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Abstract—Video summarization aims to distill the most im-
portant information from a source video into either an abridged
video clip or a textual narrative. Existing methods often treat
the generation of video and text summaries as independent
tasks, thus neglecting the semantic correlation between visual
and textual summarization. In other words, these methods only
study a single modality as output without considering coherent
video and text as outputs. In this work, we first introduce a
novel task: cross-modal video summarization. This task seeks
to transfer a long video into a condensed video clip and a
semantically aligned textual summary, collectively referred to as
a cross-modal summary. We then establish VideoXum (X refers
to different modalities), a new large-scale human-annotated video
benchmark for cross-modal video summarization. VideoXum is
reannotated based on ActivityNet Captions with diverse open-
domain videos. In the current version, VideoXum provides
14K long videos, with a total of 140K pairs of aligned video
and text summaries. Compared to existing datasets, VideoXum
offers superior scalability while preserving a comparable level of
annotation quality. To validate the dataset’s quality, we provide a
comprehensive analysis of VideoXum, comparing it with existing
datasets. Further, we perform an extensive empirical evaluation
of several state-of-the-art methods on this dataset. Our findings
highlight the impressive generalization capability of the vision-
language encoder-decoder framework yields on VideoXum. Par-
ticularly, we propose VTSUM-BLIP, an end-to-end framework,
serving as a strong baseline for this novel benchmark. Moreover,
we adapt CLIPScore for VideoXum to measure the semantic
consistency of cross-modal summaries effectively.

Index Terms—Cross-modal video summarization, video sum-
marization, video captioning.

I. INTRODUCTION

V IDEO summarization, which is known as generating a
concise summary that conveys the primary parts of a

full-length video, is a profound challenge for video analysis.
Practical automatic video summarization systems have a great
potential impact on numerous applications, e.g., movie trailer
generation [1] and narrative generation [2]. Typical approaches
of video summarization extract essential clips or frames from
a given long video [3], [4], [5]. Alternatively, the principal
video content can also be summarized in natural language,
e.g., video captioning [6], [7], [8]. However, previous works
treat either visual or textual summarization as separate tasks
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and thus ignore the semantic correlation between these two
modalities of summarization. Therefore, these methods lack
the ability to generate aligned visual textual summaries. An
earlier attempt [9] seeks to simultaneously generate visual and
textual summaries from long videos. Still, the generated visual
textual summaries in this work are not guaranteed to be se-
mantically aligned since the two tasks were treated as separate,
and there were no paired video and text summarization data
for training or testing.

In this study, we first introduce a novel cross-modal video
summarization task, which involves generating visual and
textual summaries with semantic coherence. To facilitate this
new task, we propose VideoXum, an enriched large-scale
dataset for cross-modal video summarization. The dataset is
built on ActivityNet Captions [8], a large-scale public video
captioning benchmark consisting of 200 distinct activity cat-
egories. These activity classes belong to 5 different top-level
video topics: “Eating and Drinking”, “Sports, Exercises, and
Recreation”, “Socializing, Relaxing, and Leisure”, “Personal
Care”, and “Household”. To ensure consistent annotations,
we hire workers to annotate ten shortened video summaries
for each long source video according to the corresponding
captions. Consequently, VideoXum contains 14K long videos
with 140K pairs of aligned video and text summaries. Our goal
is to extend the traditional single-modal video summarization
task to a cross-modal video summarization task. Fig. 1 presents
this novel task termed V2X-SUM (Video-to-X Summariza-
tion), where X denotes the modality of generated summaries.
According to the target modality, we categorize the V2X-SUM
task into three subtasks:
Video-to-Video Summarization (V2V-SUM). This task re-
quires models to identify key segments from a source video
and produce an abridged version.
Video-to-Text Summarization (V2T-SUM). In this task,
models need to summarize the main content of the source
video into a brief text description.
Video-to-Video&Text Summarization (V2VT-SUM). This
task requires models to achieve V2V-SUM and V2T-SUM
tasks simultaneously. Moreover, the semantics of these two
modalities of summaries should be well aligned.

Compared with single-modal summarization tasks, cross-
modal video summarization comes with its own challenges.
We summarize three primary challenges for this new task.
First, the scarcity of large-scale, diverse, and well-annotated
cross-model video summarization benchmarks presents a sig-
nificant hurdle for researchers in promoting the corresponding
techniques. Second, from the perspective of optimization, it is
nontrivial to ensure the stability of the training process that
accommodates both tasks concurrently. Specifically, a stable
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V2V-SUM
First the man introduces himself and what he does. 
Then he shows us how he paints a picture of nature. 
Next he gives an introduction to materials and an 
understanding of pigments and he talks in between his 
lessons.

V2T-SUM
V2VT-SUM

Source Video
Fig. 1: Illustration of the V2X-SUM tasks. A full-length source video (bottom) can be summarized into a shortened video and
a text narrative (top). This task requires semantic alignment between the video and text summaries.

training process could facilitate learning of each single-modal
task, thereby improving the overall performance. Third, either
assuring or evaluating the semantic coherence between the
generated video and text summaries is challenging.

To establish strong baseline models for this emerging task,
we propose VTSUM-BLIP, an end-to-end cross-modal video
summarization model. To leverage the strong capability of
vision-language pretrained (VLP) models for vision under-
standing and language modeling, we employ BLIP [10] as
our foundational backbone. This VLP encoder-decoder ar-
chitecture provides a superior initialization, which is crucial
for stable and effective optimization in machine learning
models [11]. Inspired by efficient video encoding techniques
[12], [13], [14], [15], we design an efficient hierarchical
video encoding strategy, incorporating a frozen encoder, a
temporal modeling module, and a context aggregation module
to encode long videos. The video encoder is followed by
different task-specific decoders for video and text summa-
rization. The modularized design enables us to perform more
complex downstream tasks without changing the structure
of the pretrained backbone. Existing multimodal-based video
summarization works [9], [16] follow a pipeline where a
summary is first generated in one modality, and then this
generated summary is served as a prompt to improve the sum-
mary in another modality. Such methods may suffer from bias
accumulation issues since they do not consider the semantic
coherence of summaries in two modalities. In contrast, our
proposed VTSUM-BLIP enables joint training of the video
and text summarization decoders in parallel. In other words,
the predictions of these two decoders avoid sequential depen-
dency between the two modalities of summaries. Furthermore,
the video and text summarization decoders collaboratively
influence the shared parameters during training, allowing the
framework to learn the semantic coherence between two tasks.

Our proposed framework achieves promising performance
on VideoXum, as well as other existing single-modal video
summarization datasets (i.e., TVSum [3], SumMe [4], and
ActivityNet Captions [8]). Inspired by the CLIPScore [17]
and its video-text variant [18], we adapt these metrics for
the VideoXum and propose VT-CLIPScore for evaluating the
semantic coherence of cross-modal summaries. The empirical
results show the consistency of the proposed metric with
human evaluation.

Our main contributions can be summarized as follows:

• We introduce VideoXum, an enriched large-scale dataset,
to bridge the modality gap between the video and text
summarization. The dataset contains 14K long videos
with corresponding human-annotated video and text sum-
maries. We conduct comprehensive experimental analyses
to verify the rationality of our proposed new dataset.

• Based on VLP encoder-decoder architecture, we propose
an end-to-end cross-modal video summarization frame-
work – VTSUM-BLIP to establish strong baseline models
for this novel task. The models achieve promising results
on VideoXum and the new state of the art on several
existing single-modal video summarization datasets.

• We propose an evaluation metric VT-CLIPScore on the
VideoXum benchmark to evaluate cross-modal semantic
consistency. The empirical results show the high consis-
tency of our proposed metric with human evaluation.

II. RELATED WORK

A. Video Summarization

Video summarization datasets (e.g., SumMe [4], TV-
Sum [3], and YouTube [5]) have enabled the development
of state-of-the-art video summarization methods [16], [19],
[20], [21], [22]. Among these models, vsLSTM [19] first
attempted to learn frame importance by modeling the tem-
poral dependency among frames using LSTM [23] units. The
model can be combined with a determinantal point process
(DPP) to improve the diversity of generated video summary.
Following vsLSTM, several other approaches were proposed
to model the temporal dependency, e.g., H-RNN [24], HSA-
RNN[25], DASP [26]. Another solution models the spatiotem-
poral structure of the video to learn frame importance, such
as MerryGoRoundNet [27], and CRSum [28]. Adversarial
learning-based methods [29], [30] can also perform well.
Recently, multimodal-based video summarization method [16]
leverages generated text summaries to promote predictions
of frame-level scores for video summaries. Different from
multimodal-based video summarization, the cross-modal video
summarization task requires simultaneously producing both
visual and textual summaries from a source video, which goes
beyond generic video summarization. Moreover, it ensures
semantic coherence between these two modalities.
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TABLE I: Comparison with existing single-modal video-to-video summarization and video-to-text summarization datasets.

Dataset Domain # Videos Avg Ratio (%) Avg Len Supported Task
VideoSum TextSum V2V-Sum V2T-Sum V2VT-Sum

MSVD [31] open 1,970 - 8.7 % ! %

YouCook [6] cooking 88 - 15.9 % ! %

MSR-VTT [7] open 7,180 - 18.6 % ! %

ActivityNet [8] open 20,000 - 40 % ! %

SumMe [4] 3 categories 25 15% < - ! % %

Youtube [5] 5 categories 50 15% < - ! % %

TVSum [3] 10 categories 50 15% < - ! % %

VideoXum (ours) open 14,001 13.6% 49.9 ! ! !

B. Video Captioning

Video Captioning aims to describe a video with text, which
requires the capability of understanding actions and events.
Existing benchmarks (e.g., MSVD [31], YouCook [6], MSR-
VTT [7], and ActivityNet Captions [8]) have helped to pro-
mote the ability of language models to generate reasonable
captions for video. Benefiting from these human-annotated
datasets, many novel approaches are proposed. Attention-
based methods [32], [33] employ attention mechanisms to help
the model in associating relevant frames since not every frame
in a video is equally important. DENSE [8] is an early attempt
at dense video captioning, which detects events with an event
proposal module and associates them with LSTM. Wang et
al. [34] develop a bidirectional process to encode context for
detecting event proposals. Moreover, Masked Transformer [35]
proposes a differentiable masking scheme to ensure consis-
tency between event proposal and caption generation modules.

C. Multimodal Pretraining

Large language models (LLMs) [36], [37], [38], [39] have
revolutionized NLP research in recent years. Following the
large-scale pretraining models in the field of NLP, numerous
works [14], [40], [41], [42], [43], [44] on exploring the
combination of vision and language (VL) pretraining have
achieved great success. Since then, image-text pretraining has
become a default approach to tackling VL tasks [45], [46],
[47], [48]. In addition, the introduction of Vision Transformers
[49] enables vision and language modalities to be jointly
modeled by Transformers in a more scalable fashion [50],
[51], [52], [53]. According to the encoding strategies for image
and language modalities, VL models can be categorized into
fusion encoder [54], [55], [56], [57], dual encoder [58], and a
combination of both [59], [60], [61]. Several video-language
pretrained models have also shown strong performance on
video captioning and other video tasks, such as HERO [12],
VideoBERT [62], and UniVL [63]. In this work, cross-modal
video summarization requires models with strong video under-
standing and language modeling capabilities. Therefore, this
new task provides a practical scenario to assess the superiority
of multimodal pretrained models.

III. DATASET

In this section, we introduce the proposed VideoXum
dataset. The dataset is reannotated by a limited number of
workers, including 14,001 long videos with 140,010 video
and text summaries pairs. We describe the process of dataset

collection and annotation strategy. We also provide several
quantitative and qualitative analyses of the proposed dataset.
Finally, we compare the VideoXum with existing single-modal
video summarization datasets.

A. Dataset Curation

Dataset Collection. The VideoXum dataset is built based
on ActivityNet Captions [8], a high-quality public video
captioning benchmark. There are three primary reasons to
build upon ActivityNet Captions. First, the dataset contains
20K real-life Youtube videos with diverse content, in terms
of rich topics, different photographic devices, multiple view
angles, and so on. Each video in this dataset is annotated
with a series of dense temporal segments, and each segment
corresponds to a concrete sentence description, offering di-
verse patterns essential for video understanding and generation
tasks. Second, the dataset contains numerous lengthy videos in
Fig. 2a, which introduces more challenges to the cross-modal
video summarization task. Third, as described in Section I,
the well-annotated sentence narratives are natural summaries
of the source videos. Therefore, the content and length of
videos in the ActivityNet Captions dataset largely meet our
requirements and provide an ideal foundation for constructing
our cross-modal video summarization benchmark. To maintain
our focus on long videos, we filter out videos shorter than 10
seconds.
Dataset Reannotation. For each video, we expect the total
length of its video summary to be bound to 15% of the
source video, along with a semantically aligned text summary.
ActivityNet Captions [8] already contains video captions with
temporal segments for long videos. Therefore, we concatenate
the caption sentences as a text summary for the long source
video. However, the annotated video spans, which cover an
average of 94.6% of the source videos, are too long to be
regarded as a video summary by themselves since video
summaries need to be much more concise. Therefore, we
reannotate the video spans and obtain an abridged version of
video segments for better aligning with the sentence captions.

Due to the inherently subjective nature of summarizing a
long video (this conclusion is also reflected by the human
performance on V2V-SUM in TABLE III), it is hard to obtain
perfect ground truth labels for this task. Following previous
works [3], [64], [65], we required ten different workers to
annotate video summary spans corresponding to a same text
description. For each given caption, we obtained ten shortened
spans. During the evaluation, we compared the prediction with



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 26, 2024 4

0 200 400 600
Video Length (sec)

0

1000

2000

(a)

0.05 0.10 0.15 0.20
Video Length Compression Ratio (%)

0

1000

2000

3000

(b)

0.00 0.25 0.50 0.75 1.00
Normalized Center Timestamp (%)

0

2000

4000

(c)

0 200 400
Length of text summmary

0

2000

4000

6000

(d)
Fig. 2: Statistical information of VideoXum dataset: (a) distribution of video length; (b) distribution of video length compression
ratio; (c) distribution of normalized center timestamp; (d) distribution of length of text summary.

all ten annotations and then obtain the average score for each
video. To further ensure consistent annotations, we hired 40
workers in total to reannotate all 140,010 summarised video
spans over a period of two months. On average, each worker
reannotated about 15 videos per hour. To maintain high-
quality annotations, we regularly reviewed the reannotated
video spans and provided feedback to workers. Every 24
hours, we randomly evaluated 15% of an annotation batch for
accuracy. If the acceptance rate of the sampled annotations
reached 90%, we considered the entire annotation batch as
passed; otherwise, we asked workers to reannotate the batch.

This reannotation pipeline aims to obtain an abridged ver-
sion (ideally bounded to 15%) of videos for better aligning
with the sentence captions. Therefore, we filter the initial
ActivityNet dataset using the length compression ratio of video
with 20% as the threshold. The video length compression ratio
is calculated as Ratio(S, V ) = |S|

|C| , where |S| denotes the
length of summary, |C| denotes the length of source video.
Finally, 14,001 long videos remain in our dataset.
Dataset Split. We split the dataset into training, validation,
and test sets. The split strategy also guarantees that all three
data splits preserve the same distribution of video length. In
particular, the dataset is divided into 8,000, 2,001, and 4,000
videos in the training, validation, and test sets, respectively.

B. Dataset Statistics

Fig. 2 presents the statistical information of the VideoXum
dataset. As shown in Fig. 2a, it shows that the length of
the videos ranges from 10 to 755 seconds, with 99.9% of
them under 300 seconds. The average length is 124.2 sec-
onds, and the median length is 121.6 seconds. For the video
summarization task, most video summary lengths are shorter
than 15% of the source video length. Fig. 2b shows that the
average length compression ratio is 13.6%, with a median
ratio of 13.7%, and a maximum ratio of 20%. Moreover,
we investigate the distribution of the center timestamps of
important clips. All the center timestamps are normalized
to fall within the range of [0, 1.0] according to the original
video length. Fig. 2c suggests that the important clips are
generally uniformly distributed throughout the video, with a
mild peak at the beginning. Therefore, the VideoXum dataset
does not suffer from temporal bias issues [64]. For the text
summarization task, each video is summarized into a narrative
paragraph that describes multiple events. On average, each
narrative paragraph contains 49.9 words. Fig. 2d indicates that
most (98%) text summaries are shorter than 128 words, which
guides us to set the maximum text generation length as 128.

TABLE II: Comparison of F1 score on human annotations.
F1-avg denotes the averaged F1 score across all reference
summaries. F1-max represents the maximum F1 score. Symbol
♯ denotes the results directly quoted from [66].

VideoXum (ours) SumMe TVSum
F1-Avg F1-Max F1-Avg F1-Max F1-Avg F1-Max

36.2 59.5 31♯ 54♯ 54♯ 78♯

C. Comparison with Existing Single-modal Video Summariza-
tion Datasets

In TABLE I, we compare the proposed VideoXum dataset
with existing single-modal video-to-video and video-to-
text1 summarization datasets. The main difference between
VideoXum and other existing datasets is that VideoXum
contains aligned human-annotated video and text summaries,
while others only have single-modal summaries for source
videos. Compared with the existing video summarization
benchmarks (e.g., SumMe [4] and TVSum [3]), the amount
of data in the VideoXum dataset is significantly larger. In
addition, VideoXum contains open-domain videos with more
diverse scenarios than other datasets. To ensure the quality of
human annotation, we evaluate annotated data using a leave-
one-out strategy [66]. TABLE II shows that our annotation
quality is comparable with existing benchmarks.

IV. METHODOLOGY

A. Problem Formulation

We formulate the problem of cross-modal video summa-
rization as a multi-task learning problem, including V2V-SUM
and V2T-SUM. Given a video V = {vi}Ti=1, T is the number
of frames in the video and vi denotes the i-th frame in the
temporal order. Our goal is to learn a shared video encoder
f(·; θ) followed by two task-specific decoders, including a
video summarization (video-sum) decoder gv(·; θv) and a text
summarization (text-sum) decoder gt(·; θt). In particular, the
notations of θ, θv , and θt represent the learnable parameters
of the shared video encoder, video-sum decoder, and text-sum
decoder, respectively. We first feed the input video V into the
shared video encoder to produce the video features Z̃:

Z̃ = f(V, Etemp; θ), (1)

where Etemp is the temporal position embedding for the video
frames. Given the video features Z̃ , the model generates a

1In this paper, we regard the video captioning task as video-to-text
summarization task
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V2T-SUM
<DEC> first the man introduces 
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Fig. 3: An overview of our VTSUM-BLIP framework (left). It consists of a hierarchical video encoder (middle), video-sum
decoder, and text-sum decoder (right). For V2V-SUM, the video-sum decoder employs a temporal Transformer and local self-
attention module to aggregate the local context. For V2T-SUM, the text-sum decoder is a pretrained BLIP text decoder.

video summary Vsum and a text summary Tsum. In particular,
we can formulate visual and narrative outcomes as follows:

Vsum = gv(Z̃; θv), (2)

Tsum = gt(Z̃, Tprompt; θt), (3)

where Tprompt denotes a prompt sequence.

B. Cross-modal Video Summarization
Our proposed VideoXum benchmark requires models with

strong video understanding and language modeling capa-
bilities. To this end, we employ the large vision-language
pretrained (VLP) model BLIP [10] as our backbone. For
efficient video encoding, we propose a hierarchical video
encoder to capture spatiotemporal features. Followed by the
video encoder, video-sum and text-sum decoders are designed
for V2V-SUM and V2T-SUM tasks, respectively. The overall
framework termed VTSUM-BLIP is shown in Fig. 3.
Hierarchical Video Encoder. The hierarchical video encoder
f(·; θ) aims to address the challenge of efficiently extracting
spatiotemporal visual features from a long video. Drawing
the inspiration from efficient video encoding [12], [13], [14],
[15] and long document summarization [67], we formulate the
BLIP image encoder into a hierarchical architecture for long
video encoding without changing the structure of the encoder.
This enables us to efficiently obtain rich video features at
both video frame and image patch levels. Specifically, given a
video V = {vi}Ti=1 with T -frame, the frozen image encoder
projects each video frame vi into the representation space and
produce T visual tokens Z = {zi}Ti=1. Next, we use temporal
position embedding Etemp = {ei}Ti=1 with the shared Temporal
Transformer (TT) to model the temporal information for the
video sequence. In this way, we can obtain spatiotemporal
visual features Z̃ = {z̃i}Ti=1.

To better understand the hierarchical video encoder, we
break it down into two key components:

• Frozen Image Encoder. Following the previous
works [14], [43], [68], we freeze the parameters of the

pretrained BLIP encoder, which can help to improve the
training time and GPU memory efficiency for encoding
long videos. In detail, we first convert input images into
several patches as the input tokens for the Nvis-layer
BLIP encoder. The patch embedding is prepended with
a [CLS] token in the representation space. Next, we take
all output of the [CLS] tokens as the representation of
the input frames. We can compress the input video at the
frame level through the hierarchical encoding strategy and
generate the representation Z .

• Shared Temporal Transformer. After obtaining a se-
quence of the video frame representation Z = {zi}Ti=1,
we add these temporal position embeddings Etemp =
{ei}Ti=1 to Z , and feed them into the shared temporal
Transformer (TT) for temporal modeling and get the
spatiotemporal visual features Z̃ = {z̃i}Ti=1 in Eq.(1):

z
(0)
i = zi + ei,

z
(l)
i = TT(l)(z

(l−1)
1 , . . . ,z

(l−1)
T ), l = 1, . . . , Ntem,

z̃i = z
(Ntem)
i , (4)

where l indicates the l-th block of the temporal Trans-
former, and Ntem denotes total block number of the
temporal Transformer.

Video-Sum Decoder. Inspired by long document encoding
technique [13], the video-sum decoder gv(·; θv) employs a
Context Aggregation (CA) module that captures context from
neighboring frames with local self-attention. In particular,
we first define a fixed-size slice window at each temporal
position and then construct a binary local attention map
MLA ∈ {0, 1}T×T with a given window size ε. For example,
Fig. 3 (right) presents a local attention map with a window
size ε = 7. Next, we compute the local attention features Aloc:

Aloc =

(
softmax(

QKT

√
d

)⊙MLA

)
V, (5)

where ⊙ is element-wise multiplication, and queries Q, keys
K, and values V are d-dimensional features generated from
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temporal-aware visual features Z̃ . Finally, we feed local
attention-enhanced features into a linear classifier to obtain
the predictions of the frame-level importance scores {pi}Ti=1.
Our training objective for video summarization is an averaged
binary cross-entropy loss, as following:

Lv = − 1

T

T∑
i=1

(ŷi · log(pi) + (1− ŷi) · log(1− pi)), (6)

where ŷi ∈ {0, 1} denotes whether the i-th frame is a key
frame, and pi indicates the predicted importance score of the
i-th frame. Finally, we select the top 15% of frames to attain
a video-sum result Vsum in Eq.(2) from a long video.
Text-Sum Decoder. The pretrained BLIP text decoder is a
strong baseline for text generation. The text summarization
decoder gt(·; θt) contains Ntex stacked Transformer decoder
blocks with cross-attention modules. During the decoding
process, the text decoder takes a prompt sequence Tprompt, and
the video features Z̃ = {z̃i}Ti=1 from the video encoder as
inputs and then generate the final text summary Tsum in Eq.(3).
The training objective of text summarization is negative log-
likelihood (NLL), which can be expressed in the equation as:

Lt = −
Ntex∑
i=1

logP (wi|w0, w1, . . . , wi−1, Z̃), (7)

where wi denotes the i-th word in the sentence, Ntex is the
length of output sequence.

C. Overall Objective

Following the multi-task learning paradigm, the overall
objective of our proposed framework is calculated as the
integration of video-sum loss Lv and text-sum loss Lt:

L = λvLv + λtLt, (8)

where λv and λt are the weights of different summary tasks.

V. EXPERIMENTS

In this section, we first introduce the baseline models
and experimental setup for the proposed VideoXum dataset.
Then, we present the evaluation metrics and human evalua-
tion strategy. In addition, we report several baseline models’
performances under different settings and present a compre-
hensive experimental analysis to prove the effectiveness of our
proposed method.

A. Baseline Models

We introduce all the baseline models listed in TABLE III:
Frozen-BLIP refers to inference over the test set using a
frozen BLIP model without training. We take this zero-shot
setting performance as a lower bound for our benchmark.
VSUM-BLIP (Base) is a baseline model to perform video-
to-video summary. It consists of a frozen BLIP encoder and a
learnable video-sum decoder.
TSUM-BLIP (Base) is a video-to-text summary baseline. We
employ the vanilla BLIP model with a frozen encoder.
VTSUM-BLIP (Base) combines the VSUM-BLIP and
TSUM-BLIP modules of the model. It is comprised of a shared
frozen encoder and two task-specific decoders.

Temporal Transformer (TT) is a crucial module to achieve
the hierarchical encoding for videos while incorporating tem-
poral information into a video sequence. Specifically, we use
several Transformer layers combined with temporal positional
embedding to model the temporal information.
Context Aggregation (CA) is a plug-and-play module to
model the video frame representations for the V2VSum task.
Compared with the baseline models, this mechanism enhances
the local context information for video representations and
could help reduce the redundancy of video summaries.

B. Experimental Setup and Implementation Details

Data Preprocessing. Video frames of all train/val/test sets are
first resized using bi-linear resampling to 224 pixels along the
shorter side. Next, a 224 × 224 center crop is applied to the
resized frames. This is a common preprocessing method. For
each training batch, we add padding to all video sequences
to make them the same length, enabling the videos to be
processed in parallel and speeding up the training process. In
addition, the padding tokens are masked out during the self-
attention calculation. Based on data statistics in Fig. 2a, we
set the maximum video length to 512, and frames exceeding
the maximum length are truncated. For each text summary, we
concatenate (dense) sentence captions in a video to construct
a narrative paragraph [69], [70], [71]. According to data
statistics in Fig. 2d, we set the maximum generation length
to 128 in the text summarization task.
Model Architecture. We employ ViT-B/16 [49] as the image
encoder backbone with Nvis = 12 layers. The Ntem-layer
Temporal Transformer (TT) follows the image encoder, where
Ntem is 1. The temporal positional embeddings εtemp in Eq.(1)
are also learnable. The video-sum decoder contains a Context
Aggregation (CA) module capturing local context and a binary
linear classifier. The CA module constructs a binary local
attention map with window size ϵ = 5. For the text-sum
decoder, we adopt a variant of Transformer with Ntex = 12
layers, which replaces the bidirectional self-attention module
with a causal self-attention module [49]. In addition, the
prompt Tprompt of the text-sum decoder in Eq.(3) is set as
“[DEC] a video of”.
Weight Initialization. To initialize the weights of our model,
we employ a state-of-the-art VLP model called BLIP [10]. The
image encoder and the text-sum decoder are initialized by pre-
trained BLIPCapFilt-L. Additionally, the Temporal Transformer
and video-sum decoder are randomly initialized.
Optimization. Due to limited computational resources, we
finetuned all of the parameters in our proposed VTSUM-
BLIP model, except for the image encoder. We adopt the
AdamW [72] optimizer with an initial learning rate of 2×10−5

to optimize the model, and the β1 = 0.9, β2 = 0.999. The
batch size is 64, and weight decay is 5× 10−2. The learning
rate follows a cosine decay schedule [73] with the minimum
learning rate of 0.0. We train the VTSUM-BLIP framework
for 56 epochs with a batch size of 64 on 4 A100 GPUs. In
addition, the weights of video-sum loss Lv and text-sum loss
Lt are λv = 15.0 and λt = 1.0, respectively.
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TABLE III: The performance of the baseline models on the VideoXum dataset test set for three different V2XSum tasks. The
F1 score, BLEU@4, METEOR, ROUGE-L, CIDEr, and VT-CLIPScore are shown in %.

Method V2V-SUM V2T-SUM V2VT-SUM

F1 score Kendall Spearman BLEU@4 METEOR ROUGE-L CIDEr VT-CLIPScore

Frozen-BLIP 16.1 0.008 0.011 0.0 0.4 1.4 0.0 19.5

Single-Modal Video Summarization
Video-to-Video Summarization
VSUM-BLIP (Base) 21.7 0.131 0.207 - - - - -

+ Temporal Transformer 22.1 0.168 0.222 - - - - -
+ Context Aggregation 22.2 0.172 0.228 - - - - -
+ TT + CA 23.1 0.185 0.246 - - - - -

Video-to-Text Summarization
TSUM-BLIP (Base) - - - 5.5 11.7 24.9 18.6 -

+ Temporal Transformer - - - 5.6 11.8 24.9 20.9 -

Cross-Modal Video Summarization
Two-stage Manner 19.4 0.107 0.143 5.1 11.2 24.0 15.6 28.2
VTSUM-BLIP (Base) 21.7 0.131 0.207 5.5 11.7 24.9 18.6 28.4

+ Temporal Transformer 22.4 0.176 0.233 5.7 12.0 24.9 22.4 28.9
+ Context Aggregation 22.2 0.172 0.228 5.5 11.7 24.9 18.6 28.6
+ TT + CA 23.5 0.196 0.258 5.8 12.2 25.1 23.1 29.4

Human 33.8 0.305 0.336 5.2 14.7 25.7 24.2 38.0

TABLE IV: Comparison with state-of-the-art methods on the
TVSum and SumMe datasets.

Method TVSum SumMe

Kendall Spearman Kendall Spearman

dppLSTM [19] 0.042 0.055 - -
DR-DSN [20] 0.020 0.026 - -
Sumgraph [21] 0.094 0.138 - -
CLIP-it [16] 0.108 0.147 - -
Standard ranker [22] 0.176 0.230 0.011 0.014

VSUM-BLIP (Base) 0.160 0.207 0.154 0.191
+ Temporal Transformer 0.182 0.239 0.266 0.330
+ Context Aggregation 0.185 0.243 0.268 0.332
+ TT + CA 0.200 0.261 0.295 0.365

C. Evaluation

Video Summary Evaluation. Following previous works [16],
[66], [22] for video summarization evaluation, we adopt the
F1 score, Kendall’s τ [74], and Spearman’s ρ [75] as our
automatic evaluation metrics.
Text Summary Evaluation. To evaluate the quality of gen-
erated text summaries for video text summary, we adopt
several metrics for video captioning evaluation [76] including:
BLEU [77], METEOR [78], ROUGE-L [79], CIDEr [80].
Video-text Semantic Consistency Evaluation. Apart from
independently evaluating single-modal summaries, we also
evaluate semantic consistency of text and video summaries. In-
spired by previous works [17], [18], [81], we adapt CLIPScore
for VideoXum benchmark and introduce a new evaluation
metric – VT-CLIPScore for evaluating the text and video se-
mantic consistency. Specifically, we finetune the vanilla CLIP
model [58] on VideoXum dataset with contrastive learning
strategies. It is worth noting that adapting CLIPScore to our
proposed benchmark is necessary since there is a domain gap
between the CLIP pretraining data and our VideoXum data.
Therefore, finetuning the CLIP model on our data makes the
evaluation score more reliable. Similar attempts of finetun-
ing evaluation models (i.e., BERTScore [82] and Sentence-
BERT [83]) also support the necessity of the VT-CLIPScore.

To facilitate reimplementation, we use the AdamW opti-

TABLE V: Comparison with state-of-the-art methods on the
ActivityNet Captions dataset.

Method ActivityNet Captions

BLEU@4 METEOR ROUGE-L CIDEr

DENSE [8] 1.6 8.9 - -
DVC-D-A [84] 1.7 9.3 - -
Wang et al. [34] 2.3 9.6 19.1 12.7
Bi-LSTM+TempoAttn [35] 2.1 10.0 - -
Masked Transformer [35] 2.8 11.1 - -
Support-Set [70] 1.5 6.9 17.8 3.2

TSUM-BLIP (Base) 5.5 12.1 25.1 19.7
+ Temporal Transformer 5.7 12.1 25.2 22.2

mizer with an initial learning rate of 2 × 10−6 and a weight
decay of 5×10−2. We finetune the CLIP model for 50 epochs
with a batch size of 16 on 4 GPUs. The empirical results in
TABLE VII show that our proposed VT-CLIPScore is sensitive
enough to the semantic change of video and text. Moreover,
the results in TABLE VI indicate the high consistency of our
proposed automatic evaluation metric with human evaluation.

D. Results on VideoXum

We conduct experiments on VideoXum using different base-
line models. TABLE III shows the empirical results of the
models on VideoXum. By comparing VSUM-BLIP (Base),
TSUM-BLIP (Base), and VTSUM-BLIP (Base) with Frozen-
BLIP, BLIP models show better results after finetuning on spe-
cific tasks. The comparison between the end-to-end VTSUM-
BLIP (Base) and the Two-stage Manner [9] (i.e., first V2V-
Sum and then V2T-Sum) demonstrates the superiority of the
end-to-end framework since errors originating in the V2V-
SUM stage could negatively influence the V2T-SUM stage.
In all three tasks, the model with TT can help model the
video sequence better, indicating that temporal information is
necessary. The CA module can enhance the local information
awareness of the model, which can help improve the perfor-
mance of the V2V-SUM task. The performance gains of TT
on V2V-SUM are more significant than that on V2T-SUM,
one of the possible reasons is that the text decoder is a well-
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a close up of a lacrosse game is shown that leads into a man speaking to 
the camera more shots are shown of the game with the players running 
up and down the field as well as many others speaking to the camera

a man is seen speaking to the camera while standing in front of a large 
group of people and leads into clips of people playing lacrosse the men 
continue to speak to the camera while more shots are shown of people 
playing the game and ends with a man speaking to the camera

a man is seen speaking to the camera and leads into several clips of 
people playing lacrosse the man continues speaking to the camera and 
leads into clips of people playing the game more clips are shown of 
people playing the game as well as speaking to the camera

V2T-SUM

V2V-SUM

a demonstration of capoeira is shown the easy sequence is shown step 
by step then professionals are shown again

the credits of the clip are shown the credits of the video are shown the credits 
of the video are shown the credits of the video are shown the credits of the 
video are shown the credits of the video are shown

several clips are shown of people performing martial arts moves with 
one another while the camera captures their movements more clips are 
shown of people performing martial arts moves with one another and 
ends with text across the screen 

V2T-SUM

V2V-SUM

Fig. 4: Two example results of the generated video and text
summaries across different baseline models. Red (both line and
box) indicates the results of the ground truth. Green indicates
the results of the VTSUM-BLIP (Base). Blue indicates the
results of VTSUM-BLIP (+TT+CA).

generalized model trained on a large corpus and is insensitive
to the subtle changes of the input features [85], [86], [87].
A Base BLIP model combined with TT and CA achieves the
SOTA results in our proposed three tasks. From the overall
performance, our proposed multitask framework can benefit
both V2V and V2T-SUM tasks. In addition, TABLE III shows
the human performance on VideoXum. The result is obtained
on human-annotated reference summaries using a leave-one-
out strategy [66], which measures the average consistency of
human annotators. Although humans outperform all baseline
models in most evaluation metrics on different tasks (except
for BLEU@4), our proposed VTSUM-BLIP archives quite
competitive results, especially on the V2T-SUM task. Fig. 4
visualizes some examples of generated video and text sum-
maries, showing the effectiveness of TT and CA modules.
Additionally, more visualization results are present in Fig. 7.
E. Experimental Analysis

Method Comparisons on Existing Benchmarks. To further
evaluate the effectiveness of our proposed model, we conduct
experiments on two well-known video summarization datasets,
i.e., TVSum and SumMe. The results in TABLE IV show that
the BLIP-VSUM (Base) achieves competitive results against
several strong baselines. Moreover, our proposed mechanisms
of Temporal Transformer and Context Aggregation can further
improve video summarization performance. We also verify
the ability of video-to-text summarization of our model on
ActivityNet Captions. As we can see from TABLE V, our
proposed model outperforms all the strong baseline models by
a large margin in multiple evaluation metrics (2.9 in BLEU@4,
1.0 in METEOR, 7.4 in ROUGE-L, and 19.0 in CIDEr).

TABLE VI: Human evaluation of the baseline models on the
VideoXum dataset.

Method V2V-SUM V2T-SUM Cross-Modal

Accuracy Accuracy Fluency Consistency

VTSUM-BLIP (Base) 3.1 4.1 4.3 3.2
+ Temporal Transformer 3.5 4.2 4.2 3.2
+ Context Aggregation 3.2 4.1 4.3 3.1
+ TT + CA 3.8 4.4 4.4 3.4

TABLE VII: Results of cross-modality similarity under differ-
ent semantic changes.

Method Cross-Modal Similarity (Cosine Similarity)

Positive pairs Negative pairs

CLIPScore [17] 14.5 0.3
VT-CLIPScore 38.0 0.2

Human Evaluation. We conducted a human evaluation of
video/text summaries on 50 random samples, assessed by
workers for quality and consistency across video and text
summaries, scoring 1-5 (5 best). We report the average score in
TABLE VI. We can conclude from the table that our proposed
model can generate more fluent and accurate text summaries
for long videos. The proposed temporal Transformer and
Context Aggregation can help generate accurate and consistent
video summaries. Following [88], we compute the Kappa
coefficient of different workers, and the value is 0.49 ∈ (0.41,
0.60), which means that the consistency is moderate.
Comparison between CLIPScore and VT-CLIPScore. Al-
though we can apply a pretrained CLIP model without any
adaptation on our dataset to evaluate the semantic consistency
of the video and text summaries, the similarity score may
be insensitive to the semantic change of generated cross-
modal summaries. In TABLE VII, we compare the vanilla
CLIPScore [17] and the finetuned VT-CLIPScore to measure
the similarity of different video and text summarization pairs.
The positive pairs refer to the paired video and text summaries.
The negative pair includes unpaired video and text summaries.
From the results, we can observe that CLIPScore provides a
solid foundation for the finetuned VT-CLIPScore. Moreover,
adapting the vanilla CLIP model to our proposed task is
necessary since there is a domain gap between the CLIP
pretraining data and our VideoXum data. The finetuned CLIP
model on our data makes the evaluation score more reliable.
TABLE VII shows that finetuning on VideoXum makes the
similarity scores more reflective or informative in measuring
the semantic consistency of cross-modal summaries.

F. Extended Discussion

Complexity analysis. In terms of computational complexity,
the V2V-Sum, V2T-Sum, and V2VT-Sum models require
0.06, 1.15, and 1.18 GPU hours for training on an A100
GPU, respectively. Regarding the model complexity, they have
parameter sizes of 435.6 MB, 564.8 MB, and 567.1 MB.
Impact of multi-task weights in Eq.(8). To determine the
impact of multi-task weights (i.e., λv and λt), we perform an
ablation study on the λv and λt using the VideoXum val set.
Fig. 6 shows that the peak point appears when λv = 15.0 and
λt = 1.0 as mentioned in Section V-B.
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Fig. 5: Impact of local window size ε
for Context Aggregation (CA) module.
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Fig. 6: Impact of multi-task weights λv and λt.

TABLE VIII: Impact of Temporal Transformer (TT) Layers Ntem on the VideoXum dataset val set. The F1 score, BLEU@4,
METEOR, ROUGE-L, CIDEr, and VT-CLIPScore are shown in %.

Method V2V-SUM V2T-SUM V2VT-SUM

F1 score Kendall Spearman BLEU@4 METEOR ROUGE-L CIDEr VT-CLIPScore

VTSUM-BLIP (Base) 21.9 0.157 0.208 5.2 11.3 24.3 18.3 28.4
+ 1-layer TT 22.6 0.176 0.232 5.2 11.5 24.3 20.2 28.9
+ 2-layer TT 22.7 0.176 0.232 5.2 11.4 24.3 20.2 28.9
+ 3-layer TT 22.7 0.174 0.230 5.1 11.4 24.3 20.5 29.0

Impact of Local Window Size ε. For the V2V-SUM task, the
local window size ε controls the context range of local self-
attention. For ε = 1, the local self-attention module degrades
to a multilayer perceptron (MLP). As ε increases to T (> 1),
the local self-attention module upgrades to a global/regular
self-attention module. Fig. 5 shows the optimal performance
occurs at ε = 5; below this, limited context hinders perfor-
mance, while above it, excess context introduces irrelevant
frames, reducing efficacy. Therefore, the performance of the
V2V-SUM task is improved by carefully selecting appropriate
local context information.
Impact of Temporal Transformer Layers. We conduct an
ablation study on the number of Temporal Transformer layers
Ntem using VideoXum val set. TABLE VIII indicates that
altering Ntem does not significantly affect the performance for
all three tasks. Therefore, we set Ntem to 1.
Analysis for Human Performance on V2T-SUM. Human
performance on our proposed three tasks can be regarded
as an upper bound of each task. TABLE III presents human
performance outperforms our proposed model by a large mar-
gin on V2V-SUM and V2VT-SUM. However, on V2T-SUM,
human performance does not exhibit a significant advantage
over our model (especially on BLEU@4). To better understand
this phenomenon, we examine human-annotated captions and
their corresponding references, where “Human” indicates the
human predictions on VideoXum test set and “Reference”
denotes the corresponding ground truth. Both “Human” and
“Reference” are human-annotated text summaries from Activ-
ityNet Captions [8] validation sets. In particular, we present a
representative example below:
============================================================

*Human*: Two children stand in front of a mat. They throw
something onto the mat. They take turns jumping across the
mat. They pick up the item they threw on it.
============================================================

*Reference*: Two young children are standing in line indoors
in what looks like a living room. The little girl is stand-
ing closest to the hopscotch mat and she throws her toy onto
the mat and then begins jumping until she meets the end of
the mat then turns around and heads back to the point she
started and her turn is over. The little boy goes next, and
he throws the toy onto the mat and begins jumping to the end
of the mat, then turns around and jumps back towards his

starting point.The little girl steps in front of the boy and
gets into motion to start another turn on the hopscotch mat.
============================================================

Both captions describe two children playfully interacting on
a mat, but “Reference” provides a more vivid and detailed
picture of the scene. The comparison shows that summarizing
a long video is inherently subjective, leading to varying text
descriptions of the same content among different individuals.
Therefore, it explains why human performance does not ex-
hibit a significant advantage over VTSUM-BLIP model.

VI. CONCLUSION

In this study, we first propose a new video and text sum-
marization task along with an enriched dataset VideoXum. In
this task, we jointly consider the generic video summariza-
tion task and video-to-text summarization task. Furthermore,
we propose a strong baseline framework VTSUM-BLIP to
address the challenges for our proposed task. The empirical
results show that our proposed framework achieves promising
performance on VideoXum. In addition, we adapt CLIPScore
on the VideoXum benchmark and introduce a new metric VT-
CLIPScore to evaluate cross-modal video summarization se-
mantic consistency, which shows high consistency with human
evaluation on multiple experimental results. For future studies,
there are several promising directions on this benchmark.
There is plenty of room to explore the strategy of associating
V2V and V2T summarization tasks for better performance
and efficiency. The proposed VideoXum dataset provides a
foundation that could be significantly expanded through GPT-
4 [89], for generating video instruction-following data and
thereby promoting the development of a general-purpose video
assistant. For the evaluation metric, the adapted CLIP model
for measuring video-text similarity is a practical compromise
for the lack of large video-text pretrained models. It also
suggests the need for a more reliable metric for video-text co-
herence measurement. In addition, more advanced visual/video
encoders and large language models (LLMs) [89], [90] could
be integrated into the proposed framework to benefit the results
of cross-modal summarization.
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a lacrosse team huddles and then practices a baby is shown and then there are people interviewed a helmet is shown and 
more interviews are conducted

a man is seen speaking to the camera and leads into several clips of him speaking to the camera more clips are shown of him 
speaking to the camera and leads into him speaking to the camera more clips are shown of him speaking to the camera and ends 
with him speaking to the camera

a man is seen speaking to the camera and leads into several shots of people playing lacrosse more clips are shown of people 
speaking to the camera as well as playing the game and speaking to the camera more clips are shown of people playing the 
game as well as speaking to the camera

V2T-SUM

V2V-SUM

several shots of text are shown followed by a person walking into frame the person then walks in and out of frame performing 
various dance moves on the ground the person continues moving around on the ground and demonstrating how to perform 
moves

a man is seen standing in front of a camera and leads into him bending down on the ground the man is then seen bending 
down on a piece of wood and leads into him bending down on the ground

a close up of a shoe is shown followed by a person stepping up and down on the shoe the person continues stepping up and 
down on the shoe while the camera captures his movements

V2T-SUM

V2V-SUM

a middle age woman is sitting in a classroom trying to solve a rubik's cube in between each take a paragraph appears and 
begins to describe her experiences and the time it took her using each routine finally,a still image is shown of a solved cube and 
another paragraph comes across with her official time on it

a woman is sitting in a chair in a room she is talking to the camera she is sitting in a chair in front of a computer she is talking to 
the camera

a person is seen sitting in front of a computer screen and begins to solve a rubik's cube the person then solves the puzzle and 
shows it to the camera in slow motion the person continues to solve the puzzle and shows it to the camera

V2T-SUM

V2V-SUM

people are in a body of water a guy sits and gives an interview people surf on the surface of a body of water the credits of the 
clip are shown along with a split screen of associated images

a man is seen speaking to the camera and leads into several shots of people riding in a boat more shots are shown of people 
riding around on the boat and people speaking to the camera more clips are shown of people riding around on the boat and 
speaking to the camera

a man is seen speaking to the camera and leads into clips of people surfing on a large wave more clips are shown of people 
riding the waves as well as surfing on a surfboard and speaking to the camera more clips are shown of people riding the waves 
and riding the waves

V2T-SUM

V2V-SUM

Fig. 7: Additional example results of the generated video and text summaries across different baseline models. Red (both line
and box) indicates the results of the ground truth. Green indicates the results of the VTSUM-BLIP (Base). Blue indicates the
results of VTSUM-BLIP (+TT+CA).
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