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Structure Similarity Preservation Learning for
Asymmetric Image Retrieval

Hui Wu, Min Wang, Wengang Zhou, Senior Member, IEEE, Houqiang Li, Fellow, IEEE

Abstract—Asymmetric image retrieval is a task that seeks
to balance retrieval accuracy and efficiency by leveraging
lightweight and large models for the query and gallery sides,
respectively. The key to asymmetric image retrieval is realizing
feature compatibility between different models. Despite the great
progress, most existing approaches either rely on classifiers
inherited from gallery models or simply impose constraints at the
instance level, ignoring the structure of embedding space. In this
work, we propose a simple yet effective structure similarity pre-
serving method to achieve feature compatibility between query
and gallery models. Specifically, we first train a product quantizer
offline with the image features embedded by the gallery model.
The centroid vectors in the quantizer serve as anchor points
in the embedding space of the gallery model to characterize its
structure. During the training of the query model, anchor points
are shared by the query and gallery models. The relationships
between image features and centroid vectors are considered as
structure similarities and constrained to be consistent. Moreover,
our approach makes no assumption about the existence of any
labeled training data and thus can be extended to an unlimited
amount of data. Comprehensive experiments on large-scale land-
mark retrieval demonstrate the effectiveness of our approach.
Our code is released at: https://github.com/MCC-WH/SSP.

Index Terms—Multimedia search, Asymmetric image retrieval

I. INTRODUCTION

In recent years, deep learning-based visual search meth-
ods [1]–[12] have achieved great success. In a typical visual
search system, a deployed deep representation model is used
to embed both query and gallery images into a discriminative
embedding space. Usually, the embedding features of the
large-scale gallery set are extracted and indexed in advance.
During the retrieval stage, query features are extracted online
and the retrieval is performed by ranking the distance, e.g.,
Euclidean distance or cosine similarity, between the gallery
features and the input query features.

Conventional methods for image retrieval, as described
in previous literature [13], [14], utilize a symmetric image
retrieval approach, in which the same deep representation
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Fig. 1: Illustration of our structure similarity preserving
method for asymmetric image retrieval. f q

i (orange) and
fg
i (blue) denote the i-th sub-vector of features from the

lightweight query model and the large gallery model, respec-
tively. CM

i,: denotes the i-th centroid vector, i.e., anchor point,
in the M -th subspace, which is generated by product quantiza-
tion. During the learning of the query model, a training image
is first embedded by query and gallery models, respectively.
Then, we constrain the consistency of the structure similarities
between these features and the anchor points to achieve feature
compatibility between different models.

model is used to embed both query and gallery images [15],
[16]. To obtain high retrieval accuracy, a large powerful
model is usually deployed, which is computationally expen-
sive. However, in some real-world applications, gallery images
undergo feature extraction offline on resource-rich servers,
while query images are processed on resource-constrained end
devices, e.g., mobile phones. Due to computational resource
constraints, it is difficult to deploy the same large model
on these end devices. Lightweight models are better choices
due to their low time latency and resource footprint. Thanks
to compatible feature learning [17], [18], it is feasible to
embed query and gallery images with lightweight and large
models separately. This allows enjoying the excellent feature
extraction capability of the large model on the server side
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while maintaining low resource consumption on the query
side. Such an asymmetric setup is denoted as asymmetric
image retrieval in HVS [16] and AML [15].

As for asymmetric image retrieval, it is crucial to ensure
that features encoded by the lightweight query model and
the large powerful gallery model are compatible with each
other. To this end, a straightforward solution is to constrain
the features encoded by the two models to be identical, which
has shown effectiveness in AML [15]. Another approach,
adopted by BCT [17], inherits the classifier of the gallery
model to guide the query model. Recently, CSD [19] has
considered both feature imitation and neighbor relationship
preservation but requires performing multiple retrievals during
the training of the query model. Besides, some other works
further design advanced restrictions [20]–[24] or advanced
network structures [16]. However, all these methods impose
constraints only at the instance level or require multiple online
retrievals to acquire the nearest neighbor structure, failing to
fully preserve the structure of embedding space during the
query model learning.

To address above issues, we propose a novel structure sim-
ilarity preserving approach for ensuring feature compatibility
between query and gallery models, which is shown in Figure 1.
Our proposed approach involves the extraction of features
from an independent dataset using the gallery model, followed
by the training of a product quantizer (PQ) in an offline
manner. The centroid vectors of the quantizer are then used
as anchor points in the embedding space of the gallery model.
During query model training, each training image is embedded
into features by both query and gallery models, and these
features are converted into structure similarities by calculating
similarity against anchor points. Our method then constrains
the consistency of two structure similarities to optimize the
query model. By sharing anchor points between query and
gallery models, our method allows the features encoded by
two models to align with each other while preserving the
embedding space structure.

Compared to previous methods, our approach has two
unique advantages. First, we transform features into structure
similarities instead of directly performing feature regression.
This enables the query model to ignore unimportant feature
“details” that are challenging to regress, thereby avoiding
over-fitting. Additionally, the centroid vectors of the product
quantizer encode the structure information of the gallery
embedding space. By sharing these centroids, the embedding
spaces of the query and gallery models are closely aligned
so that their features are mutually interpretable. Second, our
approach leverages the gallery model to derive the structure
similarities of the training images, which are further adopted
as pseudo-labels to optimize the query model. This eliminates
the need for manual annotation of the training dataset, making
our approach adaptable and scalable to a variety of real-world
scenarios.

To evaluate our method, experiments are conducted on
the Revisited Oxford and Paris datasets, with extra 1M
distractor images further added for large-scale experiments.
Comprehensive experiments with ablation study demonstrate
the effectiveness of our method, which achieves the best results

compared to state-of-the-art methods.

II. RELATED WORK

A. Image Retrieval

Given a large corpus, image retrieval aims to efficiently
identify images that contain the same object or content as
the query image based on feature similarities. Most early
retrieval systems rely on bag-of-words representations [25]–
[28] with large vocabularies and inverted indexes. In addition,
methods for aggregating local features [29], [30] have been
explored, including Fisher vectors [31], VLAD [32], and
ASMK [28] that produce global descriptors capable of scaling
to large databases. To further improve retrieval accuracy,
various re-ranking techniques such as spatial verification [25],
[27], query expansion [33], and diffusion [34] are further
adopted as post-processing steps. Recently, deep learning-
based approaches have emerged as promising solutions by
framing image retrieval as a metric learning task. Several loss
functions [35], [36], pooling methods [4], [14], [37], [38], and
training datasets [39], [40] are proposed to enhance the deep
representation model.

Although a lot of efforts have been made, optimal retrieval
systems typically deploy a large powerful model to process
both queries and galleries, which is unaffordable on some
resource-constrained end devices. In this work, we focus
on asymmetric image retrieval, where the query (user) side
deploys a lightweight model, while the gallery side deploys a
large powerful one.

B. Feature Compatible Learning

It is essential for asymmetric image retrieval to encode
new (query) features to be interoperable with old (gallery)
features. BCT [17] first introduces the problem of backward-
compatible learning and proposes to inherit the classifier
of the gallery model for query model learning. AML [15]
performs asymmetric metric learning with the embeddings
of anchor and positive/negative samples extracted by query
and gallery models, respectively. In HVS [16], both model
parameters and architectures are considered simultaneously,
and a compatibility-aware neural architecture search method
is proposed to search for the optimal query model architecture.
LCE [20] proposes a new classifier boundary loss to further
improve feature compatibility. However, all these methods
impose constraints at the instance level without considering the
second-order structural information. The most relevant method
to us is CSD [19]. It employs a strategy that incorporates
both first-order feature similarity and second-order nearest-
neighbor similarity between the gallery and query models. The
primary objective is to utilize the gallery model to retrieve
the top k nearest neighbor samples from the training dataset.
Subsequently, it enforces constraints on the similarity between
the feature of the query model and these nearest neighbors to
maintain consistency with that of the gallery model. However,
it requires multiple time-consuming retrievals during each
training iteration to obtain the neighbors of each sample, and
using only data samples may not fully capture the structure of
the embedding space.
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Fig. 2: An overview of our framework. A well trained gallery model ϕg(·) is first applied to extract the image features[
g1, g2, · · · , gN

]
of the training data X . Then, these features are utilized to train a product quantizer [41] (Section III-B1),

whose codebook C serves as the anchor points in the embedding space of ϕg(·). During query model learning, an image
x of training dataset T is mapped into two feature vectors g and q by the query and gallery models, respectively. Then,
the similarities between the query/gallery feature (q/g) and the anchor points are regarded as structure similarities (Sq/Sg).
Finally, we constrain the consistency between structure similarities Sq and Sg to optimize the query model (Section III-B2).
This ensures the embedding spaces of query and gallery models are well aligned, which is essential for asymmetric retrieval.

Differently, our method generates a large number of anchor
points in the embedding space with product quantization [41].
These anchor points are densely distributed in the embedding
space of the gallery model, which carve its structure more
delicately. Then, the gallery feature is converted into structure
similarity by computing similarities against anchor points,
which further serve as the pseudo-label to optimize the query
model. Notably, the anchor points are shared by both models,
so that feature compatibility is achieved.

C. Lightweight Network

With the evolution of the model architecture, deep con-
volutional neural networks (CNNs) have made tremendous
advances in various computer vision tasks. In real-world
applications, computational complexity is another important
consideration in addition to accuracy. Typically, it is expected
to achieve the best accuracy with a limited computational bud-
get, which is determined by the target computing platforms.
The immediate need to deploy high-performance deep neural
networks on a range of resource-constrained end devices
has motivated a series of studies on efficient model design,
including SqueezeNets [42], MobileNets [43], [44], Shuf-
fleNets [45], [46] and EfficientNets [47]. All these methods
aim at designing lightweight architecture to achieve better
speed-accuracy trade-offs.

In this work, we focus on asymmetric image retrieval, where
query features are extracted on some resource-constrained end

devices. Our approach employs the various lightweight models
mentioned above as query models.

D. Knowledge Transfer

Knowledge transfer aims at learning a student model by
transferring knowledge from a pretrained teacher model. It is
first introduced by Hinton et al. [48], where the student model
learns from real labels and soft predicted class logits by the
teacher. FitNet [49] distills knowledge through intermediate
features and Euclidean distance is used to measure the distance
between them. After that, PKT [50] models the knowledge
of the teacher model as a probability distribution and uses
KL divergence to measure the distance. In RKD [51] and
DARK [52], geometric relationships between multiple exam-
ples, such as angles and distances, are used as knowledge
to guide students learning. CRD [53] combines contrastive
learning and knowledge distillation and uses contrastive loss
to transfer knowledge between different modalities. Other
approaches use multi-stage information to transfer knowledge.
AT [54] uses multi-layer attention maps to transfer knowledge.
FSP [55] generates FSP matrices from layer features and uses
them to guide the learning process of a small model.

However, these methods only transfer knowledge between
models but do not consider feature compatibility between
them. Thus, they fail to meet the needs of asymmetric image
retrieval. In our approach, centroid vectors of a product
quantizer, which is trained using the image features extracted
by the gallery model, serve as the anchor points for both
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models. Thus, the embedding spaces of the query and gallery
model are constrained to be aligned during knowledge transfer.

III. OUR APPROACH

In this section, we first give a formulation of asymmetric
image retrieval. After that, we elaborate our structure similarity
preserving framework.

A. Problem Formulation

Let ϕg(·) and ϕq(·) denote the gallery and query models,
respectively. For a visual retrieval system, the gallery model
ϕg(·) is first trained and then used to map the gallery images
R into feature vectors. During testing, the query model ϕq(·)
processes queries Q, and the retrieval is reduced to the nearest
neighbor search in the embedding space. Some evaluation met-
ric, e.g., mean Average Precision (mAP), is used to evaluate
the performance of a retrieval system, which is abbreviated as
M(ϕq(·), ϕg(·)) for simplicity. In a conventional symmetric
retrieval system, the query model is usually the same as the
gallery model, i.e., ϕq(·) = ϕg(·). It typically deploys a
large powerful model to achieve high retrieval accuracy, which
cannot be satisfied in resource-constrained scenarios.

As for an asymmetric retrieval system, the model ϕg(·) is
well-trained and fixed. To facilitate resource-constrained ap-
plication scenarios, it needs to learn a compatible lightweight
query model ϕq(·) which is significantly smaller than ϕg(·)
in terms of parameter size and computational complexity. The
core of asymmetric image retrieval is that the feature embed-
dings of query and gallery models are mutually interpretable.
In other words, we expect that asymmetric image retrieval
achieves a retrieval accuracy similar to that of symmetric
retrieval, i.e., M(ϕq(·), ϕg(·)) ≈ M(ϕg(·), ϕg(·)) so that the
balance between performance and efficiency is achieved.

B. Structure Similarity Preservation Learning

In this work, we propose a structure similarity preserving
framework, which is shown in Figure 2. A product quantizer
is first trained with the features extracted by the gallery model.
The centroids of the quantizer serve as the anchor points to
characterize the space structure. During the training of the
query model, the gallery model is frozen. Each training sample
is mapped into two embeddings by the query and gallery
models, respectively. Then, two embeddings are converted
to structure similarities by calculating the similarities against
the centroids. Finally, our method restricts the consistency
between two structure similarities to optimize the query model.
Since the anchor points generated by the gallery model are
shared with the query model, their embedding space is well-
aligned after training.

1) Anchor Points Generation: To achieve a comprehensive
characterization of the embedding space, our approach requires
selecting representative anchor points in the embedding space
of the gallery model. These anchor points are fixed reference
points in the embedding space which are used to convert query
and gallery features into structure similarities. A straightfor-
ward approach is to use flat k-means clustering to generate

a series of anchor points. However, our method requires a
large number of anchor points to delicately characterize the
space structure. If k-means clustering is adopted, the required
training samples and computational complexity are several
times the number of centroids. When the number of centroids
is large, the cost of clustering is unaffordable. To this end, our
approach employs product quantization (PQ) [41] to efficiently
expand the number of anchor points at a lower cost.

Suppose there exists some training data X =
{x1, x2, · · · , xN} for anchor points generation. Since
the gallery model ϕg(·) is frozen, we first employ it to extract
the features G =

[
g1; g2; · · · ; gN

]
∈ RN×d of images in X

offline:

gi = ϕg(xi) ∈ Rd, i = 1, 2, · · · , N. (1)

Then, each feature vector gi ∈ G is split into M distinct
sub-vectors uj(g

i) ∈ Rd∗
, j = 1, 2, · · · ,M :

gi
1, · · · , gi

d∗︸ ︷︷ ︸
u1(gi)

, · · · , gi
d−d∗+1, · · · , gi

d︸ ︷︷ ︸
uM (gi)

,
(2)

where gi
j denotes the j-th feature dimension of gi, d∗ = d/M

and d is a multiple of M . After that, we perform k-means clus-
tering on each sub-vector set

[
uj(g

1);uj(g
2); · · · ;uj(g

N )
]
∈

RN×d∗
, j = 1, 2, · · · ,M, individually to obtain the corre-

sponding sub-codebook Cj ∈ RK×d∗
, where K is the number

of centroids. Then, the anchor points in the gallery space are
defined as the Cartesian product of sub-codebooks:

C = C1 ×C2 × · · · ×CM ∈ RKM×d, (3)

in which any centroid vector is formed by concatenating M
different sub-centroid vectors.

Compared with k-means clustering, PQ has two distinctive
advantages. First, it is easy to generate a large number of
anchor points C. The total number of anchor points is KM .
Second, instead of storing the huge anchor points directly, it
only needs to store M ×K sub-centroids. During training, we
also adopt the splitting mechanism to calculate the similarity
by segments, instead of directly computing the similarities
between feature vectors and all anchor points, which greatly
reduces our training overhead. The complete learning proce-
dure is summarized in Algorithm 1.

2) Query Model Learning: Structure Similarity Calcu-
lation. During the query model learning, the feature vectors
of query and gallery models are first converted into struc-
ture similarities by calculating the similarities against anchor
points. Given an image x in training dataset T . Let g and q be
its feature vectors extracted by the gallery and query models,
respectively:

g = ϕg(x) ∈ Rd, q = ϕq(x) ∈ Rd. (4)

We first split them into M sub-vectors:

g → u1(g), u2(g), · · · , uM (g),

q → u1(q), u2(q), · · · , uM (q).
(5)

Then, we calculate the structure similarities Sg
i,: and Sq

i,: by
computing for each sub-vectors ui(g) and ui(q) the simi-
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Algorithm 1: Anchor points generation
Input: Training data X = {x1, x2, · · · , xN}; gallery

model ϕg(·); number of subvectors M ; number
of centroids per subvector K

Output: Anchor points
C = C1 ×C2 × · · · ×CM ∈ RKM×d

1 for each image xi in traning data X do
2 Extract image feature with gallery model according

to Equation (1);
3 Split image feature into M sub-vectors

uj(g
i) ∈ Rd∗

, j = 1, 2, · · · ,M according to
Equation (2);

4 end
5 for each sub-vectors set[

uj(g
1);uj(g

2); · · · ;uj(g
N )

]
∈ RN×d∗

do
6 Perform k-means clustering with K centroids;
7 Obtain corresponding sub-codebook Cj ∈ RK×d∗

;
8 end

larities against the corresponding K centroid vectors in the
pretrained quantizer:

Sg
i,: =

[
s(ui(g),C

i
1,:), · · · , s(ui(g),C

i
K,:)

]
∈ RK ,

Sq
i,: =

[
s(ui(q),C

i
1,:), · · · , s(ui(q),C

i
K,:)

]
∈ RK ,

(6)

where Cj
i,: denotes the i-th centroid vector in the j-th sub-

space and s(·, ·) is the similarity metric. In this work, cosine
similarity is considered, and s(·, ·) is formulated as:

s(ui(g),C
j
i,:) =

Cj
i,:ui(g)

T

∥Cj
i,:∥2∥ui(g)∥2

. (7)

Finally, we impose consistency constraints Lc on the struc-
ture similarities Sg and Sq to optimize ϕq(·) so that the feature
embedding q shares the same structure similarity as g in the
embedding space of the gallery model. Notably, the anchor
points are shared between the query and gallery models, thus
their embedding spaces are well aligned.
Structure Similarity Preserving Constraint. For asymmet-
ric image retrieval, a desirable query model ϕq(·) not only
maintains feature compatibility but also preserves the structure
similarity of g in the embedding space of gallery model. To
this end, our method constrains the consistency between two
structure similarity Sg

i and Sq
i for the corresponding sub-

vector pair ui(g) and ui(q).
Specifically, Kullback–Leibler (KL) divergence is adopted

to measure the distance between Sg
i,: and Sq

i,:. First, Sg
i is

converted into the form of probability distribution:

pg
i,:=

 exp
(
Sg
i,1/τg

)
∑K

l=1 exp
(
Sg
i,l/τg

) , · · · , exp
(
Sg
i,K/τg

)
∑K

l=1 exp
(
Sg
i,l/τg

)
 , (8)

where τg is a temperature value used for controlling the sharp-
ness of the assignments. Similarly, the probability distribution

corresponding to the i-th subvector of the query feature q is
formulated as:

pq
i,:=

 exp
(
Sq
i,1/τq

)
∑K

l=1 exp
(
Sq
i,l/τq

) , · · · , exp
(
Sq
i,K/τq

)
∑K

l=1 exp
(
Sq
i,l/τq

)
 . (9)

Then, the structure similarity preserving constraint is de-
fined as the KL divergence between two probabilities over the
same sub-centroid vectors:

Li
KL = KL(pg

i,:||p
q
i,:) =

K∑
l=1

pg
i,l log

pg
i,l

pq
i,l

, (10)

which consists of the cross-entropy of pg
i and pq

i , and the
entropy of pg

i . The latter is independent of the feature of the
query model and thus does not affect the training. The final
objective function is defined as the summation of all consis-
tency losses corresponding to the M distinct sub-vectors:

Lfinal =

M∑
i=1

Li
KL, (11)

which is used for optimizing query model end to end.

Algorithm 2: Query model learning
Input: Training set T ; well-trained gallery model

ϕg(·); random initialized query model ϕq(·);
anchor points C

Output: Query model ϕq(·) compatible with ϕg(·)
1 for each image x in traning set T do
2 Extract image feature with gallery and query

models according to Equation (4);
3 Split g and q into M sub-vectors according to

Equation (5);
4 Calculate the structure similarities Sg

i,: and Sq
i,:

according to Equation (6);
5 Impose consistency constraints Lc on the structure

similarities Sg and Sq to optimize ϕq(·)
according to Equation (12);

6 end

Soft-assignment vs. Hard-assignment. The centroids of the
product quantizer serve as the anchor points in the embedding
space of the gallery model. By quantizing the feature, we
convert the feature regression into an assignment prediction
task. When setting temperature τg = 0, the probability pg

i,: in
Equation (8) will be a one-hot vector with the only 1 at index
j = argmaxj(S

g
i,j). Thus, Equation (8) is simplified as

Li
KL =

K∑
l=1

pg
i,l log

pg
i,l

pq
i,l

= log
1

pq
i,j

. (12)

Optimizing this loss encourages the query model to regress
the anchor point, to which feature g is quantized. It avoids
the query model regressing the feature “details” of the gallery
model. However, the relationships between the feature vector
and anchor points carry discriminative knowledge, and simply
ignoring them may lead to inferior performance. Thus, we set
τg > 0 to use the soft assignments as the prediction target. The
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QUERY

MODEL ϕq(·)
FLOPS (G) PARAM(M)

ABS % ABS %

ResNet101 [56] 42.85 100.0 42.50 100.0

ShuffleNetV2 (0.5×) [46] 0.84 1.96 2.44 5.74
ShuffleNetV2 [46] 1.44 3.36 3.35 7.88
MobileNetV2 [44] 2.50 5.83 4.85 11.41
EfficientNetB0 [47] 2.86 6.67 6.63 15.60
EfficientNetB1 [47] 3.92 9.15 9.13 21.49
EfficientNetB2 [47] 4.50 10.51 10.58 24.90
EfficientNetB3 [47] 6.24 14.57 13.84 32.56

TABLE I: The computational complexity and the number
of parameters of all lightweight query models adopted in
this work are listed. ABS: absolute number. %: relative to
ResNet101 [56]. (0.5×) denotes a model with 0.5× width.
FLOPS are calculated when the input image size is 362×362.

overall learning process of the query model is summarized in
Algorithm 2.

IV. EXPERIMENTS

A. Experimental Setup

Dataset. SfM-120k [14] and the clean version of Google
landmark v2 (GLDv2) [39] are adopted as training set T . SfM-
120k includes images selected from 3D reconstructions of
landmarks and city scenes. Following the common setting [15],
we use 91,642 images from 551 3D models for training and
the remaining images of 162 3D models for validation. The
clean version of GLDv2 [39] consists of 1,580,470 images
from 81,313 categories. We randomly select 80% images as
the training set and let the rest as the validation set. R1M [40]
is used as extra images X for anchor points generation. It is
collected from Yahoo Flickr Creative Commons 100 Million
(YFCC100m) dataset [57] and contains 1M distractor images.
Query and Gallery Models. ResNet101 trained by
DELG [58] and GeM [14] are deployed as gallery mod-
els, which are denoted as R101-DELG and R101-GeM in
this work, respectively. As for lightweight query models,
ShuffleNets [46], MobileNets [44] and EfficientNets [47] are
chosen. To adapt the model for image retrieval tasks, only
the feature extractor of the model is kept and the other layers
are both removed. Then, GeM pooling [14] is applied on the
last convolutional feature map, followed by another whitening
layer, which is implemented by a fully-connected layer. The
whitening layer is initialized in the embedding space of the
gallery models and kept frozen during the training of the
query model. In Table I, we list the number of parameters and
the computational complexity (in FLOPS) of the lightweight
models adopted in this work.
Evaluation Datasets and Metrics. The revisited Ox-
ford5k [25] and Paris6k [59] datasets are used for evaluation,
which are denoted as ROxf and RPar [40]. All datasets
describe specific landmarks of buildings under a variety of
different observation conditions, each with 70 query images,
and 4,993 and 6,322 gallery images, respectively. We follow
the common setting [15] to report mAP under the Medium and
Hard settings for two datasets. Large-scale experiment results

are further reported with the R1M (1M distractor images) [40]
dataset added to the database.
Implementation Details. Under the asymmetric image re-
trieval setting, gallery models typically use very deep mod-
els (e.g., ResNet101 [56]). It is expensive to extract the
embeddings of training images during training in terms of
computation and memory, especially with such large gallery
models. In addition, the gallery model is not optimized during
the query model learning. Therefore, our method first extracts
all the embedding of training images with the large gallery
models offline and caches them in memory.

When SfM-120k is adopted as the training set T , we follow
the settings of AML [15]. The query models are trained on an
NVIDIA RTX 3090 GPU for 10 epochs with a batch size of
64. When GLDv2 is adopted, the image size is set to 512×512.
Following the setting of DELG [58], random cropping, random
color jittering, and random horizontal flipping are used as data
augmentation. We train the query models on four NVIDIA
RTX 3090 GPUs with a batch size of 256 for 5 epochs. All
models are optimized using Adam with an initial learning
rate of 10−3 and a weight decay of 10−6. A linear decay
scheduler is employed to gradually decay the learning rate to
0 when the desired number of steps is reached. τg and τq
were set to 0.1 and 1.0, respectively. For the anchor points
generation, the number of centroids K in each subspace is
set to 256. The number of subspaces M is set to 64 and 32
when R101-GeM and R101-DELG are adopted as the gallery
model, respectively.

During the testing phase, images are resized to a max-
imum size of 1024 × 1024 pixels while maintaining their
original aspect ratio. Image features are extracted at three
scales, namely, 1/

√
2, 1,

√
2. We apply L2 normalization to

each scale independently, followed by averaging the features
of the three scales and applying another L2 normalization.
Under the asymmetric image retrieval setting, we leverage
the lightweight query model ϕq(·) to extract the features of
queries and perform retrieval in the gallery, whose features
are extracted by a large gallery model ϕg(·).

B. Comparison with State-of-the-art Methods

mAP Comparison. In Table II, we provide a comprehen-
sive comparison of our proposed approach with state-of-the-
art methods on various benchmark datasets. To evaluate the
effectiveness of our method under different scenarios, we
conduct experiments using different query models, gallery
models, and training datasets. We compare the performance
of two lightweight query models, MobileNetV2 [44] and
EfficientNetB3 [47], two large gallery models with varying
performance, R101-GeM [14] and R101-DELG [58], and two
training datasets with different sizes, SfM-120k [14] and
GLDv2 [39]. The first six rows in Table II illustrate the per-
formance of our method when using both large models (R101-
GeM and R101-DELG) and small models (MobileNetV2 and
EfficientNetB3) under a symmetrical setting.

We first evaluate our approach using R101-GeM as the
gallery model and SfM-120k as the training set. Our method
outperforms the most effective solution to asymmetric image
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METHOD
QUERY

MODEL

GALLERY

MODEL

TRAINING

SET T
MEDIUM HARD

ROxf ROxf+R1M RPar RPar+R1M ROxf ROxf+R1M RPar RPar+R1M

GeM† [14] R101-GeM R101-GeM
SfM-120k

65.43 45.23 76.75 52.34 40.13 19.92 55.24 24.77
GeM† [14] EfficientNetB3 EfficientNetB3 54.22 37.10 71.21 44.67 27.53 17.49 48.00 18.45
GeM† [14] MobileNetV2 MobileNetV2 58.81 40.02 67.87 42.25 33.41 17.71 40.97 16.59

DELG† [58] R101-DELG R101-DELG
GLDv2

78.55 66.02 88.58 73.65 60.89 41.75 76.05 51.46
DELG† [58] EfficientNetB3 EfficientNetB3 66.64 49.67 81.78 61.10 43.82 24.89 63.90 32.34
DELG† [58] MobileNetV2 MobileNetV2 62.42 42.21 77.91 55.09 36.56 18.64 57.96 28.81

Contr∗ [15]

MobileNetV2 R101-GeM SfM-120k

47.10 18.00 61.50 28.80 21.80 6.30 37.70 8.80
Reg [15] 49.20 26.50 65.00 34.60 23.30 7.80 40.70 12.70
CSD [19] 63.59 40.29 76.05 43.08 38.51 17.93 52.67 17.43
Ours 63.98 41.07 76.54 45.40 37.91 19.22 53.59 19.02

Contr∗ [15]

EfficientNetB3 R101-GeM SfM-120k

45.20 24.70 63.70 32.80 19.60 12.20 40.90 12.50
Reg [15] 52.90 29.70 65.20 39.00 27.80 10.40 42.40 16.00
CSD [19] 64.49 43.39 76.11 45.58 39.06 19.12 53.64 19.78
Ours 65.14 43.95 76.87 48.22 39.38 20.01 54.50 20.64

Contr∗ [15]

MobileNetV2 R101-DELG GLDv2

66.42 45.76 83.13 53.10 45.99 23.34 66.79 30.24
Reg [15] 72.75 56.03 85.81 65.23 53.07 32.21 69.96 39.29
HVS [17] 74.39 58.24 86.86 67.44 54.68 34.77 72.42 43.39
LCE [20] 75.45 58.03 87.24 67.30 54.95 33.88 73.03 43.01
CSD [19] 75.94 59.45 87.27 68.52 57.51 36.41 73.45 44.31
Ours 77.88 60.26 88.34 70.23 60.05 37.29 75.08 46.16

Contr∗ [15]

EfficientNetB3 R101-DELG GLDv2

69.45 49.70 83.81 59.36 46.19 26.49 68.15 35.24
Reg [15] 74.60 59.88 86.09 67.69 53.41 33.31 72.21 42.63
HVS [17] 76.41 62.72 87.07 71.54 56.13 36.86 74.53 49.09
LCE [20] 75.89 61.90 86.63 70.98 55.21 36.53 73.62 48.94
CSD [19] 77.64 64.29 87.95 72.90 59.32 39.84 75.11 49.13
Ours 79.46 63.22 89.14 73.07 62.17 39.05 76.88 49.54

TABLE II: mAP comparison against existing methods on the full benchmark. Black bold: best results under the same setting. †:
our re-implementation. The first six rows illustrate the performance of our method when using both large models (R101-GeM
and R101-DELG) and small models (MobileNetV2 and EfficientNetB3) under a symmetrical setting.

retrieval in AML [15], i.e., direct feature regression (Reg),
by a large margin. Furthermore, our approach achieves con-
sistently superior or comparable performance compared to
CSD [19], which takes neighbor similarity into consideration.
For instance, when MobileNetV2 is deployed as the query
model, our method still outperforms CSD in most settings,
with an mAP improvement of 1.59% on the RPar + R1M
dataset. It is worth mentioning that in CSD, retrieved real
data points are used to calculate neighbor similarity, whereas
our method generates a significant number of anchor points
in the embedding space of the gallery model, enabling a
more detailed characterization of the spatial structure than that
obtained using real data points.

Next, we evaluate our method with R101-DELG as the
gallery model and GLDv2 as the training set. Our approach
achieves better performance than the best previous method
in most cases, regardless of whether the query model is
MobileNetV2 or EfficientNetB3. e.g., when MobileNetV2 is
deployed as the query model, our method outperforms CSD by
2.94% and 2.54% on the ROxf dataset with Medium and Hard
protocols, respectively. Similarly, on the RPar dataset with
Medium and Hard protocols, our method outperforms CSD by
1.07% and 1.63%, respectively. All these results convincingly

demonstrate the superiority of our approach.

While we acknowledge that our approach may perform
less favorably than symmetric retrieval when large models
are deployed on both the query and gallery sides, it is
important to highlight the efficiency of our approach when
a smaller model is deployed on the query side. With only
5.8% of the computational FLOPS required by a model
like ResNet101 [56], our approach achieves a remarkable
90% performance. Additionally, it is clear from Table II that
symmetric retrieval performance suffers when small models
are deployed on both sides of the query and the database, and
our asymmetric retrieval approach better balances performance
and computational complexity in this case.

Discussion about Training Overhead. Both our method and
CSD introduce additional time overhead during training. As
for CSD [19], it performs retrieval in additional databases to
obtain nearest neighbors during each iteration of the training
process. In the CSD paper, the authors take the training set as
an additional database. When dealing with GLDv2 [39] with
1, 264, 376 images, the time overhead of this extra retrieval
step becomes non-negligible. For instance, a single retrieval
operation in this scenario incurs a latency of 0.105 seconds,
and training 5 epochs with multi-threading acceleration takes
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GALLERY
MODEL

QUANTIZER
TYPE

TRAINING
SET T

MEDIUM HARD

ROxf RPar ROxf RPar

R101-GeM [14]

k-means1,024

SfM-120k

31.1 51.9 11.6 23.8
Spectral1,024 30.1 54.5 10.3 25.9
k-means4,096 40.9 58.3 18.3 30.7
Spectral4,096 43.7 57.9 20.1 29.4
k-means16,384 46.7 56.9 21.6 28.5
Spectral16,384 47.2 59.1 21.8 32.7
k-means65,536 52.8 60.8 26.9 33.2
PQ64∥256 63.9 76.5 37.9 53.5

R101-DELG [58]

k-means1,024

GLDv2

38.3 56.5 18.9 36.4
Spectral1,024 35.8 54.2 17.1 37.6
k-means4,096 59.3 73.9 37.2 53.6
Spectral4,096 57.1 73.0 36.1 52.9
k-means16,384 63.4 79.0 39.7 59.7
Spectral16,384 62.7 79.6 38.4 60.5
k-means65,536 67.1 81.1 46.0 62.4
PQ32∥256 77.8 88.3 60.0 75.0

TABLE III: mAP (asymmetric) comparison of different quan-
tizers. MobileNetV2 [44] is used as query model. “k-meansi”
means a flatten k-means quantizer with i centroids. “Spectrali”
means that we cluster the data with i centroids using spectral
clustering. PQ32∥256 denotes that we split the feature vector
into 32 subvectors, with each subvector quantized to 256
centroids. R101-GeM and R101-DELG denote the ResNet101
trained by GeM [14] and DELG [58], respectively.

GALLERY
MODEL

SUBSPACE
NUMBER M

TRAINING
SET T

MEDIUM HARD

ROxf RPar ROxf RPar

R101-GeM [14]

2

SfM-120k

51.1 66.6 28.5 37.9
4 53.5 68.5 29.6 41.1
8 55.1 69.3 30.5 42.6

16 56.4 70.9 32.7 45.1
32 62.0 74.6 35.8 50.9
64 63.9 76.5 37.9 53.5

R101-DELG [58]

2

GLDv2

68.4 80.8 46.4 64.4
4 70.2 83.4 49.8 68.2
8 73.9 87.0 54.8 72.7

16 77.6 87.2 59.2 73.8
32 77.8 88.3 60.0 75.0
64 78.2 88.0 59.8 74.7

TABLE IV: mAP (asymmetric) comparison of different
number M of subspaces. τq and τg are set as 1.0 and
0.1, respectively. MobileNetV2 [44] is used as query model.
R101-GeM and R101-DELG denote the ResNet101 trained by
GeM [14] and DELG [58], respectively.

approximately 24 hours.

In contrast, our approach introduces online computation of
structural similarity, which indeed adds some time overhead.
Specifically, our method divides features into 64 subvectors,
each quantized to 256 clustering centers. The time overhead
for computing structural similarity is approximately 16 ms.
Note that even with this extra time overhead, based on the
structural similarity, our approach costs much less training
time than CSD with linear retrieval step. In detail, the total
time overhead for training 5 epochs amounts to about 11 hours.
Therefore, our method achieves better retrieval performance
and costs less training time than CSD.
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Fig. 3: Comparison of the time overhead and storage com-
plexity of different anchor generation methods. “k-means”
means a flatten k-means quantizer and “spectral” denotes for
spectral clustering. PQ32∥256 denotes that we split the feature
vector into 32 subvectors, with each subvector quantized to
256 centroids.

C. Ablation Study

Comparison with different clustering options. Our method
generates anchor points in the embedding space of the gallery
model, whose number is related to the granularity of the space
division. In this experiment, we compare product quantization
with the flat k-means and spectral clustering [60], [61].

As shown in Table III, adopting flatten k-means or spectral
clustering leads to severe performance degradation, which is
mainly due to the coarse granularity of the space partition.
The performance gradually increases as the number of anchor
images increases, which shows the need for a large number
of anchor points. However, as show in Figure 3, when the
number of required centroids is large, k-means and spectral
clustering lead to heavy computations and unaffordable time
overheads, making it difficult to further scale up the number
of anchor points. This limits the granularity of the partitioning
for the space, which makes the relationship between features
and anchor points fail to reflect the structure of the space well.
Besides, when adopting spectral and k-means clustering, we
need to save a large number of centroid vectors. Thus, product
quantization is more suitable.
Number of Subspaces. Table IV shows the mAP of our
method with different numbers M of subspaces. As M in-
creases, the performance increases at all settings. When M
is small, the number of anchor points is small. The division
granularity of the gallery embedding space is too coarse to
delicately characterize its structure. In contrast, when M is
large, the number of equivalent anchor points is large, e.g.,
when M is 32, it reaches 25632. By constraining the consis-
tency of structure similarities between feature embeddings of
the same training sample, the embedding spaces of the query
and gallery models are well aligned.
Similarity Type. As shown in Table V, we explore two
types of similarities, including negative Euclidean distance
and Cosine similarity. When negative Euclidean distance is
adopted as the similarity strategy, s(·, ·) is formulated as:

s(ui(g),C
j
i,:) = −∥Cj

i,: − ui(g)∥2. (13)

“Cosine similarity” leads to better performance. The negative
Euclidean distance ranges from 0 to −∞, and the probabilities
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GALLERY
MODEL

SIMILARITY
TYPE

TRAINING
SET T

MEDIUM HARD

ROxf RPar ROxf RPar

R101-GeM [14] Equation (13) SfM-120k 56.4 69.7 32.1 44.0
Equation (7) 63.9 76.5 37.9 53.5

R101-DELG [58] Equation (13) GLDv2 65.4 79.6 42.9 59.9
Equation (7) 77.8 88.3 60.0 75.0

TABLE V: mAP (asymmetric) comparison of different simi-
larity types. MobileNetV2 [44] is used as query model. R101-
GeM and R101-DELG denote the ResNet101 trained by GeM
and DELG, respectively.

GALLERY
MODEL

TEMPERATURE
τg

TRAINING
SET T

MEDIUM HARD

ROxf RPar ROxf RPar

R101-GeM [14]

0.00

SfM-120k

62.7 73.8 35.8 49.0
0.01 65.0 74.5 38.9 50.7
0.1 63.9 76.5 37.9 53.5
0.2 63.5 74.6 36.8 49.7
0.5 58.7 71.4 31.8 46.0

R101-DELG [58]

0.00

GLDv2

72.6 86.1 53.2 71.4
0.01 75.6 86.9 57.4 73.3
0.1 77.8 88.3 60.0 75.0
0.2 75.0 87.5 55.1 73.9
0.5 62.8 79.3 45.6 60.7

TABLE VI: Analysis about the temperature τg . Mo-
bileNetV2 [44] is used as query model and τq is set to 1.0.
R101-GeM and R101-DELG denote the ResNet101 trained by
GeM and DELG, respectively.

pg
i,: and pq

i,: obtained after the softmax function do not reflect
well the relationship between the feature vectors and the
anchor points. On the contrary, the cosine similarity ranges
from -1 to 1, which makes the final probability distribution
more discriminative.
Soft vs. Hard Assignment. In Table VI, we demonstrate the
effect of temperature τg in Equation (8). The results for the
hard assignment case are denoted by τg = 0.00. Choosing
a small τg , which makes the probability pgi sharper (closer to
hard assignment), leads to better performance. However, in the
extreme case of hard assignment, the performance decreases.
Hard assignment ignores the relationship between features and
anchor points, which characterizes the space structure and
contains more useful knowledge.
Scalability. The structure similarity generated by the gallery
model serves as a pseudo-label to supervise the learning of
the query model. While the gallery model can be trained
using labeled data if available, the query model is exclusively
trained through pseudo-labels generated by the gallery model.
This means that it is feasible to leverage the vast amount of
unlabeled data during the training phase of the query model. In
Table VII, we divide the GLDv2 dataset [39] into 10 random
splits and train the query models using different amounts of
data. In both settings, e.g., using R101-GeM and R101-DELG
as the gallery models, the performance gradually improves as
the number of training data increases. Our approach does not
use any annotations of the training data but only exploits the
knowledge provided by the gallery model. Thus, it is possible
for our method to improve the performance of the query model
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Fig. 4: Comparison of mAP (asymmetric retrieval) of
different methods to generate anchor points. The mAP is
the average of two difficulty settings, medium (left) and high
(right). R101-DELG [58] and MobileNetV2 [44] are deployed
as the gallery and query models, respectively. “random” de-
notes for random selecting image feautres as anchor points.
“k-means” means a flatten k-means quantizer and “spectral”
refers to spectral clustering of the data. PQ32∥256 denotes
that we split the feature vector into 32 subvectors, with each
subvector quantized to 256 centroids.

using a large amount of unlabeled data.
We further validate this in Table VIII, which shows that

convincing results are achieved when ImageNet [62] is adopted
as the training set. Our approach does not directly regress
features but uses the relationships between features and anchor
points as knowledge, which somewhat weakens the effect of
image data distribution bias. Notably, we achieve remarkable
performance when we adopt the distractor set R1M as the
training set, which further illustrates that our approach is able
to utilize the available unlabeled data to train query models.
Different methods to generate anchor points. In this section,
we explore different ways to generate anchor points such as
random selection from gallery features and spectral clustering.
As shown in Figure 4, randomly selecting anchor points yields
the least favorable results. This observed performance drop
may be attributed to the fact that randomly chosen anchor
points do not reflect the density of the data distribution, making
it difficult for the structural similarity to accurately portray the
structural information in the gallery space.
Various Lightweight Models. In this section, we experiment
with more lightweight models, whose computational complex-
ity (in FLOPS) is shown in Table I, as query models ϕq(·).
In Figure 6, symmetric means that the query and gallery
images are both processed using ϕq(·), while asymmetric
means that the query and gallery images are processed using
ϕq(·) and ϕg(·), respectively. The performance becomes better
as the model parameters and FLOPS increase under both
asymmetric and symmetric settings. Notably, the performance
improvement of the asymmetric setting over the symmetric
setting is more obvious when the number of model parameters
is small, e.g., ShuffeNetV2 (0.5×), which indicates the ad-
vantage of asymmetric image retrieval in resource-constrained
scenarios. In practical scenarios, it needs to compromise the
computational complexity and retrieval accuracy to select an
appropriate query model.
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R101-GeM → R101−GeM

MobileNetV2 → R101−GeM (Ours)

MobileNetV2 → MobileNetV2
Query 1 Query 2

R101-GeM → R101−GeM

MobileNetV2 → R101−GeM (Ours)

MobileNetV2 → MobileNetV2

R101-GeM → R101−GeM

MobileNetV2 → R101−GeM (Ours)

MobileNetV2 → MobileNetV2
Query 3 Query 4

R101-GeM → R101−GeM

MobileNetV2 → R101−GeM (Ours)

MobileNetV2 → MobileNetV2

Successes
Failures

1st 2nd 3rd 4th 5th 6th 7th 1st 2nd 3rd 4th 5th 6th 7th

Fig. 5: Some successes and failures of our approach on ROxford5k. In each group, the notation format “query model →
gallery model” on the top means embedding queries with the query model and retrieving in a gallery set embedded by the
gallery model. The image with the orange border on the left is a query, the first row shows the results of symmetric retrieval
when the large gallery model deployed on both query and gallery sides. The second row shows the results of our method under
asymmetric setting. The third row shows the results of symmetric retrieval when the lightweight query model is deployed on
both sides. Images with green borders are true positive images and images with red borders are false positive images.

GALLERY
MODEL

TRAINING
SET T

IMAGE
NUMBERS

MEDIUM HARD

ROxf RPar ROxf RPar

R101-GeM [14]

GLDv2 (×0.1) 128,078 63.5 75.6 37.2 53.6
GLDv2 (×0.2) 256,156 64.1 76.8 38.5 54.3
GLDv2 (×0.3) 384,234 64.2 77.6 39.2 56.7
GLDv2 (×0.4) 512,312 64.9 77.3 40.1 56.2

R101-DELG [58]

GLDv2 (×0.1) 128,078 75.0 86.3 55.1 71.9
GLDv2 (×0.2) 256,156 76.7 87.0 58.1 72.9
GLDv2 (×0.3) 384,234 77.1 87.3 59.3 73.4
GLDv2 (×0.4) 512,312 77.0 87.6 59.4 74.1

TABLE VII: mAP (asymmetric) comparison of different
dataset size. (×x) denotes the small dataset formed by ran-
domly selecting x proportion of images from the full GLDv2
dataset [39]. MobileNetV2 [44] is used as query model. R101-
GeM and R101-DELG denote the ResNet101 trained by GeM
and DELG, respectively.

Visualization of Retrieval Results. In Figure 5, we show
some examples of the success and failure of our approach.
According to the retrieval results of queries 1 and 2, deploying
large gallery models on both the query and gallery sides results
in the highest retrieval performance. However, it is important
to acknowledge that in resource-constrained scenarios, such
as on mobile devices, deploying large models may not be
feasible. When lightweight models are used on both sides,
there is a noticeable degradation in retrieval performance. Our
approach takes an asymmetric approach, where lightweight,

GALLERY
MODEL

TRAINING
SET T

IMAGE
NUMBERS

MEDIUM HARD

ROxf RPar ROxf RPar

R101-GeM [14]

SfM-120k 91,642 63.9 76.5 37.9 53.5
GLDv2 1,280,787 65.2 77.5 40.1 56.8
R1M 1,001,001 64.4 76.8 39.6 55.6

ImageNet 1,281,167 57.8 74.4 31.9 52.6

R101-DELG [58]

SfM-120k 91,642 75.4 84.4 55.1 68.3
GLDv2 1,280,787 77.8 88.3 60.0 75.0
R1M 1,001,001 75.5 86.1 56.9 72.5

ImageNet 1,281,167 56.6 76.4 38.3 59.0

TABLE VIII: mAP (asymmetric) comparison of different
training datasets. MobileNetV2 [44] is used as query model.
R101-GeM and R101-DELG denote the ResNet101 trained by
GeM and DELG, respectively.

smaller models are deployed on the query side while high-
performing large models are used on the gallery side. Ad-
ditionally, we train the query model to be compatible with
the gallery model, striking a balance between computational
complexity and retrieval performance.

However, it is worth noting that there are instances where
retrieval results remain sub-optimal even when large gallery
models are deployed on both sides. These cases represent
challenges that our approach, or any method, may face. The
small model trained by our method is constrained to maintain
structural similarity with the gallery model, and there are
scenarios where it may struggle with certain query images.
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Fig. 6: Analysis of different model variants. We use R101-
DELG [58] as gallery model ϕg(·) and compare differ-
ent architectures as query models ϕq(·). Symmetric: Query
and gallery images are both embedded by ϕq(·); Asym-
metric: Query and gallery images are embedded by ϕq(·)
and ϕg(·), respectively. EB0: EfficientNetB0 [47]; EB1: Ef-
ficientNetB1 [47]; EB2: EfficientNetB2 [47]; SV2: Shuf-
fleNetV2 [46]; SV20.5×: ShuffleNetV2 (0.5 ×) [46].

(a) ROxf (b) RPar

Fig. 7: T-SNE embeddings of ROxf and RPar datasets.
MobileNetV2 [44] and R101-GeM [14] are used as query and
gallery models. Different colors represent different buildings
and gray denotes distractor images. We randomly select 10
samples for each building category and 100 in distractors. ◦
and × denote gallery and query models, respectively. A line
connects the two representatives of each example.

Qualitative Results. Figure 7 shows the embeddings of some
ROxf and RPar images, each processed by a gallery and a
query model. For asymmetric image retrieval, it is crucial
to keep the feature compatibility between query and model
models. During training, anchor points are shared by both
query and gallery models. We restrict the similarities between

METHOD
RETRIEVAL

LATENCY (MS)
MEMORY (MB)

ROxf + R1M RPar + R1M

PQ8∥256 29.69 7.68 7.69
PQ16∥256 30.57 15.35 15.37
PQ32∥256 32.97 30.70 30.75
PQ64∥256 34.26 61.40 61.50
PQ128∥256 41.15 122.80 122.90
PQ256∥256 51.87 245.60 245.98

No quantization 152.12 7, 782.40 7, 783.70

TABLE IX: Time and memory cost. We report average search
time on a single thread CPU (Intel Xeon CPU E5-2640 v4 @
2.40GHz) and memory consumption for the gallery sets with
1M distractor images.
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Fig. 8: mAP comparison when PQ [41] is used during
asymmetric and symmetric retrieval. Horizontal axis de-
notes that we split the feature into M subvectors. The number
of centroids per subvector is set to 256. R101-DELG [58]
is deployed as the gallery model. We report the average
performance of our method on ROxf + R1M and RPar +
R1M datasets with Medium (M) and Hard (H) protocols [40].

two features of the same training sample and anchor points to
be consistent, which keeps the structure similarity.
Memory vs. Search Accuracy. In Figure 8, we adopt PQ
during the online retrieval, with the corresponding retrieval
latency and memory consumption shown in Table IX. PQ
is parametrized by the number of sub-vectors M and the
number of quantizers per sub-vector K, producing a code of
length M × log2K. As M increases, the accuracy of retrieval
gradually approximates the direct feature comparison. When
M = 256, quantization saves 96.8% of memory and 65.9% of
retrieval latency with slight performance degradation. In real-
word applications, we choose the appropriate M to achieve
the performance-memory trade-off.

V. CONCLUSION

In this paper, we propose a structure similarity preserving
approach to achieve feature consistency between query and
gallery models for asymmetric retrieval. First, we employ
product quantization to generate a large number of anchor
points in the embedding space of the gallery to characterize its
space structure. Then, these anchor points are shared between
query and gallery models. The relationships between each
training sample and anchor points are considered as structure
similarity and constrained to be consistent across different
models. This allows the query model to focus less on the
feature “details” of the gallery model and more on the overall
space structure. Besides, our method does not utilize any
annotation from training set, and it is possible for the proposed
method to utilize large-scale unlabeled training data, even
from different domains. This shows the generalizability of
our approach. Extensive experiments show that our method
achieves better performance than state-of-the-art asymmetric
retrieval methods.
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