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Beyond Instance Discrimination: Relation-aware
Contrastive Self-supervised Learning

Yifei Zhang, Chang Liu, Yu Zhou, Weiping Wang, Qixiang Ye, and Xiangyang Ji

Abstract—Contrastive self-supervised learning (CSL) based on
instance discrimination typically attracts positive samples while
repelling negatives to learn representations with pre-defined
binary self-supervision. However, vanilla CSL is inadequate in
modeling sophisticated instance relations, limiting the learned
model to retain fine semantic structure. On the one hand, samples
with the same semantic category are inevitably pushed away
as negatives. On the other hand, differences among samples
cannot be captured. In this paper, we present relation-aware
contrastive self-supervised learning (ReCo) to integrate instance
relations, i.e., global distribution relation and local interpolation
relation, into the CSL framework in a plug-and-play fashion.
Specifically, we align similarity distributions calculated between
the positive anchor views and the negatives at the global level to
exploit diverse similarity relations among instances. Local-level
interpolation consistency between the pixel space and the feature
space is applied to quantitatively model the feature differences
of samples with distinct apparent similarities. Through explicitly
instance relation modeling, our ReCo avoids irrationally pushing
away semantically identical samples and carves a well-structured
feature space. Extensive experiments conducted on commonly
used benchmarks justify that our ReCo consistently gains re-
markable performance improvements.

Index Terms—Global distribution relation, local interpolation
relation, relation-aware contrastive self-supervised learning, self-
supervised learning.

I. INTRODUCTION

N the deep learning era, large-scale pre-training [1], [2]

then downstream fine-tuning has become a dominant learn-
ing paradigm [3], [4], [5], [6]. However, supervised pre-
training typically focuses on task-specific features, resulting in
limited model generalization. Building finely annotated large-
scale datasets is also laborious, expensive, and sometimes
impractical. Inspired by human cognition from unlabeled
data, unsupervised visual representation learning is attracting
growing attention [71, [8], [91, [10], [11], [12], [13], [14], [15],
1oL, [17], [18].

Mainstream approaches either manually design specific pre-
text tasks to assimilate the intrinsic data structure [19], [20],
[21], [22], [23], or encode data similarities with a contrastive
self-supervised learning (CSL) paradigm [24], [25], [10], [26].
Unlike handcrafted pretext tasks that are limited in exhausting
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Fig. 1. Instance relation illustration: (a) Global distribution relation enriches
the view-invariant representation from the instance pair level to the dataset
level by aligning similarity distributions. Specific similarities for negative pairs
are well-exploited, for example, the similarity between cat x, and cat x}, is
higher than cat z, and guitar z.. (b) Local interpolation relation quantitatively
controls the apparent similarity by utilizing a data mixture technique and
exploits the interpolation consistency by aligning the interpolation between
the pixel space and the feature space. The color-circled points in the figure
indicate the features corresponding to the images.

correlating human priori, CSL with instance discrimination
aims at learning view-invariant representation, which presents
superior performance and great potential [27], [10], [26], [28],
[29]. Based on InfoNCE loss [24], ISIF [27], MoCo [10] and
SimCLR [26] introduce siamese networks to attract different
instance views as positives while repelling other instances
in a mini-batch or a memory bank as negatives. However,
since negative samples are naively defined as different images,
false negatives with the same semantic content inevitably
occur, and their specific similarity relations are also not taken
into account. Models learned with “hard” binary positive and
negative assignments are apparently limited by biased and
incomplete semantic structure learning of the data.

In this paper, we propose a simple yet effective relation-
aware contrastive self-supervised learning (ReCo) approach
to concurrently explore “soft” instance relations of global
distribution and local interpolation, Figure 1. Specifically, in
the global perspective, we enrich positive sample pairs with
positive distribution pairs by calculating similarity distribu-
tions of augmented input views to their negative samples. Fea-
ture representation can be significantly improved by explicitly
coupling complex similarity information between the positive
augmented samples and the negative samples with distribution
alignment, Figure 2(b). In the local perspective, we interpolate
randomly selected images in a mini-batch with a typical data
mixture strategy, e.g., cutmix [30]. The interpolation ratio can



quantitatively control the apparent similarity of the synthetic
image to the original image pair. Meanwhile, we interpolate
features of the image pair with the same ratio to obtain the
feature as the self-supervision signal of the interpolated image.
Attracting corresponding features in the feature space, the
consistency of local interpolation relation can be assimilated,
Figure 2(c).

By incorporating the global distribution and local interpola-
tion relations in a plug-and-play fashion, the proposed ReCo
takes full use of specific similarities of diverse sample pairs
to relax the constraint that all positives/negatives should be
equally attracted/repelled. Extensive experiments justify the
effectiveness of ReCo, which produces a locally aggregated
yet globally uniform feature space, Figure 5. Specifically,
ReCo achieves state-of-the-art performance with 75.9% top-
1 accuracy for linear classification and 78.9% and 87.9%
top-5 accuracies for semi-supervised classification with 1%
and 10% labeled data. Transferring to the VOC [31] dataset,
ReCo improves MoCo-v2 [32] by at least 6.3% mAP for low-
shot classification with k=1,2,4,8,16 and 0.9% AP for object
detection.

The contributions are summarized as follows:

1) We propose relation-aware contrastive self-supervised
learning (ReCo) to effectively retain the data semantic
structures by exploring instance relations from both
global and local perspectives. It is a novel attempt to
break through the limitation of the error-prone binary
label assignment of vanilla CSL.

2) We exploit the global distribution relation to explicitly
constrain the specific similarity of different samples
other than repelling all negative samples equally.

3) We exploit the local interpolation relation to carve the
semantic structure of the feature space with quantitative
appearance similarity retention.

4) The proposed ReCo outperforms existing CSL works
on multiple benchmarks and shows better general-
ization ability, especially for insufficient supervision
regimes, e.g., it significantly exceeds MoCo-v2 in semi-
supervised learning with 1%/10% labeled data and low-
shot classification with 1/2/4/8/16 samples.

II. RELATED WORKS
A. Unsupervised Visual Representation Learning

Unsupervised visual representation learning aims at utilizing
unlabeled data to learn transferable feature representations to
initialize downstream tasks, such as image classification [4],
object detection [33], [34], and semantic segmentation [35],
[36], which can be roughly divided into handcrafted pretext
tasks and contrastive self-supervised learning.

Handcrafted Pretext Tasks. Such methods typically as-
similate common sense through self-supervision signals gen-
erated based on the inherent structure of the data. Specif-
ically, some works aim at recovering input images under
pre-defined corruptions, such as colorization [21], inpaint-
ing [22], and split-brain autoencoding [37]. Some works
generate self-supervision via specific transformations, such as
context prediction [19], solving jigsaw puzzle [20], rotation

prediction [23], etc. Developing sophisticated pretext tasks
largely depends on human prior knowledge, which limits their
rapid evolution.

Contrastive Self-supervised Learning. With InfoNCE
loss [24] and its variants, CSL methods typically construct
informative positive and negative sets to encode similarities
of positive instance pairs and differences of negative ones.
NPID [25] introduces a memory bank to store features of
the whole dataset and formulates instance discrimination [7]
as a non-parametric classification problem. MoCo [10] pro-
poses a moving-average encoder and a dynamic queue to
build positive and negative pairs effectively and efficiently.
SimCLR [26] fulfills the contrast procedure in the current
mini-batch and introduces more data augmentations to report
impressive performance. Interestingly, some researches jus-
tify that augmentation invariant representations can also be
well learned without negative samples, such as BYOL [38],
SimSiam [39], SWAV [40], BarlowTwins [41], efc. Moreover,
some works [42], [43] attempt to combine contrastive loss
with handcrafted pretext tasks, which demonstrate their com-
plementary nature.

To better explore class boundary information, some recent
works delve into positive sample discovery. Clustering-based
methods [44], [45], [46], [47], [48], [49] target at itera-
tively grouping instances for reliable pseudo label assignment.
Neighbour-discovery-based methods [50], [51], [52], [53], [54]
usually set specific rules to select reliable positive samples
in the local neighbourhood. However, as a strong addition to
CSL, relation-aware contrastive learning based on soft instance
relations of similarity distribution at the global level and
interpolation consistency at the local level has not been fully
exploited, which hinders the development of CSL.

B. Instance Relations Exploration

The informative data semantic structure can be captured
via instance relation exploration, which is usually established
in terms of similarity distribution and data interpolation [55],
[56], [57], [58], [59]. The distribution depicts unique similar-
ities of diverse sample pairs and the interpolation consistency
models relations between synthetic images and original inputs.
Their complementary nature appears under-studied.

Similarity Distribution. Similarity distribution is typically
exploited in knowledge distillation [55] and consistency regu-
larization in semi-supervised learning [60], [61]. Logit-based
knowledge distillation [55] proposes to use the output of the
softmax layer of the teacher model as soft labels to train
the student model. Its effectiveness lies in the fact that the
soft labels depict the relation between different classes. After
that, some methods explicitly establish the structural relation
between the outputs of different samples rather than individual
outputs themselves, e.g., relational knowledge distillation [62],
similarity-preserving knowledge distillation [63], and self-
supervised distillation [64], etc.

Consistency regularization in semi-supervised learning [61],
[65] insists that the output of the model should be similar
before and after perturbing the input data, which is achieved
by distribution alignment. A lot of semi-supervised learning
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Fig. 2. Architecture overview of our ReCo, which consists of (a) a vanilla CSL framework, e.g., MoCo-v2, (b) global distribution relation, and (c) local
interpolation relation. v;, 9;, and v; ; are features of input views x; and £;, and the interpolated image, respectively. ¥; ; denotes the interpolated feature.

works are devoted to how to generate better target distribution,
e.g., Mean Teacher [61], MixMatch [65], SsCL [66], efc. Some
current self-supervised learning methods [57], [67], [58], [68]
are exploring the utilization of similarity distribution and have
achieved remarkable results. Typically, CO2 [57] improves
MoCo-v2 by additionally aligning the similarity distribution
of two views to negative samples. ISD [67] and ReSSL [58]
utilize weak data augmentation to optimize the distribution
alignment term without explicitly pushing away negative
samples. CLSA [68] matches the distribution obtained from
stronger and regular augmentations to explore new patterns
ignored in MoCo-v2. However, the local-level relation that
apparently similar inputs should be close in feature space is
not explicitly considered.

Data Mixture. Data mixture typically targets at augmenting
the sample space to reduce incompatibilities during inference.
The model generalization ability can be enhanced by explor-
ing relations between synthetic and raw data. Mixup [56]
performs the corresponding pixel-weighted summation of the
input image pairs, and the label is also linearly interpolated.
CutMix [30] replaces the removed regions with a patch from
another image. Beyond supervised scenarios, data mixture is
also applied in semi-supervised [69] and unsupervised [59]
learning. Specifically, UnMix [59] and MixCo [70] perform
data mixing in the input space, and then weight the loss
with the interpolation ratio. Deviating from merely local-level
interpolation, ReCo further exploits the similarity distribution
to delineate global-level relations.

I[II. METHODOLOGY

CSL methods based on instance discrimination typically
rely on predefined hard binary assignments, which are error-
prone and ignore the exploitation of different relations among

instances. To retain the semantic structure of the data and
produce a locally aggregated and globally uniform feature
space [71], [29], we propose relation-aware contrastive self-
supervised learning (ReCo) which simultaneously explores
soft instance relations of similarity distribution at the global
level and interpolation consistency at the local level, Figure 2.

A. Overview

Baseline. We choose the seminal work MoCo-v2 [32] to
clarify the implementation details of our ReCo which can also
be applied on common CSL frameworks. It takes two views of
the ¢-th instance z; and &; as input, which are generated from
the same image through a combination of data augmentations.
The corresponding features v; and v; are extracted by an online
encoder fp and a momentum encoder f; as v; = fo(x;)
and 0; = f,(&;), where the encoder consists of a backbone
network (e.g. ResNet-50 [4]) and an MLP head, Figure 2(a).
The feature ©; from the momentum branch is stored in a queue
(memory bank) with the size of K. v; and 9; are defined as
positive sample pairs that attract each other in the feature space
while staying away from the negative samples in the queue.
The learning objective is to minimize the InfoNCE [24] loss:

1 N
Ecsl = _N ;log
(1)

where NN is the training set size, 7 is the temperature [55],
and v; is the j-th sample in the queue.

Pipeline. As illustrated in Figure 2, ReCo consists of three
modules : (a) a vanilla CSL framework (MoCo-v2), (b) global
distribution relation, and (c) local interpolation relation. The
global distribution relation utilizes distribution alignment to
fully use the specific similarities of diverse samples to relax

exp(v; - 0;/T)
exp(v; - 0;/7) + Zf exp(v; - 0;/T)




Momentum

encoder

-~ St *J
v,
el e

P =1 -
[

]

=) | ] [
® i

%}%‘
@@@
R

Raw input

_3
ane

Momentum *)
. encoder |

(a) Distribution (b)
Generation

Pixel-level

() Feature-level
Interpolation

Interpolation

Fig. 3. Detailed implementation framework of our ReCo, in which three
modules are jointly optimized.

the constraint that all negatives are equally repelled. The lo-
cal interpolation relation applies image interpolation between
random sample pairs. It explores the interpolation consistency
relation between pixel and feature space to quantitatively
model samples’ apparent similarity.

The overall loss function of ReCo is a combination of the
infoNCE loss L., the global distribution relation loss Lgiopais
and the local interpolation relation loss L;,cq;, Which can be
formulated as

L= »Ccsl + Alﬁglobal + )\2£local7 (2

where A; and Ao are balance weights of Lgiopar and Liocal-

B. Global Distribution Relation

We extend view-invariant representation learning from the
instance level to the distribution level, which is inspired by
the consistency regularization in semi-supervised learning that
the output of the model (probability distribution) should be
similar under variations in the input space [61], [65]. The
distribution depicts the specific similarities between different
classes and therefore retains rich global relations. Concretely,
the global distribution relation is materialized with distribution
generation and distribution alignment, Figure 3.

Distribution Generation. We calculate the similarity dis-
tribution of each input view to its negative samples based
on the embedding features extracted by the encoder. To
obtain a stable target distribution, we employ weak data
augmentation that does not introduce severe variation [65].
Therefore, we utilize a new branch with weak augmentation
to obtain z; (top of Figure 3), which is augmented by only
randomly resized cropping and random horizontal flipping.
To make the differences between samples more transparent,
we use a smaller temperature to sharpen the distribution.
Specifically, the distribution obtained by wv; is regarded as

the online distribution for gradient back-propagation while the
distribution obtained by v; is used as the target distribution.
Accordingly, for the i-th instance sampled from the min-batch,
the online distribution S°(i) and target distribution S*(7) can
be calculated by S°(i) = {s; = v; - ﬁf/70t|j =1,2,3,..,N}
and S*(i) = {s; = v; - 0] /7ulj = 1,2,3, ..., N} respectively.
Note that v; denotes the feature stored in the memory bank,
Tot and Ty are temperature parameters that control the degree
of sharpening of the distribution.

Distribution Alignment. For the two generated distribu-
tions, our goal is to align them with a given objective function.
Since Kullback-Leibler (KL) divergence [72] is often used
in statistics to measure the degree of difference between two
distributions, we use KL divergence by default as the objective
function to align the two distributions S°(i) and S*(7). In this
way, the objective function of global distribution relation is
formed by

N
1 TP
Lgiobal = ~ 2DKL(S¢(Z)||S (). 3)
Note that N refers to the size of the training set, and S*(i)
does not perform the gradient back-propagation.

C. Local Interpolation Relation

We utilize image mixture strategy to quantitatively simulate
apparently similar images. Existing data mixture strategy [56],
[30] forces the model to behave linearly when dealing with in-
between training examples, that is, the image and target are the
corresponding linear interpolation. We exploit this linearity to
model local interpolation relation. Specifically, we interpolate
image pairs and their features with the same ratio, and then
pull the extracted features of the interpolated images and
the corresponding interpolated features as close as possible
in the feature space. The interpolation consistency relation
can be well assimilated by transferring the interpolation ratio
from pixel space to feature space. The procedure of local
interpolation relation can be detailed as three steps: pixel-
level interpolation, feature-level interpolation, and interpola-
tion consistency, Figure 3.

Pixel-level Interpolation. For each mini-batch, we first
sample an interpolation ratio r from the beta distribution as
r € Beta(a, «), where « is a hyper-parameter set to 1.0 by
default. Then, for two selected instances x; and x; in the mini-
batch with size NN, they are interpolated with the ratio r to
form the synthetic image x; ;. The embedding feature of the
interpolated image is defined as

vij = fo(r-z; ® (1 —r)-z;), ())

where @ denotes image interpolation operation. Specifically,
to randomly select two images for interpolating, the index i
is sampled from an ordered set J\/'ON*’ .=10,1,2,...,N, — 1}

rder
and j is samp}[ed from a random-arrangement set N ° =
randperm(N)" ), where randperm() denotes shuffle the

order randomly.

Feature-level Interpolation. To correspond to the feature
of interpolated image v; ; under the simple linearization con-
straint [56], [30], we generate interpolated feature ¥; ; accord-



ing to the ratio r, which is regarded as the pseudo “ground-
truth” feature of v; ;. The normalized feature interpolation in
the embedding space can be obtained by

0y = La(r - fo(xs) + (1 —1) - fo(x;)), )

where /5 denotes normalization.

Interpolation Consistency. To assimilate interpolation con-
sistency relations, the feature of the interpolated image v; ;
and the interpolated feature ¥; ; should be attracted to each
other, that is transferring interpolation ratio from pixel space
to feature space. It can be achieved using contrastive loss. Ac-
cordingly, the loss function of the local interpolation relation
is formulated as

>

—lOgP(Lj),
jEwa\z]znd (6)
Pl = g s Bl)_
Zke[o’K) exp(vi,j - Ur/T)
where vy, is the feature stored in the memory bank and v, ;
conducts stop-gradient operation.

Elocal = N
ieENN

order’

D. Discussion

We detail the differences between our ReCo and existing
distribution-based and interpolation-based CSL methods in the
aspect of exploiting instance relations. Besides, ReCo further
pursues the complementary nature of these two relations in
retaining semantic structure, Table IV and Figure 5.

Distribution-based Methods. Distribution-based methods
utilize different ways to calculate the similarity distribution
and then align the distributions to explore global-level rela-
tions. In specific, CO2 [57] utilizes the features of the two
branches of MoCo-v2 to obtain the similarity distribution
and then uses distribution alignment as a regularization term.
ReSSL [58] utilizes weak data augmentation to obtain the
target distribution and uses a single distribution alignment loss
as the optimization objective. CLSA [68] utilizes stronger and
regular data augmentation to obtain two distributions as online
distribution and target distribution, respectively. Instead, ReCo
uses weak augmentation to obtain the target distribution for
distribution alignment, which is used to constrain the InfoNCE
loss. Moreover, ReCo uses interpolation to explicitly model the
local relation that apparently similar inputs are close in feature
space, which is not considered in existing distribution-based
methods. More details can be referred in Table VI.

Interpolation-based Methods. ReCo quantitatively models
the relation of the interpolated data to original inputs in the
feature space. Un-Mix [59] and MixCo [70] interpolate in the
input space and then weight the loss corresponding to the inter-
polation ratio. In contrast, we directly interpolate the features
according to the interpolation ratio instead of weighting the
loss. In specific, there are 4 options for interpolation: q and
randperm(q), q and randperm(k), k and randperm(q), and
k and randperm(k), where randperm() denotes randomly
shuffle the order of the batch. Since different views may differ
greatly in the early training stages, we claim that the choice
of image pairs and feature pairs for interpolation has a large
impact on the interpolation consistency relation, which has

TABLE I
ABLATION OF TEMPERATURE
PARAMETERS IN DISTRIBUTION
GENERATION.

TABLE II
COMPARISON OF DIFFERENT
SETTINGS FOR THE COEFFICIENTS
IN THE LOSS FUNCTION.

Tt Tot LC Top-1 LC Top-5 A1 A2 LC Top-1 LC Top-5

02 02 70.7 90.6 0.0 0.0 66.2 88.1
0.1 02 70.6 90.6 0.5 0.0 72.8 91.5
0.1 0.1 72.5 91.1 1.0 0.0 73.6 92.4
0.07 0.1 73.1 92.5 2.0 0.0 70.5 91.3
0.04 0.1 73.6 92.4 1.0 1.0 78.1 94.4
0.01 0.1 72.1 91.6 1.0 2.0 78.8 95.0
02 0.1 68.9 89.4 1.0 3.0 78.5 94.7
TABLE III

COMPARISON OF INTRA-/ INTER-CLASS SIMILARITY. (x 100)

Methods Sintra (1) Sinter (1) oM
MoCo-v2 [32] 35.5 0.5 134.9
ReCo 40.1 (+4.6) 0.5 139.4 (+4.5)

been completely ignored in previous methods. More impor-
tantly, ReCo not only considers the local interpolation relation,
but also further explores the global distribution relation. More
comparisons are shown in Table VII.

IV. EXPERIMENTS
A. Experimental Settings

Dataset. ImageNet-1K [1] contains 1,281,167 images with
1000 categories for training and 50,000 images for testing. We
take ImageNet-100 [73] for fast evaluation, which is a subset
of ImageNet and contains 126,689 images with 100 categories
for training and 5,000 images for testing. PASCAL VOC [31]
contains 20 categories of objects. VOC 2007 contains 5,011
images with 12,608 objects in the trainval set and 4,952
images with 12,032 objects in the test set. VOC 2012 contains
11,540 images with 27,450 objects in the trainval set, and
labels for the test set have not yet been released.

Pre-training Settings. ResNet-50 [4] is set as the backbone
network by default. The size of each view is set to 224 x 224
for ImageNet pre-training. We use the SGD optimizer with
the momentum of 0.9 and weight decay of 0.0005. A cosine
learning rate scheduler is employed with a base learning rate of
0.03, and the batch size is 256. The temperature 7 of InfoNCE
loss is 0.2. The size of the memory bank is 65536 and the
momentum encoder is updated with a parameter of 0.999.

B. Ablation Study

Setup. To quickly verify the effectiveness under differ-
ent parameter settings, we conduct ablation experiments on
ImageNet-100 [73] with ResNet-50 [4] architecture and train
for 100 epochs. We set the batch size to 128 with the base
learning rate of 0.03. Other experimental settings are the same
as those of ImageNet-1K.

Temperature Parameters. For distribution alignment, re-
sults of different temperature parameters are shown in Table 1.
In general, performance is better when 7,; is larger than 7.
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TABLE IV
EVALUATION ON THE IMAGENET-100 DATASET WITH RESNET-50 BY
PERFORMING LINEAR CLASSIFICATION ACCURACY.

Methods Epochs LC Top-1 LC Top-5
MoCo-v2 [32] 100 66.2 88.1
BYOL [38] 100 76.9 93.8
SimSiam [39] 100 74.2 92.8
MoCo-v2+Local 100 74.9 (+8.7) 92.9 (+4.8)
MoCo-v2+Global 100 73.6 (+7.4) 92.4 (+4.3)
MoCo-v2+ReCo 100 78.8 (+12.6) 95.0 (+6.9)
BYOL+Local 100 83.0 (+6.1) 96.0 (+2.2)
BYOL+Global 100 81.2 (+4.3) 95.8 (+2.0)
BYOL+ReCo 100 83.9 (+7.0) 96.7 (+2.9)
MoCo-v2 [32] 200 71.9 94.7
MoCo-v2+ReCo 200 84.0 (+6.1) 96.3 (+1.6)
TABLE V

EVALUATION OF OBJECT DETECTION ON VOC 07+12 WITH THE MODEL
PRE-TRAINED ON IMAGENET-100 FOR 100 EPOCHS. T DENOTES THE
MODIFIED PRE-TRAINING SETTINGS.

Methods AP APso APr75
MoCo-v2 [32] 48.7 76.1 524
MoCo-v2+Local 51.1 (+2.4) 77.6 (+1.5) 55.3 (+2.9)
MoCo-v2+Global 49.0 (+0.3) 76.7 (+0.6) 52.4 (+0.0)
MoCo-v2+ReCo 51.0 (+2.3) 78.0 (+1.9) 55.3 (+2.9)
MoCo-v2+ReCo' 52.0 (+3.3) 78.8 (+2.7) 56.8 (+4.4)

Especially, the performance drops dramatically when 74 is
larger than 7,; (the last line). This is because a smaller 7
can sharpen the target distribution and make the difference
between various sample pairs more obvious. We set 7,=0.04
and 7,,=0.1 by default for the best top-1 accuracy of 73.6%.

Coefficients. We study how the global distribution relation
term Lg00q; and the local interpolation relation term Ljocal
in Eq. (2) affect the feature representation by using different
values of \; and A3. When A1=1.0 and \5=2.0, the best top-1
accuracy is 78.8%.

Intra-/ Inter-Class Similarity. To quantitatively verify
the semantic structure of the feature space [74], [71],
[29], we define the intra-class similarity as Siptrq =

TABLE VI
COMPARISON OF THE DIFFERENCES BETWEEN DISTRIBUTION-BASED
METHODS UNDER TRAINING IMAGENET-100 FOR 100 EPOCHS.

Methods Dim. Encod. Aug. Sharp. Contra. Decoup. Acc.
MoCo-v2 [32] 128 o/t r/r - v - 66.2
CO2 [57] 128 ot t/r - v - 67.5
CLSA [68] 128  olo s/t - v v 71.1
ReSSL [58] 512 oft r/'w v - - 72.7
ReCo-Global 128 oft r/'w v v v 73.6

TABLE VII
COMPARISON OF THE DIFFERENCES BETWEEN INTERPOLATION-BASED
METHODS UNDER TRAINING IMAGENET-100 FOR 100 EPOCHS.

Image Inter. Feature Inter.

Methods 4/ gk gk kq giq Kk Loss Inter. Acc.
MoCo-v2 [32] - - - - - - - 66.2
MixCo [70] v - - - - - v 69.4
Un-Mix [59] v - - - - v 69.5
ReCo-Local v - - - v - - 72.4
ReCo-Local - v v - - - - 74.9
ReCo-Local - v - v - - - 71.9
ReCo-Local - v - - - v - 72.0

N ot . o
%Zl Yowtes %, the inter-class similarity as S;nter =
P P

% > szes %, and the discriminative index as ¢ =

N Zotes, T+l .
% > ZwTeSy S~ \where N is the number of samples,

K2 T
Sp is the geteg? e‘llﬁns”amples that belong to the same semantic
class as x; based on the ground truth, and S, is the set
of samples of other different classes. Table III reports the
results on the ImageNet-100 wal set. Experimental results
show that ReCo presents higher intra-class similarity and
discriminative index than MoCo-v2, which demonstrates that
a better semantic structure is obtained [75], [74], [29].
Scalability. The scalability of our model is verified by train-
ing with different epochs and backbones. Figure 4 (a) shows
the linear classification accuracies of the pre-trained model
under different epochs, which shows that higher performance



TABLE VIII

COMPARISONS ON IMAGENET-1K UNDER LINEAR CLASSIFICATION (LC) EVALUATION. T DENOTES MULTI-CROP AUGMENTATION. ¥ MEANS ADDING AN

ADDITIONAL FULLY CONNECTED LAYER (2048-D, WITH BN) BEFORE THE 2-LAYER MLP. * DENOTES OUR RE-IMPLEMENTATION.

Methods Publisher Source Baseline Architecture Batch Size Epochs LC Top-1 LC Top-5
Supervised - [32] - R50 - 90 76.5 -

NPID [25] CVPR138 [25] - R50 256 200 54.0 -

LA [74] ICCV19 [74] - R50 128 200 60.2 -

MoCo [10] CVPR20 [10] - R50 256 200 60.6 -
MoCo-v2 [32] arXiv20 [32] - R50-MLP 256 200 67.5 -

SimCLR [26] ICML20 [32] - R50-MLP 8192 200 66.6 -

BYOL [38] NeurIPS20 [39] - R50-MLP 4096 200 70.6 -

MoCHi [76] NeurIPS20 [76] MoCo-v2 R50-MLP 256 200 68.0 -

MixCo [70] Neur[PSW20 [70] MoCo-v2 R50-MLP 256 200 68.4 -

PCL v2 [48] ICLR21 [48] MoCo-v2 R50-MLP 256 200 67.6 -

CO2 [57] ICLR21 [57] MoCo-v2 R50-MLP 256 200 68.0 -

SimSiam [39] CVPR21 [39] - R50-MLP 256 200 70.0 -

JigClu [43] CVPR21 [43] - R50-MLP 256 200 66.4 -

PSL [77] CVPR21 [77] MoCo-v2 R50-MLP 256 200 68.1 -

ISD [67] ICCV21 [67] BYOL R50-MLP 256 200 69.8 -

VFT [78] ICCV21 [78] MoCo-v2 R50-MLP 256 200 69.6 -

TKC [79] ICCV21 [79] MoCo-v2 R50-MLP 256 200 69.0 88.7

ISL [80] ICCVv21 [80] MoCo-v2 R50-MLP 256 200 68.6 -

ReSSL [58] NeurIPS21 [58] MoCo-v2 R50-MLP 256 200 69.9 -

CLSA [68] arXiv21 [68] MoCo-v2 R50-MLP 256 200 69.4 -

Un-Mix [59] AAAI22 [59] MoCo-v2 R50-MLP 256 200 68.6 -

HCSC [81] CVPR22 [81] MoCo-v2 R50-MLP 256 200 69.2 -
MoCo-v2* arXiv20 Ours - R50-MLP 256 200 67.6 88.0

ReCo - Ours MoCo-v2 R50-MLP 256 200 71.3 (+3.7) 90.5 (+2.5)
ReCof - Ours MoCo-v2 R50-MLP 256 200 73.7 (+6.1) 91.9 (+3.9)
PIRL [82] CVPR20 [82] - R50 1024 800 63.6 -

SimCLR [26] ICML20 [26] - R50-MLP 4096 1000 69.3 89.0
MoCo-v2 [32] arXiv20 [32] - R50-MLP 256 800 71.1 90.1
InvPro [53] NeurIPS20 [53] NPID R50-MLP 128 800 71.3 -

PIC [83] NeurIPS20 [83] - R50-MLP 512 1600 70.8 90.0
SWAV [40] NeurIPS20 [40] - R50-MLP 4096 400 70.1 -

SWAV [40] NeurIPS20 [40] - R50-MLP 4096 800 71.8 -

InfoMin [84] NeurIPS20 [84] - R50-MLP 256 800 73.0 91.1
BYOL [38] NeurIPS20 [38] - R50-MLP 4096 800 74.3 9

SwAVT [40] NeurIPS20 [40] - R50-MLP 4096 800 75.3

SimSiam [39] CVPR21 [39] - R50-MLP 256 800 71.3 -

Barlow Twins [41] ICML21 [41] - R50-MLP 2048 1000 73.2 91.0
NNCLRT [54] ICCV21 [54] SimCLR R50-MLP 4096 1000 75.6 92.4
VICReg [85] ICLR22 [85] - R50-MLP 2048 1000 73.2 91.1
MoCo-v2* arXiv20 Ours - R50-MLP 256 800 70.8 89.9

ReCo - Ours MoCo-v2 R50-MLP 256 800 73.7 (+2.9) 91.9 (+2.0)
ReCof - Ours MoCo-v2 R50-MLP 256 800 75.4 (+4.6) 92.7 (+2.8)
ReCo't - Ours MoCo-v2 R50-MLP 256 800 75.9 (+5.1) 92.8 (+2.9)

can be obtained with longer training iterations. Moreover,
ReCo with 100 epochs can significantly outperform MoCo-
v2 with 200 epochs, which demonstrates the pre-training
efficiency of ReCo. Figure 4 (b) further verifies that ReCo
can effectively improve the performance of the baseline under
various backbones including AlexNet [3], VGG-16 [86] and
ResNet-18/34/50 [4].

Module Efficacy. We quantitatively demonstrate the effec-
tiveness of the global distribution relation and local interpola-
tion relation in our ReCo based on MoCo-v2 and BYOL. In
Table IV, both modules significantly improve the baseline per-
formance, and the combination proves their complementarity
for semantic structure retention. In Table V, the VOC object
detection results show that global distribution relation has no
obvious advantage in precise location (AP75). We simply set
the parameters of the global distribution relation 7; and 7,
to 0.1, AP can be improved by 1.0%, and AP75 by 1.5%.

This also shows that the pre-trained model performs well
on classification do not necessarily perform well on object
detection [28].

Distribution-based Methods. To demonstrate the differ-
ence from existing distribution-based methods, we compare
them in detail in Table VI. The differences in related works
are reflected in the feature embedding dimension (Dim.),
the encoder used to generate the distribution (Encod.), the
type of data augmentation (Aug.), whether the distribution
is sharpened (Sharp.), whether there is a contrastive learning
loss to assist (Contra.), and whether the distribution alignment
and contrastive loss are decoupled (Decoup.). Note that “o0”
and “t” denote the online encoder and target encoder, and “r”,
“w” and “s” denote regular augmentation, weak augmentation,
and strong augmentation respectively. We reimplement the
related methods, and the experimental results show that our
global distribution relation (ReCo-Global) achieves the highest



TABLE IX
COMPARISON OF SEMI-SUPERVISED CLASSIFICATION. t DENOTES
OFFICIAL RELEASED MODEL. * DENOTES OUR RE-IMPLEMENTATION.

TABLE XII
FINE-TUNING OBJECT DETECTION ON PASCAL VOC. * DENOTES OUR
RE-IMPLEMENTATION.

. 1% label 10% label
Methods Publisher Source Top-1 Top-5 Top-1 Top-5
NPID [25] CVPR138 [81] - 39.2 - 77.4
MoCo-v2 [32] arXiv20 [81] 36.7 64.4 60.7 83.4
SimCLR [26] ICML20 [81] 46.8 742 63,6 86.0
MoCHi [76] NeurIPS20 [81] 382 654 6l.1 83.5
PCL-v2 [48] ICLR21 [48] - 73.9 - 85.0
CO2 [57] ICLR21 [57] - 71.0 - 85.7
AdCo [87] CVPR21 [81] 436 71.6 61.8 842
HCSC [81] CVPR22 [81] 480 756 643  86.0
HCSCT [81] CVPR22 Ours 484 752 640 86.0
MoCo-v2* [32] arXiv20 Ours 394 678 619 85.0
ReCo - Ours 528 789 668 879
TABLE X

COMPARISON OF KNN CLASSIFICATION PERFORMANCE. T DENOTES
OFFICIAL RELEASED MODEL.

Methods 10-NN 20-NN 100-NN 200-NN

) Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

HCSCT [81] 786 925 788 940 77.6 951 766 949

MoCo-v2 [32] 77.8 921 777 935 760 949 749 948

ReCo 84.1 949 83.6 959 826 968 821 97.0
TABLE XI

EVALUATION OF LOW-SHOT CLASSIFICATION ON VOC2007 USING
LINEAR SVMS TRAINED ON FIXED REPRESENTATIONS. T DENOTES OUR
EVALUATION OF THE OFFICIALLY RELEASED MODEL. * DENOTES FULL
RE-IMPLEMENTATION. OTHER RESULTS ARE ADOPTED FROM PCL [48].

Methods Architecture k=1 k=2 k=4 k=8 k=16
Random R50 8.0 8.2 8.2 8.2 8.5
Supervised R50 543 678 739 79.6 823
MoCo [10] R50 314 420 495 60.0 659
PCL [48] R50 469 564 628 702 743
SimCLR [26] R50-MLP 327 43,1 525 610 67.1
MoCo-v2 [32] R50-MLP 463 583 649 725 76.1
PCL-v2 [48] R50-MLP 479 59.6 662 745 783
SupervisedJr R50 540 679 738 797 823
ReSSLt [58] R50-MLP 453 58.1 664 745 793
HCSCT [81] R50-MLP 479 596 663 744 784
MoCo-v2* [32] R50-MLP 47.1 583 651 724 763
ReCo R50-MLP 548 658 734 795 826

performance of 73.6% on ImageNet-100.

Interpolation-based Methods. In Table VII, our method
differs from related works in the implementation of the in-
terpolation method and interpolation ratio correspondence. In
particular, previous methods interpolate at the loss level (Loss
Inter.), while we interpolate at the feature level (Feature Inter.).
In addition, we also compare the impact of different interpola-
tion methods in our local interpolation relation (ReCo-Local).
The g/k interpolation in the corresponding pixel space and
feature space obtains the best performance of 74.9%.

C. Performance and Comparison

Comparisons are listed on extensive downstream tasks: lin-
ear classification, semi-supervised classification, kNN classi-
fication, low-shot classification, object detection, and instance
segmentation.

Methods Publisher Source AP APsg APrs
Rand Init - [39] 33.8 60.2 33.1
Supervised - [32] 535 813 58.8
MoCo [10] CVPR20 [32] 559 815 62.6
MoCo-v2 [32] arXiv20 [32] 57.0 824 63.6
CO2 [57] ICLR21 [571 572 827 64.1
BarlowTwins [41] ICML21 [41] 56.8 82.6 63.4
MaskCo [88] ICCV21 [88]  56.7  82.1 63.9
Un-Mix [59] AAAI22 [591 57.7 83.0 64.3
HCSC [81] CVPR22 [81] - 82.5 -

ContrastiveCrop [89] CVPR22 [89] 573 825 63.8
ReSSL* [58] NeurIPS21 Ours 556 822 61.6
MoCo-v2* [32] arXiv20 Ours 57.1 823 64.1
ReCo - Ours 57.7 832 64.7

TABLE XIII

COMPARISON OF OBJECT DETECTION AND INSTANCE SEGMENTATION ON
COCO USING MASK R-CNN. * DENOTES OUR REIMPLEMENTATION.

Object detection Instance segmentation

Methods Source

APY® APES APBE  APTE APmE APILE
Random [00] 310 495 332 285 468 304
Supervised [90] 389 59.6 427 354 56.5 38.1
MoCo-v2 [32]  [90] 389 594 424 355 565 38.1
DetCo [90] [001 395 603 43.1 359 569 386
MoCo-v2* [32] Ours 39.0 59.7 427 355 569 380
ReCo Ours 399 608 437 364 576 393

1) Linear Classification: Convolutional layers initialized
by the pre-trained model are frozen while a fully connected
linear classifier is initialized from scratch. Its results represent
the discriminative ability of the learned representation.

Setup. We use a LARS optimizer with weight decay of 0.
and momentum of 0.9 to train a linear classifier. A cosine
decay schedule is used with an initial learning rate of 0.1 *
batch /256 and a batch size of 4096 for training 90 epochs. In
addition, we have tried another setting, which uses the SGD
optimizer with a batch size of 256 for training 100 epochs. The
learning rate is initialized to 10 with a decreasing strategy that
the rate is scaled down by 0.1 at 60-th epoch and 0.01 at 80-th
epoch. Both training settings obtain the same performance of
71.3%, and we use the first one by default.

Results. Table VIII reports the top-1 and top-5 accuracies of
SOTA methods on ImageNet-1K, where our re-implementation
of MoCo-v2 achieves 67.6% top-1 accuracy (0.1% higher
than the official result). By incorporating instance relations
exploration, our ReCo achieves a new SOTA top-1 accuracy
of 71.3%, which improves the baseline MoCo-v2 by 3.7%.
This demonstrates that ReCo retains data semantic structures
via exploring instance relations to enhance the feature discrim-
inative capabilities. Trained with merely 200 epochs, ReCo
even exceeds that of MoCo-v2 with 800 epochs, which proves
that ReCo can also improve the pre-training efficiency. In
addition, the performance can be further promoted to 75.9%
when adding the multi-crop data augmentation with 800-epoch
training.
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Fig. 5. Visualization of 2-dimensional t-SNE distributions of the embedding
space. The area circled in red is more discriminative. (Best viewed in color)

2) Semi-supervised Classification: Semi-supervised classi-
fication first learns from large-scale unlabeled data and then
fine-tunes on small labeled data.

Setup. The backbone and linear layer are fine-tuned on
ImageNet with 1% and 10% labeled data. We fine-tune the
pre-trained model for 20 epochs with the learning rate of 0.01
for backbone and 1.0 for linear layer decayed by 0.2 after 12
and 16 epochs. Momentum is set to 0.9 and weight decay is
le — 4 for the SGD optimizer.

Results. Experimental results in Table IX show that ReCo
consistently achieves the best performance under different la-
bel fractions. Specifically, ReCo surpasses MoCo-v2 by 13.4%
top-1 accuracy with 1% labeled data, which demonstrates that
the semantic structure learned by exploring instance relations
can be more advantageous under insufficient data settings.

3) kNN Classification: We use KNN to evaluate the dis-
criminative capability of the learned features.

Setup. Under the setting of HCSC [81], we evaluate mod-
els pre-trained on ImageNet-1K for kNN classification on
ImageNet-100, k € {10, 20, 100, 200}.

Results. Table X shows a comparison of top-1 and top-5
accuracy. Experimental results show that ReCo improves base-
line with significant margins, which validates the effectiveness
of retaining better semantic structure.

4) Transferring to Low-shot Classification: To verify the
discrimination capability of learned features, we train linear
SVM using fixed features of convb under low-shot settings.

Setup. Following PCL [48], linear SVM is trained on the
VOC [31] 2007 trainval set and tested on the test set. We
select k (k=1,2,4,8,16) samples from each class for training.
Performance is evaluated by mean average precision (mAP).

Results. As shown in Table XI, ReCo improves MoCo-v2
by 7.7/7.5/8.3/7.1/6.3 under 1/2/4/8/16 shots. In particular, the
performance of ReCo is comparable to the supervised trained
model. These indicate that the features learned by ReCo are
sufficiently discriminative and representative.

MoCo-v2

Input Supervised

Fig. 6. Activation maps of different pre-trained models using Grad-CAM.
Redder colors represent areas that the network pays more attention to.

5) Transferring to VOC Object Detection.: To verify the
transferability and generalization capacity of the learned rep-
resentation, we transfer the trained model to object detection.

Setup. Following MoCo [10], we fine-tune the Faster R-
CNN [33] detector with ResNet50-C4 architecture on VOC
trainval 07+12 and evaluate the results on test 2007. All
layers are fine-tuned end-to-end for 48K iterations with a mini-
batch size of 8 and base learning rate of 0.01. we set the
scale of images to [480, 800] pixels during training and 800
at inference. The performance of object detection is evaluated
by the default VOC metric of AP5g, as well as COCO-style
AP and AP75 as described in MoCo.

Results. In Table XII, all state-of-the-art CSL methods out-
perform supervised pre-training on the object detection task,
which demonstrates the advantage of CSL for transfer learn-
ing. With 7,4/7,;,=0.1/0.1, ReCo presents 0.6/0.9/0.6 gains over
MoCo-v2 under AP/APs50/AP75. These results demonstrate
that exploring instance relations improves the transferability
and generalization of the model.

6) Transferring to COCO Object Detection And Instance
Segmentation.: We also evaluate the learned model on large-
scale COCO dataset [91].

Setup. We fine-tune the Mask R-CNN [92] with ResNet50-
FPN architecture on COCO 2017 train set and results are
evaluated on wval set. We set the batch size to 16 and the
learning rate to 0.02 to train for 90K iterations.

Results. As shown in Table XIII, ReCo yields 1.1% AP,
and 1.3% APZY* improvements over MoCo-v2 for object de-
tection and instance segmentation, respectively. These results
validate the transferability of the learned model on a variety
of tasks.

D. Visualization

Embedding Space. We simply use the CIFAR-10 [93]
val set with 10 categories for feature space visualization.
The t-SNE [94] technique is utilized to map the feature



space onto a 2D plane. Figure 5 shows intra- and inter-class
variation, which reflects the semantic structure of the data.
With InfoNCE loss, MoCo-v2 can learn semantic structure
to a certain extent, but the interstice between different cate-
gories is not clear enough. By considering global distribution
relations or local interpolation relations separately, the degree
of discrimination of different categories is more obvious than
MoCo-v2. In particular, ReCo can obtain a feature space with
better semantic structure by combining these two.

Activation Map. We use Grad-CAM [95] to visualize
activation map. As shown in Figure 6, the supervised pre-
trained model focuses on the entire object or discriminative
regions of the object, while the model learned by MoCo-v2
is more distracted and even focuses on non-foreground object
regions. This is because instance discrimination approaches
aim at learning sample-specific features while supervised train-
ing exploits semantic label information to learn class-specific
discriminative features. Compared with MoCo-v2, the model
learned by ReCo pays more attention to foreground objects,
which is more similar to the supervised training model. This
demonstrates the advantage of ReCo in retaining semantic
structure.

V. CONCLUSION

In this paper, we explicitly exploit semantic relations among
instances for relation-aware contrastive self-supervised learn-
ing (ReCo). Unlike previous instance discrimination-based
CSL methods that only contrast samples with pre-defined hard
binary error-prone assignments, ReCo simultaneously explores
the soft relation in instance similarity distributions at the global
level and interpolation consistency at the local level. With a
better semantic structure, the learned feature space appears
to be locally aggregated yet globally uniform. We expect that
ReCo can provide fresh insights into the CSL community, e.g.,
introducing neighborhood discovery or clustering techniques
for better semantic-aware instance relation exploration.
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