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Locate before Answering: Answer Guided Question
Localization for Video Question Answering

Tianwen Qian, Ran Cui, Jingjing Chen, Pai Peng, Xiaowei Guo, and Yu-Gang Jiang

Abstract—Video question answering (VideoQA) is an essential
task in vision-language understanding, which has attracted
numerous research attention recently. Nevertheless, existing works
mostly achieve promising performances on short videos of duration
within 15 seconds. For VideoQA on minute-level long-term videos,
those methods are likely to fail because of lacking the ability
to deal with noise and redundancy caused by scene changes
and multiple actions in the video. Considering the fact that the
question often remains concentrated in a short temporal range, we
propose to first locate the question to a segment in the video and
then infer the answer using the located segment only. Under this
scheme, we propose “Locate before Answering” (LocAns), a novel
approach that integrates a question localization module and an
answer prediction module into an end-to-end model. During the
training phase, the available answer label not only serves as the
supervision signal of the answer prediction module, but also is used
to generate pseudo temporal labels for the question localization
module. Moreover, we design a decoupled alternative training
strategy to update the two modules separately. In the experiments,
LocAns achieves state-of-the-art performance on three modern
long-term VideoQA datasets, NExT-QA, ActivityNet-QA, and
AGQA. Its qualitative examples show the reliable performance
of the question localization.

Index Terms—Video Question Answering, Video Grounding,
Cross-modal Learning.

I. INTRODUCTION

V IDEO Question Answering (VideoQA) [1]–[3] aims to
answer a free-form question in natural language based

on the contents of a video. As an important task in vision-
language understanding, VideoQA is increasingly gathering
research attention in recent years [4]–[6] for its potential in
applications such as video-based education and robotics.

Differing to image-based Visual Question Answering (VQA)
[7]–[9], a core problem of VideoQA is how to properly process
the visual sequential relation along the time dimension. In the
early stage of VideoQA research, most studies [10]–[12] were
on short videos within 15 seconds. The limited video duration
results in the visual semantics being relatively monotonic,
reflected in unchanged scene and consistent action. Thus, those
methods tend to treat the video as a whole and encode the
overall semantic of the video (such as extracting video-level
feature by pooling over all visual tokens in the time dimension).
However, long-term videos (minute-level duration) tend to

This project was supported by National Key R&D Program of China
(No. 2020AAA0140001), Science and Technology Commission of Shanghai
Municipality (No. 21JC1400600). Jingjing Chen is the corresponding author.
Tianwen Qian, Jingjing Chen and Yu-Gang Jiang are with Fudan University,
Shanghai, China (e-mail: {twqian19, chenjingjing, ygj}@fudan.edu.cn). Ran
Cui is with Australian National University, Canberra, Australia (e-mail:
ran.cui@anu.edu.au). Pai Peng and Xiaowei Guo are with bilibili company,
Shanghai, China (e-mail:{pengpai, weide}@bilibili.com).

First Swing Come Down Second Swing Fell Down

Question:  Why was the man lying on the floor at the end?
A: fells down B: clean shoes C: try to adjust shoes D: to dry his socks E: rub ankles

0s-22s 22s-39s 39s-61s 61s-90s

Question:  Judging by the lady’s attire and the location what activity is she doing?
A: playing tablet B: hiking C: playing with toys D: boat ride E: gaming

Drink water under the rocks
0s - 17s

Fig. 1. Two examples from the NExT-QA dataset. As the duration gets longer,
the video semantics becomes more complex. Hence, it is more likely that the
question targets on a small part of the long-term video.

contain complex semantics that is not suitable to be treated
as a whole in doing VideoQA. As illustrated in Figure 1, the
long-term video can be divided into four segments of different
semantics and only the last segment is the key to infer the
answer for the given question. Thus, naively transplanting
methods for short videos to long-term VideoQA is likely to
invoke redundancy and noise naturally brought by the irrelevant
and less relevant parts of the video. In other words, if those
parts could be trimmed off at first, the difficulty of model
making the answer could be eased to an extent.

A naturally idea for collecting relevant visual context in
long-term video is to use cross-attention among video frames
and question. In this way, weights in termporal series can be
obtained and thus can be regared as a soft localization for
reweighting frame level features. Indeed, such attempts have
been made in several previous works [11], [13]. However, the
temporal attention based paradigm has its inherent defects. First,
it is difficult to design an effective constraint or supervision
signal for temporal attention, leading the learning of localization
depending only on the final answer as supervision. Second,
the peak of temporal attention distribution often appears in
discontinuous frames, which cannot segment a continuous
semantic activity. This makes the model lack of interpretability
and affects the diagnosis of it.

To overcome the above mentioned problems, we propose a
new paradigm “locate before answering”, i.e., given a long-term
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video 𝑉 and a question 𝑄, we first localize a relevant segment
𝑉𝑠𝑡:𝑒𝑑 which is considered sufficient to answer the question,
then make the answer with only 𝑉𝑠𝑡 :𝑒𝑑 and 𝑄. Compared with
the temporal attention based “soft” localization, our proposed
method adopt a “hard” localization strategy. This is feasible and
natural because human often first have a rough idea of where
to find the answer, then carefully watch a specific segment of
interest to find out the answer. Moreover, the pipeline becomes
more interpretable since during evaluation we can also evaluate
the relevance of the located segment to the question. We can
also diagnose the model effectively by visualizing the question
localization outputs.

To accommodate the fact that there is no temporal label of
the question localization of the video in widely used VideoQA
datasets [14], [15], one could employ the advance in weakly
supervised Video Temporal Grounding (VideoTG) [16]–[18]
which specifically targets localizing a text query to a video
without using explicit temporal annotation. Under this scheme,
a default design could be a two-stage pipeline consisting of a
question localization (QL) module and an answer prediction
(AP) module, and the two modules are trained successively.
However, unlike weakly supervised VideoTG in which there
is no label at all, we would like to make the maximum use of
the available answer annotation and let it not only serves as
the supervision signal of the answer prediction module, but
also explicitly guides the learning of the question localization.
Therefore, we propose a novel approach named as LocAns, in
which QL and AP are embedded into an end-to-end model.
LocAns generates pesudo temporal label from the answer
annotation on-the-fly in the training process. To be specific, we
pre-define a series of proposals 𝑉𝑠𝑡:𝑒𝑑 . In each training iteration,
we let AP select a best proposal based on the predictive
performance and use the selected proposal as the pesudo label
for QL learning. To this end, there exists a mutual dependency
between QL and AP in the forward pass: AP takes the outcome
of QL as input to make the answer, while it also reciprocally
provides the supervision signal of QL. In this way, we can
supervise the learning of QL in an explicit form, which is
difficult to implement in the temporal attention based paradigm.
However, the dependence between AP and QL also results in a
difficulty for the model converge in training. To best mitigate
this effect, we train QL and AP alternatively per epoch. This
strategy also frees the model from the burden of selecting the
balance factor of the QL loss and AP loss which happens when
the two modules are trained simultaneously.

In summary, our main contributions as follows:
• We propose a new paradigm “locate before answering” for

long-term VideoQA, which helps on removing the noise
and redundancy caused by irrelevant parts of video and
adds model interpretability by having the located segment
as a side output.

• We propose a new approach named as LocAns, which
embeds the question localization module and the answer
prediction module into an end-to-end model, and adopt an
alternatively training strategy with only the answer labels
for the two modules learning.

• LocAns achieves state-of-the-art performance on three
long-term video QA datasets NExT-QA [14], ActivityNet-

QA [15], AGQA [19], and our qualitative evaluation shows
the effectiveness of the localization.

II. RELATED WORKS

A. Video Question Answering

Video Question Answering (VideoQA) [1], [2] amis to
answer the nature language question in a video input, it is
a natural extension of image-based VQA [7], [8], [20], [21]
in video domain. Established VideoQA works usually first
extract video features using 2D CNNs followed by RNNs or
3D CNNs and language feature using GloVe [22] or BERT
[23], then apply a cross-modal interaction module for answer
reasoning. Differing to ImageQA methods, works in VideoQA
pay more attention on the context modeling between the
question and video frame cross temporal series. On this basis,
a few temporal attention based methods [11], [13] conducted
the initial exploration of applying question localization in
VideoQA, such as Jiang et al. [11] proposed a question-
guided spatial-temporal contextual attention network. Dang et
al. [24] proposed a hierarchical object-oriented spatio-temporal
reasoning networks to establish dynamic interaction between
objects along video sequences. Seo et al. [25] proposed motion-
appearance synergistic network, which selectively utilizes
information from two modalities based on the intention of
the question.

However, most of these works were tested on early datasets
such as MSVD-QA [26], MSRVTT-QA [26] and TGIF-QA [1],
in which the videos are relatively short (within 15 seconds).
In recent years, several datasets have emerged for VideoQA
with untrimmed long-term videos, such as NExT-QA [14],
ActivityNet-QA [15], AGQA [19], and TVQA [27]. In addition
to videos and annotated question-answer pairs, TVQA is a tri-
modal dataset containing subtitles, which makes this dataset
more focused on language interaction between questions and
subtitles. This is beyond the scope of this study. Therefore,
our experiments are conducted on the rest three datasets, i.e.,
NExT-QA, ActivityNet-QA, and AGQA.

B. Video Temporal Grounding

Video Temporal Grounding (VideoTG) [16], [17], [28]
aims to localize a text query to a segment in a video. Most
works follow a two-stage pipeline that first generate proposals
with sliding-window or other approaches, then calculate the
matching score between the language query and proposals.
Weakly supervised VideoTG is a setting where no temporal
label is available in order to save the expensive temporal
annotation cost. Under this setting, most works [29]–[31]
adopt the multi-instance learning (MIL) strategy to learn
video-text alignment through the comparison between positive
and negative samples. Mithun et al. proposed a pioneer
work named Text-Guided Attention (TGA) under the weakly
supervised setting, which extracts text-guided video feature
and distinguishes positive and negative moment-query pairs
depending on ranking loss. Huang et al. [31] presented Cross-
sentence Mining (CRM) to explore the temporal information
modeling in MIL using combinational associations among
sentences.
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Why was the 
man lying on 
the ground at 
the end?

word
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token-level question feature token-level video feature proposal

pre-defined proposals

selected proposal

Fig. 2. The overall structure of the inference forward of LocAns. The proposed LocAns mainly consists of three components: a feature representation module,
a question locator and a answer predictor.

Similar to weakly supervised VideoTG, our work is com-
mitted to locating the question to the video without explicit
temporal annotation. The difference is that we leverage the
guidance of question answering annotations rather than adopt-
ing MIL strategy.

III. METHODOLOGY

Given an untrimmed video 𝑉 , a question 𝑄 in natural
language, VideoQA is to select a candidate 𝐴 from its searching
space {𝐴𝑖}𝐾𝑖=1 that best answers the question. For long-term
video which often contains complex semantics, we argue that
a question is likely to be related to only part of the video. To
make use of this nature, we propose LocAns, an end-to-end
model that first localizes the question to a certain segment in
the video then predicts the answer based on only the retrieved
segment.

The overall framework is illustrated in Figure 2, the raw
video and question are first individually fed into two pre-
trained models to extract first-level features. Then our feature
representation module encodes the temporal relation of the two
modalities individually via self-attention [32]. The following
question localization module, which employs cross-modal
attention and bi-linear fusion [33], fuses the two modalities
and performs proposal-based question localization. Finally the
answer prediction module uses the clipped fused feature to
predict the answer.

In training the network, we are not able to directly supervise
the learning of the question localizer due to the lack of existing
temporal annotation. To accommodate this, we compromise
to model-generated pesudo temporal annotation. In the rest of
this section, the components of our network are detailed in
Section III-A to III-C, and the training strategy is explained
in Section III-D.

A. Feature Representation Module

After the initial processing using pre-trained models, the
video and question features v ∈ R𝐿𝑣×𝑑𝑣 and q ∈ R𝐿𝑞×𝑑𝑞 are

obtained. We apply two fully connected layers to align the
features to the same dimension 𝑑model. To encode the token-
wise sequential relations, we adopt attention transformation
[32] globally in our model, defined as

Attn(s𝑞 , s𝑘 , s𝑣) = softmax(
𝑄(s𝑞)𝐾 (s𝑘)𝑇√︁

𝑑model/ℎ
)𝑉 (s𝑣), (1)

where s𝑞 ∈ R𝑁𝑞×𝑑model , s𝑘 , s𝑣 ∈ R𝑁𝑘𝑣×𝑑model , the 𝑄(·), 𝐾 (·) and
𝑉 (·) are three independent linear transformations and ℎ denotes
the number of heads. Our feature representation module applies
self-attention on the visual and textual modalities individually,
which produces

qself = Attn(q, q, q) ∈ R𝐿𝑞×𝑑model , (2)

vself = Attn(v, v, v) ∈ R𝐿𝑣×𝑑model . (3)

B. Question Localization (QL) Module

The QL retrieves a segment of the video 𝑉st:ed such that
the segment is most relevant to 𝑄. To achieve this, LocAns
generates 𝑁 total segment proposals by first defining a series of
anchors with different scales, and then applying non-overlapped
sliding window on the video using these anchors. To be
specific, a total of 15 proposals are generated by choosing
{1/1, 1/2, 1/3, 1/4, 1/5} as the anchor scales in our default
setting1. To this end, the localization is essentially transformed
into a 𝑁-class classification problem. Since achieving reliable
localization requires an understanding of the visual-textual
context, we apply cross-modal attention on the self-encoded
features produced by feature representation module. In this
way, the cross encoding of the two modalities is respectively
given by

1The start and end frame are rounded down and up respectively when the
number of frames cannot be divided.
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scoreQL pesudo label

bi-fusionAPbi-fusionQL

scoreAP

ground truth

CrossEntropy

Fig. 3. The generation of the pesudo label ỹQL and question localization loss
LQL.

qcross = Attn(qself, vself, vself) ∈ R𝐿𝑞×𝑑model , (4)

vcross = Attn(vself, qself, qself) ∈ R𝐿𝑣×𝑑model . (5)

To perform the localization, we first obtain the overall feature
of the sequence by max pooling qcross and vcross to the joint
space R𝑑model , and subsequently applying bi-linear fusion [33]
to fuse the features to the proposal scores space R𝑁 , given by

scoreQL = bi-fusion(max(qcross),max(vcross)) ∈ R𝑁 . (6)

Thus, the localization result is given by the proposal which
gets the max of scoreQL.

C. Answer Prediction (AP) Module

The AP makes the final prediction 𝐴 using only the localized
segment of the video from the question localization module.
To achieve this, we rule out the irrelevant part of the video by
slicing the video feature vcross to vcrossst:ed where 𝑠𝑡 and 𝑒𝑑 are
the start and end frame index of the proposal selected by our
question localization module. The question answering scores
are generated similarly to the proposal scores, given by

scoreAP = bi-fusion(max(qcross),max(vcrossst:ed)) ∈ R𝐾 . (7)

Thus, the answer is given by the candidate which gets the
max of scoreAP. By supervising the scores with the correct
answer label, we can immediately have an answer prediction
loss

LAP = CrossEntropy(scoreAP, yAP), (8)

where yAP ∈ R𝐾 is the one-hot encoding of the correct answer.

Algorithm 1 Decoupled Alternative Training in a PyTorch-like
style

1 # model: torch.nn.Module
2 # loader: torch.utils.data.DataLoader
3 # TOTAL_EP: number of total epochs
4 optimizer = Adam(model.parameters())
5
6 def odd_epoch():
7 # train all modules except QL
8 model.requires_grad = True
9 model.QL.requires_grad = False

10 for batch in loader:
11 loss_ap, _ = model.forward(batch

)
12 loss_ap.backward()
13 optimizer.step()
14
15 def even_epoch():
16 # train QL only
17 model.requires_grad = False
18 model.QL.requires_grad = True
19 for batch in loader:
20 _, loss_ql = model.forward(batch

)
21 loss_ql.backward()
22 optimizer.step()
23
24 for i in range(1, TOTAL_EP+1):
25 if i % 2 == 1:
26 odd_epoch()
27 else:
28 even_epoch()

D. Training Strategy

Question Localization Loss: Our framework consists
of two important modules that play clearly different roles,
question localization module and answer prediction module.
The quality of the question localization essentially determines
the performance of the answer prediction: if the question
localization module makes a wrong decision, theoretically the
predicted answer can be no better than a random guess. Thus,
instead of naively training the whole framework using LAP,
we would like to introduce another loss term to particularly
supervise the learning of the question localization. However,
since there is no true label of the correct proposal nor the 𝑠𝑡
and 𝑒𝑑 ground truth, we compromise to using pesudo label. As
illustrated in Figure 3, we forward pass our model using all the
N proposals, and the proposal 𝑝 which gives the highest score
on the correct answer is reciprocally used as the supervision
signal that guides the learning of the question localization. In
this way, the question localization loss is given by

LQL = CrossEntropy(scoreQL, ỹQL), (9)

where ỹQL ∈ R𝑁 is the one-hot encoding of 𝑝.
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TABLE I
PERFORMANCE COMPARISON WITH VARIOUS EXISTING METHODS ON NEXT-QA VALIDATION SET. ACCC, ACCT, ACCD DENOTE THE ACCURACY OF

CAUSAL, TEMPORAL, DESCRIPTIVE QUESTIONS RESPECTIVELY.

Methods AccC AccT AccD AccWhy How All B&A Pre All Cnt Loc Other All
E-VQA 42.31 42.90 42.46 46.68 45.85 46.34 44.07 46.44 46.23 45.82 44.24
ST-VQA 45.37 43.05 44.76 47.52 51.73 49.26 43.50 65.42 53.77 55.86 47.94
Co-Mem 46.15 42.61 45.22 48.16 50.38 49.07 41.81 67.12 51.80 55.34 48.04
HCRN 46.99 42.90 45.91 48.16 50.83 49.26 40.68 65.42 49.84 53.67 48.20
HME 46.52 45.24 46.18 47.52 49.17 48.20 45.20 73.56 51.15 58.30 48.72
HGA 46.99 44.22 46.26 49.53 52.49 50.74 44.07 72.54 55.41 59.33 49.74
Ours 49.90 45.68 48.79 51.21 50.68 50.99 44.63 75.93 55.74 60.88 51.38

TABLE II
PERFORMANCE COMPARISON WITH VARIOUS EXISTING METHODS ON

ACTIVITYNET-QA TEST SET.

Methods Vid Feats Accuracy
E-VQA VGG + C3D 25.1
E-MN VGG + C3D 27.1
E-SA VGG + C3D 31.8

MAR-VQA VGG + C3D + Audio 34.6
CAN VGG + C3D 35.4

HGA † C3D 34.6
Ours C3D 36.1

TABLE III
PERFORMANCE COMPARISON WITH VARIOUS EXISTING METHODS ON

AGQA V2 TEST SET.

Methods Vid Feats Accuracy
PSAC ResNet 40.18
HME ResNet + ResNeXt 39.89

HCRN ResNet + ResNeXt 42.11
Ours ResNet 47.07

Decoupled Alternative (DA) Training: With LQL as an
augmentation of the default LAP, the naive way of training the
network is to sum the two loss terms with a weight factor 𝜆
such that

L = LAP + 𝜆LQL. (10)

However, as also can be seen in our ablation study in Section
IV-E, finding the optimum 𝜆 is difficult since the optimum 𝜆

varies across different datasets, and also costly since the tuning
needs many rounds of experiments on the training set.

To avoid the above disadvantages, we design a DA training
strategy which does not rely on weighting the two loss terms
with 𝜆. Observing the design of our model, the quality of QL
determines the lower bound of AP’s performance, while AP
reciprocally provides the supversion signal to QL. Inspired by
the idea of Expectation Maximization (EM) algorithm [34], we
make use of this mutual effect and decouple the naive training
strategy that updates the two correlated module QL and AP
jointly using the bundled loss in Equation 10 into two phases.
As illustrated by the pesudo codes in Algorithm 1, phase 1
trains the whole model except for QL using LAP while phase
2 tunes only the parameters of QL supervised by LQL. Thus,
there is no need for setting 𝜆. We alternate the two phases per
epoch to ensure a sufficient and balanced learning dynamic.

IV. EXPERIMENTS

A. Datasets

Since we focus on the scenario of long-term VideoQA,
we conduct our experiments on the following three modern
VideoQA datasets containing videos longer than most counter-
parts.

a) NExT-QA: Videos in NExT-QA [14] are sourced from
YFCC-100M [35], and then manually annotated. The NExT-
QA dataset contains 5,440 videos with average duration of
44 seconds, and 52,044 question-answer pairs in total. In this
dataset, each question is given with 5 answer candidates and 1
of them is correct.

b) ActivityNet-QA: ActivityNet-QA [15] is an automati-
cally re-annotated version of ActivityNet [36] based on existing
video descriptions. It contains 5,800 videos with average
duration of 180 seconds, and 58,000 question-answer pairs
(32k/18k/8k for train/val/test split). In this dataset, only a
correct answer is given with no other candidates, hence we
select the top 1,000 most common answers in the training set
as the answer vocabulary. This rules out 4,883 question-answer
pairs from the training set.

c) AGQA: AGQA [19] is a novel video question an-
swering benchmark designed for evaluating models’ reasoning
abilities concerning compositional spatiot-emporal interactions.
We use AGQA v2, which consists of 9.7K videos and 2.27
million QA pairs, with an average video duration of 30 seconds.

B. Evaluation Metric

Our method is evaluated by the accuracy of the question
answering. Since the temporal annotation is not available,
we evaluate our question locating performance with human
evaluated qualitative examples.

C. Implementation Details

The visual feature dimensions of NExT-QA (Res + I3D),
ActivityNet-QA (C3D), and AGQA (ResNet) are 4096, 500, and
2048, respectively. The textual feature dimensions of NExT-
QA (BERT), ActivityNet-QA (6B GloVe), and AGQA (6B
GloVe) are 768, 300, and 300, respectively. For the model
hyperparameters, we adopt 2-layer self attention and 1-layer
cross attention, and the overall model dimension 𝑑model on
NExT-QA, ActivityNet-QA, AGQA is respectively set to 1024,
512, and 512. In the details of model implementation, we use
the standard 8 heads for each encoding module in the uni-
modal encoding and the cross-modal encoding. Each module
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TABLE IV
MODULE ABLATION ON NEXT-QA DATASET.

Variants Accuracy
w/o QL 48.32
w/o LQL 50.05
w/ Soft Attention QL 49.37
Full Model 51.38

TABLE V
TRAINING STRATEGY COMPARISON ON NEXT-QA DATASET.

Training Strategy Con. Epoch Accuracy
Bundled Training 43 51.50

DA training 12 51.38

is subsequently followed by a two-layer feed-forward module
activated by ReLU [37] to further enhance the encoding
capacity. Moreover, we follow the standard configuration of
multihead attention modules, where layernorm [38], dropout
[39], position embedding [23] and residual connection [40] are
applied. In terms of training, we optimize our model using the
Adam optimizer [41] with learning rate of 5 × 10−5 for NExt-
QA and 1× 10−4 half decaying on plateau for ActivityNet-QA
and AGQA. All experiments are conducted on a Nvidia Tesla
V100 GPU with 32GB memory in the condition of 64 batch
size.

D. Performance Comparison

To demonstrate the effectiveness of our proposed LocAns,
we compare it with several classic and current state-of-the-art
VideoQA methods: E-VQA [8], E-MN [42], E-SA [43], ST-
VQA [1], Co-Mem [4], HCRN [10], HME [44], HGA [45],
MAR-VQA [46], CAN [47]. Table I to Table III summarize
the performance comparison on NExT-QA, ActivityNet-QA,
and AGQA, respectively.

a) NExT-QA: For a fair comparison, the compared meth-
ods on NExT-QA dataset use the same video and language
features. The videos are uniformly sampled into 16 clips and
each clip contains 16 consecutive frames. Each clip feature is
composed of appearance feature extracted from ResNet-101
[40] pre-trained on ImageNet [48] and motion feature extracted
from 3D ResNeXt-101 [49] pre-trained on Kinetics [50]. The
questions and candidate answers use pre-trained BERT [23]
for sentence embedding.

For the results in Table I, we have the following observations:
1) Our proposed LocAns outperforms other methods regarding
the overall accuracy. Compared with the previous best method
HGA, we have a 1.64% improvement. 2) Our method also
achieves promising performance on most fine-grained cate-
gories, suggesting that “locate before answering” is widely
applicable without significant limitation on the question type.
3) The most significant accuracy increase of our method on
AccC suggests a particular necessity of localization in long-
term video for answering complex causal reasoning questions.

b) ActivityNet-QA: For ActivityNet-QA dataset, the ex-
isting methods are not unified in video features. We choose
the methods with widely used VGG-16 [51] and C3D [52]
features for comparison. Other methods using S3D [53] or
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Fig. 4. Performance comparison with bundled training with different 𝜆 and
proposed DA training on two datasets.

TABLE VI
INFLUENCE OF PRE-DEFINED PROPOSALS ON NEXT-QA DATASET.

Scale Total Pro. Accuracy
{1/3, 1/2, 1} 6 51.07

{1/7, 1/8} 15 50.46
{1/10, 1/5, 1/3, 1/2, 1} 21 51.24
{1/5, 1/4, 1/3, 1/2, 1} 15 51.38

object detection [54] features such as [55], and methods using
additional training data such as [56], [57], are not within the
scope of our comparison. On the language side, each word
token is represented by the pre-trained 300-dimensional GloVe
embedding [22]. As we can see in Table II, our proposed
LocAns reaches the highest accuracy even we only use the
C3D feature. We have a 1.5% improvement over HGA that
uses the same C3D features. Compared with MAR-VQA with
additional VGG and audio features, we also have a 1.5%
improvement.

c) AGQA: For AGQA dataset, our proposed LocAns use
the appearance feature extracted by pre-trained ResNet-101 as
other methods. As shown in Table III, LocAns significantly
outperforms other methods when using only ResNet features.
On AGQA, LocAns achieves an accuracy of 47.07%, which is
nearly 5% higher than the previous best-performing method,
HCRN.

E. Ablation Studies

In order to comprehensively analyze our proposed LocAns,
we conduct extensive and in-depth ablation experiments on
NExT-QA validation split.

a) Effectiveness of Components: We first design three
model variants to verify the effectiveness of the key modules
in LocAns. The results are listed in Table IV. In variant 1 (w/o
QL), we remove the entire QL. Variant 2 (w/o LQL) keeps the
full model structure, but only uses LAP for training. In order to
verify the effectiveness of our hard localization with proposals,
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we also implement a soft localization method variant 3 (w/ Soft
Attention QL) for comparison. It takes the question-to-video
attention score as the soft localization result and weighted
average the video features in the temporal dimension instead
of a hard clipping.
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Fig. 5. Performance of LocAns on NExT-QA with respect to different layer
numbers of self-attention and cross-attention. SA and CA denote self-attention
and cross-attention respectively.

According to the results in Table IV, we have the following
observations: First, our full model obtains a significant im-
provement over variant 1 and variant 2 by 3.06% and 1.33%,
respectively. Variant 2 suggests that the localization ability
learned in a weakly-supervised way, that is, using answer head
to generate pseudo label of localization module, can be directly
fed back to the accuracy of question answering. Second, variant
2 has an absolute improvement of 1.73% compared with variant
1. This demonstrates that the localization module can learn
the location ability to a certain extent for question answering
performance improvement even without the help of pseudo
label. Finally, without additional supervision, the accuracy of
variant 3 is 0.68% lower than that of variant 2, suggesting the
advantage of hard proposals over soft token-level scores.

b) Necessity of DA Training: As we discussed in Section
III-D, we can naively train our model with the bundled loss in
Equation 10. In the context of bundled training, the value of 𝜆
determines the importance of LQL, thus affecting the gradient
optimization direction of the whole network. However, the
calculation of LQL depends on the quality of the pseudo labels
provided by AP, which is not trustworthy at the beginning
of training. Therefore, the training may collapse from the
unreliable supervision of LQL when 𝜆 is set too large. Figure
4 reports the effect of hyperparameter 𝜆 under this training
strategy. It can be observed that the final performance is very
sensitive with respect to 𝜆 on both datasets. The performance
tends to plummet when 𝜆 is too large (𝜆 ≥ 0.07 on NExT-QA
and 𝜆 ≥ 0.9 on ActivityNet-QA), which supports our theoretical
analysis. Moreover, we find that the optimum values of 𝜆 are
largely different on the two datasets, which again suggests the
difficulty of tuning 𝜆.

In contrast, our proposed DA training (red histogram in
Figure 4) reaches the same level of performance as bundled

training without any hyperparameter tuning. Moreover, it is
worthwhile to note that DA training promotes the convergence.
As shown in Table 4, DA training consumes 12 epochs for
convergence, which is less than 1/3 of bundled training.

c) Influence of Pre-defined Proposals: The pre-defined
proposals play a key role in our approach. Therefore, we
conduct this ablation study targeting the influence of different
combinations of proposals. As we listed in Table VI, we
selected four groups of proposals for comparison, and the
last group (Group 4) is our default setting. Compared with
Group 4, Group 1 has fewer proposals, Group 2 has the same
number of proposals but the anchor scales are different, and
Group 3 has more proposals.

From the results in Table VI, we have the following
observations: 1) The performance gap between different groups
is trivial, which suggests that LocAns is robust to different pre-
defined proposals. 2) Too few or too many proposals will cause
a certain degree of performance degradation. We speculate that
this is because on the one hand, too few proposals mean coarse-
grained localization, and on the other hand, too many proposals
will make proposal classification difficult. 3) In the context of
weakly supervised localization, coarse-grained anchor is better
than too fine-grained anchor: the accuracy of Group 2 is 0.92%
lower than Group 4.

d) The number of attention layers: Figure 5 summarizes
the effects of the number of self-attention and cross-attention
layers. From the experimental results, we can conclude that the
performance will be significantly improved at the beginning and
reach a bottleneck with slight drop as the number of attention
layers increases. The best choice (i.e., our default setting)
is two layers of self-attention and one layer cross-attention.
Overfitting may be responsible for the performance degradation
when we use deep attention layers. When the attention layer
is set to 0, there is a significant decrease in performance. For
instance, when the cross-attention layer is reduced from 1
to 0, the model’s accuracy drops from 51.38% to 48.73%,
demonstrating a performance gap of 2.65%. This difference
in performance reveals the crucial role of cross-attention in
integrating contextual information between language and visual
input.

F. Qualitative Examples

To show the reliability and interpretability of our proposed
LocAns more concretely, we visualize some examples in Figure
6. These samples can give us a rough impression of the
localization performance of LocAns on the one hand, they
can also provide explanations for the final answering results on
the other hand. Video (1) to Video (4) are successfully answered
samples, they demonstrate the effectiveness of our approach
from two aspects. For Video (1) and Video (2), LocAns locates
the question related segments accurately. In Video (1) the baby
and the woman had an obvious hugging behavior, thus trimming
off the irrelevant visual contents for around 50 seconds. For
Video (3) and Video (4), even if the localization does not match
the human annotated boundary perfectly (the prediction interval
is slightly wider than the human annotated interval), it still
contributes to the correct answer prediction. Inevitably, there
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Prediction

Question: What does the baby do after approaching the woman in singlet at the beginning? 

Candidates: touch surface; put face close to baby; hug woman; turn back; steps on the toy
Predict Answer: hug woman

Video (1)
69s

Human Anno. 0s-20s
0s-23s Proposal: [1/6 (1/3)]

Candidates: pour the sand out; drink it; happy as they smile; pick up the bucket; grab starfish
Predict Answer: drink it

Question: What does the girl do after splashing the water at the beginning?

Video (5)
19s

Human Anno. 0s-7s
10s-19s Proposal: [3/4 (1/2)]Prediction

Candidates: continue punching; man pushes the swing; boy hits it with head; baby on swing; lady pulls the metal chains
Predict Answer: boy hits it with head

Question: Why is the hanging object moving in the middle?

Video (3)
53s

Human Anno. 17s-26s
16s-35s Proposal: [1/2 (1/3)]Prediction

Prediction

Question: How does the man in grey feel when looking at the cards in his hands near the beginning?

Candidates: happy; sad; surprised; shy; confident
Predict Answer: surprised

Video (2)
89s

Human Anno. 0s-21s
0s-18s Proposal: [1/10 (1/5)]

Prediction

Question: What does the man do after riding normally for a while at the end？

Candidates: adjust the white woman getting dressed; snip of some hair; moves hands; stop hitting; lost balance
Predict Answer: lost balance

Video (4)
30s

Human Anno. 28s-30s
24s-30s Proposal: [9/10 (1/5)]

Fig. 6. Some visualized examples from NExT-QA validation set. The first two are successful cases, and the third is a failing case. The green bar is the
temporal boundary annotated by the author, and the blue bar is the prediction of the localization module. The two values of the proposal on the prediction bar
represent the center and scale of the temporal interval it represents. For example, [1/2 (1/3)] indicates that the center is located at the 1/2 of the video, and the
interval scale is 1/3 of the total video duration.

are also failure cases like Video (5), where the key frame of the
girl grasping starfish and the localized segment are staggered
completely. We consider that this may be caused by the visual
difference between frames in Video (5) is very small. The
entire video is about a girl sitting in the blue water, which
makes fine-grained action (grab starfish) detection difficult.

From these visualized examples, we have the following
observations: 1) Most of the successful cases have precise
temporal prediction, while the failure cases are the opposite.
2) Although the localization is not completely precise in some

cases (e.g., Video (3) and Video (4)), it still filters out part of
noise and redundancy. 3) In some extreme cases, the temporal
prediction will be completely wrong, which will cause the
input of answer predictor being untrustworthy. This further
illustrates the importance of question localization in long-term
videos.

V. LIMITATIONS

The main limitation of this study is that there is no ground
truth of the temporal label. One consequence of this fact is that
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we are only able to generate pesudo label and perform proposal
based localization. Thus the granularity and the accuracy of
localization are largely limited. Another consequence lead by
the absence of temporal annotation is that we can only evaluate
our question localization module with less-indicative qualitative
examples instead of overall quantitative scores. In the future,
a VideoQA dataset containing annotated temporal boundary of
the question would largely boost the study in this direction.

VI. CONCLUSION

In this paper, we explore a new paradigm of first locating
the question and then making the answer for long duration
VideoQA to tackle the difficulty brought by more complex
visual semantics. Based on this paradigm, we propose LocAns,
a novel algorithm which integrates a question localization
module and a answer prediction module into an end-to-end
model. Extensive quantitative and qualitative experiments on
three long-term VideoQA datasets NExT-QA, ActivityNet-
QA, and AGQA demonstrate the effectiveness of our method.
Unfortunately, we can not evaluate our question localization
performance quantitatively due to the absence of long-term
temporal annotated VideoQA dataset, and we leave this as our
future work. We hope that the “localization first” paradigm
could be potentially generalized to other tasks related to long-
term video understanding.
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