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Abstract

Knowledge distillation (KD) has been extensively employed to transfer the knowl-
edge from a large teacher model to the smaller students, where the parameters of
the teacher are fixed (or partially) during training. Recent studies show that this
mode may cause difficulties in knowledge transfer due to the mismatched model
capacities. To alleviate the mismatch problem, teacher-student joint training meth-
ods, e.g., online distillation, have been proposed, but it always requires expensive
computational cost. In this paper, we present a parameter-efficient and student-
friendly knowledge distillation method, namely PESF-KD, to achieve efficient and
sufficient knowledge transfer by updating relatively few partial parameters. Techni-
cally, we first mathematically formulate the mismatch as the sharpness gap between
their predictive distributions, where we show such a gap can be narrowed with the
appropriate smoothness of the soft label. Then, we introduce an adapter module
for the teacher, and only update the adapter to obtain soft labels with appropriate
smoothness. Experiments on a variety of benchmarks show that PESF-KD can
significantly reduce the training cost while obtaining competitive results compared
to advanced online distillation methods. Code will be released upon acceptance.

1 Introduction

With the continuous growth of data scale and computing resources, the scale of deep neural networks
has rapidly increased, from millions of parameters to billions of parameters [1]. Although these huge
models, such as BERT [9], GPT-3 [4], and CLIP [33], have powerful multitasking capabilities, they
cannot be deployed on some edge devices with limited computing resources, which further limits the
environmentally friendly and efficient deployment of deep learning applications.

Knowledge distillation (KD) [17], as an important method for model compression, has been widely
used in various fields [51; 20; 41; 49] of deep learning. This paradigm utilizes a pre-trained teacher
network to obtain a student network that is close to the teacher network but with fewer parameters. In
the traditional distillation framework [41; 31; 30], the prediction output (soft label) is produced by
the fixed teacher, as shown in Figure 1(a) . However, limited by the capacity of the student model,
the teacher’s knowledge cannot be well transferred to such small models, which makes traditional
distillation methods suboptimal [20; 27]. Based on this phenomenon, we propose the first research
question: RQ1: How to transfer teachers’ knowledge to students more effectively?

In recent works [29; 20; 45; 35], the teacher network and the student network are jointly trained to
make the teacher’s knowledge more friendly to the students. The online distillation methods, such as
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Figure 1: Comparison between KD, KD w/ fine-tuned teacher, and our PESF-KD. Green means
the parameter needs to be updated, while blue means not. (a) Vanilla KD, teachers and students are
trained independently, resulting a gap of knowledge transfer. (b) This method is quite like DML [50]
and other online KD methods, which get better knowledge transfer and need training teachers and
students together. (b) PESF-KD updates the parameters of adapter modules of the teacher with
ground-truth labels and the feedback from student outputs, while the rest of the parameters of the
teacher are all fixed. This method makes knowledge transfer more friendly and effective.

DML [50] and KDCL [13], usually update most or even all the parameters of the teacher by using
the real labels and the feedback information (soft labels) of the students, as shown in Figure 1(b).
However, in the setting of online distillation, a large teacher network and a student network need to
be trained simultaneously for each new downstream task from scratch, which is too time-consuming
and inefficient. This motivates us to consider the following research question: RQ2: How to make
the friendly transfer of knowledge more parameter-efficiently?

In this paper, we propose a new distillation framework that is parameter-efficient and student-friendly,
as shown in Figure 1(c). Our paper forges a connection between two literatures that have evolved
independently: knowledge distillation and parameter-efficient learning. This allows us to leverage the
powerful methods of parameter-efficient learning to ensure the friendliness of teachers’ knowledge
to students, and to update teachers’ knowledge representation more efficiently. Based on extensive
experiments and analyses, we show that our framework can utilize the information from ground-truth
labels and student supervision to train the adapter modules, and further narrow the gap between the
teacher and student models, which makes knowledge transfer easier.

In summary, our contributions are:

• We propose a parameter-efficient and student-friendly distillation (PESF-KD) framework, where
an adapter is deliberately designed for the teacher.

• We provide theoretical and experimental evidences to show PESF-KD can facilitate the knowledge
transfer by reducing the gap between teacher and student.

• We empirically validate the effectiveness and efficiency of our PESF-KD upon several vision and
language models compared to existing knowledge distillation methods.

2 Background

2.1 Label Smoothing and Knowledge Distillation

Gradient descent is mostly used to optimize the cross entropy [3] of the hard ground-truth labels
and predicted values in deep learning. And in recent years, Szegedy et al. [40] introduced Label
Smoothing to soften and weight the traditional hard labels with the uniform distribution. This
approach has successfully improved the effectiveness of several deep learning models and has been
widely validated in natural language processing (NLP) and computer vision (CV). And to date, this
approach has also been used as a training trick to improve the training of models. We provide a
mathematical description of the label smoothing process. First we show the original cross-entropy:

H(y,p) =

K∑
k=1

−yk log (pk) , (1)
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where yk is "1" for the correct class and "0" for the rest. Then the label smoothing is achieved by
increasing the smoothing parameter α to change yk to yLSk :

yLSk = yk(1− α) + α/K (2)

When a network is trained with label smoothing, the differences between the logits of the correct and
incorrect classes become a constant that is dependent on α, while knowledge distillation provides
dynamic soft labels to let the network learn the distribution of teachers.

Knowledge Distillation (KD) [17] often employs a pre-trained teacher network with the goal of
transferring the teacher’s knowledge to a small group of students, as shown in Figure 1(a). In the
classification task, one of the simplest forms is to provide the soft label information by forwarding
the teacher’s output. The initial teacher and student model can be defined as: teacher p(θt) and
student p(θs), respectively, where θ is the model parameters and pk(·) = exp(zk(θ)/τ)∑K

j=1 exp(zj(θ)/τ)
is the

probability predict of the matching label and K is the number of classes and zk is the logical output
of the k−th class. So the vanilla KD loss measuring the KL-Divergence of teachers and students can
be formulated as:

LKL
(
p(τ |θs),p(τ |θt)

)
= τ2

∑
j

pj(τ |θt) · log
pj(τ |θt)
pj(τ |θs)

(3)

where τ is the temperature used in KD, which controls how much to rely on the teacher’s soft
predictions. For simplicity, we use LKL represent LKL (p(τ |θs),p(τ |θt)) in the following sections.

2.2 Parameter-Efficient Training

Transfer learning from pre-trained models is a general learning paradigm that has been applied
to a variety of tasks [15; 9; 26]. The most popular transfer learning method nowadays is to fine-
tune all of the model’s parameters (full fine-tuning). But full fine-tuning is relatively expensive
because parameter adjustment correlates to the need to completely retrain the entire model for each
downstream task. Artificially constructed modules with a modest number of parameters are used in
approaches like Prompt [24] and Adapters [18; 25] to achieve a fit between the pre-trained model and
the downstream task with parameter-efficient training.

3 Methodology

3.1 Knowledge Distillation with Fine-Tuned Teacher

Motivation. Compared with label smoothing, knowledge distillation can improve the training of
the network for the following two reasons: First, teachers can understand the nuances of different
classes, and such inter-class information brings more information than label smoothing and helps
students generalize some unseen data. Second, the soft distribution of teachers constrains students’
learning directions such that they will not be mistakenly overconfident. For a student network, the
information it learns is obtained through this soft label. Previous works [29; 52; 20; 27] pointed out
that the mismatch of teacher and student network capacity can cause the knowledge transfer difficulty
of such soft label [11]. One of the solutions to reduce transfer difficulty is smoothing the teacher’s
output by adjusting the temperature [12]. Müller et al. [28] indicates that the label smoothness of
the target provided by the teacher exerts a great influence on the student network, and the difference
information between classes determines whether the student’s performance can be improved. But
manual conditioning of the label smoothness by the temperature is quite difficult and may cause the
loss of inter-class information when the temperature is too high. In our preliminary experiments,
we found that if the teacher network continues to fine-tune through the ground truth labels with the
rest of the settings as the valina KD [17] , teacher’s labels will be smoother, and the accuracy of the
distilled student network is better, where we leave this competitive setting as the strong benchmark,
namely “KD w/ fine-tuned teacher”, in the main experiments (Section 5). This phenomenon urges
us to explore the relationship between the teacher network and the student network in Section 4.
Training Objectives. As shown in Figure 1(b), different from vanilla KD [17], our distillation
method requires fine-tuning the parameters of the teacher network. The teacher network needs to
output soft labels to supervise the student network, it also requires ground-truth labels to training
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itself. Take classification task as instance, the corresponding teacher’s loss is:

Lt = Ltask(θ
t) = −

∑
i∈|X|

∑
c∈C

[
1 [yi = c] · log p

(
yi = c | xi; θt

)]
, (4)

where c is a class label and C denotes the set of class labels.

In vanilla KD [17], students receive soft label supervision (in Equation 4) from the teacher as well as
label supervision as the following formulation:

Ls = αLKL + (1− α)Ltask(θs), (5)

where the task loss Ltask follows the same format as the teacher network.

3.2 Parameter-Efficient and Student-Friendly Knowledge Distillation

Motivation. As with the same training objective in the previous section, we still need to update the
parameters of the teacher network, as shown in Figure 1(c). Inspired by the method of parameter
efficient fine-tuning [18], we introduce the adapter structure only adjusting this part of the parameters
and fixing the original teacher network parameters. We take advantage of this approach to achieve
parameter efficient and student-friendly fine-tuning.
Adapter Module. Our PESF-KD has three key properties: (i) it allows teachers and students to learn
online while maintaining good performance, (ii) it can automatically update the teacher’s output
based on the student’s output, which reduces the sharpness of teachers (see §4), and (iii) it adds
extra parameters trainable to the pre-trained teacher network while all parameters of the original are
fixed, reducing the over-consumption of the fully trained teacher network. Many online KD methods
require retraining more than one teacher networks, so it is desirable to participate in training a teacher
network with only a small number of parameters. To achieve these properties, we propose to adopt a
standard adapter module for knowledge distillation.
Structures. Most adapters can be written as proj_down → nonlinear → proj_up architecture.
Specifically, the adapter firstly projects the input h to a lower-dimensional space with dimension
r, utilizing a down-projection weight matrix Wdown ∈ Rd×r. Then through a nonlinear activation
function and then through a up-projection function with weight matrix Wup ∈ Rr×d to increase the
dimension to the original dimension. Usually, these modules use a residual connection, and the final
form is as follows:

h← h+ f (hWdown )Wup (6)

4 A Closer Look at Teacher-Student Relationship in Distillation

4.1 Gap Between Teacher and Student

The relationship between the teacher network and the student network in KD is rarely discussed.
When independently training the model from scratch, the larger model is more likely to output sharper
values and obtain better accuracy, while the smaller model is more likely to output smoother values
and obtain poorer accuracy [5; 52; 27; 6]. This phenomenon (i.e., capacity mismatch) significantly
exacerbates the difficulty of knowledge transfer in knowledge distillation. An optional solution to
measure the difference in the sharpness of the network output between teachers and students is to
directly use the entropy of the network output to get the output value of the maximum confidence
score. Differently, we use a simple and intuitive sharpness metric [12] to get a smooth approximation
to the maximum function considering the overall information of each class. If we use K to denote K
classes, the Sharpness is defined as the logarithm of the exponential sum of logits:

Ssharpness = log

K∑
j

exp zj(θ) (7)

For the difference between teacher and student networks, we use the sharp gap between the two
networks as a metric:

Ggap = log

K∑
j

exp (zj(θ
t))− log

K∑
j

exp (zj(θ
s)) (8)
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4.2 How to Narrow the Gap?

Mathematical Analysis As shown in Equation 8, we get the expression for the gap between
teachers and students. In this section, we will explore what factors affect this gap. We first approximate
this expression using a Taylor second expansion:

Ggap =log

K∑
j

exp (zj(θ
t))− log

K∑
j

exp (zj(θ
s))

≈ log

K +

K∑
j

zj(θ
t) +

1

2

K∑
j

zj(θ
t)2

− log

K +

K∑
j

zj(θ
s) +

1

2

K∑
j

zj(θ
s)2

 (9)

Following Hindon’s assumption [17] and also through experimental phenomena [12], it can be
known that the logits of each training sample are approximately zero-meaned so that

∑K
j zj(θ

s) =∑K
j zj(θ

t) = 0. So the gap can be rewritten as:

Ggap = log

K +
1

2

K∑
j

(
zj(θ

t)
)2− log

K +
1

2

K∑
j

(zj(θ
s))

2


= log

1 +
1

2K

K∑
j

zj(θ
t)2

− log

1 +
1

2K

K∑
j

zj(θ
s)2


= log

(
1 +

1

2
∗ σ2

t

)
− log

(
1 +

1

2
∗ σ2

s

)
,

(10)

where the σ2 = 1
K

∑K
j zj(θ)

2 is the variance of logits.

Naturally, assuming that the temperature τ is fixed. Then the change of the gap comes from the change
in the variance of teachers’ logits and students’ logits. Once the these logits become smooth then
the corresponding variance becomes smaller, if the logits become sharp then the variance becomes
larger. The smoothness of the final logits results in a change in the gap. In the following sections, we
compared three distillation methods, namely, vanilla KD (vanilla) with different temperature and our
proposed methods – fine-tuned teacher (train with finetune teacher) and adaptive teacher (train with
adapter) to check out how temperature and respective methods affect the gap.

Appropriate smoothness can improve the friendliness of knowledge transfer. In order to more
intuitively show the effect of logits output smoothness on the gap, we show the average major logit
distribution in the Figure 2. In most cases, the logit has the largest value that represents the model’s
category prediction, and other tiny values show that the input image is similar to those other categories.
In the real situation, the variance of students’ logits will be affected by the variance of teachers’
logits, and these two statistics change simultaneously. It is difficult to quantitatively analyze the gap
between a fine-tuned teacher and an adaptive teacher, but we can get inspiration from Figure 2 and 3.
Obviously, vanilla KD brings more sharp logit output, that is, greater variance. The logit output of
fine-tuned teacher is in the middle position compared other two methods while PESF-KD has the
smallest variance. It is worth noting that our methods greatly reduce the variance of logits compared
to the vanilla KD, and both our proposed methods have relatively small variance. In Figure 3, it
shows the degree of sharpness for different temperatures in vanilla KD and our methods. Consistent
with the analysis of Equation 10, since the teacher’s output is unchanged, that is, the variance is
unchanged, by increasing the temperature, the student’s output is indeed smoother, resulting in a
larger gap. Figure 4 shows the Top-1 accuracy of the corresponding methods. In general, lower gaps
are associated with higher accuracy (lower temperature, lower gap value), but very close gaps may
introduce anomalies (see the case of temperature 2 and 4). This phenomenon shows that smoothing
the output of teachers and students within a certain range can improve the friendly transferability of
knowledge (in terms of improving the accuracy and reducing the gap). In the face of each sample,
it is impossible to simply manually adjust the common temperature to achieve a dynamic smooth
output to improve the students’ ability to accept the teacher’s knowledge. With our methods, the
smoothness of the output can be dynamically adjusted according to the gradient of each sample to
achieve better knowledge transfer (compared to the vanilla KD with the best temperature setting, our
methods have improved a lot about accuracy, and a large reduction in the gap).
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Figure 2: Normalized major logits distri-
bution.

Figure 3: Sharpness gap comparison.

Figure 4: Comparison of Top-1 accuracy between different smoothing setting and our
approaches.

Student-friendly knowledge leads to better performance. In this part, we show that trainable
part in teacher models can narrow the gap between student and teacher and make knowledge transfer
process more student-friendly thus achieving better accuracy. We further explore the relationship
between network consistency (sharpness gap in Figure 3, KL-Divergence in Figure 5 & 6 and
CKA [22] in Figure 7 & 8 ) and accuracy in Figure 4. The three metrics mentioned above measure
the final degree of consistency of the teacher-student network from different perspectives. A lower
sharpness gap represents a closer knowledge representation of the teacher-student, and a lower KL
represents the final convergence degree of the lower bound through distillation learning, while the a
larger CKA represents larger similarity of the students and teachers. We get the following interesting
findings: 1) From Equation 10, it is clear that the gap also decreases when the student network
trained with the vanilla KD. This reduction comes from the fact that the output of the student network
becomes sharper i.e., more similar to the output of the larger teacher network (both kl-divergence and
gap decrease). 2) Both our proposed methods can reduce the gap, and model trained with fine-tuned
teacher can bring a great reduction (from 36.3 to 16.8). Our methods also make the output of teachers
and students more consistent (the KL-Divergence, gap of the two methods are significantly lower
and the CKA is higher than those of vanilla KD with different temperature). 3) The accuracy of the
final student network trained by our two methods is similar, although the gap between them is quite
different (32.4 vs. 16.8). The KL-Divergence (0.42 vs. 0.23), CKA of logits and predictions (almost
same) of these two proposed methods are closer, which shows that our methods can guarantee the
consistency of teacher and student characteristics. It also illustrates that gap and KL-Divergence
interpret the similarity of output distributions from different perspectives.

To explore the changes in class distribution of logits, we visualize the penultimate layer representation
of student model ResNet20 on dataset CIFAR-100 as shown in Figure 9. We randomly choose 7
classes and record the penultimate layer representation in the 230-th epoch and then use T-SNE to
project the data in the 2D plane. Classes are marked with different colors. We observe that clusters in
our proposed approach are tighter because the student model is encouraged to learn more information
from all other class templates in the training data set by narrowing the sharpness gap between teacher
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Figure 5: kl loss com-
parison of our pro-
posed approach and
vanilla KD.

Figure 6: kl loss com-
parison of vanilla KD
with different temper-
ature.

Figure 7: CKA of fea-
ture ( last layer before
classifier ).

Figure 8: CKA of
logit vanilla KD and
ourproposed approach

(a) Vanilla KD (b) Fine-tuned teacher (c) PESF-KD

Figure 9: Visualize of penultimate layer representation of Vanilla KD, w/ fine-tuned teacher and
PESF-KD with 7 semantically different classes using T-SNE [43]. Clusters are more tighter and
distinguishable in our proposed approach

and student networks. Besides, when looking at the projections, some clusters, i.e., crimson and dark
blue ones, are more discernible in our proposed models than in Vanilla KD.

5 Experiments

5.1 Datasets and Baselines

Datasets Two types of tasks incluing image classification (CIFAR-100 [23] and ImageNet [8]) and
natural language understanding (GLUE [44] ) are adopted for a series of experiments. Specifically,
we test on two types of NLU datasets according to the amount of training resource. Low resource:
MRPC [10] and STS-B [7] for Paraphrase Similarity Matching; SST-2 [38] for Sentiment Classifi-
cation ; RTE [44] for the Natural Language Inference. High Resource :QNLI [34] for the Natural
Language Inference and QQP 3 for Paraphrase Similarity Matching.
Baselines We report several knowledge distillation methods for comparison, including vanilla
KD [17], knowledge distillation via collaborative learning (KDCL) [13], deep mutual learning
(DML) [50], contrastive representation distillation (CRD) [41], relational knowledge distillation
(RKD) [30] and probabilistic knowledge transfer(PKT) [31]. According to Gou et al. [11], KD
methods can be divided into two groups, online distillation and offline distillation. For a more
fine-grained comparison, We further split them into three different kinds, online KD (DML, KDCL),
offline KD (vanilla KD, PKT) and representation KD (CRD, RKD). Besides these methods, we report
the result of our method “w/ Fine-tuned teacher” and “PESF-KD” to support our argument about less
sharpness gap helps student to perform better to absorb the knowledge of the teacher.

5.2 Experimental Setup

For CV tasks, we follow previous works [41; 51] using various combination of student & teacher
networks. Each pair of student & teacher networks are from different capacity and architecture,
including ResNet [15] and VGG [37]. We run two types of distillations, isomorphic distillation and
isomeric distillation. For isomorphic distillation, we run three different combinations (ResNet56-
ResNet20, ResNet 110-ResNet32 and VGG13-VGG8). For isomerism distillation, the results of
ResNet-56 to VGG-8 are reported. For NLU tasks, we first fine-tune the pre-trained teacher (12-
layers version of BERT-Base) and then train student model (6-layers version of BERT-Base) on each
downstream task. We report Top 1 Accuracy (@1) for image classification experiments as a network

3https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
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Table 1: Results on CIFAR-100 test set. We compare the training time consumption (batch time) and
the amount of parameters needed to update (params) and the corresponding accuracy (@1) on various
teacher-student combinations. The best results are bold. The second best results are underlined.

resnet56-20 resnet110-32 vgg13-8 resnet56-vgg8

method batch time params @1 batch time params @1 batch time params @1 batch time params @1

offline KD Vanilla KD[17] 0.219 1.11M 70.95 0.319 1.89M 73.08 0.097 15.86M 73.36 0.134 15.86M 73.98
PKT[31] 0.225 1.11M 71.27 0.336 1.89M 73.67 0.120 15.86M 73.40 0.139 15.86M 74.10

Representation KD CRD[41] 0.234 1.18M 71.44 0.353 1.96M 73.62 0.139 16.39M 73.31 0.159 15.93M 74.06
RKD [30] 0.234 1.11M 71.47 0.846 1.89M 73.53 0.207 15.86M 74.15 0.444 15.86M 73.35

online KD KDCL [13] 0.520 4.56M 70.11 1.035 8.84M 72.87 0.190 53.71M 73.99 0.433 19.31M 73.16
DML[50] 0.524 4.56M 69.40 0.912 8.84M 72.21 0.190 53.71M 74.18 0.437 19.31M 73.86

ours (online KD)
w/ Fine-tuned

teacher 0.481 4.56M 71.65 0.819 8.84M 73.90 0.156 53.71M 73.52 0.443 19.31M 74.40

PESF-KD 0.228 1.16M 71.63 0.325 1.94M 73.86 0.117 15.91M 73.79 0.136 15.91M 74.29

Table 2: Results on CIFAR-100 test set. (continue)

teacher resnet56 resnet110 vgg13 resnet56
student resnet20 resnet32 vgg8 vgg8

teacher 72.34 74.31 74.64 79.34
student 69.06 71.14 70.36 70.36

KD[17] 70.66 73.08 72.98 73.81
FitNet[36] 69.21 71.06 71.02 70.69

AT[47] 70.55 72.31 71.43 71.84
SP[42] 69.67 72.69 72.68 73.34
CC[32] 69.63 71.48 70.71 70.25
VID[2] 70.38 72.61 71.23 70.30
AB[16] 69.47 70.98 70.94 70.65
FT[21] 69.84 72.37 70.58 70.29

FSP[46] 69.95 71.89 70.23 73.90
w/ Fine-tuned teacher 71.66 73.89 73.51 74.40

PESF-KD 71.64 73.85 73.79 74.29

Table 3: Results on ImageNet test set. ResNet18 is the student model and ResNet50 is the
teacher model. We report the averaged results over 3 random seeds. The best results are
bold. The second best results are underlined.

method batch time params @1 KL loss GAP

offline KD Vanilla KD[17] 0.46 47M 69.20 10.3 19.3
PKT[39] 0.47 47M 69.69 10.3 19.2

online KD KDCL[13] 1.56 149M 70.17 6.7 31.8
DML[50] 1.45 149M 68.45 6.7 14.1

Representation KD CRD[41] 0.57 63M 69.33 10.5 20.0
RKD[30] 1.53 47M 69.52 9.6 20.5

ours (online KD) w/ Fine-tuned teacher 1.44 149M 70.00 6.7 14.9
PESF-KD 0.47 54M 69.96 8.9 18.6

performance metric. For NLU tasks, we report the same format as on the GLUE leaderboard. For
MRPC and QQP we report F1. For STS-B, we report Pearson and Spearman correlation. For other
tasks we report accuracy. Besides, to measure network consistency between teachers and students ,
we report average predicted KL divergence (KL), CKA consistency [22] (CKA) and the sharpness
gap [12] (GAP) as similiarity metrics.

5.3 Results

5.3.1 Results on CIFAR-100

This section compares different KD methods, which can be grouped as offline KD, representation KD,
and online KD, and their training running time (batch time), need for updated parameters (params),
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Table 4: Results on the development set of GLUE with our low & high resource division. We consider
tasks with fewer than 100K as low-resource tasks and others are high-resource tasks. The best results
are bold. The second best results are underlined. We report the averaged results over 3 random seeds.

low resource high resource

method #Params Time MRPC
(3.7K)

STS-B
(5.7K)

RTE
(2.5K)

SST-2
(67K)

QNLI
(105K)

QQP
(364K)

BERT-baseteacher - - 91.6 90.2/89.8 71.4 93 91.2 88.5
BERT-basestudent - - 89.2 88.1/87.9 67.9 91.1 88.6 86.9

Vanilla KD[17] 66M 1.00x 89.6 88.6/88.2 67.7 91.2 89.0 87.3
RCO[20] >176M >2.66x 90.5 88.7/88.3 67.6 91.4 89.7 87.4

TAKD[27] >132M >2.00x 89.6 88.2/88.0 68.5 91.4 89.6 87.5
DML[50] 176M 2.66x 89.6 88.4/88.1 68.4 91.5 89.6 87.4
SFTN[29] >176M >2.66x 89.8 88.4/88.5 69.4 91.5 89.5 87.5
PKD[39] 66M >1.05x 89.4 88.6/88.1 67.6 91.3 89.5 87.8

w/ Fine-tuned teacher 176M 2.66x 89.8 88.6/88.3 68.2 91.7 89.2 87.2
PESF-KD 66M 1.05x 89.7 88.6/88.3 68.2 91.5 89.1 87.7

and the corresponding accuracy., as shown in Table 1. Encouragingly, our experiments fit our two
previous hypotheses. On the one hand, through the joint training of the teacher network and the
student network, the problem of difficult knowledge transfer when the teacher-student capacity does
not match can be alleviated. Specifically, the distillation results of the online distillation methods are
significantly higher than those of the offline distillation methods, especially in the case of excessive
difference in network capacity between teachers and students (vgg13-8) get a huge improvement.
And our method “w/ Fine-tuned teacher” achieved the best results among almost all distillation
methods, such as 71.65 for resnet56-20 and 73.90 for resnet110-32 and 74.40 for resnet56-vgg8.

On the other hand, through the adapter module, the amount of parameters that teachers need to update
can be reduced on the premise of alleviating the problem of capacity mismatch, thereby reducing
the cost of training. As shown in Table 1, the method of online distillation will greatly increase the
training cost due to the need to update the parameters of the teacher network and the student network
synchronously (see the batch time change). While PESF-KD significantly reduces the number of
parameters that need to be updated for training, i.e., vgg13-8 reduces the number of parameters
from the ∼ 54M to ∼ 16M. Obviously, it also significantly reduces the time required for training.
Whereas in most combinations of teacher-student architectures on distillation, even if using adaptive
teacher has a slight reduction in the best distillation results, such reduction is negligible. To further
illustrate the superiority of our methods, we further compare the current typical distillation methods
like previous work [41], as shown in Table 2. Results of baselines in Table 2 are reported by [51].
The results show that our two proposed methods achieve the best results among these methods under
a broad combination of teacher-student architectures in distillation.

5.3.2 Results on ImageNet

We further conduct experiments for ResNet (ResNet50, 102.2M to ResNet18, 46.8M) distillation on
a lager dataset ImageNet. As shown in Table 3, our methods achieves comparable Top-1 accuracy
results compared to other baselines, including SOTA representation KD method CRD (70.00 for
fine-tuned teacher; 69.96 for PESF-KD). Notably, compared with other online KD method KDCL
(70.17), student trained with fine-tuned teacher show similar top-1 accuracy (fall behind 0.17 point)
and the same KL loss. That’s partly because both the methods have similar working mechanisms
which allow part of the teacher model to be trainable during the student training process. But KDCL
fails to fill the sharpness gap between teacher and student (31.8), while our methods are more capable
of narrowing the gap (14.9 and 19.2). Besides, the student trained with the adaptive teacher reach
similar top-1 accuracy (69.96) compared with fine-tuned teacher (70.00) and only require less than
one-third the time (0.47 batch time for adaptive teacher and 1.44 batch time for fine-tuned teacher).
That fits our assumption of PESF-KD to improve performance and reduce training time.
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Figure 10: Influence of Loss weight on
results of different KD methods. α = 0.9
is an appropriate choice.

Figure 11: Influence of temperature on
results of different KD methods. T=4 is
an appropriate choice.

Table 5: Ablation on different structures of adapter in
VGG. Experiments are performed from CIFAR-100. The
simple 3-layer adapter shows better performance com-
pared with other parameter efficient method in top 1
accuracy, CKA and time consuming.

method batch time parameter top-1 CKA

adapter [18] 0.137 15.95M 73.43 0.8758
LoRA [19] 0.166 15.95M 73.49 0.8579

Scaled PA [14] 0.165 15.95M 73.13 0.8594

Table 6: Comparison of different meth-
ods with PESF-KD. It shows that
PESF-KD has the potential to en-
hance distillation performance on
other KD methods.

teacher/student resnet56/resnet20

method stadard PESF-KD

KD [17] 70.95 71.63
PKT [31] 71.27 71.74
CRD [41] 71.44 71.76
RKD [30] 71.47 71.52

5.3.3 Results on GLUE

In Table 4, we further explore the effect of the PESF-KD in NLP dataset, and other baselines are
reported by [51]. Time in the Table 4 refer to training resources cost, which is the lowest consumption
with our PESF-KD compared with other baselines except for vanilla KD. In [48], they find that the
overly strict regularization of KD is unnecessary in NLP datasets, which will actually reduce the
final performance using KD in most cases of GLUE. However, PESF-KD can even bring further
improvements to most datasets with KD, probably due to better student learning from teachers.
Compared to vanilla KD [17], PESF-KD achieve consistent improvement in low-resource situations,
showing that the same effect of low-resource adaptability [18]. Similar to the results of CV datasets,
our method also obtains similar results and requires minimal training cost compared with baselines
on NLP datasets, and even surpasses other baselines on SST-2, which verifies the generalizability of
our methods.

5.4 Analysis

Adapter Architecture The adapter module is our recipe for success in the above performance
comparisons. To explore the influence of adapter structure on classification results, we compare
three classic adapter structures and report their top-1 accuracy and CKA consistency. We use the
teacher-student combination of vgg13-8 and conduct comparative experiments on CIFAR-100. As
can be seen from Table 5, the simple and efficient adapter achieve second performance in top-1
accuracy, best CKA scores and time consuming. Therefore we use simple adapter module in all
experiments.

Loss Weight The hyper-parameter α decides the percent of cross entropy loss between the ground
truth labels and student models prediction, and the KL loss between student and teacher models.
Bigger α means a higher percent of kl loss. Figure 10 shows that bigger α benefits student models in
PESF-KD. That’s partly support our hypothesis of PESF-KD to promote a easy-learning teacher.
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Temperature Figure 11 shows the performance of student models in differ temperature. In the
experiments vanilla KD and our proposed approach has similar trend in different temperatures. And
PESF-KD shows better performance in all experiments.

Results combined with other methods We also test PESF-KD in other methods to verify the
potential improvement on other knowledge distillation methods. Table 6 shows the results of four
knowledge distillation approaches (vanilla KD [17], PKT [31], CRD [41] and RKD[30]) combined
with PESF-KD on CIFAR-100. Compared with standard knowledge distillation approaches, results
with PESF-KD get better performance on top-1 accuracy and indicate that PESF-KD has the potential
to become a plug-in method on top of different KD methods.

6 Conclusion

In this paper, we present PESF-KD, a novel knowledge distillation framework by applying adapters to
optimize the teacher network for better knowledge transfer to the student network. Through detailed
analysis, we point out that the decline in sharpness and a better ability to distinguish within classes
lead to better knowledge transfer, which leads to better results. Extensive experiments demonstrate
the robustness and effectiveness of our method. Future works of embedding PESF-KD into existing
distillation framework is expected to generalize our methods.
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A Appendix

A.1 Training details

Table 7: Statistics of datasets

dataset Training set Testing set Development set Classes

CIFAR-100[23] 50000 10000 - 100
ImageNet[8] ≈1200k ≈100k ≈50k 1000

GLUE[44]

CoLA 8551 1063 1043 2
SST-2 67350 1821 873 2
MRPC 3668 1725 408 2
STS-B 5749 1377 1379 5
QQP 363870 390965 40431 2

MNLI-m 390702 9796 9815 3
MNLI-mm 390702 9847 9832 3

QNLI 104743 5461 5463 2
RTE 2491 3000 277 2

WNLI 635 146 71 2
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Datasets Table 7 shows the statistics used in our experiments. The training set, testing set, and
development set refer to the scale of data in each part of the dataset. Table 7 shows that ImageNet is
much bigger than CIFAR-100 in scale. And that’s the reason we choose the two datasets, to verify
our proposed approach in datasets of different scales. GLUE benchmark can be naturally split into
low resource tasks and high resource ones for the similar propose. We divide low-resource tasks and
high-resource ones by 100k on a data scale.

We are also concerned about people’s consent and privacy in datasets. From the information search
from the website, faces in ImageNet have been blurred in order to protect privacy after being blamed
to collect information from people without consent. But we do not find a similar announcement on
the website of CIFAR-100 and GLUE. Maybe it’s because they have pre-processed the data or the
data itself contains little privacy information. It’s better for the websites to make the announcement
of not containing personally identifiable information or offensive content.

Infrastructure We implement our models with Pytorch, and our experiments are as follows:

1. CPU: 256 AMD EPYC 7742 64-Core Processor
2. RAM: 386840MB
3. GPU: 8x GeForce RTX 3090
4. Operating System: Ubuntu 18.04 LTS
5. Tools: Python3.7, tensorflow2,2,0, sklearn 0.23.2

Hyper-parameter search In CV experiment, we follow previous works [41], the settings on
CIFAR-100 and ImageNet dataset are the same as these works. In CIFAR-100 we train the student
model by SGD optimizer with a momentum of 0.9, a batch size of 64 and weight decay of 5× 10−4.
The learning rate starts from 0.05 and decays by 10 every 30 epochs after 150 epochs. And on
ImageNet we train the student model by SGD optimizer with a momentum of 0.9, a batch size of
256 and weight decay of 1 × 10−4. The learning rate starts from 0.1 and decays by 10 every 30
epochs after 30 epochs. In the experiment of students trained with the fine-tuned teachers, we train
the teacher model along with the student model during the training process with a learning rate of
1× 10−3. And in the experiment of a student trained with a teacher with the adapter module, also
called adaptive teacher, the learning rate of the trainable part in the teacher model is set to 1× 10−4.
Notably, classification loss from the teacher model is appended to the loss of students by multiplying
a hyper-parameter of 0.5.

For NLP, we inherit parameters like maximum sequence length, temperature and batch size according
to setting from previous works [51]. We also perform grid search over the sets of the student learning
rate λ from {1e-5, 2e-5, 3e-5, 4e-5, 5e-5}, teacher learning rate µ from {2e-6, 1e-5, 2e-5}, batch size
from {32, 64}, the weight of KD loss from {0.3, 0.5, 0.8, 0.9} for a better performance. We evaluate
our methods on dev set of GLUE benchmark.
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