with simpler framework and
much smaller model size. By inserting our two modules into the
several GCN-based networks, we can observe clear improvements
demonstrating the great effectiveness of our proposed method.

Index Terms—Gesture recognition, Graph convolutional net-
work, Path signature features

I. INTRODUCTION

GESTURE recognition is an active research topic of
computer vision in recent years for its wide range of

applications, such as sign language translation [1] and human-
computer interaction [2]. A vast of literature has been devoted
to this field [3]–[5]. Compared with RGB-based methods
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Fig. 1: The limits of GCNs and a comparison of previous work
with our proposed Learnable Path Module.(a) On the left, the
limited receptive field of GCNs is shown, which is constrained
by the biological structure of the human body, as indicated in
the figure. On the right, the disappearance of high-frequency
features due to the smoothing effect of feature averaging is
shown.(b) shows previous work has defined joint connections
beyond natural body structures.(c) shows the Learnable Path is
composed of the most relevant joints without any predefinition
before.

[6]–[8], skeleton-based gesture recognition shows superior
performance facing various challenges like noisy background,
occlusion, camera view and illumination variations [9]–[12].

The skeleton sequence can be reshaped into a pseudo-image
or a series of joint coordinates where CNNs [13]–[15] or
RNNs [16]–[18] are employed to predict the action label. One
of the main drawbacks is that the inherent skeleton and joint
relationships are ignored. Since the skeleton can be interpreted
as a graph, the graph convolutional network (GCN) [19] was
adopted to replace CNNs and RNNs for feature extraction.
Most recently, GCN-based algorithms have reached excellent
results and gone mainstream in this area [20]–[26].

Even though, it is still a key unsolved problem to generate
discriminative representation for describing the spatial body
structure and dynamic motion pattern. We divide this problem
into two folds and analyze them separately. The first issue is to
define and group a set of joints (or known as region of interest)
which are closely connected semantically and kinetically. The
GCN-based methods typically transform the joint sequences
into a series of graphs and apply graph convolution onto
the data. Hence, regions of interest are defined based on the
biological skeleton structure. Each region of interest is the
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one-hop neighborhood of a node on the graph [26], which
is straightforward. As shown in the left part of Figure 1(a),
for the joint of elbow, the region of interest for GCNs is
its adjacent connected shoulder and hand joints. These joint
connections defined by the physical body are intuitive spatial
constraints, but may not be the crucial ones to distinguish
gestures or actions. For instance, it is ideal to have an instant
information transformation between the left hand and right
hand joints to evaluate their relative movement for the recog-
nition of the gesture Clapping, while it is not accessible in a
single GCN layer. Recent studies [23], [24], [27], [28] have
tried to solve this issue by enlarging the local neighborhood
from 1 hop to k hops or directly learning non-local joint
connectivity, but they are still limited in the GCN framework.
As shown in Fig. 1, in previous path signature based works,
[29] manually defined combinations of any two or three joints
to break the limitation of region of interest being constrained
by natural body connections. Building upon this work, [9] and
[10] selected the predefined joint combinations and kept the
more informative ones, such as the left and right hand joints.

The second issue is how to extract and aggregate the critical
spatial and temporal differential features, within the region of
interest to form discriminative representation for classification.
For the GCN based methods, within each region of interest, the
message passing process is conducted spatially among nodes
by averaging the joint features in the local neighborhood where
information is aggregated and local dependency is described.
This process is essentially a Laplacian smoothing filter in the
spectral domain [30]. Specifically, in the gesture recognition,
when the graph convolution is applied on the 3-dimension joint
coordinates, the centroids of the local joint sets are computed
as shown in Fig. 1, which may incur the loss of high-frequency
information of the skeleton structure, such as the curvature
of wrists and elbows. On the other hand, several researches
observed that the temporal differential features are beneficial
for describing the motion properties in video analysis [31]–
[33]. Consequently, it has become a universal solution to
design a multi-stream network in advanced researches [20],
[21], [23]–[25], where the raw joint data and their spatial or
temporal differential feature are fed into different streams and
fused at last. It is in essence a model ensemble strategy which
may be too heavy to be implemented on mobile devices.

Instead of designing a multi-stream neural network to
process different information, we regard data sequence as the
trajectory of the joint in spatial and temporal dimensions.
In order to obtain the abundant geometrical and analytical
properties of the trajectory, we introduce the concept of path
and its signature features which come from rough path theory,
a branch of stochastic analysis [34]. Through flexible path
definition and its signature features, we can aggregate the
critical spatial and temporal information without the excessive
number of parameters caused by the ensemble strategy.

In previous path signature based methods [9], [10], [29],
path is defined in a hand-crafted way. For the skeleton gesture
data, these path definitions cannot reveal the joint relationship
during the movement. Therefore, we leverage the self-attention
mechanism [35] to enlarge the model capability, adaptively
select the most correlative joints regardless of the biological

skeleton structure, and group them into path. We propose
to generate and compare three kinds of paths to extract
features in diverse domains, i.e., the spatial path, temporal
path, and learnable path. Further, a compact deep signature
feature extraction block is designed by inserting several sets
of parameters to improve the efficiency and effectiveness of PS
calculation. We integrate these paths generation and signature
features extraction procedures into two plug-and-play blocks,
the spatial-temporal path signature module (ST-PSM) and
learnable path signature module (L-PSM). These two blocks
can not only obtain compact deep signature features, but also
be inserted into other neural networks like CNNs and GCNs to
provide the discriminative deep path signature features. Exten-
sive experiments are conducted on three mainstream datasets
(ChaLearn 2013 [36], ChaLearn 2016 [37], and AUTSL [38])
to evaluate the effectiveness and flexibility of our method.
Using our path signature based modules and a simple CNN
framework, we achieve the state-of-the-art results on ChaLearn
2013 and ChaLearn 2016 with much smaller model size.
We also test our path signature based modules on AUTSL
by inserting them into existing GCN frameworks to verify
their compensatory expressive power and a universal boost in
performance is observed. By visualizing learnable paths, we
clearly show that joints are grouped differently according to
motion dynamics.

In general, we conclude our contributions in three aspects:
• we adopt the path signature theory as a substitute for

deep learning integration strategy, which was introduced
to differentiate gesture movement trajectories. Compared
to previous integration strategies, path signature requires
fewer parameters and can be better integrated with the
deep learning.

• We are the first to design learnable semantic-aware paths
for the path signature based method. We overcome the
limitation of the GCNs receptive field caused by the
definition of biological skeleton domain and propose two
plug-and-play feature extraction modules for skeleton-
based gesture recognition.

• Extensive experiments conducted on three datasets to
validate the effectiveness of the proposed plug-and-play
path signature modules and demonstrate the potential of
integrating path signatures with deep learning.

II. RELATED WORK

A. Skeleton-Based Action Recognition

Recently, advanced approaches [20]–[26] have witnessed
significant performance boost, with constructing spatial-
temporal graphs and modeling the spatial correlation with
GCNs directly, indicating the effectiveness of the inherent
joint connectivity for action recognition. However, with a fixed
adjacent matrix, the natural biological connection, the infor-
mation of joints is restricted to flow into predefined directions,
which greatly limits the expressive power of neural networks.
Therefore, skeleton-based action recognition with GCNs is
trying to be dynamic so that the network can learn more
implicit information beyond predefined restrictions. Studies
have been proposed to adjust the adjacent matrix based on the
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data characteristics. In [24], researchers proposed to provide
supplementary information of adjacent matrix by applying a
set of learnable matrix masks. Similarly, [28], [27] proposed
to add extra edges to the skeleton graph by MLP, LSTM [39],
encoder-decoder leveraging the similarity of joints in spatial
coordinates and temporal dynamics respectively. Note that
these above mentioned methods mainly focus on the different
approaches for adjustment of the region of interest (ROI),
as known as the adjacent matrix, and ignore the plausibility
of the aggregation method within the ROI. Most recently,
Transformer [40] was proposed and demonstrated satisfying
performance in information aggregation and feature extraction.
Specifically, aggregated important nodes in space-time domain
respectively to focus on the unconnected parts in space. [41]
divided the action into different stages, learning the key
information of each stage and the information association of
different stages to describe the action. In fact, recognizing
an action may only need a few joints. Self-attention is a
little too blind, which brings an uneconomical computational
cost. We found that the differential information discarded by
the computation of graph convolution may be the crucial
component for skeleton-based gesture and action recognition.
Thereby, in this paper, we use the path signature to extract the
complementary information of GCN.

B. Path Signature Method

Path signature is an infinite graded sequence of statistics
known to characterize data streams (paths). It originated from
Chen’s study [42] in the form of iterated integrals to solve
the differential equation of smooth paths. Lyons first extended
it from paths of bounded variation [43] to paths of finite
p-variation for any p ≥ 1 [34]. As the success of deep
learning, there is an emerging research area, which combines
path signature features with deep learning to tackle various
applications, such as financial data analysis [44], hand-written
character recognition [45], writer identification [46], infant
congnitive scores prediction [47] [48], gesture recognition
[9], [10], and skeleton based action recognition [29]. We
found that skeleton sequence data described by joints spatial
positions is sampled at a higher frequency, and therefore,
using path signatures allowed us to skip some noise in the
data, enabling the extraction of effective motion trajectory
features to describe the action. In previous related works based
on skeleton action recognition based on path signature, [9],
[29] are pioneer works constructing paths in both spatial and
temporal domains and obtaining encouraging results. However,
their paths are either pre-defined or randomly selected and
signature features have a high dimensionality, which is not
flexible and computational expensive. Most recently, Kidger
[49] proposed that path signature transformation can be in-
tegrated into the network as a layer, which opened a new
era of combining of PS and neural networks. Thanks to the
work of [50], a fast and convenient path signature calculation
is provided with back-propagation. In this paper, we further
explore on the path generation, plug-in PS module design and
data-driven signature transformation learning.

Fig. 2: The geometric illustration of the signature feature of
path P on a 2-dimension plane. The path gets start at the white
point when t = a and stops at the blue point when t = b.

III. PATH SIGNATURE PRELIMINARIES

In this section, we will briefly introduce the calculation and
properties of the signature features of paths. For interested
readers, please refer to [51], [52] for more information.

Suppose p : [a, b]→ Rd is a d-dimensional path defined on
the time interval [a, b]. Assuming t ∈ [a, b], and pt ∈ Rd is a
point on path p. We can write pt = {p1t , p2t , · · · , pit, · · · , pdt },
where pit denotes the ith coordinate of pt.

For a given path p, we denote the 1st order integral on
the ith coordinate as Sig(p)ia,b, i.e. Sig(p)ia,b =

∫
a<t<b

dpit.
Then the 1st order integrals of p denoted by S1(p)a,b is a
collection of Sig(pt)

i
a,b for all coordinates, i.e. S1(p)a,b =

{Sig(p)i}i∈{1,2,··· ,d}. For example, in Fig. 2, the 1st fold
iterated integral of path P is S1(P )a,b = {∆P 1,∆P 2}, where
∆P i is the increment of the ith coordinate of P .

Notably, t2 →
∫
a<t1<t2

dpt1 is another d-dimensional
valued path defined on the time interval [a, b]. Therefore, the
2nd fold iterated integrals of p is the collection of the 2nd

order iterated integrals with all possible indices i1, i2, denoted
by Sig(p)i1,i2a,b =

∫
a<t2<b

∫
a<t1<t2

dpi1t1dp
i2
t2 . Specifically, in

the example of Fig. 2, its 2nd fold iterated integral contains
four components:

S2(P )a,b = {Sig(P )1,1a,b, Sig(P )1,2a,b, Sig(P )2,1a,b, Sig(P )2,2a,b}

=

{
(∆P 1)2

2!
, A1,2, A2,1,

(∆P 2)2

2!

}
.

where A1,2, A2,1 equals to the area enclosed by the twisting
curve and different coordinates separately in this scheme.

Similarly, the kth fold iterated integrals is defined as a
collection of kth order iterated integrals, i.e.

Sk(p)a,b =


∫

a<t1<···tk<b

dpi1t1 · · · dp
ik
tk


i1,··· ,ik
∈{1,··· ,d}

. (1)

The dimension of Sk(p)a,b is dk. In general, the signature
of a path is an infinite graded series containing its all folds
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Fig. 3: Path overview. The dynamic skeleton sequence is taken as the input. Three different types of paths, i.e., the spatial,
temporal, and learnable ones, are constructed for each joint. We extract their compact deep signature feature which is illustrated
by the shadow surrounding the path. Specifically, we used dash lines in (c) to denote the learned connections which do not
exist in the biological skeleton structure.

iterated integrals. In practice, one needs to truncate S(p) up
to the finite degree k to retain the first k fold iterated integrals

S(p)a,b[0 : k] = {S0(p)a,b, S1(p)a,b, · · · , Sk(p)a,b}, (2)

where S0(p)a,b is a scalar 1 by convention. Thus, the dimen-
sion of the signature of p up to degree k is nPS = dk+1−1

d−1 .
The empirical time series is often discrete and hence, one

may embed it into a piece-wise linear path interpolation to
compute its signature. When p is a linear path, its kth order
iterated integral can be computed as:

Sig(p)i1,i2,··· ,ika,b =
1

k!

k∏
j=1

(p
ij
b − p

ij
a ). (3)

Moreover, the signature of piece-wise linear path can be
computed by equation (3) and the Chen’s identity [42]. The
signature of a path has many algebraic and analytic properties.
In the scheme of skeleton-based gesture recognition, it is
noteworthy that if we regard the biological connected joints
as a piece-wise linear path as illustrated in Fig. 2, its first
fold iterated integral, i.e. Sig(p)ia,b, evaluates the direction
and length of bones whose effectiveness has been proved
by a variety of works [23]–[25]. The second fold iterated
integral denotes for the area under or above the skeleton
connections. It provides the information on Levy area, which
is the area enclosed by the curve; for instance, the Levy area
of P in Fig. 2 equals to AL = A1,2 − A2,1. Intuitively, the
sign of AL represents for the direction and concavity of a
4-node path. Additionally, the signature of a path uniquely
determines the path up to time re-parameterization [34]. It is
a universal feature implying that any continuous functions on
the unparameterized path can be well approximated by the
linear functional on the signature locally [53].

IV. PROPOSED APPROACH

The human body structure can be naturally represented
by a graph, where nodes correspond to human joints and
edges represent the connections between joints. However, as
mentioned above, GCN is subject to two limitations. In the
following, we firstly introduce path signature to enhance the
expressive power of GCNs by designing paths and then extract
key features from paths. Specifically, we propose two plug-
and-play path signature modules. Compared to GCN, the path
signature modules are more sensitive to variations in skeleton

movements. Additionally, we propose a simple backbone to
validate the effectiveness of the path signature modules.

Fig. 4: The illustration of the spatial and temporal path
signature module (ST-PSM), where ”Concat” denotes for
concatenation. The spatial and temporal PS features are linear
combined with a 1 × 1 convolutional layer. The original
information is inducted by a lateral connection.

A. Path Generation

Equation (4) is the basic function to describe the definition
of path for every joint in X , where X ∈ RT×N×C is used
to denote the skeleton-based sequence. T is the number of
frames. N is the number of joints in each frame. C is the
feature dimensionality, which is 3 or 2 for the input of neural
network based on the spatial position of every joint.

pn,t = ω1 ·G(xn,t,X ). (4)

The nth joint in the tth frame and its output of equation
(4) are denoted as xn,t ∈ RC and pn,t ∈ RL×C respectively.
pn,t = {p1,t, p2,t, · · · , pn,t, · · · , pL,t | pn,t ∈ RC} is a L-
length path, while each pn,t is a joint selected from X . We
use function G(·,X ) to denote the way we generate paths
and a set of learnable parameters ω1 to embed the path
into a suitable feature space for the following deep signature
feature extraction. Three kinds of path construction G(·) ∈
{Gs(·), Gt(·), Gl(·)} will be discussed later, corresponding
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Fig. 5: The illustration of learnable path generation. A Gaussian-embedding function is applied for evaluating the correlative
scores among pairs of joints in each frame. Paths are constructed with the root joints and its most correlative joints. Their
compact deep signature features are then extracted and fused with the non-local features.

to spatial, temporal, and learnable paths respectively. It is
noteworthy that various dependencies of the skeleton structure
can be exploited as G(·,X ), the way we define paths and
changes.

B. Spatial and Temporal Path Signature Module (ST-PSM)

Effectiveness of spatial and temporal information has been
proved by previous works [9], [29]. Accordingly, we define
one path following the body structure and one path along
the temporal sequence. Firstly, considering the biological body
structure, we define the spatial path, Gs(·), as the physically
neighboring joints. For example, as shown in Fig. 3(a), given
the left elbow joint of frame t, xn,t, to generate a path of length
L = 3, we select adjacent joints along the body structure,
which are the left hand and the left shoulder joints. Therefore,
the output of Gs(·) can be expressed as:

Gs(xn,t,X ) = {N k(xn,t), · · · ,N 1(xn,t),xn,t,

N 1(xn,t), · · · ,N k(xn,t)},
(5)

where k = b(L − 1)/2c, N k(xn,t) denotes one of joints in
the k-hop neighborhood of xn,t in the tth frame. Secondly, the
moving trajectories of joints can be interpreted as a powerful
indicator of dynamic patterns. Hence, we intuitively construct
the temporal path, Gt(·), as the motion trajectory of each
joint. Fig. 3(b) has shown three temporal paths regarding left
shoulder, elbow and hand joint. For each given joint of the tth

frame xn,t, a time path of length L can be defined along the
time dimension, where k = b(L− 1)/2c:

Gt(xn,t,X ) = {xn,t−k, · · · ,xn,t−1,xn,t,
xn,t+1, · · · ,xn,t+k}.

(6)

By defining the spatial and temporal path, we can compute
their compact deep signature features as defined in equation
(3). Features from these two paths are further concatenated

and fused together as shown in Fig. 4, which is denoted as the
spatial and temporal path signature module (ST-PSM). Addi-
tionally, we adopt a one-layer linear transformation to obtain
the original information beyond the path signature features.
Finally, the signature and original features are concatenated
together for further process.

C. Learnable Path Signature Module (L-PSM)

The biological connections among joints are not necessarily
the most crucial ones for gesture recognition. The predefined
paths may be restricted by the ambiguity of pairwise corre-
lation among joints. It is vital to connect joints which are
tightly connected kinetically. Thus, we design a self-attention
based path generation mechanism pn,t = Gl(θ,xn,t,X ) to
automatically select the most correlative joints for the input
root node xn,t and construct paths in a data-driven manner as
illustrated in Fig. 3(c).

The key problem is how to evaluate the joint correlation. In
this work, we purpose to define paths with joints which are
semantically similar. Inspired by [35], the learnable adjacent
matrix At is thus introduced to evaluate the similarity between
joints in the tth frame in a data-driven manner. As shown in
Fig. 5, the correlative scores between different joints with the
right hand are illustrated.

It’s a natural choice to calculate dot-product similarity to
evaluate the correlation. Dot product measures the similarity
between two vectors based on the angle between them, and the
result is a scalar value. However, this can be limited, especially
when dealing with high-dimensional data. For the construction
of At, we empirically embed the root joint xn,t and the other
nodes xj,t in the tth frame differently with two sets of 1× 1
kernels and apply the inner product with Gaussian function as
the correlation metric:

Atn,j = e(θ1·xn,t)
T (θ2·xj,t), (7)
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where j ∈ {1, 2, · · · , N}. θ1, θ2 denote for the weights of
linear transformation. The whole computational process in
equation (7) is called as the Gaussian-embedding [54] as
shown in Fig. 5. Gaussian embedding allows us to represent
the similarity between two vectors as a continuous value,
rather than a discrete value as in the case of dot product.
On the other hand, Gaussian embedding represents vectors as
probability distributions, and the similarity between them is
calculated based on the overlap between their probability dis-
tributions. This approach provides a more nuanced measure of
similarity and allows us to capture more complex relationships
between vectors. Therefore, Gaussian embedding can be more
effective in capturing subtle differences between gestures and
provide a more accurate correlation score for hand gesture
recognition tasks. The learnable parameters within Gl(θ, ·,X )
is exactly θ = {θ1, θ2}. In this example, a 3-node path pn,t
is constructed with the right hand serving as the root node
xn,t. Its most correlative joints, i.e., the right elbow and left
shoulder is then picked out and listed in pn,t in the order of
the correlative scores as follows:

pn,t = {xn,t,xj(1),t,xj(2),t, · · · ,xj(L−1),t}, where

j(·) = argsortj{At
n,j/

∑
j

At
n,j|j = 1, 2, · · · ,N and j 6= i}.

(8)
With equation (7) and (8), we can adaptively select and
group the most correlative joints in the semantic domain,
which further improves the effectiveness and flexibility of
path signature based methods on the non-sequential data.
The network updates only the corresponding neurons in each
iteration.

Additionally, based on the observation that the relationship
between pairs of joints is a process of dynamic evolution with
their instant moving patterns, the learnable adjacent matrix
At is generated differently for each frame. Thereby, the path
we construct for the same joint also changes dynamically.
We name the whole process in Fig. 5 as the learnable path
signature module (L-PSM).

D. Compact Deep Signature Feature Extraction

Given a non-retraceable path pi,t, its compact deep signa-
ture features can be computed as follows:

sn,t = ReLU(ω2 · S(pn,t)[0 : k]). (9)

Function S(·) denotes for the mathematical calculation for
path signature corresponding to equation (2) and (3). The
original signature features have high dimensionality, which
motivates us to process data along the path with a set of
learnable parameters ω2 for removing redundancy and fusing
the multi-fold iterated integrals. As stated in section III,
in practice, we often truncate the path signature up to a
certain degree to avoid an overlarge dimension. To reduce the

Fig. 6: The illustration of the process corresponding to equa-
tion (12). One of three G(·) is used for an implementation
of PS feature extraction. Notably, we use ”· · ·” to separate
different components.

dimensionality of features and avoid redundancy, we set k=2.
Therefore,S(·) can be represented as:

S(pn,t)[0 : 2] = {S0(pn,t), S1(pn,t), S2(pn,t)},

Sk(pn,t) = {Sig(pn,t)

k︷ ︸︸ ︷
1, · · · , 1, Sig(pn,t)

k︷ ︸︸ ︷
1, · · · , k, · · · ,

Sig(pn,t)

k︷ ︸︸ ︷
k, · · · , k}.

(10)
The truncation operation may lead to the loss of some

critical features hidden in the high-order iterated integrals.
By introducing ω2, the information of the high-order iterated
integrals can be revealed by the non-linear combination of the
low-order iterated integrals with the shuffle product property
of the path signature method [55]. Further, it is noteworthy that
ReLU(·) is used in equation (9) for non-linearity, while the
path signature S(pn,t) itself is a set of non-linear properties
of data sequence, which explains the absence of the non-linear
function in equation (4).

E. Comparison with GCN

On the graph-structure input X and its adjacent matrix A,
the layer-wise update function for graph convolution network
at layer n can be defined as:

Xn+1 = σ(D̃−
1
2 ÃD̃−

1
2Xn︸ ︷︷ ︸

Aggregation

Wn), (11)

where Ã = A + I , I is the identity matrix introduced for
maintaining local dependency, D̃ is the degree matrix of
Ã introduced for normalization. We can roughly divide the
equation (11) into three components, i.e., the information
aggregation mechanism, feature transformation function and
non-linearity as shown in Fig. 6. Specifically, GCN aggre-
gates information from the 1-hop neighborhood by matrix
muplication between D̃−

1
2 ÃD̃−

1
2 and X , which is essentially

the averaging computation. Further, the learnable matrix W
and sigmoid function σ are introduced respectively for feature
embedding and inducting non-linearity.
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Fig. 7: We build three variants of a shallow network by
inserting the L-PSM at different places. The t-fusion layer is
the combination of one temporal convolution layer and one
temporal pooling layer. We abbreviate the multi-head L-PSM
as ML-PSM for convenience.

Similarly, we summarize the computation of path signature
based modules as below by integrating equation (4) and (9):

sn,t = PS(ω1, ω2;xn,t,X ) = ReLU(ω2·S(ω1 ·G(xn,t,X )︸ ︷︷ ︸
Aggregation

)),

(12)
where we use function S(·) for information aggregation, ω1

and ω2 for feature transformation. Both ReLU(·) and path sig-
nature calculation are non-linear functions. Compared to GCN,
which aggregates information within the 1-hop neighborhood,
our module can go beyond the fixed biological connections
and combine joints which are most semantically relevant to the
action when aggregating information. This is because we have
designed multiple ways Gs(·), Gl(·) and Gt(·) to generate
paths.

F. Design of the Whole Framework

Remarkably, both ST-PSM and L-PSM are plug-and-play
modules which do not change the data structure of input.
Hence, it is feasible to insert our path signature based modules
into existing methods.

First, we try to build a shallow network to test the perfor-
mance of our PS based modules without the graph convolu-
tional layers. In the task of skeleton based gesture recognition,
the number of frames in each video clip is far more larger than
the number of joints. Hence, we construct a simple baseline
with temporal convolution and pooling layers to enlarge the
temporal receptive field as shown in Fig. 7. The ST-PSM is
applied on the top of the network for extracting features with
abundant physical contextual information, while the L-PSM
is inserted into the backbone at different places to adaptively
generate diverse paths for describing the skeleton structures
and testing its sensitivity against the temporal dependency.
A multi-head L-PSM is utilized to capture different moving
patterns of the gesture skeleton.

On the other hand, we try to combine our path signature
module and the advanced GCNs to validate our assumptions
above. The basic strategy is to apply our PS based modules
on the GCN frameworks to provide the differential properties,
which is similar to the model ensemble strategy in [20], [21],
[23]–[25], but with much fewer parameters.

V. EXPERIMENTS

A. Datasets

ChaLearn 2013. ChaLearn 2013 multimodel gesture
dataset [36], which provides RGB, depth, foreground segmen-

tation and skeleton data, contains 20 Italian gestures performed
by 27 different persons. Each sequence lasts 1-2 minutes
and includes 8-20 gesture instances. This dataset is split into
training, validation and testing sets, containing 6850, 3454
and 3579 samples respectively. We only use skeleton data for
gesture recognition [56].

ChaLearn 2016. ChaLearn 2016 dataset [37] is the largest
public gesture recognition dataset currently. The whole dataset
contains 47933 gesture samples and 249 types of gestures
collected by 21 volunteers. It consists of two parts, the Isolated
Gesture Dataset (IsoGD) and the Continuous Gesture Dataset
(ConGD). We only use the IsoGD part in our experiments.
ChaLearn 2016 only provides RGB and depth image se-
quences, so we use Openpose [57] to estimate the skeleton
joints as [58] did.

AUTSL. AUTSL dataset [38] is a large scale multi-modal
Turkish sign language dataset providing 38336 video clips
collected from 43 signers with 20 backgrounds and 226
different Turkish sign actions. Each sample contains multiple
modalities such as color image (RGB), depth and skeleton.
Following [59], we use a pretrained HRNet [60] pose estimator
provided by MMPose [61] to estimate the 133-point whole-
body keypoints from the RGB videos and preprocess the
skeleton-based data.

B. Implementation Details

In terms of training parameters, SGD with momentum is
used as the optimizer. The learning rate is updated between
1e-5 to 1e-2 with a step of 1060. The weight decay coefficient
is 1e-5, and the batch size is 64. The network is implemented
in the Pytorch framework and trained on a GeForce GTX 1080
GPU. An open-source package, signatory1, is used to provide
efficient path signature computation with backpropagation.

We conducted experiments on different datasets to test the
effectiveness of our proposed backbone mentioned in section
IV F and compared it with other methods. We also inserted
our modules into existing GCNs. Specifically, we first pass
the skeleton sequence through the ST-PSM and L-PSM, and
after feature fusion, the output channel is 64. Then, we set the
input channel of the GCNs to 64 when inserting our module
into existing GCNs, and we mostly use the default parameters
in the source code except for changing the input channel.

C. Ablation Study

1) Evaluation on the configuration of L-PSM: As shown in
Fig. 5, we apply the self-attention mechanism to calculate the
correlative scores for each pair of joints and then we select the
most correlated joints adaptively to form a path. Therefore, the
correlation metric equation (7) plays an important role in L-
PSM, which motivates to compare different correlation metrics
in Table I.

Besides, in the literature, researchers found that the path
length in path signature theory and number of heads in multi-
head attention are two sensitive hyper-parameters which have
a huge impact on the model performance [29], [35]. Hence,
we compare the performance of L-PSM with different hyper-
parameter settings in Fig. 8(a) and Fig. 8(b). We follow the
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Evaluation Metrics Acc (%)
Dot product 92.46
Gaussian 90.24
Gaussian-embedding 92.77
Concatenation 92.57

TABLE I: Evaluation of correlation metric.

Fig. 8: Evaluations of the (a) path length and (b) the number
of nodes. Paths composed of different nodes exhibit distinct
connection modes, which correspond to different ranges of
gesture changes. Each head focuses on distinct patterns and
variations within the gestures, influencing the composition of
paths.

experiment setting in [54] for the comparison of evaluation
metrics and empirically select the Gaussian-embedding func-
tion with its superior performance. Furthermore, it is observed
that the L-PSM does not exhibit improved performance with
longer paths and an increased number of attention heads.
One potential explanation is attributed to the limited diversity
within the ChaLearn 2013 dataset, which comprises only 20
distinct gestures accompanied by an 11-node skeleton. As a
result, the model requires a relatively small number of nodes
in the path and attention heads to accurately capture and
characterize the motion patterns.

2) Evaluation of the internal components and position of
path signature based modules: As stated in section IV-F,
we try to insert the L-PSM into the backbone at different
places to generate diverse paths for describing the skeleton
structures and testing the sensitivity of L-PSM against the
temporal dependency. After comparison, it can be observed
that a medium length (7 of 39 frames, about 0.2× length of the
video clip) temporal receptive field is preferred to capture the
moving patterns of hands. The learned paths at different time
points will be shown later. Further, to verify the effectiveness
and efficiency of our modifications on the path signature
features calculation and path signature modules, an ablation
study is conducted in Table II. According to section III, the
dimensionality of path signature grows exponentially with
the dimensional of the path, which builds a great challenge
to integrate the path signature theory and deep learning.
Obviously, as shown in Table II, by introducing two sets
of parameters, we greatly decrease the model size of the
path signature based network (from 6.00M to 1.27M), while
the model capability is remained. We also try to insert our
modules in other advanced backbones in Table III. The best
performance is achieved with our modules inserted. Clearly,
the L-PSM and ST-PSM steadily improve the accuracy at a

Models Params Acc (%)
V1 1.27M 93.76
V2 1.27M 94.18
V3 2.51M 93.36
w/o ω1 & ω2 6.00M 94.09
w/o ST-PSM 1.26M (↓ 0.01M) 92.60 (↓ 1.58)
w/o L-PSM 1.24M (↓ 0.03M) 93.28 (↓ 0.90)

TABLE II: Evaluation of the components of the path signature
based modules on ChaLearn 2013. The increase and decrease
compared to V2 is shown.

TABLE III: Evaluation of pluggable modules ST-PSM and L-
PSM on ChaLearn 2013 dataset.

Methods Params(M) infer(ms) Acc (%)
ST-GCN [26] 3.07 3.59 93.11
–with ST-PSM 3.09 6.71 93.56
–with L-PSM 3.10(↑ 0.03) 22.72 93.64(↑ 0.53)
–with ST-PSM and L-PSM 3.11 26.02 93.59
AS-GCN [24] 6.88 21.46 92.66
–with ST-PSM 6.91 24.85 93.59
–with L-PSM 6.97 47.48 94.18
–with ST-PSM and L-PSM 6.98(↑ 0.10) 49.52 94.35 (↑ 1.69)
MS-G3D [23] 4.56 22.93 94.71
–with ST-PSM 4.57 26.64 94.46
–with L-PSM 4.67 49.46 95.11
–with ST-PSM and L-PSM 4.68(↑ 0.12) 50.94 95.47 (↑ 0.76)

low cost.

D. Comparison against the State-of-the-art

Based on ST-PSM and L-PSM, we can construct a simple
classification model as illustrated in Fig. 7. It only contains
several basic modules, including ST-PSM, L-PSM, 1× 3 con-
volution and pooling layers. It is a non-GCN-based framework,
and does not require a complex network structure. In this
section, we compare the proposed model with other advanced
methods, including both the non-GCN-based ones and GCN-
based ones, and test their performance on ChaLearn 2013
and ChaLearn 2016 datasets. The best model configuration
according to the ablation study is applied.

In recent years, several methods have been proposed for
gesture recognition and achieved good results on ChaLearn
2013 dataset. Some of them are mainly benefited from the
powerful characterization ability of CNN and LSTM mod-
els, such as HiVideoDarwin [62], VideoDarwin [63], D-
LSDA [64], CNN for Skeleton [65], Two-stream LSTM [56]
and Multi-path CNN [10]. Among them, 3s net TTM [9]
uses PS of predefined paths to improve the ability of feature
extraction. However, it constructs the spatial path by handcraft
and extracts the PS before feeding into the neural networks
overlooking the possibility of a further integration between the
PS theory and machine learning. Results of all these methods
and our proposed method are shown in Table IV. Our proposed
model gets superior results benefiting from the strong feature
extraction capability of PS and the flexibility of learnable
paths.

ChaLearn 2016 dataset contains different kinds of data, such
as RGB, depth, optical flow and skeleton data. Some advances
have validated the effectiveness of the fusion with multi-
modalities [59], [69], while we concentrate on the skeleton
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TABLE IV: Classification accuracy comparison against state-
of-the-art methods on the ChaLearn 2013 dataset.

Methods Params infer(ms) Acc (%)
HiVideoDarwin [62] - - 74.90
VideoDarwin [63] - - 75.30
D-LSDA [64] - - 76.80
CNN for Skeleton [65] - - 91.20
Two-stream LSTM [56] - - 91.70
3s net TTM [9] - - 92.80
Multi-path CNN [10] - - 93.13
STFFormer [41] 5.5M 8.42 92.77
ST-TR [40] 19.4M 75.89 93.50
Shift-GCN [21] 0.6M 13.96 90.86
AS-GCN [24] 6.9M 21.46 92.66
CTR-GCN [66] 1.4M 14.63 92.82
GCN-Logsig-RNN [67] 13.0M - 92.86
ST-GCN [26] 3.1M 3.59 93.11
MS-G3D [23] 4.6M 50.93 94.71
Proposed-V2 1.3M 59.74 94.18

TABLE V: Classification accuracy comparison against state-
of-the-art methods on the ChaLearn 2016 dataset.

Methods Top-1(%) Top-5(%)
SkeLSTM [58] 35.39 -
3s net TTM [9] 39.95 -
Multi-path CNN [10] 43.82 -
MS-G3D [23] 48.05 60.69
ST-GCN [26] 22.08 28.62
–with GPS [68] 23.26 29.42
–with ST-PSM 25.25 35.89
–with L-PSM 26.71 34.14
–with ST-PSM and L-PSM 27.23 35.32
Shift-GCN [21] 21.08 26.22
–with GPS [68] 21.35 26.36
–with ST-PSM 21.63 27.44
–with L-PSM 22.21 26.23
–with ST-PSM and L-PSM 23.24 26.72
Proposed-V2 51.60 77.04

data in this work. There are several skeleton based methods
experiment on it, including SkeLSTM [58], 3s net TTM [9]
and Multi-path CNN [10]. As shown in Table V, our proposed
method also performs the best among these methods, showing
clear improvement.

In the field of skeleton-based action recognition, several ex-
cellent GCN-based methods have been proposed, such as ST-
GCN [26], AS-GCN [24], Shift-GCN [21] and MS-G3D [23].
These methods perform well in the skeleton-based action
recognition. We tested these methods on both ChaLearn 2013
and ChaLearn 2016, and compared their performance with
our proposed model. As shown in Table IV and Table V,
our proposed method shows relatively good results with fewer
parameters. In Table IV, Shift-GCN has the least parameters
but works worst, MS-G3D is a little better than our pro-
posed model with more than 3 times parameter than ours.
Our method works the best considering both effectiveness
and efficiency. In Table V, the accuracy of the GCN-based
methods are inferior to the non-GCN-based models. It is
mainly because the precision of joint position is affected by
the drastic background and illumination changes, which has
a huge impact on static hand gesture recognition. MS-G3D
outperforms with its superior ability in extracting multi-scale
spatial-temporal features, while our method performs slightly
better with the combination of PS features and self-attention

mechanism. Additionally, we compared Global Position Self-
attention [68], with the modules we proposed. The results,
shown in Table V, indicate that the ST-PSM and L-PSM
captured local details of the actions and learned more dis-
criminative representations.

E. Comparison against the Ensemble Strategy

As discussed before, PS focuses on multi-scale differential
information within the dynamic skeleton structure, including
the motion features (temporal differential) and bone features
(spatial differential). In this part, ST-PSM and L-PSM are
considered pluggable modules and inserted into the GCN-
based methods to compare with the ensemble strategy. For
each method, four streams are trained with different input,
including joint stream (Js), joint motion stream (Ms), bone
stream (Bs), and bone motion stream. We ensemble the output
of these streams following the setting in [59]. Experiments are
carried out on AUTSL dataset, and the results are shown in
Table VI. It is noteworthy that our proposed path signature
modules achieve comparable results against the two-stream
ensemble with a slight increment on the model size indicating
the great potential of the path signature modules.

TABLE VI: Classification accuracy comparison against the
ensemble strategy on AUTSL. We abbreviate path signature
modules as PSMs here for convenience.

Methods Params Top-1 (%) Top-10 (%)
ST-GCN [26]
–with Js 3.14M 94.25 99.28
–with Js & Bs 6.28M (2×) 94.75 99.21
–with Js & Ms 6.28M (2×) 94.45 99.46
–with all streams 12.56M (4×) 95.06 99.34

–with Js & PSMs 3.19M (1.02×) 94.93(↑ 0.68) 99.18
AS-GCN [24]
–with Js 3.52M 94.84 99.18
–with Js & Bs 7.04M (2×) 94.95 99.28
–with Js & Ms 7.04M (2×) 95.11 99.50
–with all streams 14.08M (4×) 95.29 99.41
–with Js & PSMs 3.56M (1.01×) 95.04(↑ 0.20) 99.34

Shift-GCN [21]
–with Js 0.74M 94.86 99.12
–with Js & Bs 1.48M (2×) 95.56 99.41
–with Js & Ms 1.48M (2×) 95.02 99.46
–with all streams 2.96M (4×) 95.88 99.48
–with Js & PSMs 0.80M (1.08×) 95.16(↑ 0.30) 99.25

SL-GCN [59]
–with Js 3.84M 94.84 99.21
–with Js & Bs 7.68M (2×) 95.04 99.34
–with Js & Ms 7.68M (2×) 94.95 99.23
–with all streams 15.36M (4×) 95.56 99.41
–with Js & PSMs 3.89M (1.01×) 95.09(↑ 0.25) 99.30

F. Illustration of Learned Paths

Compared with the PS of predefined paths, our L-PSM mod-
ule constructs learnable paths to capture features more flexibly.
L-PSM is not limited by the natural biological structure of
human body and can automatically find the path associated
with the current action. We obtained the paths generated by
the L-PSM module corresponding to equation (8), which are
shown in Fig. 9. Compared with predefined paths, our learned
paths change dynamically to adapt to gestures, and capture
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Fig. 9: Illustration of learned paths and predefined paths. We selected keyframes that reflect the process of action changes
from a video comprising 39 frames, where dashed boxes represent the same frame. Our learnable path (white) dynamically
changes to adapt to gestures, associating important related joint points in each frame, while predefined paths (green) can only
associate adjacent joints on the body structure.

important characteristics between the relevant joints in each
frame.

To be specific, the sub-figure above shows a “Smart”
gesture, where the man extends his index fingers and folds
them together. At the beginning, L-PSM can notice the relative
relationship between the raised shoulder and elbow and the
relatively static joints (T = 2, 9). When two hands are close,
it focuses on the critical path composed of the whole arm
(T = 11, 20), while when the hands are down, it focuses on
the relationship between the hands and arms on both sides
(T = 27). However, the predefined path only focuses on on
one side of the shoulder, elbow and hand.

And in the sub-figure below, a man raises his left hand
and point it towards his eyes then putting it down, meaning
“Agree”. L-PSM still pays attention to the relative motion of
non adjacent joints on both sides (T = 10, 30, 36) and the
motion of the hand relative to the head (T = 33), while the
predefined path can only focus on one side.

VI. CONCLUSION

In this work, we introduce path signature, a powerful math-
ematical tool for extracting the differential features, which is
essential in skeleton-based gesture recognition, and modify its
calculation to make it more efficient to be applied in neural
networks. Then, ST-PSM is designed to calculate spatial and
temporal path characteristics for the dynamic skeleton struc-
ture. To address the limitation of predefined paths in ST-PSM,
we proposed L-PSM, which automatically generates paths
through the self-attention mechanism. It can construct different
paths according to different inputs so that more meaningful
features can be acquired. Base on ST-PSM and L-PSM, we
construct a classification model that performs better than other
non-GCN-based models, and it works the best among GCN-
based models considering both effectiveness and efficiency.

Besides, being considered as plug-and-play modules, ST-PSM
and L-PSM are inserted into several methods to improve their
performance at a low cost illustrating their great potential in
future researches.
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