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Abstract—The main challenge in video question answering
(VideoQA) is to capture and understand the complex spatial
and temporal relations between objects based on given ques-
tions. Existing graph-based methods for VideoQA usually ignore
keywords in questions and employ a simple graph to aggregate
features without considering relative relations between objects,
which may lead to inferior performance. In this paper, we
propose a Keyword-aware Relative Spatio-Temporal (KRST)
graph network for VideoQA. First, to make question features
aware of keywords, we employ an attention mechanism to
assign high weights to keywords during question encoding. The
keyword-aware question features are then used to guide video
graph construction. Second, because relations are relative, we
integrate the relative relation modeling to better capture the
spatio-temporal dynamics among object nodes. Moreover, we
disentangle the spatio-temporal reasoning into an object-level
spatial graph and a frame-level temporal graph, which reduces
the impact of spatial and temporal relation reasoning on each
other. Extensive experiments on the TGIF-QA, MSVD-QA and
MSRVTT-QA datasets demonstrate the superiority of our KRST
over multiple state-of-the-art methods.

Index Terms—Video question answering, relative relation rea-
soning, spatial-temporal graph.

I. INTRODUCTION

V IDEO question answering (VideoQA) is a challenging
task in Multimedia Intelligence [1]–[3], and it aims to

answer the question based on a thorough understanding of
the given video. The task requires the powerful cognitive
capability of spatio-temporal visual representations guided by
the compositional semantics of the given question. In recent
years, VideoQA has drawn increasing attention due to its wide
applications in various domains, e.g., human-robot interaction
and autonomous driving.

Despite its recent achievements, VideoQA still remains
challenging as it requires effective reasoning about complex
spatio-temporal relations based on the vision and language
modalities [4], [5].
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Fig. 1. Illustration of the proposed Keyword-aware Relative Spatio-Temporal
(KRST) graph network. (a) We employ an attention mechanism to assign high
weights to keywords during question embedding, which is then integrated into
the object-level graph. (b) Relations are relative. Choosing different subjects
(center objects) may lead to different understandings. For example, “a man
is talking to a dog” can also be understood as “a dog is listening to a man”.
Therefore, we integrate the relative relation modeling into graph reasoning. (c)
Different from most existing methods that employ a unified graph to model
spatial-temporal relations together, we use an object-level graph for capturing
spatial relation and a frame-level graph for temporal relation reasoning.

To model the dynamics of relationships in videos, one
solution is to capture the video structure at the frame level.
For example, HCRN [6] proposes a relation network to select
relevant frames for each element in the context of the question
query. Graph neural network (GNN) methods [7], [8] are also
used to model the temporal relations across frames by building
graphs over video segments. However, because the object-level
information is largely ignored, these frame-level methods are
only able to model a limited number of objects and may fail
to generalize to scenarios where multiple objects interact with
each other.

The second solution is to capture relations at the object
level, which is more flexible and able to model the complex
spatial and temporal interactions among more objects. To this
end, GNNs are usually employed to model the relation struc-
ture among local objects [9]–[11]. However, those methods
treat all objects equally and potentially do not distinguish or
recognize keywords in questions. For the same video, different
questions tend to focus on the interactions of different ob-
jects. Therefore, keyword-aware question embeddings should
be exploited to guide the object-level graph construction.
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Moreover, those GNNs usually perform simple aggregation on
neighbouring nodes (e.g., via an affinity matrix), in which the
relative relations among objects are largely ignored. Without
relative relation reasoning, networks may fail to properly
capture the spatio-temporal structure.

In this paper, we propose a Keyword-aware Relative Spatio-
Temporal (KRST) graph network for VideoQA. The graph
is built over objects with guidance from questions. First, as
shown in Fig. 1(a), to make question embeddings aware of
keywords, we employ an attention mechanism to assign high
weights to keywords during question encoding. The keyword-
aware question features are then integrated into object features.
Our graph is based on those keyword-aware object representa-
tions. Second, we integrate relative relation modeling into our
graph. Our motivation is that relations are relative, whether
for semantics or positions. For the same scene, choosing
different subjects may lead to different relation understanding.
As shown in Fig. 1(b), when reasoning about the relation
between the man and the dog, it can be understood as “a
man is talking to a dog” if we focus on the man or “a dog is
listening to a man” if we select the dog as the target object:
man − dog = talk and dog − man = listen. Also, from
the perspective of position, the scene can be understood as
“the dog is left to the man” or “the man is right to the dog”:
man− dog = right and dog −man = left. Therefore, it is
important to equip graph reasoning with the relative relation
modeling ability. Third, instead of modeling spatio-temporal
relations jointly, we disentangle the modeling into an object-
level graph for spatial reasoning and a frame-level graph for
temporal structure capture, as shown in Fig. 1(c). In this way,
the object graph only focuses on extracting the object spatial
relations of interest regarding the question while the frame-
level graph only needs to capture the dynamics of the attended
object relations, which reduces the burden of networks for
reasoning. The contributions of this paper are threefold:

• We propose a Keyword-aware Relative Spatio-Temporal
(KRST) graph network for VideoQA, which performs
relation reasoning over objects with keyword-aware ques-
tion features.

• We introduce relative relation modeling for VideoQA,
which enables graph networks to better understand
spatial-temporal relationships among objects.

• We conduct extensive experiments on TGIF-QA, MSVD-
QA and MSRVTT-QA datasets, and the results demon-
strate the superiority of our KRST to the state-of-the-arts.

II. RELATED WORK

Recently, there has been a rapid progress in vision-language
tasks [12]–[19], such as image captioning, visual question
answering, visual dialog, text-video retrieval, etc. According
to the types of visual information, question answering (QA)
can be classified into image QA and video QA. Compared
with image QA, video QA is more challenging because both
spatial and temporal relations are required to be modelled for
correct answer prediction [20].

Inspired by the recent advances in large vision and language
models, some existing VideoQA methods [21]–[25] attempt

to extract richer information from videos and questions by
applying large-scale pre-trained models. However, this work
focuses on exploiting the interactions between semantic clues
from the visual contents and linguistic questions. Existing
methods on VideoQA can be grouped into two categories:
attention-based and graph-based methods.

a) Attention-based methods: Typical attention-based
methods [4], [26]–[28] learn temporal attention by modeling
the correlation between appearance and question. For example,
co-attention [27] is proposed to model appearance and ques-
tion interaction, while object-level attention [28] is proposed
to learn object-question interaction. Some other works learn
spatio-temporal attention by leveraging both appearance and
motion features, including co-memory attention [29], hierar-
chical attention [30], multi-head attention [31] and multi-step
progressive attention [32]. HCRN [6] proposes a hierarchical
structure to model the temporal relation of a single object with
a stack of conditional relation blocks. However, these methods
may fail to handle cases where multiple objects interact.

b) Graph-based methods: Graph convolutional network
(GCN) has been widely applied to various vision-language
tasks [33]–[35]. For VideoQA, L-GCN [9] proposes a location-
aware graph to model the relation between different objects
in each video frame. GMN [10] designs a holistic spatio-
temporal graph to model the relations between different
objects by taking object trajectories as input. MASN [11]
extends the spatio-temporal graph over objects by exploiting
the complementary nature between appearance and motion
information. HOSTR [36] leverages the question features to
compute the correlation matrix between objects for relation
reasoning. HGA [7] proposes a uniform heterogeneous graph
with video shots and words as nodes to incorporate both inter-
and intra-modality interactions. B2A [8] constructs multi-
modal graphs for appearance, motion and questions, where the
question graph is used to model the relation between video and
question.

Different from these approaches, our method builds spatio-
temporal graphs by attending to keyword-relevant objects.
Moreover, we integrate relative relation modeling into spatio-
temporal graph reasoning. Last, to explicitly model the spatial
and temporal relations in videos, we decompose the spatio-
temporal graphs into a spatial graph over objects within each
frame and a temporal graph across frames.

III. METHODOLOGY

Given a video I and a linguistic question q, the VideoQA
problem can be formulated as follows,

ā = argmax
a∈A

Fθ (a | q, I) , (1)

where ā is the predicted answer from an answer set A.
Fθ(.) is the mapping function and θ is the set of parameters.
Fig. 2 illustrates the overall architecture of the proposed
KRST method. First, the question embeddings are extracted
via GloVe [37] and Bidirectional LSTM (BiLSTM). We design
a keyword-aware module to guide question embedding, which
promotes a deep understanding of object interactions by re-
ducing the noise from question-irrelevant objects. Second, the
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Question: What is sitting on the white chair?                        
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Fig. 2. The architecture of the proposed Keyword-Aware Relative Spatio-Temporal graph network for VideoQA. The video and question features are firstly
extracted as described in Section III-A. Then, then we construct the keyword-aware graph by designing a keyword attention module to identify and augment
relevant object features for the subsequent relation reasoning. Next, we perform relative spatio-temporal graph reasoning over objects using disentangled spatial
and temporal graphs. Finally, the question features and visual features are fused to predict the final answer.

object-level features are generated using pre-trained models
based on RoIAlign. Those object-level features are then used
to build the graph, guided by the keyword-aware question
embedding. We integrate the relative relation modeling into
graph reasoning. Finally, both object- and frame-level features
are fused with question features to predict the final answer.

A. Video and Question Representation

1) Video-level Appearance and Motion Representation: We
follow the common practice in previous works to extract both
appearance and motion features from videos. Specifically, T
frames are uniformly sampled from each video. Then, pre-
trained ResNet-152 [38] and I3D [39] models are employed
to extract the global context appearance feature and motion
feature, respectively. For motion feature extraction, because
I3D takes multiple frames as input, a set of 8 neighboring
frames around each sampled frame is concatenated and fed
into I3D model. Based on these two types of features, we
build a two-stream architecture [40].

Note that, for simplicity, in the following descriptions, we
do not make notes or subscripts to distinguish appearance and
motion features but treat them as visual features. In this case,

we let I ∈ RT×C denote the video-level appearance or motion
features, where C denotes the feature dimension.

2) Object-level Appearance and Motion Representation:
To obtain object-level features, we first generate K object
bounding boxes from each frame by employing a pre-trained
object detector Faster R-CNN [41]. In this case, there are
TK objects in each video. Then, the object semantic features
Os ∈ RTK×Cs for appearance or motion are obtained by
applying RoIAlign onto the video-level ResNet-152 or I3D
feature maps, respectively, where Cs is the dimension of the
semantic feature maps. To effectively model object relations,
it is important to integrate the object location information into
object features. In this paper, we use the x and y coordi-
nates of the upper-left corner, such coordinates of the lower-
right corner and the height and width of the bounding box,
i.e., (x1, y1, x2, y2, w, h), as the object location information:
Op ∈ RTK×6. Similar to L-GCN [9], we first concatenate the
object semantic features and the bounding box location. Then,
the object features are obtained by projecting the concatenated
features into C-dimension using a linear transformation,

O = Wo · [Os,Op], (2)
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where Wo ∈ RC×(Cs+6), · is matrix multiplication and [·, ·]
denotes the concatenation operation along rows.

3) Video-level and Object-level Representation Fusion:
To capture the background contextual information and com-
pensate for potentially undetected objects, we augment the
object features with video-level features. The final object-level
features Ô ∈ RTK×Co are generated as follows,

Ô = MLP
(
[O, tile(I)]

)
, (3)

where tile(·) repeats I by K times to RTK×C and Co is
the dimension of object node features. MLP is a multilayer
perception to project [O, tile(I)] from RTK×2C to RTK×Co .

4) Question Representation.: Given a question, we first
embed its words into vectors E ∈ RL×300 using a pre-
trained GloVe, where L denotes the number of words in
the question. Then, we feed the embedded vectors into a
BiLSTM to generate a contextualized word-level question
embedding Qw ∈ RL×Cw , where Cw is the question feature
dimension, and a global or sentence-level question embedding
Qs ∈ R1×Cw , which is the last hidden state of the BiLSTM.

B. Keyword-aware Graph Construction

To correctly answer the question based on a given video,
the agent is required to reason about the complex interactions
between objects. As videos usually contain multiple objects,
it is important to attend to question-relevant objects, which
can be seen as keywords, without having the noise from
irrelevant objects. However, most existing VideoQA methods
with object-level relation modeling treat all the objects equally
without considering their relevance to the keywords. Conse-
quently, the redundant information from irrelevant objects may
reduce reasoning accuracy. To overcome this limitation, we
design a keyword attention module to identify and augment
relevant object features for the subsequent relation reasoning.
Specifically, we first compute the attended question feature
Ê ∈ R1×300 with the attention mechanism,

Aw = softmax(MLP(Qw)), Ê = AT
w ·E, (4)

where Aw ∈ RL×1 is the attention weights. Then, we can use
the attended question feature to guide the generation of object
attention,

Ao = σ
(
Ô · (Wq · ÊT )

)
, (5)

where σ is the sigmoid function, Wq ∈ RCo×300 and Ao ∈
RTK×1. Thus, the keyword-relevant objects are highlighted by
assigning higher attention scores. Consequently, these objects
will be attended in relation reasoning. Finally, the object node
features are generated as follows,

V = Ô +Ao ⊙ Ô, (6)

where ⊙ denotes the Hadamard product and V ∈ RTK×Co .

C. Relative Spatial-Temporal Graph Reasoning

Most existing VideoQA methods model the complex object
relations by representing a video as a holistic spatio-temporal
graph over all the detected object proposals [10], [11]. These
methods usually simply aggregate neighboring nodes with

affinity metrics, in which the relative relation information
is largely ignored. However, relations are relative. Choosing
different objects of interest may lead to different semantic and
position relation reasoning. Taking the example of a writer
writing a book, if the writer is chosen as the subject and
the book as the object, the relation is “write”. Conversely,
the relation is “author”, i.e., the book’s author is the writer.
Similarly, for the position relation, a cup on the table can
also be understood as the table under the cup. Therefore, we
integrate the relative relation modeling into our graph.

Let vi
t ∈ R1×Co denote the feature of the i-th object or node

in the t-th frame of V . Our relative-relation-augmented graph
models the relations between the object and its neighbors as
follows,

v′i
t = max

vi′
t′∈N (vi

t)
Wa · vi′

t′ +Wr · (vi′

t′ − vi
t), (7)

where N (vi
t) denotes the k-nearest neighbors of vi

t in the
representation space, Wa ∈ RC×Co is for absolute relation
modeling and Wr ∈ RC×Co is for relative relation reasoning.
Thus, our graph will be able to realize the relativity in
relations.

D. Disentangled Spatial-Temporal Graph
Spatial and temporal relations are two different types of

relations. Modeling them together may confuse networks and
reduce the reasoning efficacy. Moreover, representing a video
as a graph over all the objects is computationally expensive.
Efficient information flow in such a large graph is challenging.
Therefore, we propose to disentangle the graph in Eq. (7) into
a spatial graph and a temporal graph,

spatial : si
t = max

vi′
t ∈N (vi

t)

W s
a · vi′

t +W s
r · (vi′

t − vi
t),

aggregation : ft =
K

max
i=1

si
t,

temporal : tt =
∑

ft′∈N (ft)

W t
a · ft′ +W t

r · (ft′ − ft),

(8)

where W s
a ,W

s
r ,W

t
a,W

t
r ∈ RC×Co are the parameters for

spatial and temporal reasoning.
In the spatial reasoning and aggregation parts, we use the

max pooling operation to keep the most relevant nodes to the
question and ignore the noise from the other irrelevant objects.
In the temporal reasoning part, we employ the sum pooling
operation. This is because in a short video clip, the object
of interest usually appears in the entire video and the spatial
relation in each frame is important to the overall dynamics
reasoning. As shown in experiments, this max-sum pooling
combination can achieve better accuracy than others, also
demonstrating the benefits of this disentangled spatio-temporal
modeling.

To generate the final output vector for answer prediction, we
use bilinear attention [42] to project spatial graph presentations
({sit},Qw) and temporal graph presentations ({tt},Qw) to
the same space as the question word-level features Qw’s
RL×Cw , respectively. Then, we employ the attention mecha-
nism in [11] to fuse the projected spatial features, temporal
features and the question sentence-level features Qs to a
vector, which is finally used to answer the question.
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TABLE I
RESULTS ON THE TGIF-QA DATASET. GLOVE IS USED FOR WORD

EMBEDDING.

Model Action↑ Transition↑ Frame↑ Count↓
ST-TP [43] 62.9 69.4 49.5 4.32
Co-mem [29] 68.2 74.3 51.5 4.10
PSAC [44] 70.4 76.9 55.7 4.27
QueST [45] 75.9 81.0 59.7 4.19
HCRN [6] 75.0 81.4 55.9 3.82
HGA [7] 75.4 81.0 55.1 4.09
B2A [8] 75.9 82.6 57.5 3.71
L-GCN [9] 74.3 81.1 56.3 3.95
GMN [10] 73.0 81.7 57.5 4.16
HOSTR [36] 75.0 83.0 58.0 3.65
MASN [11] 84.4 87.4 59.5 3.75
HQGA [46] 76.9 85.6 61.3 -
KRST (ours) 85.0 88.8 60.9 3.62

E. Answer Decoder

VideoQA generally includes two types of tasks: multi-
choice and open-ended. In this section, we design the answer
decoders to deal with different tasks. The multi-choice task
aims to choose the correct answer from M candidates. In this
case, we concatenate the question with each answer and obtain
M question-answer sequences. For each sequence, we feed
it into the network to compute the final output vector, and
then employ a fully-connected layer to generate the predicted
score ai. Suppose a+ is the score of the correct answer and
(a−1 , . . . , a

−
M−1) are the scores of wrong answers. We use the

pairwise hinge loss
∑M−1

i=1 max
(
0, 1 − (a+ − a−i )

)
to train

networks.
The open-ended task aims to choose the correct answer from

a pre-defined answer set, which can be treated as a multi-label
classification task. Therefore, we feed the output of our GNN
into a classifier with two fully-connected layers to compute
the class probabilities and train the network using the cross-
entropy loss. For counting, i.e., open-ended numbers, we treat
it as a regression task and train the network using the Mean
Squared Error (MSE) loss.

IV. EXPERIMENTS

A. Datasets

We evaluate the proposed method on the three most com-
monly used benchmarks for VideoQA task.

a) TGIF-QA: It is a large-scale VideoQA dataset with
165K Q&A pairs from 72K animated GIF videos [43]. There
are four types of questions in this dataset: 1) Action: multiple-
choice questions to identify the action repeated for certain
times; 2) Transition: multiple-choice questions to identify the
action regarding state transition; 3) FrameQA: open-ended
questions that can be inferred from one frame in a video;
4) Count: open-ended questions to count the number of
occurrences of an action. Multiple-choice questions have five
options, while open-ended questions have a pre-defined answer
set of size 1, 746.

TABLE II
RESULTS ON THE MSVD-QA AND MSRVTT-QA DATASETS. GLOVE IS

USED FOR WORD EMBEDDING.

Model MSVD-QA MSRVTT-QA

AMU [32] 32.0 32.5
ST-TP [43] 30.9 31.3
Co-mem [29] 31.7 31.9
QueST [45] 36.1 34.6
HCRN [6] 36.1 35.6
HGA [7] 34.7 35.5
B2A [8] 37.2 36.9
L-GCN [9] 34.3 -
GMN [10] 35.4 36.1
HOSTR [36] 39.4 35.9
MASN [11] 38.0 35.2
HQGA [46] 41.2 37.2
KRST (ours) 41.5 37.4

b) MSVD-QA & MSRVTT-QA: Both datasets contain
50K Q&A pairs from 2K short videos [32] and 243K Q&A
pairs from 10K short videos [47], respectively. They cover five
different question types: what, who, how, when and where. The
questions are open-ended with a pre-defined answer set of size
1K and 4K, respectively.

c) Evaluation Metrics: We use MSE for the Count task
in TGIF-QA and accuracy for other tasks.

B. Implementation Details

We extract videos at 10 frames per second for all the
datasets, and uniformly sample T frames from each video.
According to the average video length, we set T as 30 for
MSVD-QA & MSRVTT-QA datasets and 20 for TGIF-QA
dataset. For the global context feature extraction, we apply
ResNet-152 model pretrained on the ImageNet [48] dataset
for appearance features and I3D model pre-trained on the
Kinetics [39] dataset for motion features. For the local feature
extraction, we select K = 10 object bounding boxes with the
highest confidence scores for each frame, where the bounding
boxes are generated using Faster R-CNN [41] pretrained on the
Visual Genome [49] dataset. We set the number of graph layers
H in both spatial and temporal graphs as 2 to capture spatial
and temporal information. The ratio α to control number of
neighboring nodes in spatial and temporal graphs is set as 0.6
and 0.8, respectively. Moreover, the model’s hidden size d is
set as 512.

The proposed model is trained on PyTorch [50]. During
training, we set batch size as 64 for multi-choice questions
and 128 for open-ended and count questions. The dropout ratio
is set as 0.3 to prevent overfitting. We train the model for 30
epochs using the Adam optimizer with a constant learning rate
of 10−4. Experiments are implemented on Ubuntu 20.04 by
NVIDIA GTX 3090 GPUs.

C. Comparison with the State-of-the-art

Table I and Table II present the performance comparison
of our KRST with multiple SOTA methods on three pop-
ular benchmarks. The comparing methods can be classified
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into three categories: (1) attention-based methods, including
ST-TP [43], Co-mem [29], PSAC [44], QueST [45] and
HCRN [6]; (2) graph-based methods on frame relations,
including HGA [7] and B2A [8]; (3) graph-based meth-
ods on object relations, including L-GCN [9], GMN [10],
HOSTR [36], MASN [11] and HQGA [46]. The experimental
results demonstrate that our model consistently outperforms
the SOTA models on three datasets. Note that it is challenging
to achieve the best accuracies on all of the three datasets.
For example, MASN [11] achieves quite a high accuracy
on the TGIF-QA dataset but only reaches inferior accura-
cies on the MSVD-QA and MSRVTT-QA datasets. Similarly,
HQGA [46] can achieve satisfactory performance on MSVD-
QA and MSRVTT-QA but not on TGIF-QA (especially for
the action task). In contrast, experiments show the superiority
of our method on the three datasets, which implies that our
method can effectively capture complex object interactions in
space and time for VideoQA.

HGA and B2A are graph-based methods that model the
temporal relations between different frames. In these methods,
multiple graphs are constructed to exploit the correlation
between question words and video segments. However, they
ignore the fine-grained object-level information important for
question answering, leading to inferior performance.

GMN and HOSTR build a holistic spatio-temporal graph to
model object relations by taking object trajectories as input.
They assume objects exist throughout the video, which may be
invalid for videos with multiple objects and heavy occlusions.
This assumption may bring extra noise in object relation
modeling and result in inferior performance. MASN and
HQGA are similar to our work in taking independent object
proposals as input. However, both MASN and HQGA perform
relation reasoning ignoring the keywords from questions, and
they do not consider the relative relation between objects. By
filling these gaps, our model demonstrates a clear superiority
over these SOTA methods on all the three datasets.

TABLE III
ABLATION STUDY FOR DIFFERENT POOLING METHODS. THE LOWER THE

BETTER FOR Count.

Graphs Pooling Action↑ Transition↑ Frame↑ Count↓
Max Mean Sum

✓ 85.0 88.8 60.9 3.62
spatial ✓ 84.1 88.4 60.4 3.73

✓ 84.0 88.0 60.3 3.72
✓ 85.0 88.8 60.9 3.62

aggregation ✓ 84.7 88.6 60.8 3.65
✓ 84.9 88.7 60.7 3.66

✓ 84.7 88.7 60.7 3.67
temporal ✓ 84.5 88.6 60.6 3.70

✓ 85.0 88.8 60.9 3.62
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Fig. 4. Impact of the number of graph layers H . The lower the better for
Count.

D. Ablation Study

In this section, we conduct a set of ablation studies on TGIF-
QA dataset. First, we study the impact of important hyper-
parameters (number of neighbors in graphs and number of
graph layers). Then, we compare different pooling methods in
graph construction. Lastly, we verify the effectiveness of each
proposed component.

a) Number of neighbors in graphs: The hyper-parameter
α ∈ [0, 1] is a ratio to control the number of neighboring
nodes in graphs. A higher value of α means information from
more neighboring nodes is aggregated to compute the center
node. To study the impact of α, we train the model using
different values of α. Note that we fix α as 0.6 (0.8) in
spatial (temporal) graphs when changing α in the temporal
(spatial) graphs. As shown in Fig. 3, the hyper-parameter
α has significant impact on model performance, and both a
lower and a higher α may lead to a performance drop. The
reason could be that a higher α may bring much noise from
irrelevant objects, while a lower α may miss necessary relation
information. Furthermore, there may exist redundant object
proposals with poor quality, so α in spatial graphs should be
relatively lower than that in temporal graphs.

b) Number of graph layers H: We train our model using
different values of H and compare the performance in Fig. 4.
It is observed that model performance on different tasks reacts
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Question: What does the dog do before place a cat on the table ? Ground truth: grab food and a can    
Prediction: grab food and a can        

(a)

…

…

(b)

(c)

0.29

0.91 0.96

0.41

0.82
0.36

0.93

0.32

0.88
0.49

0.81

0.32

0.93

0.73

0.25

0.39
0.88

0.81

0.92

0.72

Fig. 5. Visualization of (a) word attention Aw , (b) object attention Ao and (c) the k-nearest (k = 4) relevant neighbors of the dog according to the question.
In (a) and (b), our method pays high attention to the keywords and the relevant objects, such as “dog”, “cat”, etc. In (c), our method selects the most relevant
objects as the neighbors in the representation space for graph reasoning.

TABLE IV
ABLATION STUDY FOR EACH PROPOSED COMPONENT.

Model Action↑ Transition↑ Frame↑ Count↓
Keyword Attention

w/o Word Attention 84.2 87.9 60.3 3.70
w/o Object Attention 83.6 87.0 59.7 3.81

Relative Reasoning
w/o Relative Relation 83.8 87.2 59.8 3.70
w/o Absolute Relation 84.0 87.1 60.1 3.72

Disentangled Graphs
w/o Disentangling 83.3 86.7 60.2 3.76

KRST full model 85.0 88.8 60.9 3.62

differently towards the increase of H . On FrameQA task, the
model achieves the best performance when H = 1 and starts
to drop as H continues increasing. This suggests that a one-
layer graph is sufficient for FrameQA task, because questions
in this task focus on spatial relations and generally do not
require complex relation reasoning. On the other tasks, the
model achieves the best performance when H = 2, starting to
drop as H continues increasing. This suggests that one-layer
graph may be insufficient to perform complex object relation
reasoning, while a deep graph model may lead to the over-
smoothing problem, resulting in inferior performance.

c) Impact of pooling methods: We explore different
pooling methods in Eq. 8 and summarize the results in Ta-

ble III. It is observed that maximum pooling generates the best
performance for spatial graphs while sum pooling generates
the best performance for temporal graphs. As for aggregation,
the three pooling methods have similar performance, with
mean pooling showing the best result.

d) Effectiveness of each proposed component: To verify
the effectiveness of each component in the proposed method,
we train ablation models under different settings and summa-
rize the results in Table IV. Overall, we find that removing any
component in KRST would reduce the model performance.
The impact of each component is detailed as follows.

Keyword attention mainly includes word attention Aw and
object attention Ao. Aw is used to generate the attended
question feature Ê, and then Ê is used to compute Ao.
By removing word attention, we replace Ê using the global
question embedding to compute Ao. We find that removing
word attention will lead to certain performance drops. This is
because the model may not effectively identify all the relevant
objects when the keywords are not highlighted. By dropping
object attention (i.e., the Keyword Attention module), we ob-
serve a more significant performance drop. This is as expected
since treating all the objects equally may reduce the reasoning
efficiency.

Relative reasoning aims to augment absolute relation with
relative relation graph reasoning. It is observed that when
removing either the relative relation or the absolute relation
in graph modeling, the model performance will drop by
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Question: What does the blue ball do 4 times?                   Ground truth: Bounce
Predictions:      HGA: Kick boy                  MASN: Shake hand                Ours: Bounce 

…

(a) Action

(b) Transition

(c) FrameQA

…

(d) Count

…

…

Question: What does the man do after look at pool?                   Ground truth: Pick up bottle
Predictions:      HGA: Raise arm                    MASN: Smile                  Ours: Pick up bottle 

Question: How many people inside a room yell into a telephone?                Ground truth: Three
Predictions:      HGA: One                    MASN: Two                  Ours: Three 

Question: How many times does the man with a black shirt stroke a guitar?                Ground truth: 3
Predictions:      HGA: 2                    MASN: 4                  Ours: 3 

(e) Failure Case

Question: How many men are break dancing in synchronization ?                Ground truth: Three
Predictions:      HGA: One                    MASN: One                  Ours: Two

…

Fig. 6. Examples from the TGIF-QA dataset. The examples cover four different tasks: Action, Transition, FrameQA and Count. Correct answers (Ground
truths) are shown in green and wrong predictions are in red. Rectangles denote the detected object bounding boxes.

around 1% on Action, Transition and FrameQA tasks. These
results demonstrate that both relative and absolute relations
are important in modeling object interactions.

Disentangled graphs model the spatial relation and tem-
poral relations using separate graphs. We study the impact of
disentangled graphs by constructing a holistic graph over all
the detected objects, where the spatial and temporal relations
are modeled equally. We observe that without disentanglement,
the model performance drops by only 0.7% on FrameQA
task, but by around 2% on Action and Transition task. This

is because the latter two tasks are more challenging as they
require reasoning about both spatial and temporal relations,
while a holistic graph lacks the capability to handle such
scenarios. This confirms the effectiveness of disentangled
graphs in performing complex relation reasoning.

E. Qualitative Results

We visualize the learned attention maps (word attention Aw

and object attention Ao) and the k-nearest neighbors of the
object. In Fig. 5 (a), we can observe that the keywords such
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as “dog”, “cat” and “food” are highlighted by higher attention
weights. These highlighted keywords can help to identify the
question-relevant objects for the subsequent relation reasoning.
In Fig. 5 (b), we present the detected objects with their learned
attention weights (red numbers) which are also indicated by
the brightness of the object regions. It is shown that the
keyword-relevant objects (e.g., “dog”, “cat” and “food”) have
higher attention weights and therefore are much more brighter
than the keyword-irrelevant objects (e.g., “closet”, “oven” and
“jar”). This implies that the most keyword-relevant objects are
effectively identified from the video frames by object attention.
In Fig. 5 (c), we visualize the k-nearest neighbors of the object
“dog”. It is observed that our model can correctly select the
most relevant objects as neighbors, which help improve the
efficacy of relation reasoning.

We also compare our method with the existing SOTA
methods on different tasks of the TGIF-QA dataset in Fig. 6.
The comparing methods include two graph-based methods: 1)
HGA [7] on frame relations and 2) MASN [11] on object
relations. It is observed that our model can correctly answer
the questions based on given videos, which demonstrates the
efficacy of our model in object relation reasoning. In Fig. 6
(a), our model can attend to the relevant object (i.e.,“blue
ball”) from other distracting objects (e.g., “green ball”) and
generate the correct answer. This validates the effectiveness
of the keyword attention module in filtering out the question-
irrelevant features from videos. In Fig. 6 (b), the example
shows that our model can correctly predict the answer to the
question, which requires the modeling of both spatial relations
(e.g., “pick up bottle”) and temporal dynamics (e.g., “after”).
In Fig. 6 (c), our model correctly answers the question by
aggregating the information in multiple frames. The reason
could be that we apply max pooling to aggregate information
from neighboring frames in the temporal graph to maintain
critical spatial relations in each frame. In Fig. 6 (d), our model
generates the correct answer by attending to the question-
relevant object (i.e., “man with a black shirt”). This again
demonstrates the effectiveness of the proposed keyword at-
tention module. In Fig. 6 (e), all the three models generate
incorrect predictions for this sample. The primary cause could
be the object detector’s inability to identify all the individuals
presenting in the video, due to the heavy occlusions and poor
lighting conditions.

V. CONCLUSION

In this paper, we present a Keyword-aware Relative Spatio-
Temporal (KRST) graph network for VideoQA. Specifically,
we apply attention mechanism to generate a keyword-aware
question embedding for the construction of video graphs. To
better capture the spatio-temporal relation among object nodes,
we introduce relative relation modeling into graph networks.
Furthermore, to explicitly model the spatial and temporal
relations, we disentangle the holistic spatio-temporal graph
into a spatial graph over objects and a temporal graph over
frames. Extensive experiments on three datasets demonstrate
the effectiveness of our proposed method in performing com-
plex object relation reasoning for VideoQA. In future work,

we plan to exploit the hierarchical structure of questions and
videos, which may improve the relation reasoning by building
fine-grained correspondences between linguistic and visual
elements.
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