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Abstract

Detection transformers like DETR [3] have recently
shown promising performance on many object detection
tasks, but the generalization ability of those methods is still
quite challenging for cross-domain adaptation scenarios.
To address the cross-domain issue, a straightforward way
is to perform token alignment with adversarial training in
transformers. However, its performance is often unsatisfac-
tory as the tokens in detection transformers are quite di-
verse and represent different spatial and semantic informa-
tion. In this paper, we propose a new method called Spatial-
aware and Semantic-aware Token Alignment (SSTA) for
cross-domain detection transformers. In particular, we take
advantage of the characteristics of cross-attention as used
in detection transformer and propose the spatial-aware to-
ken alignment (SpaTA) and the semantic-aware token align-
ment (SemTA) strategies to guide the token alignment across
domains. For spatial-aware token alignment, we can ex-
tract the information from the cross-attention map (CAM) to
align the distribution of tokens according to their attention
to object queries. For semantic-aware token alignment, we
inject the category information into the cross-attention map
and construct domain embedding to guide the learning of a
multi-class discriminator so as to model the category rela-
tionship and achieve category-level token alignment during
the entire adaptation process. We conduct extensive exper-
iments on several widely-used benchmarks, and the results
clearly show the effectiveness of our proposed method over
existing state-of-the-art baselines.

1. Introduction

Object detection, as a fundamental task for visual un-
derstanding, has been one of the most attractive research
problems in the computer vision community [2, 3, 10, 23,
26, 27, 35]. With the thriving of deep convolutional neural
networks (CNN) [12, 19], many CNN-based object detec-
tion approaches (e.g., Faster RCNN [27] and FCOS [35])

have been proposed in the last decade. Recently, detec-
tion transformers (e.g., DETR [3]) have gained increasing
attention from researchers. Based on the design of visual
transformer, detection transformers remove the requirement
of hand-designed components such as non-maximum sup-
perssion (NMS) and anchor generation in traditional CNN-
based object detection methods, and at the same time,
achieve new state-of-the-art performance in many object de-
tection tasks [3,24,29,39,43,47]. Despite the success of de-
tection transformers, the cross-domain generalization abil-
ity remains a challenge when adapting a learned model to
a novel domain (i.e., target domain). Usually, existing de-
tection transformers often suffer from severe performance
degradation due to domain discrepancy between the source
and target domains [38].

However, addressing the domain shift issue for detec-
tion transformers is non-trivial. Researchers have pro-
posed many ways to improve the cross-domain general-
ization ability for CNN-based object detectors. For ex-
ample, a variety of studies for cross-domain object detec-
tion (CDOD) [5, 8, 25, 31, 46] are proposed to eliminate
the domain discrepancy by aligning the feature distribu-
tions of the source and target via adversarial training. Simi-
larly, for the cross-domain detection transformer, a potential
and straightforward solution for the cross-domain detection
transformer is to perform token alignment with adversarial
training, since the visual features are often converted into
tokens as the input to the transformer blocks. However,
aligning the token distributions is difficult, especially when
there exists a significant domain gap between domains.

Recent work [38] attempts to apply adversarial training
strategies on tokens in transformers, but the improvements
are still unsatisfactory. One of the major reasons is that
tokens in detection transformers are quite diverse. In de-
tection transformers (e.g., DETR), the tokens are passed
through several multi-head self-attention layers to obtain
new token embeddings for representing different spatial and
semantic information. Then, object queries are introduced
to probe useful tokens and leverage those tokens to predict
the positions and categories of different objects. On the one
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hand, since some tokens are more useful while less for oth-
ers, it is desirable to take the importance of tokens into con-
sideration in the cross-domain detection transformer. On
the other hand, the semantic information embedded in to-
kens is also helpful for aligning the token distributions w.r.t.
the corresponding category, which can ease the adversarial
training process.

In this work, we propose a new cross-domain detec-
tion method named Spatial-aware and Semantic-aware To-
ken Alignment (SSTA) under the transformer framework.
In particular, we take advantage of the characteristics
of cross-attention as used in the detection transformers
and newly developed two strategies, i.e., spatial-aware to-
ken alignment (SpaTA) and semantic-aware token align-
ment (SemTA) to guide the token alignment across do-
mains. The cross-attention in the decoder of SSTA uti-
lizes the object queries to aggregate information from en-
coder outputs (tokens). During this process, only a small
part of them are attended to for detecting objects accurately.
For spatial-aware token alignment, we can extract the in-
formation from the cross-attention map (CAM) to align the
distribution of tokens according to their attention to object
queries. For semantic-aware token alignment, we inject the
category information into the cross-attention map and con-
struct domain embeddings to guide the learning of a multi-
class domain discriminator so as to model the category re-
lationship and achieve category-level alignment during the
entire adaptation process.

We have conducted extensive experiments on three do-
main adaptive benchmarks, including adverse weather,
synthetic-to-real, and scene adaptation, where we achieve
new state-of-the-art performance for cross-domain object
detection. The experimental results show the effectiveness
of our proposed method. We also show the usefulness of
each component in our approach by conducting careful ab-
lation studies. The contributions of our work are three-fold:

• We propose a novel approach named Spatial-aware and
Semantic-aware Token Alignment (SSTA) for cross-
domain object detection, under the transformer frame-
work. To the best of our knowledge, we make the first
attempt to explore the intrinsic cross-attention property
for improving the cross-domain generalization ability
of detection transformers.

• Two new modules, i.e., token alignment (SpaTA) and
semantic-aware token alignment (SemTA), are devel-
oped respectively to align the token distributions ac-
cording to their attentions to object queries and to
achieve the category-level alignment.

• We conduct extensive experiments on several widely-
used benchmarks (e.g., FoggyCityscapes, Sim10K and
BDD100K), and promising results demonstrate the ef-

fectiveness of our proposed method over existing state-
of-the-art baselines.

2. Related Work
2.1. Object Detection

Object detection aims to recognize and localize one or
multiple objects in a given image. Traditional object de-
tection methods [2, 10, 23, 26, 27, 35] are based on convo-
lutional neural networks (CNN) [12, 19, 33] and can be di-
vided into two directions, one-stage, and two-stage meth-
ods. Two-stage methods [2, 10, 27] typically first gener-
ate some region proposals and then refine their classifica-
tion and bounding boxes. In contrast to two-stage methods,
one-stage methods [23, 26, 35] ignore the proposal gener-
ation stage and directly predict the category and coordi-
nates of objects. Although these CNN-based detectors have
achieved a remarkable breakthrough, they need many hand-
designed components like removing duplicated detections
by non-maximum suppression and anchor generation which
explicitly encodes our prior knowledge about the task. Re-
cently, Carion et al., proposed DETR [3] that reaches an
end-to-end object detection without anchor generation and
any sophisticated post-process procedure. Many DETR-
like models [24, 29, 39, 47] are proposed to further im-
prove the performance of the DETR model in both conver-
gence speed and accuracy. Among these works, one of the
most representative works is Deformable DETR [47] which
adopts deformable attention mechanism [6] into DETR and
designs a multi-scale attention module so that it reduces
the training time and improves detection performance sig-
nificantly. Nevertheless, these methods suffer from se-
vere performance degradation due to the domain discrep-
ancy between the training and test domains. To address
this problem, we present Spatial-aware and Semantic-aware
Token Alignment (SSTA) to learn domain-invariant token
representations. Following [38], we choose Deformable
DETR [47] as the base detector for a fair comparison.

2.2. Cross-domain Object Detection

Cross-domain object detection (CDOD) aims to trans-
fer the knowledge from the label-rich source domain to the
label-scarce target domain by bridging the domain discrep-
ancy between them. Previous works [1, 5, 8, 15, 17, 25, 31,
36, 46] can be roughly categorized into image translation,
self-supervision, and adversarial training. Image translation
methods [15, 17] adopt style transfer algorithms to enhance
the image diversity so as to reduce the domain gap at the
pixel level. Self-supervision approaches [1,8,25,30] deploy
the pseudo-labeling techniques to provide additional super-
vision signal for the target domain. Adversarial training
methods [5, 31] align the feature distribution and eliminate
the domain discrepancy to bridge the domain gap. Early
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works align the features with diverse levels, e.g., strong-
weak alignment [31], global-instance level [5].

However, these methods are based on the Faster RCNN
or FCOS, and the transferability of detection transformers
remains a challenge. SFA [38] has developed a domain
adaptive detection transformer to align domain query fea-
ture and token-wise feature and design an additional bipar-
tite matching consistency loss to enhance the feature dis-
criminability. Different from SFA [38], our SSTA takes ad-
vantage of the cross-attention map and leverages the spa-
tial and semantic information to help the token distribution
alignment. Our model follows the principle of giving min-
imal modification to the DETR model so that the inference
has no extra overload. To the best of our knowledge, our
method is the first domain adaptation work that takes ad-
vantage of the characteristics of cross-attention to improve
the generalization ability of the DETR model.

3. Methodology
In the task of CDOD, we are given a source domain con-

sisting of labeled images with object bounding boxes and
their class labels and a target domain consisting of unla-
beled images. Let us denote Ds = {(xs

i ,y
s
i )}

Ns
i=1 drawn

from distribution Ps as the labeled source domain and Dt =
{xt

j}
Nt
j=1 drawn from distribution Pt as the unlabeled target

domain, where Ps ̸= Pt. And ys
i = {(bs

j , c
s
j)|mj=1}, where

bs
j ∈ R4 and csj ∈ {1, . . . , C} are the bounding box and

corresponding category for each object, and m is the total
number of objects in an image xs

i . Our goal is to learn an
object detection model that performs well on the target do-
main.

In the following, we introduce the motivation of our pro-
posed method in Sec. 3.1. And then, we first give the vanilla
token alignment in Sec. 3.2 and describe the detailed design
of spatial-aware token alignment (Sec. 3.3) and semantic-
aware token alignment (Sec. 3.4). Lastly, we give the over-
all objective of the proposed method.

3.1. Motivation

In this section, we give a brief preliminary to the DETR
model. And then, we demonstrate the cross-domain chal-
lenges in DETR as well as our new solution.
DEtection TRansformer (DETR): DETR consists of
CNN backbone, transformer encoder and transformer de-
coder. The image x ∈ R3×H0×W0 are firstly fed into CNN
backbone (e.g., ResNet50 [12]) and to generate a lower-
resolution feature map f ∈ RC×H×W , where C = 2048,
H = H0

32 and W = W0

32 . The encoder uses a 1 × 1 con-
volution to reduce the channel C into a smaller dimension
d and then collapse the spatial dimensions into one dimen-
sion, resulting token inputs zc ∈ Rd×Nk , where Nk = WH
is the length of sequence. The encoder layer adopts to-
kens zc along with position embedding to make interac-

tion among tokens and outputs new tokens ze ∈ Rd×Nk

through standard architecture that consists of a multi-head
self-attention and a feed forward network (FFN). The de-
coder comprises of multi-head self-attention and multi-head
cross-attention mechanisms. Different with encoder, the de-
coder first deploys self-attention for Nq object queries and
then uses cross-attention (i.e., encoder-decoder attention) to
aggregate features from the outputs of the encoder, result-
ing a sequence zd ∈ Rd×Nq . Finally, the decoder will re-
sult Nq predictions. DETR utilizes Hungarian algorithm to
find a bipartite matching between the sets of predictions and
ground truth. The loss of DETR can be summarized as fol-
lows:

Ldet = Lcls + Lreg, (1)

where the Lcls is for classification and Lreg is for bounding
boxes regression.

DETR requires much longer training epochs (i.e., 500)
to converge than traditional detectors and has relatively
low detection accuracy on small objects. Thus Deformable
DETR [47] adopts efficient deformable attention module to
replace the dense attention in DETR. The deformable at-
tention mechanism can be naturally extended to aggregat-
ing multi-scale features, leading to fast convergence and
high performance. Following [38], we choose Deformable
DETR [47] as the base detector for a fair comparison. For
more detail, please refer to [3, 47].
Cross-domain Challenges in DETR: To improve the gen-
eralization ability of detection transformer, a potential solu-
tion is to perform token alignment with adversarial learning.
Recent work [38] also attempts to apply adversarial train-
ing strategies on tokens in transformers, but the improve-
ments are still unsatisfactory. One of the main reasons is
that the tokens in detection transformer are quite diverse. In
detection transformers (e.g., DETR), the tokens are passed
through several multi-head self-attention layers to obtain
new token embeddings for representing different spatial and
semantic information. Then, object queries are introduced
to probe useful tokens and leverage those tokens to predict
the positions and categories of different objects. On the one
hand, since some tokens are more useful while less for oth-
ers, it is desirable to take the importance of tokens into con-
sideration in the cross-domain detection transformer. On
the other hand, the semantic information embedded in to-
kens is also helpful for aligning the token distributions of
the corresponding category. This would ease the adversar-
ial training when aligning the token distributions between
domains.

To this end, we propose the spatial-aware token
alignment (SpaTA) and the semantic-aware token align-
ment (SemTA) strategies to guide the token alignment
across domains by leveraging the characteristics of cross-
attention in detection transformer. As shown in Fig. 1,
the proposed spatial-aware and the semantic-aware to-
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Figure 1. The overview of our method. We design a new Spatial-aware and Semantic-aware Token Alignment (SSTA) module to align
CNN token and encoder token distribution across two domains. We take advantage of the characteristics of the cross-attention in the
decoder and feed the cross-attention map (CAM) and the predictions of the detection head (FFN) to improve the token alignment. The
details of the SSTA module are shown in Fig. 2.

ken alignment (SSTA) module adopts the cross-attention
map (CAM) and predictions of the decoder to align the dis-
tributions of tokens from the CNN and encoder. The detail
will be presented below.

3.2. Vanilla Token Alignment

Before we dive into the design of our SSTA module, we
first introduce the vanilla token alignment. The existing ad-
versarial methods [5, 31, 44] usually take a discriminator to
reduce domain discrepancy via aligning feature distribution
between domains. The discriminator tries to distinguish
which domain the features come from, while the feature
extractor aims to confuse features and deceive the discrim-
inator in a minimax manner. It can be placed at a certain
layer or multiple layers of feature extractor. In practice, a
gradient reverse layer (GRL) [9] is used to connect the dis-
criminator and feature extractor and flips the gradients when
it flows through the feature extractor, leading to an end-to-
end learning instead of sophisticated multi-stage iterative
optimization like [11]. To bridge the domain gap, a naive
solution is to simply align the distribution of tokens where
the domain discriminator tries to recognize each token. For-
mally, the adversarial objective of vanilla token alignment
can be defined as follows:

Lta = −
Nq∑
i=1

{d log(D(zi))+(1−d) log(1−D(zi))}, (2)

where Nq is the length of sequence, zi is the i-th token
representation and can be from CNN backbone or trans-
former encoder, and d is the domain label with d = 1 for
the source and d = 0 for the target. When the above ad-
versarial learning loss being optimized, the sign of gradi-

ent back-propagated from discriminator to feature extractor
will be inverted by GRL, thus making the feature extractor
learn domain-invariant representations.

The overall objective of vanilla token alignment can be
formulated as:

L = Ldet + λ · (Lc
ta + Le

ta), (3)

where λ is the trade-off parameter, and Lc
ta and Le

ta are the
vanilla token alignment loss for the CNN and encoder to-
kens.

3.3. Spatial-aware Token Alignment

As the analysis in Sec. 3.1, object queries are introduced
to probe useful tokens and leverage those tokens to predict
the positions and categories of different objects. In other
words, tokens contribute differently to the detection results.
Simply aligning the token distribution between domains has
unsatisfactory improvements, as tokens in detection trans-
former have different importances to object detection task.
If we consider the tokens equally contributing to the adver-
sarial training, we will overlook matching the distribution
of critical tokens that may contain essential instances and
global context for accurately predicting the positions and
categories of different objects. Consequently, the efforts
to reduce the domain gap will eventually meet difficulties,
making the alignment less effective.

Motivated by this, we propose a spatial-aware token
alignment (SpaTA) module to discover instance-related to-
kens and emphasize their alignment by assigning higher
weights to these tokens for adversarial training according
to their attention to the object queries. Formally, we can
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Figure 2. The overview of our Semantic-aware and Spatial-aware Token Alignment (SSTA) module. Take the SSTA module for en-
coder tokens as an example. The proposed SSTA module takes the tokens as the input and jointly utilizes Semantic-aware Token Align-
ment (SemTA) and Spatial-aware Token Alignment (SpaTA) to respectively align token distributions. SemTA affiliates the predictions
of the detection head into the cross-attention map (CAM) and obtains a category cross-attention map (CCAM), which can be used to
construct domain embedding to guide the learning of a multi-class discriminator (MCD) to achieve category-level token alignment. The
SpaTA utilizes the CAM to give different weights to the adversarial learning of tokens according to their attention to object queries.

obtain the objective as follows:

Lspa =

Nk∑
i=1

(1 +Wi) · Li
ta, (4)

where Wi is the weight for i-th token, intuitively, the more
important the token should be assigned higher weights. As
shown in the right part of Fig. 2, we utilize cross-attention
map (CAM) as an alternative to providing the weights, as
object queries probe features by giving different weights to
tokens via the cross-attention mechanism.

However, the CAM cannot be directly obtained in de-
formable attention because of its special design. To this
end, the key factor is determining how to obtain the CAM.
We scatter and accumulate the cross-attention in the decoder
from each object query to discrete token positions in the se-
quence. The deformable attention applies bilinear interpola-
tion to obtain values from the surrounding position, as atten-
tion offset in deformable attention is fractional. Therefore,
we also apply bilinear interpolation to obtain CAM. Specif-
ically, let r, ∆r, A, and v be one of the reference points of
the decoder, corresponding offsets, attention weights, and
values, respectively.

For the attention to each token, we can obtain CAM of

i-th query as follows:

Mi =
1

Nd

Nd∑
l=1

∑
(Al,r,∆r)

Al · B(t, r +∆r), (5)

where Nd is the number of decoder layer, B(·, ·) is the bi-
linear interpolation operation, and t enumerates all integral
spatial locations of tokens. We provide more details in our
Supplementary materials. After obtaining the CAM, we fil-
ter out some attentions that are less than a given threshold.

In summary, the important weight for tokens can be ob-
tained via:

W = M⊙ 1(M ≥ τ(M)), (6)

where M is the average of CAM for all the queries and
τ(M) = mean(M) is an adaptive threshold for each sam-
ple x.

3.4. Semantic-aware Token Alignment

Although we have discovered the critical tokens to em-
phasize their alignment and avoid the influence of noise to-
kens, the model still has the risk of misalignment during
the adaptation process [36, 37]. The semantic information
of tokens is helpful for aligning the token distributions of
the corresponding category, so that the model can avoid the
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Table 1. Average precisions (%) of different methods on Cityscapes→FoggyCityscapes.

Method Detector person rider car truck bus train mcycle bicycle mAP
Faster RCNN [27] (Source)

Faster
RCNN

26.9 38.2 35.6 18.3 32.4 9.6 25.8 28.6 26.9
DA-Faster [5] 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6
SWDA [31] 29.9 42.3 43.5 24.5 36.2 32.6 30.0 35.3 34.3
CFDA [45] 43.2 37.4 52.1 34.7 34.0 46.9 29.9 30.8 38.6
UMT [8] 33.0 46.7 48.6 34.1 56.5 46.8 30.4 37.4 41.7

MeGA [36] 37.7 49.0 52.4 25.4 49.2 46.9 34.5 39.0 41.8
ICCR-VDD [40] 33.4 44.0 51.7 33.9 52.0 34.7 34.2 36.8 40.0

ViSGA [28] 38.8 45.9 57.2 29.9 50.2 51.9 31.9 40.9 43.3
DIDN [22] 38.3 44.4 51.8 28.7 53.3 34.7 32.4 40.4 40.5

FCOS [35] (Source)

FCOS

36.9 36.3 44.1 18.6 29.3 8.4 20.3 31.9 28.2
EPM [14] 41.9 38.7 56.7 22.6 41.5 26.8 24.6 35.5 36.0

SCAN [21] 41.7 43.9 57.3 28.7 48.6 48.7 31.0 37.3 42.1
KTNet [34] 46.4 43.2 60.6 25.8 41.2 40.4 30.7 38.8 40.9
SSAL [25] 45.1 47.4 59.4 24.5 50.0 25.7 26.0 38.7 39.6

Deformable DETR [47] (Source)
Deformable

DETR

38.6 40.6 45.8 11.6 28.9 1.7 18.9 39.1 28.1
SFA [38] 46.5 48.6 62.6 25.1 46.2 29.4 28.3 44.0 41.3

SSTA (Ours) 50.5 53.0 67.2 24.7 47.7 33.0 36.7 46.6 44.9

class misalignment. For example, the “car” and the “truck”
instances are forced to be very close in the feature space,
deteriorating the model discriminant ability. Therefore, we
propose to utilize a multi-class discriminator [37] (MCD)
to capture the category information during adversarial train-
ing so that it realizes category-level token alignment. The
multi-class discriminator contains not only domain infor-
mation but also category relationship. Concretely, we re-
mold the single-class discriminator to a multi-classes dis-
criminator that outputs 2K logits, where K = C+1, K for
the source domain, and others for the target domain. The
domain embedding d ∈ R2K×1 of the source and target
are [0; s] and [s;0], respectively, where s ∈ RK×1 is the
domain knowledge and 0 ∈ RK×1 is all-zero vector. The
objective of semantic-aware token alignment can be written
as follows:

Li
sem = −

2K∑
k=1

dk · log(D̂(zi)k), (7)

where D̂ is the multi-class domain discriminator. The key
factor is determining how to obtain the domain knowledge s
to build domain embedding for these tokens. As illustrated
in the left part of Fig. 2, we also utilize CAM to extract do-
main knowledge by injecting the category information into
it. In particular, we affiliate the predictions of the detection
head into the CAM and obtain a category cross-attention
map (CCAM) which can be formally defined as follows:

M̃k =
1

Nk
q

Nq∑
i

1(ŷi = k) · Mi, (8)

where M̃k ∈ RNk refers to CCAM M̃ ∈ RNk×K for cate-
gory k, Nk

q is the number of queries that belong to category
k. The ŷi is the category prediction from detection head

for i-th query and 1(·) is the indicator function where if ·
is true then equals 1, otherwise 0. The s can be obtained
after apply softmax fuction to the CCAM M̃. Finally, we
can obtain our domain adaptation loss by replacing the Li

ta

by the semantic-aware token alignment in Eq. (4):

Lda = −
Nk∑
i=1

(1 +Wi) · Li
sem, (9)

3.5. Overall Objective

In summary, the overall objective includes the detection
loss of Deformable DETR [47] on the source domain and
domain adaptation loss for the CNN and encoder tokens. In
summary, the overall objective can be defined as:

L = Ldet + λ · (Lc
da + Le

da), (10)

where λ is the trade-off parameter, Lc
da and Le

da are the do-
main adaptation loss for the CNN and encoder tokens, re-
spectively.

4. Experiments
Following [38], we train the model with labeled source

data and unlabeled target data and test on the target data.
We conduct extensive experiments on three CDOD scenar-
ios. The detection results are evaluated with mean Average
Precision (mAP) under the threshold of 0.5.

4.1. Experimental Setup

Datasets: Cityscapes dataset was collected for the scenes
understanding of road and street. It comprises 2, 975 and
500 images for training and validation, respectively. It con-
tains 8 categories: person, rider, car, truck, bus, train, mo-
torbike, and bicycle. FoggyCityscapes [32] dataset is the
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foggy version of Cityscapes and generated using the depth
information provided by Cityscapes. Thus, it shares the
common annotations with Cityscapes. It contains three lev-
els for foggy weather, including 0.01, 0.15, and 0.02. In ex-
periments, we choose the worst foggy weather (i.e., 0.02).
Sim10K [16] dataset is a synthetic dataset rendered by the
gaming engine Grand Theft Auto V (GTAV). This dataset
contains 10, 000 images with 58, 701 bounding boxes with
the category of “car”. BDD100K [42] dataset is a large-
scale autonomous driving and contains 100k images with
six types of weather, six different scenes, and three cate-
gories for the time of day. We extract the subset of daytime,
resulting in 36, 728 training and 5, 258 validation images.

Following existing works [5,44], we evaluate our method
on three benchmark settings:

• Weather Adaptation: We take Cityscapes as the
source domain and FoggyCityscape as the target do-
main, and the model is trained on the train set of
Cityscapes and FoggyCityscape and evaluated on the
validation split of FoggyCityscapes.

• Syn2Real: We explore the adaptation of Sim10K to
Cityscapes, we train the model using all the images of
Sim10K and the train split of Cityscapes, and report
mAP on the validation split of Cityscapes with “car”
category.

• Scene Adaptation: We use Cityscapes as the source
domain dataset and BDD100K containing distinct
scenes as a large unlabeled target domain dataset. We
evaluate the model on the validation set of BDD100K.

Implementation Details: Following the default setting in
SFA [38], we adopt Deformable DETR [47] as base detec-
tor, which contains ResNet-50 [12] backbone pre-trained on
ImageNet [7], six transformer encoders, six transformer de-
coders and multiple prediction heads. We adopt Adam [18]
optimizer to update parameters. For Cityscapes to Fog-
gyCityscapes, we first train the model with a learning rate
2 × 10−4 for 40 epochs, then decay the learning rate to
2 × 10−5 for 10 more epochs. And the trade-off parameter
λ is set to 1.0. For Sim10K to Cityscapes and Cityscapes to
BDD100K, we set the initial learning rate and the trade-off
parameter λ to 5×10−5 and 0.01 respectively. We pre-train
models on source data to obtain reliable CAM. All the ex-
periments are conducted using four V100 GPUs with batch
size of 16, i.e., each GPU contains 2 source images and 2
target images. We implement our method with the PyTorch
deep learning framework. The source code of our method
will be released soon.

4.2. Results

We conduct extensive experiments and validate the effec-
tiveness of our method by comparing various state-of-the-

Table 2. Average precisions (%) of different methods on
SIM10K→Cityscapes.

Method Detector AP on Car
DA-Faster [5]

Faster RCNN

39.0
SCDA [46] 43.0
SWDA [31] 40.1
MAF [13] 41.1
HTCN [4] 42.5
SAP [20] 44.9
UMT [8] 43.1

ViSGA [28] 49.3
EPM [14]

FCOS

49.0
KTNet [34] 50.7
SCAN [21] 52.6
SSAL [25] 51.8

Deformable DETR [47](Source)
Deformable DETR

47.4
SFA [38] 52.6

SSTA (Ours) 57.7

art CDOD methods, mainly including three kinds of meth-
ods: 1) two-stage detector Faster RCNN 2) one-stage de-
tector FCOS, 3) Deformable DETR. For all the methods,
we report the results from the original papers. To validate
the effectiveness of our proposed method, we also report the
results of the Source model where the model is only trained
on the source domain and directly evaluated on the target
domain.
Weather Adaptation (Cityscapes → FoggyCityscapes):
We show the adaptation results in Table 1. We can observe
that our proposed method outperforms the previous state-
of-the-art approaches by a large margin, reaching 44.9%
in terms of mAP. Specifically, Deformable DETR (Source)
achieves 28.1% in terms of mAP, which shows that De-
formable DETR has a decent generalization but still suf-
fers from the distribution discrepancy across domains. Both
SFA [38] and our SSTA improve the Source baseline. How-
ever, our SSTA improved by 3.6% in terms of mAP com-
pared with the counterpart SFA [38]. This demonstrates
that our method by leveraging intrinsic cross-attention to
conduct spatial-aware and semantic-aware token alignment
can effectively improve the generalization ability of detec-
tion transformer on the target domain.
Syn2Real (Sim10K → Cityscapes): The results of
synthetic-to-real adaptation are presented in Table 2. Our
proposed method SSTA reaches the highest mAP (57.7%)
that exceeds all compared state-of-the-art methods, in-
cluding the two-stage, one-stage, and DETR works, by a
large margin, that is 5.1% in terms of mAP over best-
performing one-stage detector SCAN [21] and DETR coun-
terpart SFA [38]. These results verify the effectiveness of
our SSTA.
Scene Adaptation (Cityscapes → BDD100K): The quan-
titative results are shown in Table 3. According to Table 3,
our method SSTA achieves the new state-of-the-art results
of 29.5% in terms of mAP, which surpasses the previous
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Table 3. Average precisions (%) of different methods on Cityscapes → BDD100K.

Methods Detector person rider car truck bus mcycle bicycle mAP
Faster R-CNN (Source)

Faster
RCNN

28.8 25.4 44.1 17.9 16.1 13.9 22.4 24.1
DA-Faster [5] 28.9 27.4 44.2 19.1 18.0 14.2 22.4 24.9
SWDA [31] 29.5 29.9 44.8 20.2 20.7 15.2 23.1 26.2
SCDA [46] 29.3 29.2 44.4 20.3 19.6 14.8 23.2 25.8
ECR [41] 32.8 29.3 45.8 22.7 20.6 14.9 25.5 27.4

FCOS [35] (Source) FCOS 38.6 24.8 54.5 17.2 16.3 15.0 18.3 26.4
EPM [14] 39.6 26.8 55.8 18.8 19.1 14.5 20.1 27.8

Deformable DETR [47] (Source)
Deformable

DETR

38.4 27.1 56.1 14.6 12.3 16.3 20.7 26.5
SFA [38] 40.2 27.6 57.5 19.1 23.4 15.4 19.2 28.9

SSTA (Ours) 39.4 31.9 59.4 16.3 17.7 15.3 26.2 29.5

Table 4. Ablation studies of SSTA on Cityscapes → FoggyCityscapes. TA indicates token alignment.

Method TA SpaTA SemTA mAP (%) ∆
Deformable DETR [47] (Source) - - - 28.1 -

Proposed
✓ 41.3 13.2↑

✓ 42.5 14.4↑
✓ 43.9 15.8↑

SSTA ✓ ✓ 44.9 16.8↑

Table 5. Average precisions (%) w.r.t. different values of λ on Cityscapes → FoggyCityscapes.

λ 0.0 0.1 0.5 1.0 1.5 2.0
SSTA 28.1 42.1 44.3 44.9 44.9 44.6

works. This again demonstrates the generalization of our
method.
Ablation Studies: To further verify the effectiveness of
our proposed method, we have conducted detailed abla-
tion studies by isolating each component of our SSTA.
The experimental results are shown in Table 4. In par-
ticular, our SpaTA significantly boosts the baseline, lead-
ing to 14.4% mAP improvements compared with Source
model (28.1%). This implies that the CAM can provide suf-
ficient information to discover critical tokens, and empha-
sizing their contributions to distribution alignment will sig-
nificantly improve the generalization ability of Deformable
DETR. Moreover, SemTA also improves the accuracy of
Deformable DETR, achieving 43.9% in terms of mAP.
These improvements mainly come from our SemTA con-
sidering category information during token alignment and
thus avoiding class misalignment. By synergizing SpaTA
and SemTA together, we obtain 44.9% in terms of mAP,
which shows their complementary to each other.
Parameter Analysis: We also investigate the influence
of the trade-off parameter λ which is used to balance the
weight between the source detection loss Ldet and the do-
main adaptation loss. Table 5 summarizes the experimen-
tal results on Cityscapes → FoggyCityscapes. Note that
when λ = 0, the method degenerates to the Source model.
According to Table 5, we can conclude that our proposed

SSTA consistently improve the generalization ability of De-
formable DETR in a wide range of λ, and λ = 1.0 and
λ = 1.5 are the bests among them.

5. Conclusion

Detection transformers (e.g., DETR) have shown
promising results for object detection, when training and
test images come from the same domain. However, they
usually do not work well for cross-domain problems. In this
work, we tackle cross-domain object detection by proposing
a novel approach named Semantic-aware and Spatial-aware
Token Alignment (SSTA) under the transformer frame-
work. In SSTA, two new modules i.e., spatial-aware to-
ken alignment (SpaTA) and semantic-aware token align-
ment (SemTA), are developed to guide the token alignment
across domains. Promising results on benchmark datasets
demonstrate the effectiveness of our method.
Limitation: Although our method outperforms existing
cross-domain object detection works, it still faces chal-
lenges in detecting objects of rare classes. For example,
the “truck” and “train” classes in Table 1 have relatively low
AP compared with other classes (e.g., “car”). We conjecture
that this is caused by the label shift between the source and
target domains. In the future, we will study how to improve
the detection performance of our SSTA for these classes.
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