
JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 1

Spectrum-driven Mixed-frequency Network
for Hyperspectral Salient Object Detection

Peifu Liu, Tingfa Xu†, Huan Chen, Shiyun Zhou, Haolin Qin, Jianan Li†

Abstract—Hyperspectral salient object detection (HSOD) aims
to detect spectrally salient objects in hyperspectral images
(HSIs). However, existing methods inadequately utilize spectral
information by either converting HSIs into false-color images
or converging neural networks with clustering. We propose a
novel approach that fully leverages the spectral characteristics by
extracting two distinct frequency components from the spectrum:
low-frequency Spectral Saliency and high-frequency Spectral
Edge. The Spectral Saliency approximates the region of salient
objects, while the Spectral Edge captures edge information of
salient objects. These two complementary components, crucial
for HSOD, are derived by computing from the inter-layer
spectral angular distance of the Gaussian pyramid and the
intra-neighborhood spectral angular gradients, respectively. To
effectively utilize this dual-frequency information, we introduce
a novel lightweight Spectrum-driven Mixed-frequency Network
(SMN). SMN incorporates two parameter-free plug-and-play
operators, namely Spectral Saliency Generator and Spectral Edge
Operator, to extract the Spectral Saliency and Spectral Edge
components from the input HSI independently. Subsequently, the
Mixed-frequency Attention module, comprised of two frequency-
dependent heads, intelligently combines the embedded features
of edge and saliency information, resulting in a mixed-frequency
feature representation. Furthermore, a saliency-edge-aware de-
coder progressively scales up the mixed-frequency feature while
preserving rich detail and saliency information for accurate
salient object prediction. Extensive experiments conducted on
the HS-SOD benchmark and our custom dataset HSOD-BIT
demonstrate that our SMN outperforms state-of-the-art methods
regarding HSOD performance. Code and dataset will be available
at https://github.com/laprf/SMN.

Index Terms—Hyperspectral salient object detection, Spec-
trum, Mixed-frequency Attention

I. INTRODUCTION

HYPERSPECTRAL imaging systems offer a unique ca-
pability to capture data from observed scenes, providing

both high spatial resolution and abundant spectral information.
This enables the acquisition of hyperspectral images (HSIs)
consisting of numerous contiguous narrow spectral bands [1].
By selecting an arbitrary point from the spatial dimension of
the hyperspectral cube, the spectral response curve effectively
represents the distinctive characteristics of a target. This
characteristic has led to the increasing significance of HSIs
in various disciplines, including target detection [2], spectral
estimation [3], and remote sensing [4].
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Fig. 1. Comparison with an RGB-based saliency detection method, U2Net [5].
The input of U2Net is false-color images. We compare the RGB and
spectral response curves of the foreground point (blue) and background point
(orange). The RGB response remains consistent across all three channels,
leading to detection failure. However, the spectral curves of these two points
exhibit distinct characteristics, enabling their discrimination using spectrum
information. Consequently, our proposed Spectrum-driven Mixed-frequency
Network (SMN) outperforms U2Net, particularly in the latter two scenarios.

By simulating human visual attention, salient object detec-
tion (SOD) aims to locate and segment the most salient object
or region in a scene [6]. Recent advancements in SOD have
witnessed the utilization of convolutional neural networks [7],
[8] or Transformers [9], [10], which have significantly en-
hanced the representation capability of features, resulting in
notable improvements in detection performance [11]. How-
ever, traditional SOD algorithms heavily rely on color infor-
mation to discriminate foreground and background objects. In
certain exceptional cases, such as scenes with overexposure
or situations where the foreground and background colors are
similar, the color information of the foreground object may
be absent or indistinguishable from the background, leading
to detection failures (as illustrated in Figure 1).

In contrast to RGB images, HSIs offer a wealth of spectral
information, enabling a more comprehensive characteriza-
tion of an object’s material, composition, and other intrinsic
properties. HSIs exhibit a higher resilience to variations in
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illumination conditions and are less reliant on color and
texture information typically present in RGB images. For
instance, as depicted in Figure 1, we have selected a fore-
ground point (blue) and a background point (orange) and
plotted their respective spectral and RGB response curves.
The bottom section of Figure 1 clearly illustrates that the
RGB response remains consistent across all three channels,
making it challenging for false-color images to differentiate
between the two points effectively. However, the spectral
curves of these two points exhibit distinct characteristics,
enabling their discrimination using spectrum information. Hy-
perspectral salient object detection (HSOD), which involves
detecting the most salient object within HSIs, therefore holds
tremendous potential for diverse applications, including pest
control [12], military surveillance [13], and environmental
management [14].

Traditional methods [15]–[17] used for HSOD often rely on
a simple conversion of HSIs into false-color images, which
only exploit a fraction of the available spectral data. Recently,
some deep learning techniques [1], [18] directly employ con-
volutional neural networks (CNNs) to extract features of entire
HSIs and subsequently utilize clustering algorithms to gen-
erate saliency maps. Although these methods have achieved
remarkable results, they usually encounter several limitations:
i) Clustering algorithms are often time-consuming; ii) CNNs
extract a large number of features, not all of which are useful
for saliency detection, leading to computational redundancy
and further burdening time resources; iii) The applicability of
clustering algorithms on CNN-extracted features is limited,
resulting in suboptimal detection performance compared to
end-to-end networks.

To address the above issues, we conducted an extensive
investigation of HSIs and identified two distinct frequency
components that can be extracted based on the spectrum, play-
ing a crucial role in the accurate identification and localization
of salient objects. Specifically, the lower-frequency compo-
nent, known as Spectral Saliency, provides an approximate
localization of the salient target, while the higher-frequency
component, known as Spectral Edge, enhances the edges of
the target. Motivated by the aim of fully leveraging these two
types of spectrum-extracted information that complement each
other, we introduce the Spectrum-driven Mixed-frequency
Network (SMN), the first end-to-end deep network designed
for HSOD. SMN is a lightweight model, which comprises
four key components: the extraction of Spectral Saliency and
Spectral Edge maps, frequency-specific embeddings, a Mixed-
frequency Attention module, and a decoder aware of both
saliency and edge information.

Firstly, we extract the Spectral Saliency and Spectral Edge
maps from the input HSIs using two plug-and-play operators:
the Spectral Saliency Generator (SSG) and the Spectral Edge
Operator (SEO). In the SSG, we construct a spatially blurred
Gaussian pyramid, with each layer containing the complete
spectrum of the input. The spectral angular distance (SAD)
between the pyramid layers is utilized to compute Spectral
Saliency maps. In the SEO, we first calculate the SAD
between each pixel and its neighborhood. Subsequently, we
employ various kernels to compute the gradient of the SAD

values within the neighborhood, enabling the determination
of the Spectral Edge maps. It is worth noting that these two
operators perform their computations rapidly without the need
for learnable parameters.

Secondly, Spectral Saliency and Spectral Edge images
are subsequently transformed into deep features employ-
ing frequency-specified embeddings. By leveraging a low-
frequency embedding process, deep saliency features are ob-
tained. For the high-frequency embedding, we employ cas-
caded convolutional layers along with an Edge Detection
Module, which combines to capture intricate edge details. Both
low-frequency and high-frequency embeddings generate deep
features related to saliency and edge, respectively. Considering
that edge features are considered low-level features, the high-
frequency embedding is designed to be shallower than the low-
frequency embedding. This not only enhances the efficiency of
the feature extraction process but also minimizes the number
of required parameters.

Thirdly, we introduce a Mixed-Frequency Attention mod-
ule designed to enable intricate interactions and fusion among
multi-frequency deep features, resulting in a nuanced mixed-
frequency feature representation. The module comprises two
frequency-dependent heads: a low-frequency head and a high-
frequency head. The low-frequency head ingests saliency
features and employs self-attention mechanisms to accentuate
regions of importance. Conversely, the high-frequency head
processes both saliency and edge features, executing cross-
attention between them. Given that the low-frequency saliency
representation is refined in light of neighboring high-frequency
edge details, and that unrestricted long-range interactions be-
tween frequencies could introduce noise or be counterproduc-
tive, we opt for a localized attention paradigm-specifically, the
neighborhood attention mechanism-as elaborated in NAT [19].
This approach not only ensures contextually relevant interac-
tions within a confined neighborhood but also mitigates com-
putational burden by maintaining linear complexity, unlike the
quadratic complexity inherent in traditional attention mecha-
nisms. The synthesized mixed-frequency feature encapsulates
a rich amalgamation of both edge and saliency attributes.

Finally, we employ a saliency-edge-aware decoder that
progressively upscales the mixed-frequency feature. Since
the shallow saliency information and edge details from the
frequency-specified embedding phase are simultaneously pre-
served, a saliency map exhibits high-fidelity edges and su-
perior detection accuracy can be obtained. Consequently, the
resulting saliency maps exhibit superior detection performance
while minimizing computational costs.

We conducted extensive evaluations of our model on the
HS-SOD dataset [20] as well as our collected dataset, HSOD-
BIT. The results demonstrate that our proposed method sur-
passes the existing state-of-the-art HSOD methods. Our model
is lightweight yet capable of detecting salient objects more
comprehensively compared to RGB-based SOD methods, par-
ticularly in scenarios with overexposure and similar fore-
ground and background colors.

Our contributions can be summarized as follows:
• We propose a novel Spectrum-driven Mixed-frequency

Network for the task of HSOD. This approach effectively
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utilizes both low-frequency and high-frequency informa-
tion present in HSIs to detect salient objects. To our
knowledge, our work represents the first attempt to apply
an end-to-end neural network to the HSOD problem.

• We introduce two parameter-free plug-and-play operators,
namely the Spectral Saliency Generator and the Spectral
Edge Operator, specifically designed for HSIs. These
operators enable us to leverage spectral information and
provide frequency-specific information effectively.

• We tailor a Mixed-frequency Attention module to fully
exploit the distinct frequency properties present in HSIs.
The design of frequency-dependent heads enables the
network to focus on different types of information.

• We present quantitative and qualitative experimental re-
sults that demonstrate the superiority of our method
compared to state-of-the-art HSOD methods on both the
HS-SOD and HSOD-BIT datasets.

II. RELATED WORK

A. Salient Object Detection

Conventional SOD methods rely on hand-crafted fea-
tures [15], [21], [22]. For instance, Rosin et al. [21] employ
edge detection, threshold decomposition, and pixel-wise op-
erations to identify salient objects. Alexe et al. [22] utilize a
generic objectness prior by leveraging object proposals. While
these hand-crafted features enable real-time SOD, they have
several limitations in capturing salient objects in complex
scenarios [23]. For instance, they tend to emphasize high-
contrast edges rather than the salient object itself, and the
preservation of boundaries is often inadequate [24].

In contrast, CNNs possess exceptional feature extraction
capabilities and can identify the most salient regions without
relying on prior knowledge [7], [8]. Li et al. [7] separate the
encoding of low-level and high-level information, flatten and
concatenate them, and then input the resulting data into a two-
layer perceptron to predict the saliency region. Zhang et al. [8]
employ saliency cues and a multi-level fusion mechanism to
detect salient objects. Yao et al. [25] integrate the edge ex-
traction module with the prediction network, yielding saliency
maps with precise edge delineation. However, these SOD
techniques are limited to RGB data and cannot be directly
applied to hyperspectral data for HSOD.

B. Hyperspectral Salient Object Detection

Despite the significant advancements in SOD, the field of
hyperspectral imaging remains relatively new in this context.
Wilson et al. [26] introduced the concept of contrast sensitivity
saliency to fuse different bands and visualize hyperspectral
remote sensing images. Subsequently, dimension reduction
techniques and Itti’s attention model [15] were incorporated
into HSOD. Moan et al. [17] divided the spectrum of a
hyperspectral image into three regions and employed principal
component analysis (PCA) to extract the first principal com-
ponent of each region. Zhang et al. [27] utilized both real
color and PCA images for visualization. However, although
these methods offer computational efficiency, they suffer from
inevitable information loss due to feature reduction.

Recently, Imamoglu et al. [18], [20] introduced the first
dataset specifically designed for HSOD. They employed a
manifold ranking algorithm and extracted features using a self-
supervised CNN to generate saliency maps. Similarly, Huang
et al. [1] utilized a CNN with two channels to extract spatial
and spectral features separately, which were subsequently
fused to optimize the saliency values of both foreground and
background cues, leading to improved detection performance
but at the expense of high computational complexity as well
as low computing speed. Our model takes Spectral Saliency
and Spectral Edge as high-level inputs. Instead of employing
clustering algorithms, it employs an end-to-end neural network
for salient object detection, effectively addressing the above-
mentioned drawbacks.

C. Attention Mechanism in Salient Object Detection

Although the attention mechanism is crucial for SOD, it
was first employed in image classification [28]. Yin et al. [29]
were the first attempt to incorporate the attention mechanism
into CNNs. The subsequent emergence of the self-attention
mechanism demonstrated a powerful ability to capture features
with long-range dependencies, witnessing great success in
machine translation [30] and image classification [31], etc.

The potential of the self-attention mechanism in SOD was
first recognized by Liu et al. [9] and Zhang et al. [10].
Subsequent studies [32]–[34] have further expanded the ap-
plication of self-attention in SOD tasks. In our work, we
introduce a novel attention mechanism called Mixed-frequency
Attention, which employs one attention head to concentrate
solely on saliency information while another focuses on
the interaction between edge and saliency information. This
pioneering approach represents the first integration of the
attention mechanism into the HSOD task.

III. METHOD

Given an HSI denoted as I ∈ RH×W×C, the primary ob-
jective of hyperspectral salient object detection is to generate
a saliency map denoted as S ∈ RH×W×1, which provides
information about the location of the salient object within the
HSI. Such a mapping process can be formulated as:

S = Φ(I). (1)

The mapping function Φ(·) is implemented by a novel
Spectrum-driven Mixed-frequency Network (SMN).

Figure 2 (a) presents the comprehensive architecture of
SMN, which encompasses four key steps: Spectral Saliency
and Spectral Edge extraction, frequency-specified embeddings,
Mixed-frequency Attention, and saliency-edge-aware decod-
ing. To elaborate, the first step involves the extraction of
Spectral Saliency and Spectral Edge images using dedicated
plug-and-play operators. These images are subsequently in-
corporated into deep saliency or edge features by means of
frequency-specified embeddings. Moving on to the third step,
a Mixed-frequency Attention module is employed to fully
harness the complementary nature of these features. This en-
ables the generation of a mixed-frequency feature that encom-
passes comprehensive edge and saliency information. Lastly,
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Fig. 2. (a) Illustration of the Spectrum-Driven Mixed-Frequency Network (SMN) employing an encoder-bottleneck-decoder architecture. The encoder comprises
two distinct modules: the Spectral Edge Operator (SEO) and the Spectral Saliency Generator (SSG). The bottleneck integrates a Mixed-Frequency Attention
Module, featuring frequency-dependent attention heads. The deep edge feature is denoted by FDE , whereas G1 and G2 denote split saliency features. (b)
SEO detects edge information by calculating the spectral angular distance (SAD) result’s gradient. (c) SSG generates saliency maps I1

S , I2
S , and I3

S by
estimating the difference between pyramid levels. (d) The decoder preserves low-level encoder features R1 and R2, and the shallow edge feature FSE to
generate better saliency maps. (e) Edge Detection Module (EDM) generates an edge feature.

in the fourth step, the saliency-edge-aware decoder gradually
upscales the mixed-frequency feature while simultaneously
preserving the fine-grained edge details and shallow saliency
information. Ultimately, this decoding process culminates in
the production of the final saliency map.

A. Spectral Saliency Generator

The Spectral Saliency Generator (SSG) is a stand-alone
layer responsible for generating Spectral Saliency maps. As
illustrated in Figure 2 (c), these maps are produced by comput-
ing the “center-surround” similarity between pairs of Gaussian
pyramid layers, constructed from the input HSI. The Spectral
Saliency maps provide an approximate indication of the salient
object’s location and serve as the low-frequency input to SMN.

Specifically, the input HSI undergoes an initial downsam-
pling process using Gaussian downsampling operations. This
process involves applying depth-wise convolution with a fixed
Gaussian weight to create a Gaussian pyramid with N lay-
ers (N = 8). Through Gaussian downsampling, the spatial
dimensions of the image decrease as the scale increases, and
each pixel’s information is influenced by a larger neighborhood
of pixels. This enables the assessment of the saliency value
between a “center” pixel at point (i, j) and its “surround”
pixel. The comparison is executed via the calculation of the
spectral angular distance (SAD) between spectral vectors vc

and vs, which are derived from the c-th and s-th layers of the
Gaussian pyramid, respectively. The value of the saliency map
IS at this point is computed as follows:

IS(i, j) = arccos
(

vT
c (i, j)vs(i, j)

∥vc(i, j)∥∥vs(i, j)∥

)
, (2)

where ∥·∥ is the Euclidean norm of a vector. In this context,
the layer index c of the “center” pixel takes on values from the
set {2, 3, 4}, and s is determined as c+3. By performing the
aforementioned calculation for each point of the image, the
saliency map of the entire HSI can be obtained. Three values
of the layer index c yield different saliency maps, denoted as
{Ik

S}3k=1. The dimensions of each saliency map are H×W×1.

B. Spectral Edge Operator

The blurring of object edges and loss of high-frequency
information in Spectral Saliency images are consequences of
Gaussian downsampling. Employing such images for saliency
detection could result in less sharp or even erroneous edges
in the detection results. To incorporate high-frequency details
into the SMN, we have devised a module called the Spectral
Edge Operator (SEO). Drawing inspiration from edge detec-
tion operators like the Canny operator, SEO extracts Spectral
Edge images by computing the gradient of the SAD in the
vicinity of each pixel.

Specifically, for a point (i, j) on the HSI, assume its
neighborhood size is H′ × W′. The SAD between this point
and any point (p, q) within its neighborhood can be computed,
resulting in a local spectral similarity map M ∈ RH′×W′

. This
process can be formulated as follows:

M(p, q) = arccos
(

v(i, j)Tv(p, q)

∥v(i, j)∥ ∥v(p, q)∥

)
, (3)

where v(i, j) and v(p, q) represent the spectral vectors of
points at (i, j) and (p, q), respectively. To compute the value
of the edge image IE at (i, j), gradient convolution kernels
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the same size as the neighborhood, denoted as Gx and Gy ,
are applied to the local spectral similarity map M :

IE(i, j) = |Gx ∗M |+ |Gy ∗M | . (4)

In Figure 2 (b), the specific content of Gx is depicted, with
a size of 5. Gy is the transpose of Gx. By applying these
operations to every pixel in the image, the Spectral Edge image
for the entire image can be obtained. Efficient CUDA kernels
are employed to expedite the computation. Three kernels of
varying sizes are employed to extract Spectral Edge images
{Ik

E}3k=1, where the dimensions of each image are H×W×1.

C. Frequency-specified Embeddings

Both the Spectral Saliency Generator and the Spectral
Edge Operator produce three sets of Spectral Saliency and
Spectral Edge maps, respectively. These maps capture distinct
and important information for hyperspectral salient object
detection. To leverage this valuable information, the maps
are transformed into deep saliency or edge features using
frequency-specified embeddings.
Deep Saliency Feature. The deep saliency feature is obtained
through a low-frequency embedding process. To generate this
feature, the Spectral Saliency images, denoted as I1

S , I2
S , and

I3
S , are concatenated along the channel dimension:

F S = [I1
S , I

2
S , I

3
S ], (5)

where F S is the concatenation result. By concatenating the
Spectral Saliency images, rather than sequentially feeding
them into the network, the computational complexity is re-
duced, leading to improved inference speed. F S are then
transformed into a deep saliency feature FDS as:

FDS = fL(F S), (6)

where fL(·) represents the low-frequency embedding process.
Let R = {Ri|i = 1, 2, 3} represent the multi-stage features

obtained from the low-frequency embedding process, where
each stage captures 1

4 , 1
8 , and 1

16 of the input feature, respec-
tively. The deep saliency feature refers to the last stage of the
low-frequency embedding: FDS = R3 ∈ R H

16×
W
16×CS , where

CS is the channel dimension of the deep saliency feature.
Furthermore, the shallow saliency information captured in R1

and R2 is retained for later use in the decoder stage.
Deep Edge Feature. A deep edge feature can be ob-
tained through high-frequency embedding, which incorpo-
rates a downsampling block and an Edge Detection Module
(EDM) [35]. The high-frequency embedding takes concate-
nated Spectral Edge images as input and generates a shallow
edge feature F SE , which can be expressed as follows:

F SE = fD(
[
I1
E , I

2
E , I

3
E

]
), (7)

where fD(·) denotes the downsampling block implemented
using two conv3 × 3 layers with a stride of 2, followed by
batch normalization layers and ReLU activation functions. The
shallow edge feature F SE is then transformed into a deep edge
feature FDE using EDM fE(·):

FDE = fE(F SE). (8)

Here, the shape of FDE is H
16 × W

16 × CE , with CE denoting
the dimension of the edge feature. The specific composition
of EDM is illustrated in Figure 2 (e).

To enhance the quality of the generated edge features, we
transform FDE into an edge image ME , which is constrained
by a ground truth edge image. The generation process of ME

can be mathematically described as follows:

ME = fCU(FDE), (9)

where fCU(·) is implemented using a conv1×1 layer followed
by an upsampling layer. The resulting edge map ME is
a single-channel grayscale image with the same dimensions
as the original image. The ground truth edge image E is
generated using an edge detector [36], which is obtained by
combining two edge maps:

E = e(IFC) + e(I ′
S), (10)

where e(·) represents the edge detector. IFC corresponds to
the false-color image rendered from HSI, while I ′

S is the sum
of the previously generated spectral saliency maps IS .

D. Mixed-frequency Attention

The Mixed-frequency Attention (MA) module facilitates the
comprehensive interaction and fusion of deep features with dif-
ferent frequencies. It encompasses two essential components:
the high-frequency head and the low-frequency head. In the
high-frequency head, a cross-attention mechanism is employed
to capture the relationship between high-frequency edge fea-
tures and low-frequency saliency features. This interaction
enables the refinement of saliency representations under the
constraints imposed by edge information. Conversely, in the
low-frequency head, a self-attention mechanism is applied to
the saliency feature itself. This enables the generation of more
precise and accurate saliency representations by emphasizing
relevant saliency information within the feature.
Saliency Feature Division. The saliency feature, denoted
by FDS and having a channel dimension CS , is uniformly
partitioned into two groups along the channel dimension:

G1 = FDS

(
:, :, 0 : ⌊CS

2
⌋
)
,

G2 = FDS

(
:, :, ⌊CS

2
⌋ : CS

)
,

(11)

where G1 and G2 represent the resulting groups after the
division. Each group has dimensions of H

16×
W
16×⌊CS

2 ⌋. These
groups are subsequently fed into different heads of the Mixed-
frequency Attention module for further processing.
High-frequency Attention Head. The high-frequency at-
tention head incorporates both the deep saliency and edge
features, enabling their interaction to enhance the accuracy
of saliency detection. We employ a neighborhood attention
mechanism (NAM) [19] to confine the receptive field of the
query to its local neighborhood, enhancing its sensitivity to
edge information while reducing computational complexity.
Suppose the input matrices of the NAM are denoted as X
and Y , respectively. The NAM can be defined as:

fNAM(X,Y ) = σ
(
Qi,jK

T
ρ(i,j) +Bi,j

)
V ρ(i,j), (12)
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where ρ(i, j) represents the neighborhood of a pixel at posi-
tion (i, j), and Bi,j denotes the relative positional bias. The
function σ(·) corresponds to the Sigmoid function. The query
matrix Q is derived from X , while the key matrix K and the
value matrix V are obtained from Y :

Q = XWQ,K = Y WK ,V = Y W V , (13)

where WQ,WK ,W V represent learnable parameters imple-
mented through linear projection.

The cross-attention between the deep edge feature FDE and
the first group of deep saliency feature G1 is computed:

FH = fNAM(FDE ,G1), (14)

where FH represents the refined saliency feature, constrained
by edge information.
Low-frequency Attention Head. The low-frequency attention
heads exclusively receive deep saliency features, utilizing a
self-attention mechanism to capture more precise representa-
tions of salient objects. To alleviate computational complexity,
the NAM is employed. The self-attention operation is em-
ployed for the low-frequency attention result FL:

FL = fNAM(G2,G2). (15)

After the low-frequency attention, FL serves as a more
accurate saliency representation in comparison to the input
G2. It should be noted that the kernel size of the NAM differs
between the two heads, reflecting the differences in input and
objectives for the different frequency heads.
Frequency Convergence. To integrate the frequency-specific
features, the outputs from the high-frequency and low-
frequency attention heads are concatenated along the feature
dimension, obtaining a mixed-frequency feature F out that
combines comprehensive and effectively integrated edge and
saliency information:

F out = δ(fC([FH ,FL])), (16)

where δ(·) is implemented by the ReLU activation function,
and FC represents the conv1× 1 operation.

E. Saliency-edge-aware Decoder

As illustrated in Figure 2 (d), the saliency-edge-aware
decoder employs a cascading structure of convolutional layers,
allowing for the gradual upscaling of the mixed-frequency
feature. This process ensures the fusion of shallow features
from the encoder, preserving intricate details and saliency
information.

The cascaded decoder architecture consists of five convo-
lutional layers, each accompanied by a batch normalization
layer, a ReLU activation function, and an interpolation opera-
tion. Let Din ∈ {Di

in|i = 1, 2, 3, 4, 5} and Dout ∈ {Di
out|i =

1, 2, 3, 4, 5} represent the input and output of these convolu-
tional layers, respectively. To preserve shallow information,
the shallow edge information F SE is concatenated with D2

out
along the channel dimension:

D3
in =

[
D2

out,F SE

]
. (17)

The saliency information R1 and R2 are separately upsampled
to match the spatial dimension, and the resulting outputs are
concatenated in the channel dimension and added to D3

out:

D4
in = D3

out + [f tc1(R1),f tc2(R2)] , (18)

where f tc1(·) and f tc2(·) represent transposed convolutional
layers. By incorporating edge information through concatena-
tion and saliency information through summation, we reduce
the modification of shallow information, resulting in a less
complex network that retains more shallow information.

F. Hybrid Loss Function

During the training process, certain intermediate results are
supervised to ensure the precise extraction of saliency or edge
features. To achieve this, a hybrid loss function L is utilized,
given by the equation:

L = Ledge + Lfinal, (19)

where Ledge and Lfinal represent the loss associated with edge
detection and the final saliency map, respectively. Further
details will be provided subsequently.
Binary Cross-entropy Loss. The binary cross-entropy (BCE)
loss function is defined as:

LBCE(X,Y ) = −
∑

[Xlog(Y ) + (1−X)log(1− Y )],
(20)

where X represents the ground-truth values and Y corre-
sponds to the input matrix. In the case of edge map ME ,
it is supervised using the BCE loss with the edge ground truth
E as follows:

Ledge = LBCE(ME ,E). (21)

Intersection Over Union Loss. In accordance with Qin et
al. [37], we incorporate the intersection over union (IoU) loss
function, defined as:

LIoU(X,Y ) = 1−

H∑
r=1

W∑
c=1

X(r, c)Y (r, c)

H∑
r=1

W∑
c=1

[X(r, c) + Y (r, c)−X(r, c)Y (r, c)]

, (22)

where X and Y denote the input and ground-truth matrices,
respectively, and H and W represent the height and width.
This loss function is employed to supervise the final saliency
map S:

Lfinal = LIoU(S,G) + LBCE(S,G), (23)

where G denotes the ground-truth saliency map.

IV. EXPERIMENTS

A. Experimental Settings

Datasets. Two datasets are utilized for assessing the per-
formance of SMN: HS-SOD [20] and our dataset, HSOD-
BIT. HS-SOD comprises 60 HSIs with a spectral range of
380-780nm at intervals of 5nm, and a spatial resolution of
768 × 1024 pixels. For the purpose of evaluation, 48 HSIs
are allocated for training, while 12 HSIs are reserved for
testing. On the other hand, HSOD-BIT encompasses 319
HSIs, each possessing a spatial resolution of 1240 × 1680
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pixels and a spectral range of 400-1000nm with intervals of
3nm. In HSOD-BIT, 255 HSIs are employed for training,
while 64 HSIs are utilized for testing. Both datasets comprise
RGB images as well as binarized ground-truth images that
correspond to the respective HSIs.
Evaluation Metrics. The assessment of saliency map de-
tection performance necessitates the utilization of established
evaluation metrics. The metrics are delineated as follows:

Mean absolute error (MAE) quantifies the pixel-level dis-
crepancy between the saliency map S and the ground truth
image G:

MAE =
1

W ×H

W∑
x=1

H∑
y=1

|Sxy −Gxy|, (24)

where W and H denote the width and height of the input
image, respectively.

S-measure [38] (Sα) evaluates the structural fidelity of the
saliency map S and is defined as a weighted sum of region
similarity Sr and object similarity So:

Sα = α× Sr(S,G) + (1− α)× So(S,G). (25)

For the definitions of Sr and So, the reader is referred to [38].
We adopt α = 0.5, as recommended in [38].

Precision-Recall (PR) curve [39] serves as a conventional
metric for saliency evaluation. It is derived by thresholding
the saliency map from 0 to 255 and subsequently computing
precision and recall at each threshold level:

Precision =
|B ∩G|
|B|

, Recall =
|B ∩G|

|G|
, (26)

where B and G denote the binarized saliency maps and the
ground truth, respectively.

F-measure [40] (Fβ) is the harmonic mean of precision and
recall, formulated as:

Fβ =
(1 + β2)× Precision × Recall

β2 × Precision + Recall
. (27)

We employ the maximum F-measure, denoted as Fmax
β , for

comparative analyses. The value of β2 is set to 0.3, as
suggested in [40].

Receiver Operating Characteristic (ROC) curve [39] is char-
acterized by the true positive rate (TPR) and false positive rate
(FPR):

TPR =
|B ∩G|

|G|
, FPR =

|B ∩ Ḡ|
|Ḡ|

. (28)

Here, Ḡ denotes the complement of the ground truth G. Area
Under Curve (AUC) is the total area under the ROC curve.

Correlation Coefficient (CC) [41] measures the statistical
correlation between the saliency map S and ground truth G:

CC =
σ(S,G)

σ(S)× σ(G)
, (29)

where σ(S,G) is the covariance between S and G. Overall,
a better HSOD saliency detector shall have a smaller MAE
and larger other metrics.

Implementation Details. For the purpose of reducing memory
cost and computational complexity, we performed downsam-
pling on the original HSIs both spatially and spectrally. As
a result, the HSIs were transformed into a spatial resolution
of 224 × 224 pixels and consisted of 50 spectral channels.
To augment the data, we employed horizontal flip and ran-
dom crop techniques. In the low-frequency embedding phase,
ResNet18 [42], Swin-tiny [43], and PVTv2-b1 [44] were uti-
lized as base architectures, initialized with weights pre-trained
on the ImageNet1k dataset. The models are denoted as SMN-
R, SMN-S, and SMN-P, respectively. To implement cross-
attention, we modified the neighborhood attention mechanism
accordingly. The kernel size for the high-frequency and low-
frequency attention heads was set to 13 and 9, respectively.
Our model was trained on a single NVIDIA RTX 3090 GPU
with an Intel XEON Gold 5218R CPU. Stochastic gradient
descent (SGD) with a momentum optimizer was employed
for training, spanning a total of 100 epochs. A warm-up and
linear decay strategy was employed to calibrate the maximum
learning rate to 2×10−2 (for Swin-tiny and PVTv2-b1, it was
set to 7× 10−3). The batch size was configured to 5.
Competing methods. Itti’s model [15] serves as the baseline
model for HSOD. Initially, we compare our model with several
conventional methods proposed by Liang et al. [16], namely
spectral angular distance (SAD), spectral Euclidean distance
(SED), and spectral grouping (SG). In order to compare with
open-source state-of-the-art methods, we also include SUDF
proposed by Imamouglu et al. [18] in the comparison. For the
sake of fairness, SUDF retains the default parameter settings.
Furthermore, we compare our SMN with two classical RGB-
image-based SOD methods, BASNet [37] and U2Net [5], to
validate the necessity of developing HSOD methods.

B. Results on HSOD-BIT
Quantitative Results. The quantitative comparison results on
HSOD-BIT can be found in Table I. Regardless of the back-
bone network employed, our SMN consistently outperforms
both traditional methods and SUDF. Specifically, our SMN-
R achieves impressive scores of 0.039 for MAE, 0.869 for
Sα, 0.854 for Fmax

β , 0.969 for AUC, and 0.849 for CC. These
results surpass SUDF by 74.00%, 29.93%, 56.99%, 5.56%,
and 26.53%, respectively. Utilizing other transformer-based
backbones yields enhanced detection performance, validating
the effectiveness of our SMN. Traditional methods heavily rely
on manually designed low-level features and fail to effectively
exploit the entire spectral information, thus limiting their
ability to generate highly accurate saliency maps.

In comparison to U2Net, a classical RGB-image-based SOD
method, our SMN-R exhibits superior performance in terms of
Fmax
β , AUC, and CC, while slightly trailing behind U2Net in

the MAE and Sα metrics. Employing Swin-tiny and PVTv2-
b1 as backbones results in detection performance substantially
superior to that of U2Net. Specifically, as shown in Table I,
when employing Swin-tiny as the backbone (SMN-S), we
observed a 4.7% increase in Fmax

β and a 3.1% increase in AUC
compared to U2Net. Similarly, for the PVTv2-b1 backbone
(SMN-P), the Fmax

β and AUC increased by 5.2% and 4.1%
compared to U2Net on the HSOD-BIT dataset.
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TABLE I
QUANTITATIVE RESULTS ON HSOD-BIT AND HS-SOD DATASETS. ‘-R’: RESNET18 [42], ‘-S’: SWIN-TINY [43], ‘-P’: PVTV2-B1 [44].

Datasets HSOD-BIT HS-SOD

Metrics MAE ↓ Sα ↑ Fmax
β ↑ AUC ↑ CC ↑ MAE ↓ Sα ↑ Fmax

β ↑ AUC ↑ CC ↑

Itti [15] 0.247 0.532 0.374 0.801 0.355 0.257 0.488 0.271 0.783 0.225
SAD [16] 0.203 0.552 0.390 0.830 0.397 0.203 0.500 0.244 0.778 0.223
SED [16] 0.130 0.500 0.343 0.753 0.303 0.132 0.470 0.291 0.793 0.201
SG [16] 0.182 0.543 0.338 0.791 0.370 0.196 0.530 0.274 0.808 0.268
SUDF [18] 0.150 0.685 0.544 0.918 0.671 0.242 0.498 0.275 0.723 0.250
BASNet [37] 0.040 0.849 0.779 0.919 0.785 0.071 0.743 0.605 0.843 0.625
U2Net [5] 0.034 0.870 0.829 0.942 0.830 0.076 0.734 0.617 0.854 0.631

SMN-R (Ours) 0.039 0.869 0.854 0.969 0.849 0.069 0.767 0.682 0.903 0.684
SMN-S (Ours) 0.032 0.891 0.868 0.971 0.870 0.079 0.737 0.659 0.899 0.635
SMN-P (Ours) 0.034 0.892 0.872 0.981 0.874 0.068 0.788 0.723 0.916 0.718

TABLE II
QUANTITATIVE EFFICIENCY ANALYSIS. ‘-R’: RESNET18 [42], ‘-S’:

SWIN-TINY [43], ‘-P’: PVTV2-B1 [44].

Metrics FLOPs (G) #Params (M) Speed (FPS) Fmax
β ↑

SUDF [18] 82.90 0.10 0.51 0.544
BASNet [37] 127.56 87.06 51.40 0.779
U2Net [5] 47.65 44.01 33.47 0.829

SMN-R (Ours) 14.58 7.27 35.91 0.854
SMN-S (Ours) 17.23 16.87 30.17 0.868
SMN-P (Ours) 14.76 10.23 32.68 0.872

HSOD-BIT

Fig. 3. Comparison of ROC and PR curves for multiple models on our
HSOD-BIT dataset. Our SMN, represented by a red line, outperforms others.

These outcomes highlight the inefficacy of employing SOD
methods after simply converting HSIs into false-color images.
The presence of similar colors between the foreground and
background in the false-color image poses a challenge in
distinguishing between them. Conversely, our SMN fully uti-
lizes spectral information, remaining unaffected by variations
in illumination conditions, thereby enabling the detection of
salient objects even in challenging scenarios.

Figure 3 provides a comparison of the ROC curves and PR
curves between our SMN and other methods. Our SMN is
denoted by the red line. Notably, the ROC curve of our SMN
closely approaches the point (0, 1), while the PR curve is
nearest to the point (1, 1) in comparison to the other methods.
These observations indicate the superior performance of our
SMN. The combined analysis of ROC curves, PR curves,
and the accompanying numerical evaluation metrics serves to

validate the effectiveness of our SMN.
Efficiency Analysis. We conducted a comparative efficiency
analysis of our SMN with other methods, including Floating
Point Operations (FLOPs), number of parameters (#Params),
and inference speed (FPS). The results are shown in Table II. It
is worth noting that the spatial dimensions and the number of
spectral channels for each method were kept at their respective
default values. SUDF employs a CNN for feature extraction
purposes only, followed by manifold learning and superpixel
clustering. Consequently, it utilizes a relatively small number
of parameters and exhibits a lower inference speed, at 0.1 M
and 0.51 FPS, respectively. Moreover, due to the use of the
entire HSI as input without spatial downsampling, SUDF
incurs a high computational cost in terms of FLOPs. Our SMN
demonstrates a reduction in FLOPs and an enhanced inference
speed relative to SUDF. Moreover, in comparison to BASNet
and U2Net, our approach significantly minimizes both the
parameter and FLOPs, yet achieves commendable detection
performance. Changing the backbone network results in a
modest increase in FLOPs and the number of parameters, but
does not significantly impact inference speed, while substan-
tially enhancing detection performance. This demonstrates that
SMN offers a good trade-off between computational efficiency,
speed, and effectiveness.
Qualitative Results. The qualitative results obtained on
HSOD-BIT are presented in Figure 4. In comparison to
previous HSOD approaches, our proposed SMN demonstrates
the ability to accurately and comprehensively detect salient ob-
jects. For instance, in scenes on rows 1, 3, and 5, some HSOD
algorithms yield misleading saliency outcomes or struggle to
detect salient objects effectively.

Furthermore, we compare our SMN with a well-known
RGB-image-based SOD algorithm called U2Net [5]. Under
normal circumstances, SMN achieves comparable detection
performance to U2Net: both methods produce complete detec-
tion results with sharp edges. However, in scenes where the
foreground and background colors are similar, SMN exhibits
more precise edge delineation compared to U2Net. Moreover,
in overexposed scenes, SMN showcases higher levels of
detection accuracy and completeness relative to U2Net. This
is attributed to the fact that U2Net relies solely on spatial
or color information from the false-color image, rendering
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Fig. 4. Qualitative results on our HSOD-BIT dataset. SMN has better detection performance in similar colors and overexposed scenes.

it ineffective in distinguishing foreground from background
in scenarios where color information is lacking. Moreover,
U2Net does not utilize edge information to refine saliency,
leading to erroneous detection results, as illustrated in the third
and fifth rows of the scenes. In contrast, our SMN approaches
the problem from a spectral perspective, extracting Spectral
Saliency and Spectral Edge images separately, and combining
them through a specially designed Mixed-frequency Attention
mechanism to leverage their complementarity.

Visualization of Attention Features. The output features
of the high-frequency attention head and the low-frequency
attention head in the Mixed-frequency Attention are displayed
in Figure 5. It is evident that the features generated by the
high-frequency attention head are predominantly concentrated
along the edges of salient objects. In contrast, the features
produced by the low-frequency attention head are primarily
focused on the salient objects themselves.

Visualization of SEO and SSG Output. The visualization of
the Spectral Saliency and Spectral Edge maps can be observed
in Figure 6. It is worth noting that the choice of kernel size
significantly influences the resulting edge features. Employing
a smaller gradient convolution kernel yields a more detailed
edge image, as depicted in the leftmost edge map. Conversely,
utilizing a larger gradient convolution kernel leads to a clearer
overall contour of the object, as depicted in the rightmost
edge map. Similarly, the saliency maps obtained from the
upper layer pairs in the pyramid (with a smaller layer index
c) typically encompass complete salient objects. In contrast,
the saliency maps obtained from the lower layer pairs (with a

Low-frequency HeadHigh-frequency HeadFalse-color Ground-truth

Fig. 5. Visualization of the output of features by the high-frequency attention
head and the low-frequency attention head. The former attends to the edge of
salient objects, while the latter focuses more on salient objects.

larger layer index c) offer greater accuracy in capturing salient
regions.

C. Results on HS-SOD

Quantitative Results. The quantitative comparison results on
the HS-SOD dataset are presented in Table I. Our SMN, irre-
spective of the backbone used, achieves notable performance
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Fig. 6. Visualization of Spectral Edge and Spectral Saliency maps from SEO and SSG. The variation of gradient kernel sizes and the layer index c of the
“center” pixel result in different Spectral Edge and Spectral Saliency maps, respectively.

scores, with SMN-P attaining MAE, Sα, Fmax
β , AUC, and CC

values of 0.068, 0.788, 0.723, 0.916, and 0.718, respectively.
Notably, our method outperforms traditional methods and
SUDF across all evaluation metrics on this dataset. Compared
to RGB-image-based methods, SMN-S slightly lags behind in
two metrics, namely MAE and Sα. However, it outperforms
both BASNet and U2Net in the remaining three evaluation
metrics. SMN-S outperforms U2Net by increasing Fmax

β by
6.8% and AUC by 5.3%. Similarly, SMN-P outperforms
U2Net by increasing Fmax

β by 17.2% and AUC by 7.2%. These
results underscore the overall efficacy and competitiveness of
our proposed SMN on the HS-SOD dataset.

The comparison of ROC and PR curves between our SMN
and other methods on the HS-SOD dataset can be observed in
Figure 7. The ROC curve of SMN, depicted by the red line,
demonstrates its proximity to the point (0, 1), indicating a clear
advantage over the other methods. Moreover, its advantage
in the PR curve is also obvious. By considering the ROC
curves, PR curves, and various evaluation metrics, our SMN
showcases effectiveness in the context of the HS-SOD dataset.

Qualitative Results. The qualitative results on the HS-SOD
dataset are presented in Figure 8. It can be observed that
conventional methods and SUDF exhibit numerous errors and
incompleteness in their saliency detection outputs. In a typical
scenario, when compared to U2Net, our SMN demonstrates
higher accuracy in detecting objects such as tree trunks and
street lamps. This is attributed to the fact that U2Net solely
relies on color information for salient object detection and
struggles to differentiate objects with similar colors accurately.
Conversely, SMN leverages spectral information derived from
material properties, enabling it to better distinguish objects
with similar colors. However, in more complex scenes, both
SMN and U2Net exhibit errors in their detection results,
suggesting the challenges associated with accurate detection.
Regarding small objects, our SMN model exhibits a more
comprehensive detection result compared to U2Net. For in-

HS-SOD

Fig. 7. Comparison of ROC and PR curves for multiple models on HS-SOD
dataset. SMN, represented by a red line, demonstrates a clear advantage in
both ROC and PR curves.

stance, in the small object scene, SMN successfully identifies
the seated person’s back as a salient object, whereas U2Net
only detects a portion of the person’s head. On the other
hand, in the large object scene, both SMN and U2Net face
challenges in fully detecting the target objects. In such cases,
the performance of both methods is limited.

D. Ablation Study

We conducted ablation studies on our HSOD-BIT dataset,
choosing PVTv2-b1 [44] as the backbone network for the low-
frequency embedding.
Hyperparameter Analysis. As previously mentioned, the ker-
nel size of the neighborhood attention mechanism employed
in the high-frequency and low-frequency heads differs due to
the distinct input and objective of these heads. Hence, we
conducted a hyperparameter analysis on the kernel sizes, as
well as the number of attention heads. The results, depicted
in Figure 9, highlight the significant impact of these hyperpa-
rameters on the model’s detection performance. For instance,
let us consider the evaluation metrics AUC and Fmax

β . As the
kernel size of high-frequency attention increases, the model’s
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Fig. 8. Qualitative Results on HS-SOD dataset. SMN outperforms other methods and is most similar to the ground-truth.
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Fig. 9. Hyperparameter analysis of the kernel sizes and number of heads in the neighborhood attention mechanism.

detection performance gradually improves, reaching its peak
when the kernel size is 13. Further increasing the kernel size
may yield better results; however, it is important to note that
the neighborhood attention mechanism currently supports a
maximum kernel size of 13, limiting any further increase.

Regarding the low-frequency branch, the detection perfor-
mance of the model achieves its highest value when the
kernel size is set to 9, taking into account both evaluation
metrics. Furthermore, increasing the number of attention heads
has a noticeable negative impact on the model’s detection
performance. Based on these findings, we have determined the
optimal values for the three hyperparameters: the kernel size
for the high-frequency attention is set to 13, the kernel size
for the low-frequency attention is set to 9, and each attention
mechanism employs a single attention head.
Comparison with Inputting RGB Images. In order to assess
the importance of using HSI as input, we conducted an exper-
iment where we removed two modules specifically designed
for HSI, namely SSG and SEO, and directly input false-color
images into the SMN. It is worth noting that the hyperpa-
rameters of the network remained unchanged throughout this
experiment. As illustrated in Table III, the performance of the
modified SMN model, measured in terms of Fmax

β and AUC,
yielded values of 0.887 and 0.978, respectively. These values

TABLE III
ABLATION STUDY OF INPUT DATA.

False-color HSI Spec. Edge Spec. Sal. Fmax
β ↑ AUC ↑

✓ ✗ ✗ ✗ 0.887 0.978
✗ ✓ ✗ ✗ 0.867 0.967
✗ ✓ ✓ ✗ 0.877 0.972
✗ ✓ ✗ ✓ 0.881 0.979
✗ ✓ ✓ ✓ 0.892 0.981

were found to be lower compared to the complete SMN model,
which achieved scores of 0.892 and 0.981 in the same metrics.
This outcome clearly indicates that the simple conversion of
HSI to false-color images is less effective in the context of
salient object detection, emphasizing the necessity of utilizing
HSI as input for achieving superior performance.
Usefulness of Two Plug-and-play Operators. To assess the
effectiveness of the plug-and-play modules, SEO and SSG,
we conducted experiments where we removed each module
individually and compared the results with the baseline.

The baseline experiment involved inputting the complete
HSI into the SMN without any modifications. When both
SEO and SSG modules were removed, the first convolutional
layer in the frequency-specified embeddings was randomly
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TABLE IV
THE EFFECTIVENESS OF MIXED-FREQUENCY ATTENTION MODULE,

SHALLOW FEATURE, AND HIGH-FREQUENCY INFORMATION.

Models MAE ↓ Fmax
β ↑ Sα ↑ AUC ↑ CC ↑

SMN w/o MA 0.036 0.862 0.878 0.978 0.863
SMN w/o Sha. Fea. 0.040 0.848 0.868 0.970 0.845
SMN w/o HF 0.033 0.871 0.887 0.976 0.871
SMN 0.034 0.892 0.872 0.981 0.874

initialized, and the input channels were changed to 50. This
configuration resulted in the poorest detection performance,
with an Fmax

β score of only 0.867 and an AUC of 0.967.
This outcome highlights the usefulness of the SEO and SSG
modules in improving the detection performance of the SMN,
underscoring their significance in the context of HSOD.
Effect of SEO. By incorporating the SEO module, we made
modifications to the inputs of the high-frequency and low-
frequency embeddings. Specifically, the Spectral Edge map
was used as the input for the high-frequency embedding,
while the original HSI was retained as the input for the low-
frequency embedding. A comparison between the second row
and the third row of Table III reveals notable improvements
in Fmax

β and AUC, indicating a significant enhancement in
the detection performance. These results serve as evidence
supporting the effectiveness of the SEO module.
Efficacy of SSG. Upon integrating the SSG module into the
baseline configuration, the input for SMN consists of the
complete HSI and the Spectral Saliency map. The results
depicted in Table III exhibit noticeable improvements in both
the Fmax

β and AUC metrics, thereby affirming the effectiveness
of the SSG module. Furthermore, as the Spectral Saliency
map provides valuable insights into the approximate location
of salient objects, it serves as a crucial information source
for SMN’s saliency detection. Consequently, the inclusion of
the SSG module yields more substantial enhancements in the
detection performance compared to solely employing SEO.
Impact of SEO and SSG. The final row of Table III demon-
strates that the combined utilization of the SEO and SSG
modules, which convert the HSI into edge images and saliency
maps, respectively, produces the most remarkable detection
performance. Notably, the simultaneous application of both
modules yields a more substantial enhancement in detection
performance compared to employing either module individu-
ally. This outcome can be attributed to the fact that the SEO
and SSG modules effectively transform the HSI into edge
images and saliency maps, respectively. These transformed
representations provide more accurate and suitable high-
frequency and low-frequency information for SMN, aligning
with the requirements of our specially designed model.
Effect of Mixed-frequency Attention Module. We inves-
tigate the impact of the Mixed-frequency Attention (MA)
module. An alternative feature fusion approach involved con-
catenating deep edge information and saliency information
along the channel dimension while also modifying the input
channel number of the first convolutional layer in the Saliency-
edge-aware Decoder. This experimental setup is denoted as
SMN w/o MA.

By comparing the results in the first and last rows of
Table IV, it becomes evident that the inclusion of MA has
a significant positive effect on the detection performance of
the model. MA facilitates the self-refinement of low-frequency
information through the utilization of a self-attention mech-
anism, enabling it to concentrate more on salient objects.
Furthermore, the cross-attention mechanism promotes interac-
tion between high and low-frequency features, leading to the
generation of more accurate low-frequency features within the
constraints imposed by high-frequency information.
Effect of Shallow Feature. To investigate the influence of
shallow features in the Saliency-edge-aware Decoder, we con-
ducted an experiment where these features were eliminated,
resulting in a conventional decoder. This experimental setup is
referred to as SMN w/o Sha. Fea. Upon examining the results
presented in Table IV, it becomes apparent that the inclusion
of shallow features during the decoding process significantly
enhances the detection performance. As the model progresses
deeper into the network, the spatial dimensions of the features
gradually decrease, leading to a loss of fine details. When
decoding is performed solely based on these deep features, the
resulting outcomes become less precise. Therefore, integrating
shallow features from the encoder at the decoding stage is
crucial to compensate for the loss of intricate information and
improve the overall detection performance.
Impact of High-frequency Information. To investigate the
role of high-frequency information in salient object detection,
we conducted an experiment where we removed the high-
frequency inputs and solely relied on low-frequency informa-
tion. This experimental setup involved generating a Spectral
Saliency map from the HSI using the SSG module and con-
verting it into low-frequency features through low-frequency
embeddings. Subsequently, these features underwent self-
attention in the MA for self-refinement and were decoded
to obtain the final saliency map without including shallow
edge information as input to the decoder. This experiment
is denoted as SMN w/o HF. By comparing the last two
lines in Table IV, it becomes evident that including high-
frequency information is crucial for achieving robust salient
object detection performance in the SMN model. The results
demonstrate the necessity of incorporating inputs from both
high and low frequencies for effective detection.

E. Extensive Experiment on RGBT SOD

Thermal images possess the capability to effectively capture
temperature information pertaining to objects within a given
scene. In these images, objects exhibiting higher temperatures
exhibit greater intensity, thus distinguishing themselves. This
particular characteristic bears a resemblance to our Spectral
Saliency map. As a result, our proposed SMN is employed in
RGBT datasets with the purpose of assessing and confirming
the generalizability of our proposed methodology.
Experimental Settings. Given the alterations in the task and
dataset, we adjusted the batch size to 32 and set the maximum
learning rate to 1×10−2. The backbone network is PVTv2-b1.
Datasets. Our training and test sets are consistent with the
dataset used by Tu et al. [45]. To provide a comprehensive
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Fig. 10. Qualitative results of RGBT SOD. Our SMN achieves satisfactory detection results.

TABLE V
RESULTS FOR RGBT SOD ON VT821, VT1000 AND VT5000 DATASETS.

Methods VT821 VT1000 VT5000

Fmax
β ↑ MAE ↓ Fmax

β ↑ MAE ↓ Fmax
β ↑ MAE ↓

MTMR [46] 0.747 0.108 0.754 0.119 0.662 0.115
EGNet [47] 0.795 0.063 0.917 0.033 0.839 0.051
CPD [48] 0.786 0.079 0.914 0.031 0.847 0.047
BASNet [37] 0.803 0.067 0.913 0.030 0.820 0.055
ADF [49] 0.804 0.077 0.923 0.034 0.863 0.048

SMN (Ours) 0.831 0.043 0.911 0.027 0.908 0.044

comparison, we compare the performance of SMN with sev-
eral existing methods, including MTMR [46], EGNet [47],
CPD [48], BASNet [37], and ADF [49]. Evaluation of the
methods is conducted using two metrics: Fmax

β and MAE.
Quantitaive Results. As depicted in Table V, the SMN
demonstrates commendable detection outcomes, exhibiting the
lowest MAE values across all three datasets, namely 0.043,
0.027, and 0.044, respectively. Moreover, on the Fmax

β metric,
SMN outperforms ADF on both the VT821 and VT5000
datasets and only lags behind ADF by 0.012 on the VT1000
dataset. During the RGBT SOD experiment, the SSG and SEO
modules are excluded. These modules, integral to processing
hyperspectral data, extract edge and saliency information from
a spectral standpoint. Nonetheless, in the RGBT SOD exper-
iment, solely RGB images are employed for edge extraction,
leading to an inherent loss of information. Additionally, while
our Spectral Saliency maps encompass a collection of spectral
saliency images, there exists only a single thermal image,
thereby providing comparatively less information. Despite
these, SMN’s detection performance remains robust, amply
demonstrating the effectiveness and superiority of our pro-
posed SMN.
Qualitative Results. The qualitative results of RGBT SOD are
visually presented in Figure 10. Our proposed methods have
demonstrated promising outcomes in terms of salient object
detection. When compared to MTMR, SMN exhibits enhanced

accuracy and completeness in detecting salient objects across
diverse scenes. In the general scene, SMN achieves detection
results better than MTMR and EGNet. In nighttime scenes,
SMN outperforms MTMR, CPD, and ADF by producing more
precise detection outcomes with sharper edges. Nonetheless,
in the complex scene, SMN exhibits limitations in effectively
detecting finer details of head-worn headphones, resulting in
relatively weaker performance when compared to ADF.

V. CONCLUSION

In this study, we introduce a novel lightweight model,
Spectrum-driven Mixed-frequency Network (SMN), for hyper-
spectral salient object detection. Our approach is motivated by
the insight that spectral information can be leveraged to extract
features with two distinct frequencies. To this end, we develop
two plug-and-play operators, namely the Spectral Saliency
Generator and the Spectral Edge Operator. Furthermore, we
design a customized Mixed-frequency Attention module that
effectively utilizes the complementarity of these features to
generate saliency maps with high-fidelity edges. Experiment
results demonstrate our SMN’s superiority to state-of-the-art
HSOD methods.

Although our method currently surpasses those based on
RGB images, the advantage is not substantial. In the future,
we plan to construct datasets that more effectively highlight
the benefits of utilizing hyperspectral information for saliency
detection. Additionally, we aim to further reduce the model
size and enhance its speed, facilitating deployment on compu-
tation and memory-limited devices.
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