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Abstract—Deep neural networks (DNNs) have achieved state-
of-the-art performance on face recognition (FR) tasks in the
last decade. In real scenarios, the deployment of DNNs requires
taking various face accessories into consideration, like glasses,
hats, and masks. In the COVID-19 pandemic era, wearing face
masks is one of the most effective ways to defend against the
novel coronavirus. However, DNNs are known to be vulnerable
to adversarial examples with a small but elaborated perturbation.
Thus, a facial mask with adversarial perturbations may pose a
great threat to the widely used deep learning-based FR models.
In this paper, we consider a challenging adversarial setting:
targeted attack against FR models. We propose a new stealthy
physical masked FR attack via adversarial style optimization.
Specifically, we train an adversarial style mask generator that
hides adversarial perturbations inside style masks. Moreover,
to ameliorate the phenomenon of sub-optimization with one
fixed style, we propose to discover the optimal style given a
target through style optimization in a continuous relaxation
manner. We simultaneously optimize the generator and the style
selection for generating strong and stealthy adversarial style
masks. We evaluated the effectiveness and transferability of our
proposed method via extensive white-box and black-box digital
experiments. Furthermore, we also conducted physical attack
experiments against local FR models and online platforms.

Index Terms—Adversarial attack, physical setting, face recog-
nition, deep learning, computer vision.

I. INTRODUCTION

IN recent years, deep learning models have achieved great
success in the face recognition (FR) task. A common deep

FR model’s working process is as follows: 1) utilizing convo-
lutional neural networks (CNNs) to learn the face features of
input face images; 2) constructing efficient loss function (like
contrastive loss [1], [2], triplet loss [3] and center loss [4])
for distinguishing the face features; 3) using the well-trained
models by 1) and 2) as well as some verification face images
to define the distance threshold of different identities; 4)
recognizing whether the two testing face images are the same
person. Such an FR model and its improved versions [3]–[8]
can achieve very high accuracy on popular face image datasets.
Therefore, these FR models are widely used in daily work
and life. Many companies use these models to differentiate
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their employees and outsiders. Besides, lots of public places
deploy them to find out specific persons. These high-accuracy
FR models improve our life efficiency and enhance public
security.

Since the end of 2019, a novel coronavirus (COVID-19
coronavirus) has been sweeping the world. Its effect on every
aspect of our lives and work will continue in the near future.
A simple and effective way to protect us from this virus is to
wear face masks when we go into public places. However,
the widely used face masks pose a threat to FR models:
diverse face masks reduce the recognition rate; and, worse still,
attackers deliberately elaborate some adversarial face masks to
deceive FR models.

Adversarial vulnerability is a prevalent problem in the
computer vision field: attackers elaborate examples with ad-
versarial perturbations that can mislead the deep learning
models [9]–[12]. Plenty of existing works have shown that
adversarial examples (though with very small perturbations)
can completely destroy the deep learning models [9], [10].
Particularly, adversarial attacks are an enormous menace to
FR models: black-box adversarial examples were proposed
against FR models in [13], [14]; adversarial face accessories
were applied to attacking FR models (like glass, hat, and
makeup) in [15]–[17]. However, most existing attacks achieve
stealthiness by either crafting small perturbations or modifying
semantic attributes of victim images. We wonder whether we
can generate targeted stealthy adversarial perturbations against
FR models.

In this paper, we propose a novel stealthy adversarial
style mask to perform targeted attack against FR models
in both digital and physical settings. Concretely, we train
an adversarial style mask generator that hides adversarial
perturbations inside the style masks. However, a fixed style
usually incurs sub-optimal performance. To alleviate the this
phenomenon, we introduce a continuous relaxation on style
via a weighted sum of style set to discover the optimal style
for a particular target. We optimize the style selection and the
generator simultaneously for generating stealthy adversarial
style masks (SASMask). Next, the SASMask is used to attack
FR models in the digital setting and the physical setting. To
better maintain the aggressivity in the physical world, we
also adopt the adaptation mapping/transformation to robustize
our SASMask. Before ending this section, we list the main
contributions of this paper below:

• We propose a novel stealthy adversarial style mask that
hides adversarial perturbations inside the diverse style
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face masks via adversarial style optimization to attack
FR models.

• We design to simultaneously train the adversarial style
mask (SASMask) generator and optimize the style selec-
tion to alleviate the local minima problem and generate
stronger adversarial masks.

• Extensive digital and physical experiments are conducted
to demonstrate that the effectiveness of our proposed
SASMask to deceive FR models.

II. RELATED WORK

A. Face Recognition

In recent decades, deep FR models has achieved great
progress [3]–[5], [7], [12], [18]. Existing deep FR models
mostly utilize the idea of mapping a pair of face images to a
distance proposed in [19]. In 2015, Schroff et al. [3] proposed
the effective triplet loss, which minimizes the distance between
an anchor and a positive example and maximizes the distance
between an anchor and a negative example until the margin
is satisfied. Later, further works [4]–[7] were proposed to
improve the metric learning: Wen et al. [4] proposed the
center loss to learn a center for deep features of each class
and penalize the distances between the deep features and their
corresponding class centers; Liu et al. [5] proposed the angular
softmax loss that enables to learn angularly discriminative
features; Wang et al. [6] proposed the large margin cosine
loss, and Deng et al. [7] improve it by adding the parameter
m to the inside of cos function.

B. Adversarial Attack

First introduced in [9], the adversarial attack is to gen-
erate samples (i.e., adversarial examples) with imperceptible
perturbations that can mislead deep models. From the attack
scenario, the adversarial attack can be utilized in a digital
setting and in a physical setting.
Digital Attack. Numerous previous works show that deep
models are vulnerable to adversarial examples in many fields,
like classification [20], [21], natural language processing [22],
object detection [23], speech recognition [24], etc. These
attacks can be either restricted or unrestricted. The strong
1st-order Projected Gradient Descent (PGD) [25] is a famous
work of restricted attacks. Besides, unrestricted adversarial
examples are also extensively studied, which try to alter some
significant attributes or components of images, like color [26],
[27], texture [28], [29] as well as modifications of partial
areas of images [30], [31]. Notwithstanding, such malicious
samples are usually unnatural or distorted. Additionally, the
unrestricted attacks cannot mount adversarial examples with
complicated patterns, which limits their usage in practical
situations.
Physical Attack. Kurakin et al. [32] showed that the digital
adversarial examples are still effective to subvert deep neural
models by printing and recapturing them with a camera. How-
ever, the attack performance plummets because of viewpoint
shifts, camera noise, or other physical transformations [33].
As such, more robust physical attacks demand larger per-
turbations, and adaptations towards physical transformations.

Expectation Over Transformation (EoT) [33] is an effective
technique to maintain the attack performance in the physi-
cal setting. Other robust physical attacks include adversarial
patch (AdvPatch) [30], malicious graffiti [34], adversarial laser
beams [35], adversarial clothes [36], adversarial shadows [37]
and so forth. Most of these physical attacks generate large
perturbations to increase the attack strength, which inevitably
accounts for large and unnatural distortions of original images.
Moreover, widely-used FR models attracts much attention
to revealing the potential threats against them. Generally,
such threats are divided into the dodging (untargeted) attack
and the impersonation (targeted) attack. The dodging attack
tries decrease the similarity of same-identity pairs, while the
impersonation attack aims to increase the similarity between
the test face and the target identity, which is more difficult
than the untargeted attack technically. Thus, we mainly focus
on the impersonation face attack in this paper. There are some
related works of this task: adversarial glasses [15], adversarial
hat [16], eye patch [38], adversarial makeup [39]. Besides,
Zolfi et al. [40] proposed an adversarial mask (AdvMask)
that is quite related to our work. They chose a basic pattern
and optimized it, which starts training the adversarial mask
from a manually selected pattern, while our method not only
optimizes the perturbation generation but also optimizes the
style weights for selecting optimal basic patterns. Besides,
AdvMask only uses the total variation loss as the constraint
loss, which is not enough to constrain the stealthiness of the
generated perturbations, whereas we propose explicit losses to
constrain the magnitude of perturbations.

C. Style Transfer

Style transfer is to transfer the texture of a source image to
a target image with retaining the content of the source image.
With the help of deep neural networks, neural methods [41]–
[43] achieved remarkable progress for the style transfer task,
where the content and style features are learned by CNNs.
Then, the style features of the style image are combined into
the target image to realize style transfer. Recently, a few works
[44], [45] generated adversarial examples with style transfer.
In this paper, we hide adversarial perturbations in the masks to
generate natural physical attacks against FR models. Different
from existing works, we propose the adversarial attack in
multiple styles and optimize the combination weights of these
styles.

III. METHODOLOGY

The attack success rate (ASR) of adversarial attack is always
regarded as one of the most important criteria, however, the
naturalness of generated physical adversarial examples in real
scenarios becomes another necessary factor in the evaluation
[44], [45]. In this work, we focus on the targeted adversarial
attack on physical masks via different styles. Previous style-
transfer based physical attacks aims at untargeted attacks with
a specific style. However, these techniques cannot be directly
applied in our setting since we consider a more complex
targeted attack. With a fixed style, it could be difficult for
attackers to generate targeted physical adversarial masks with
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Fig. 1. Overview of our proposed method, which is divided into two stages:
the generation stage; the attack stage. Parameters and networks that need to
be optimized are emphasized in red bold font.

a better trade-offs between ASR and naturalness. We argue
that different styles lead to different trade-offs for a target.
Thus, instead of utilizing a fixed style for style-transfer attack
which could result in the sub-optimal solutions, we propose
to search the optimal style for each target in adversarial mask
generation.

A. Problem Formulation
Given a face image x ∈ Rm with its ground truth identity y,

a face recognition model v maps image to a feature embedding
e, as well as a predicted identity. Given a target identity
yt ̸= y, the goal of targeted adversarial attack on facial mask
is to discover a natural mask with perturbation Madv which
fools the model v to predict the target identity. Formally, the
adversarial mask is defined as

min
Madv

LFR(v(R(x,Madv)), et),

where et = v(xt),
(1)

where LFR is the face recognition loss, et denotes the fea-
ture embedding of target yt, and R(x,Madv) is the overlay
operation that overlays adversarial mask Madv on face x. A
traditional solution to Eq. 1 can be adversarial attack via an
additive noise as Madv = M+δ where M is the original mask
and δ denotes the perturbation. Although the masks generated
by adversarial attacks can be aggressive, those masks are
always far away from those natural ones in the real world,
which makes the attack perceptible in practise, such as PGD
and AdvPatch [25], [30].

B. Stealthy Adversarial Style Mask
Instead of directly applying adversarial attacks, we pro-

pose to perform incorporate attack into a customized style.
Specifically, we utilize the style transfer techniques to generate
stealthy adversarial masks. Given the content of the original
mask pattern c and the style of predefined style image s, the
adversarial mask Madv in Eq. 1 can be generated via a style-
transferred manner as

Madv = Gadv(c, s). (2)

where Gadv denotes the adversarial style transfer generator.
Similarly, we denote the one without attack as Gori. In order
to guarantee stealthiness of Madv , we include l1-norm loss
L1 to reduce the perturbation magnitude of image pixels, a
total variation (TV) loss Ltv to reduce the variance of image
pixels, a content loss Lc to remain the content of the source
pattern and a style loss Ls to generate the customized style.
Formally, given a pretrained feature extractor ϕ(·), these loss
terms can be formulated as

L1 = |Madv −M | = |Gadv(c, s)−Gori(c, s)|,

Ltv =
∑
i,j

√
(Madv

i,j −Madv
i+1,j)

2 + (Madv
i,j −Madv

i,j+1)
2,

Lc =
∑
i∈lC

∥∥ϕi(M
adv)− ϕi(c)

∥∥2
2
,

Ls =
∑
j∈lS

∥∥G(ϕj(M
adv))− G(ϕj(s))

∥∥2
2
,

(3)

where ϕl(·) is the output of the feature extractor at layer l, lC
and lS are the sets of content and style layers; G(ϕl(·)) is the
Gram matrix associated with the output at layer l. Thus Eq. 1
can be reformulated as

min
Gadv

L(v,R,Gadv, Gori, ϕ;x, et, c, s),

where L = LFR + λ1L1 + λtvLtv + λcLc + λsLs,
(4)

where λ1, λtv , λc, and λs denote the scaling hyperparameters.
Physical Adaptation. Since physical environments are not
as ideal as digital conditions, it usually involves noises (like
environmental noises and camera noises) as well as natural
transformations (like viewpoint shifts and rotations) in a phys-
ical setting. Therefore, we need to use physical adaptations
to handle such diverse conditions. Here, we use the end-to-
end 3D face UV position map [46] as the overlay operation
R(x,Madv) to overlay facial masks on faces for generating
vivid and natural physically adaptive facial masks. Besides,
we also utilize an auxiliary method similar to Expectation
Over Transformation (EoT) [33]. In our setting, we aim to
improve the robustness of SASMask towards noises, rotations,
and viewpoint shifts. Here, we use a transformation function
T (·) to transform the masked face data as T (R(x,Madv)).

C. Adversarial Style Optimization

Note that the stealthy adversarial style masks generated by
Eq. 4 could achieve sub-optimal adversarial strength, because
a fixed style is not always a good initial point for different
targets. As shown in Fig. 4, when we randomly sample one
style from the style set, the optimization stops at different
points in which the attack performances vary greatly. We
mainly attribute this instability to sub-optimal solution via a
fixed style. Thus, in order to perform stable effective targeted
adversarial style masks, styles are incorporated into the op-
timization. Specifically, we propose to optimize the convex
combination of adversarial styles from a style set. Given a style
set S that contains K style candidates, we aim at discovering a
superior style which achieves better trade-offs between attack
success rate and stealthiness than other potential styles. The
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Algorithm 1: Algorithm for SASMask
Data: face images x, an original mask pattern c, style

set S, trained style transfer network Gori,
targeted face image xt, victim face recognition
model v, training epoch N

Result: SASMask generator Gadv , optimized style
weights w

1 Initialize G0
adv = Gori, w0 = [0]K ,;

2 Generate original style mask Gori(c, h̃
0 · S);

3 Compute targeted embedding et = v(xt);
4 for n = 1, · · · , N do
5 Get SASMask by Gadv(c, h̃

0 · S);
6 Get the mask position map of SASMask by [46]

and overlay it on face images to obtain
R(x,Gadv(x, h̃

0 · S)) ;
7 Randomly transform the masked faces

T (R(x,Gadv(c, h̃
0 · S))) ;

8 Calculate the loss in Eq. 9;
9 Separately compute generator gradient ∇Gn

adv
L

and weight gradient ∇wnL;
10 Update Gn+1

adv with Gn
adv and ∇Gn

adv
L by some

optimizer (like ADAM [47]);
11 Update wn+1 with wn and ∇wnL by some

optimizer;
12 end

TABLE I
ARCHITECTURE OF (ADVERSARIAL) STYLE MASK GENERATOR.

Index Operation Input Size Output Size

1 Conv(in=3,out=32,k=9,p=(4,4,4,4),s=1)+InstanceNorm+ReLU (3,112,112) (32,112,112)

2 Conv(in=32,out=64,k=3,p=(0,1,0,1),s=2)+InstanceNorm+ReLU (32,112,112) (64,56,56)

3 Conv(in=64,out=128,k=3,p=(0,1,0,1),s=2)+InstanceNorm+ReLU (64,56,56) (128,28,28)

4
[

Conv(in=128,out=128,k=3,p=(1,1,1,1),s=1)+InstanceNorm+ReLU
Conv(in=128,out=128,k=3,p=(1,1,1,1),s=1)+InstanceNorm+Residual Addition

]
×5 (128,28,28) (128,28,28)

5 Interpolate(scale factor=2)
Conv(in=128,out=64,k=3,p=(1,1,1,1),s=1)+InstanceNorm+ReLU (128,28,28) (64,56,56)

6 Interpolate(scale factor=2)
Conv(in=64,out=32,k=3,p=(1,1,1,1),s=1)+InstanceNorm+ReLU (64,56,56) (32,112,112)

7 Conv(in=32,out=3,k=9,p=(4,4,4,4),s=1)+InstanceNorm+Sigmoid (32,112,112) (3,112,112)

objective in Eq. 4 becomes a bi-level optimization which can
be reformulated as

min
Gadv

L(v,R,Gadv, Gori, ϕ;x, et, c, s
∗),

s.t. s∗ = argmin
s∈S

L(v,R,Gadv, Gori, ϕ;x, et, c, s)
(5)

Because style selection is a discrete problem as shown in Eq.
5, it is difficult to optimize it directly. Hence, we propose to
conduct continuous relaxation on s via the incorporation of
style weight as:

s = w · S =

K∑
k

wkSk. (6)

where w = [w1, · · · , wK ] is the weight vector of K styles so
that the style s becomes a weighted sum of style set S. During
the inference stage, the style with maximum w is selected as
the optimal style for adversarial style attack as

s∗ = h · S, where h = one hot(argmax
k

wk), (7)
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Fig. 2. Convergence curves of optimized and single adversarial style masks.

TABLE II
ASR, SSIM AND TRADE-OFF WITH HYPERPARAMETER TUNING.

λ1 λtv λc λs ASR SSIM Trade-off

100 10 0.001 1000 98.8% 0.9130 1.901

10 10 0.001 1000 99.1% 0.8732 1.864
1000 10 0.001 1000 0.0% 0.9265 0.927

100 1 0.001 1000 98.8% 0.9066 1.895
100 100 0.001 1000 0.0% 0.9220 0.922

100 10 0.0001 1000 98.9% 0.9037 1.893
100 10 0.01 1000 97.6% 0.9146 1.891

100 10 0.001 100 98.3% 0.9134 1.896
100 10 0.001 10000 98.4% 0.8993 1.883

where h denotes the one-hot distribution. Since Eq. 7 is
not differentiable in training phase, we propose to use the
softmax with a temperature parameter to approximate the one-
hot distribution h in a differentiable manner as

h̃i(wi) =
exp(wi)/τ∑K
j=1 exp(wj)/τ

, (8)

where τ > 0 is the temperature parameter, used for controlling
the concentration of style selection. Through setting τ to a
smaller value during the training phase (e.g., 0.1), h̃i is close
to one-hot distribution h, which alleviates the gap between
training and inference phases. The objective in Eq. 5 can be
reformulated as

min
Gadv

L(v,R,Gadv, Gori, ϕ;x, et, c, s
∗),

min
w

L(v,R,Gadv, Gori, ϕ;x, et, c,w, S),

s.t. s∗ = h̃(w) · S.

(9)

During the inference phase, h̃ is replaced by the one-hot
distribution h via argmax on w to select the optimal style s∗

given a target. Thus, with the involvement of style weights, an
optimal style can be discovered via our framework for each
target instead of the sub-optimal solutions with a fixed style in
previous works. We further summarize our proposed algorithm
in Fig. 1 and Algorithm 1.
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TABLE III
ASR AND SSIM OF DIFFERENT ATTACK METHODS WITH DIFFERENT HYPERPARAMETERS OF FOUR DIFFERENT TARGETS. HERE, WE STUDY THE

RESNET-50 BACKBONE AND THE ARCFACE HEAD AS THE VICTIM FR MODEL. THE BEST RESULTS ARE STRESSED IN BOLD.

Target Attack Method Original Face Rand PGD-64 PGD-80 PGD-128 AdvPatch-20 AdvPatch-24 AdvPatch-28 AdvMask Ours

Vivica Fox ASR 0.1% 0.3% 48.9% 49.6% 51.1% 3.9% 4.9% 5.1% 98.6% 98.8%
SSIM - 0.7166 0.8998 0.8858 0.8545 0.8265 0.7964 0.7590 0.6614 0.9130

Patricia Hearst ASR 0.7% 2.7% 9.1% 10.1% 12.3% 6.6% 6.8% 7.9% 81.7% 85.3%
SSIM - 0.7290 0.9001 0.8979 0.8963 0.7160 0.6580 0.5868 0.5926 0.9122

Aaron Eckhart ASR 0.0% 0.1% 3.6% 8.4% 30.5% 0.0% 0.0% 0.1% 89.3% 91.7%
SSIM - 0.7418 0.8541 0.8445 0.7871 0.8359 0.8089 0.7920 0.7683 0.8844

Steve Park ASR 0.9% 1.3% 9.4% 8.2% 10.6% 3.3% 4.6% 5.3% 78.5% 84.4%
SSIM - 0.7591 0.9065 0.8969 0.8887 0.7852 0.7026 0.6222 0.6082 0.9181

TABLE IV
MULTI-TARGET ATTACK EXPERIMENTAL RESULTS.

# of Targets Metric No Mask Ori Mask Rand PGD-64 PGD-80 PGD-128 AdvPatch-20 AdvPatch-24 AdvPatch-28 AdvMask Ours

5 ASR 4.6% 6.3% 4.2% 39.9% 48.1% 52.4% 7.2% 8.6% 8.1% 88.4% 90.6%
SSIM - - 0.7205 0.8966 0.8831 0.8430 0.8320 0.8031 0.7718 0.6698 0.9177

10 ASR 6.9% 6.0% 5.2% 41.9% 47.7% 47.6% 7.9% 8.5% 9.0% 87.2% 89.8%
SSIM - - 0.7205 0.8951 0.8810 0.8432 0.8345 0.8044 0.7749 0.6702 0.9150

15 ASR 7.8% 4.3% 5.3% 47.9% 53.0% 53.8% 8.1% 8.3% 8.8% 86.5% 90.1%
SSIM - - 0.7203 0.8948 0.8805 0.8431 0.8380 0.8066 0.7748 0.6703 0.9153

20 ASR 7.7% 3.4% 4.4% 46.4% 50.6% 53.0% 6.8% 7.0% 7.4% 85.8% 90.5%
SSIM - - 0.7207 0.8948 0.8808 0.8431 0.8392 0.8078 0.7782 0.6709 0.9155

30 ASR 7.2% 3.3% 3.3% 42.1% 46.2% 49.4% 5.3% 5.4% 5.8% 80.6% 90.8%
SSIM - 0.7206 0.8948 0.8812 0.8433 0.8409 0.8094 0.7786 0.6668 0.9162

40 ASR 6.6% 3.6% 2.9% 39.6% 43.1% 45.7% 4.7% 4.7% 5.1% 76.2% 90.0%
SSIM - - 0.7203 0.8955 0.8821 0.8443 0.8414 0.8093 0.7781 0.6663 0.9167

50 ASR 6.1% 3.5% 2.4% 36.4% 39.2% 41.6% 4.2% 4.2% 4.6% 69.8% 89.8%
SSIM - - 0.7201 0.8956 0.8822 0.8442 0.8410 0.8094 0.7779 0.6670 0.9170
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× × × × × × × × ×
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(a)
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(b)
Fig. 3. Adversarial masked face images generated by different attack methods, where images with red check marks on the right top denote successful attacks
against FR models, while white crosses denote failed attacks. Note that masks by AdvMask and our method both show strong attack performances, while
our masks provide much better stealthiness (much higher SSIM) than AdvMask. (a) Adversarial examples for the target Patricia Hearst (cf. the image in the
second row, the right-most column in Fig. 3b). (b) Adversarial examples for four targets: Vivica Fox, Patricia Hearst, Aaron Eckhart, Steve Park (from top to
bottom).

IV. EXPERIMENTS

In this section, we evaluated the effectiveness of SASMask
in the digital setting and the physical setting. Specifically, we
first outlined the experimental setup, and then we displayed
the white-box and black-box experimental results in the digital
setting, including multiple targets, cross-backbone, cross-head,
and cross-dataset experiments. Besides, we analyzed SAS-
Mask via the ablation study for adversarial style optimization
and loss ablation. Eventually, we also conducted physical
experiments: offline printed experiments and online platform
attack experiments.

A. Experimental Setup
a) FR model and mask generator: To fully evaluate our

proposed method, we utilized five backbones and five state-of-
the-art metric learning heads to train our SASMask generator

and tested the trained model in the white-box and black-box
settings. The five backbones are ResNet (-34, -50, -101) [48],
MobileNet [49] and GhostNet [50]. Additionally, the heads
are ArcFace [7], CosFace [6], CircleLoss [51], CurricularFace
[52], MagFace [53]. For the (adversarial) style mask generator,
we design a simplified U-net [54] like network to generate
(adversarial) style masks, whose architecture is shown in Table
I.

b) Dataset: We used four popular facial image datasets
in our experiments: LFW [55], VGGFace2 [56], AgeDB [57],
CFP [58]. We followed the setup of existing works, e.g.,
[13], [39], [40]. We randomly chose fifty identities from the
LFW dataset as our targets for comprehensively evaluating
the performance of our methods. In the training stage, we
randomly selected 400 images of different identities (different
from targeted identities) from the LFW dataset. In the testing
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TABLE V
AVERAGE TRANSFER ASR OF ADVERSARIAL MASKED FACE EXAMPLES

GENERATED BY DIFFERENT ATTACK METHODS WITH DIFFERENT
BACKBONES.

Rand PGD AdvPatch AdvMask Ours

ResNet-34 [48] 1.1% 4.1% 2.2% 76.3% 87.5%
ResNet-50 [48] 0.3% 13.1% 1.5% 61.9% 74.1%
ResNet-101 [48] 0.6% 20.0% 1.8% 57.3% 71.5%
MobileNet [49] 0.7% 2.0% 2.0% 41.2% 43.4%
GhostNet [50] 0.2% 5.8% 1.4% 68.0% 72.7%

TABLE VI
AVERAGE TRANSFER ASR OF ADVERSARIAL MASKED FACE EXAMPLES
GENERATED BY DIFFERENT ATTACK METHODS WITH DIFFERENT HEADS.

Rand PGD AdvPatch AdvMask Ours

ArcFace [7] 0.3% 2.0% 0.4% 43.2% 51.7%
CosFace [6] 0.0% 18.7% 0.4% 68.2% 74.0%
CircleLoss [51] 0.1% 11.1% 0.8% 70.5% 76.5%
CurricularFace [52] 0.1% 7.6% 0.6% 75.1% 72.4%
MagFace [53] 0.7% 8.5% 0.5% 68.2% 71.2%

stage, we randomly chose another 1000 images (different from
targeted identities and training images) from the LFW dataset.
Besides, we also randomly selected 1000 facial images from
the other three datasets (VGGFace2, AgeDB, and CFP) for
testing the transferability to other datasets. For the training
stage, subset data is enough, because there is little improve-
ment with the full set, which needs much more computational
resources.

c) Baseline attack: We compared our proposed method
with several existing representative adversarial methods: Pro-
jected Gradient Descent (PGD) [25], Adversarial Patch (Ad-
vPatch) [30], and AdvMask [40]. PGD is the strongest first-
order digital attack; AdvPatch is one of the typical unrestricted
attacks that can be directly used in the physical setting;
AdvMask is a recently proposed adversarial mask. In addition,
we also generated the randomly perturbed face mask as
another baseline attack method. In addition to the above mask
region-based comparisons, we also compared our method with
other face attack methods: PGD on face (PGDFace) [25],
AdvPatch (PatchFace) on face [38], AdvGlass [15], AdvHat
[16], AdvMakeup [39]. For all the comparison methods, we
follow their official experimental settings.

d) Metric: To quantify the attack performance of our
method and the comparison methods, we used the attack
success rate (ASR) as our attack metric, which is here defined
as

ASR =

∑
1(d(Test Face, Target) < κ)

# of All Test Pairs
× 100%, (10)

where d(·, ·) is the distance metric; κ is the distance threshold
and we used the K-fold cross validation of the full test set to
calculate it. Moreover, we also utilized the structure similarity
(SSIM) [59] as our mask quality metric, whose definition is
given by

SSIM(a, b) =
(2µaµb + C1) · (2σab + C2)

(µ2
a + µ2

b + C1) · (σ2
a + σ2

b + C2)
, (11)

TABLE VII
TRANSFER ASR AND SSIM OF ADVERSARIAL MASKED FACE IMAGES
GENERATED BY DIFFERENT ATTACK METHODS FROM ONE DATASET TO

THE OTHER THREE DATASETS.

Dataset LFW VGGFace2 AgeDB CFP

Rand ASR 0.3% 3.1% 1.2% 0.5%
SSIM 0.7166 0.7380 0.7550 0.7910

PGD ASR 51.1% 82.8% 81.1% 69.4%
SSIM 0.8545 0.8628 0.8724 0.8917

AdvPatch ASR 5.1% 10.5% 5.6% 5.4%
SSIM 0.7590 0.7623 0.7827 0.8080

AdvMask ASR 98.6% 100.0% 100.0% 99.9%
SSIM 0.6614 0.6620 0.6792 0.6931

Ours ASR 98.8% 99.9% 100.0% 99.9%
SSIM 0.9130 0.9154 0.9197 0.9334

TABLE VIII
COMPARISON WITH FACE ATTACK METHODS ON LFW DATASET.

Method PGDFace AdvHat AdvGlass PatchFace AdvMakeup Ours

ASR 14.6% 20.4% 12.4% 10.3% 22.0% 43.4%

where a and b are two masked facial images; µa (or µb) is the
image mean; σa (or σb) is the image standard deviation; σab

denotes the covariance between a and b; C1 and C2 are two
constants (C1 = 0.0001 and C2 = 0.0009 in our experiments).
Hereof, we computed the SSIM between the original style
masked face image and the attacked masked image to evaluate
the stealthiness of the deployed attack method, where larger
SSIM means better stealthiness. Note that we used the value
of SSIM to quantitationally calculate the metric of stealthiness
(i.e., naturalness, the quality or state of being natural).

e) Implementation detail: We first pre-trained a benign
style transfer generator Gori on the Microsoft COCO dataset
[60]. Then, we used this generator to initialize the SASMask
generator and fine-trained it with the Adam optimizer [47].
We set the initial model learning rate as 0.01 and the weight
learning rate as 0.01. The values of λ1, λtv , λc and λs were
set to 100, 10, 0.001 and 1000, respectively. Note that we
utilized the FR heads and the classification idea to training the
FR backbones; in the testing stage, we only use the trained FR
backbones to obtain the feature embeddings for verification.
Besides, all the victim face recognition models are trained
on the CASIA-WebFace dataset [61]. The temperature τ was
set to 0.1. For the input format, we set the size of input
masked face images to be [112, 112], and set the size of
masks to be [60, 112] in the bottom area of face images. We
set the starting optimized points of different attack methods
to be the original style masks. For the feature extractor, we
use the VGG-16 architecture [62], where we use the ReLU
outputs of layers 2, 4, 7 and 10 to compute the content and
style losses. For the end-to-end 3D face UV location map
network, we use the well-trained PRNet [46]. For the batch
normalization of (masked) facial images, we use the mean
of (0.5, 0.5, 0.5) and the standard deviation of (0.5, 0.5, 0.5);
for the batch normalization of VGG-16 inputs, we use the
mean of (0.485, 0.456, 0.406) and the standard deviation of
(0.229, 0.224, 0.225).
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TABLE IX
ASR AND SSIM OF ADVERSARIAL MASKED FACE IMAGES BY ABLATING

DIFFERENT STEALTHY LOSS PARTS.

Ladv L1 Ltv Lc Ls ASR SSIM

✓ ✓ ✓ ✓ ✓ 98.8% 0.9130

✓ - ✓ ✓ ✓ 97.6% 0.8337
✓ ✓ - ✓ ✓ 98.3% 0.8437
✓ ✓ ✓ - ✓ 98.6% 0.8837
✓ ✓ ✓ ✓ - 98.3% 0.8993

✓ - - ✓ ✓ 98.7% 0.7886
✓ ✓ ✓ - - 98.5% 0.8397

✓ - - - - 99.7%* 0.6255
* ASR without any constraint loss is the ASR upper

bound in our setting, which has an adverse side effect
of very low SSIM.

f) Hyperparameter tuning: For the training stage, we
first ran the model without optimization and obtain every
loss, then initialize the hyperparameters to make them the
same order of magnitude, and use the variable-controlling
method to tune hyperparameters. Besides, we further used the
early stopping trick [63] that stops the training when there is
no improvement after seven epochs for quicker convergence
and better performance. To tune hyperparameter, we first
run the model without optimization and get the value of
every loss, then we initialize the hyperparameters to make
each loss the same order of magnitude. At last, we used
the variable-controlling approach to tune hyperparameters for
better performance. Some funing results are shown in Table
II, where the trade-off column denotes the “sum” of ASR
and SSIM, which is used to describe the performance with
consideration of attack and vision effect. Bigger trade-off value
roughly means better performance. Besides, we use the Adam
optimizer and the early stopping trick to train our models and
it is easy to converge: normally, the training process takes
about 50 epochs (about 3 hours) with a single GeForce RTX
2080 Ti GPU. The convergence curves are shown in Fig. 2.

B. Digital Attack

1) White-Box Attack: We first evaluated our proposed
method in a white-box setting. Specifically, we randomly
selected four identities from the LFW dataset as the targets and
trained corresponding SASMask generators. Here, we used
the ResNet-50 backbone and the ArcFace head. Furthermore,
we also tested the baseline attack method, i.e, random per-
turbations, PGD, AdvPatch, and AdvMask. For PGD attack
methods, the maximum perturbations were set to be 64/255,
80/255 and 128/255 with 40 iteration steps; For AdvPatch
attack methods, the radii of the patches were set to be 20,
24, and 28 (a larger radius would be beyond the range of
the mask) with 100 iterations. For the sake of fairness, it
is noted that we set the total variation loss in AdvMask
and the stealthiness loss to a similar order of magnitude.
The experimental results are shown in Table III, from which
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Fig. 4. ASR and SSIM of adversarial masked face images via manual style
selection (style ablation) and style optimization. The optimized style selection
is highlighted in red bold font.

we can find that our SASMask can deceive the FR model
with the best ASR compared to the baseline attacks, reducing
the recognition rate from about one hundred percent up to
about zero percent with the highest SSIMs. Besides, as for
the baseline attacks, randomly perturbed masks and AdvPatch
attacked masks (even though with very large perturbation, like
radius = 28) rarely work towards adversarially attacking the
FR model. Some adversarial masked face examples can be
seen in Fig. 3.

To demonstrate the stability of the proposed method, we
further conducted multi-target attack experiments up to 50
targets. The results are shown in Table IV, from which we
can see as the number of targets increase, ASR and SSIM of
our method stabilize at around 90.0% and 0.9160, respectively.
However, the counterparts are ineffective or unstable as the
number of targets increases.

2) Black-Box Attack: Besides, we conducted experiments
to evaluate the ASR of our SASMask on FR models that it
was not trained on. Specifically, we conducted experiments to
examine the attack transferability of different attack methods
in the following aspects: model backbone, model head, as well
as dataset. Without loss of generality, Vivica Fox was selected
herein as the target identity; PGD-128 and AdvPatch-28 were
chosen for these experiments.

a) Backbone transferability: To evaluate the transferable
attack performance from one backbone to another, we con-
ducted backbone transferability experiments of different attack
methods. Hereof, we fixed the model head as ArcFace and
used ResNets with different depths (34, 50, 101), MobileNet,
and GhostNet as our model backbones. Besides, for the com-
parison methods PGD and AdvPatch, we chose the strongest
PGD-128 and AdvPatch-28. Note that we only showed the
average transfer ASR from one trained backbone to the other
four unseen backbones. The experimental results are shown
in Table V, from which we can find that our attack method
has the highest attack transferability between seen and unseen
models. Besides, we can see that Random masks, PGD masks,
and AdvPatch masks have little attack transferability from one
model backbone to another. For AdvMask and our method,
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TABLE X
ASR WITHOUT OR WITH DIFFERENT TYPES OF MASKS.

Female Male All

w/o mask 2.00% 0.00% 1.00%
w/ surgical masks 4.00% 2.00% 3.00%
w/ fashionable masks 6.50% 8.00% 7.25%
w/ AdvMask 77.50% 76.00% 76.75%

w/ SASMask 86.00% 84.50% 85.25%

TABLE XI
SCORES (SCORE DIFFERENCES FROM THE CLEAN FACE IMAGES) OF
ADVERSARIAL FACE IMAGES GENERATED BY DIFFERENT METHODS

AGAINST ONLINE PLATFORMS.

Baidu iFLYTEK Tencent

Clean 9.39 49.26 11.01
PGDFace 9.41 (0.02↑) 51.78 (2.52↑) 10.95 (-0.06↓)
PatchFace 20.24 (10.85↑) 65.77 (16.51↑) 21.53 (10.52↑)
AdvGlass 22.17 (12.78↑) 67.58 (18.32↑) 20.95 (9.94↑)
AdvHat 14.64 (5.25↑) 59.85 (10.59↑) 15.19 (4.18↑)
AdvMakeup 28.06 (18.67↑) 77.24 (27.98↑) 27.60 (16.59↑)
AdvMask 31.77 (22.38↑) 87.38 (38.12↑) 35.18 (24.17↑)
Ours 33.86 (24.47↑) 85.86 (36.60↑) 38.23 (27.22↑)

adversarial examples by small backbones have better attack
transferability than those by big models, especially for similar
backbones (like ResNets). Such observation is consistent with
the view presented in [64].

b) Head transferability: Furthermore, transferable ex-
periments between different model heads were performed to
examine the transferability of different attack methods. Hereof,
we fixed the model backbone as ResNet-50 and utilized
one of the following heads to train the models: ArcFace,
CosFace, CircleLoss, CurricularFace, and MagFace. As shown
in Table VI, our proposed method shows the best transfer-
ability between different heads in most cases. Nevertheless,
the transferability is not even, e.g., the transferable ASR of
ArcFace is much lower than the others, probably because the
similarity between ArcFace and the other four heads is lower
than that between the other four heads.

c) Dataset transferability: We also evaluated the black-
box ASR from one dataset to another dataset. Hereof, we
trained different attack methods with the ResNet-50 and Ar-
cFace on the LFW dataset and tested it on the VGGFace2,
AgeDB, and CFP datasets. The experimental results are dis-
played in Table VII, where results on the LFW dataset are the
white-box attack results, while the others means the transfer-
able attack results. We can see that even though tested on data
of different distributions from the trained ones, our SASMask
and AdvMask both show excellent attack transferability, but
only our method achieves great stealthiness (high SSIM).

d) Comparison with other face attack methods: As men-
tioned before, we compared our method with five other face
attack methods. Here, we used the average transfer ASR of
MobileNet. The results are shown in Table VIII. Comparing
with other attacks, our method achieves the best ASR and
outweighs the competitors by a large margin. Note that the
PGD in PGDFace acts on the whole facial images, for fair

Ori. Sty. Mask Rand PGD-64 PGD-80 PGD-128 AdvPatch-20 AdvPatch-24 AdvPatch-28 AdvMask SASMask

Fig. 5. Adversarial masks generated by different attack methods. From top
to bottom, the target identities are Vivica Fox, Patricia Hearst, Aaron Eckhart
and Steve Park, respectively.

comparison and enough definition of images, we set the ϵ
much less than that on the mask region, which is 8/255.

C. Ablation study

In this subsection, we performed a series of experiments to
analyze the following two aspects of our SASMask: 1) style
selection; 2) stealthy loss (i.e., L1 loss, TV loss, content loss,
and style loss).

a) Style optimization: In this ablation experiment, we
compared the attack strength and the stealthiness of the
optimized style and the manually selected single style. The
results are exhibited in Fig. 4, from which we can find that
the style optimizer helps us select the optimal adversarial style
from the style set that poses the biggest threat to FR models.

b) Loss ablation: We further ablated the stealthy loss
(i.e., L1, Ltv , Lc and Ls) to analyze the attack performance
of the SASMask. Table IX illustrates the loss ablation results,
from which we can see that ablating any part of the stealthy
loss decreases the SSIM by a great margin without little profit
of adversarial strength.

D. Physical attack

a) Offline physical attack: To verify the effectiveness
of SASMask in the physical world, we recruited a group of
five female and five male participants with the approval of
the ethics committee. Firstly, we printed the generated masks
on paper and selected six types of masks (one blue surgical
mask, four fashionable masks and the adversarial mask) as
our counterparts. For each physical experiment, we shot a
short video and chose 10 frames as our test data. Thus, we
collected 1400 images (700 female images and 700 male
images): 100 without any mask, 100 with the surgical mask,
400 with fashionable masks, 400 with AdvMask, and 400
with SASMask. For a type of masked face, the test data of
a participant contain 3 left-side images, 3 right-side images
and 4 front-side images (10 images in total). Then, we used
the MTCNNs [65] to detect and align faces. Later, we fed
the processed data (some examples are shown in Figs. 5, 6
and 7) into the victim FR model. Here, we used ResNet-50
with ArcFace as the victim FR model. The results are shown in
Table X, from which we can see that common masks are hardly
aggressive, while AdvMask and our SASMask can deceive the
FR models, where our method achieves a higher ASR both for
females and males.
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Ori. Face Surgical Fashion 1 Fashion 2 Fashion 3 Fashion 4 Ori. Sty. 1 Ori. Sty. 2 Ori. Sty. 3 Ori. Sty. 4 SASMask 1 SASMask 2 SASMask 3 SASMask 4

Fig. 6. Physical (adversarial) masked facial examples of one female participant, where photos in each row are taken from different sides: front, left and right.
Ori. Face Surgical Fashion 1 Fashion 2 Fashion 3 Fashion 4 Ori. Sty. 1 Ori. Sty. 2 Ori. Sty. 3 Ori. Sty. 4 SASMask 1 SASMask 2 SASMask 3 SASMask 4

Fig. 7. Physical (adversarial) masked facial examples of one male participant, where photos in each row are taken from different sides: front, left and right.

b) Online platform attack: Besides, we used our method
and the competitors to generate adversarial face images with
the LFW test set, and attacked three online commercial FR
platforms: Baidu [66], iFLYTEK [67], Tencent [68]. The
results are displayed in Table XI, from which we can see
that our method almost achieves the best attack performance
among all the listed methods.

V. CONCLUSION

In this paper, we proposed a new stealthy adversarial style
mask to attack FR models in both digital and physical settings.
Specifically, we trained an adversarial style mask generator
that hides adversarial perturbations inside the style masks.
Moreover, we proposed to optimize the selection of style to
mitigate the sub-optimization of one single style. Compared
with existing adversarial works, our method provides both
better stealthiness and adversarial strength. Extensive digital
experiments, both in white-box settings as well as black-
box settings, demonstrated the effectiveness of our proposed
SASMask. Furthermore, we printed the SASMask and let
participants wear them to attack real-world FR models. In
a nutshell, this paper emphasized the vulnerability of deep
FR models that they will fail when one wears an elaborated
stealthy adversarial style facial mask.
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