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CM-MaskSD: Cross-Modality Masked
Self-Distillation for Referring Image Segmentation
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Abstract—Referring image segmentation (RIS) is a fundamen-
tal vision-language task that intends to segment a desired object
from an image based on a given natural language expression.
Due to the essentially distinct data properties between image
and text, most of existing methods either introduce complex
designs towards fine-grained vision-language alignment or lack
required dense alignment, resulting in scalability issues or mis-
segmentation problems such as over- or under-segmentation. To
achieve effective and efficient fine-grained feature alignment in
the RIS task, we explore the potential of masked multimodal
modeling coupled with self-distillation and propose a novel
cross-modality masked self-distillation framework named CM-
MaskSD, in which our method inherits the transferred knowledge
of image-text semantic alignment from CLIP model to realize
fine-grained patch-word feature alignment for better segmen-
tation accuracy. Moreover, our CM-MaskSD framework can
considerably boost model performance in a nearly parameter-free
manner, since it shares weights between the main segmentation
branch and the introduced masked self-distillation branches,
and solely introduces negligible parameters for coordinating
the multimodal features. Comprehensive experiments on three
benchmark datasets (i.e. RefCOCO, RefCOCO+, G-Ref) for
the RIS task convincingly demonstrate the superiority of our
proposed framework over previous state-of-the-art methods.

Index Terms—Referring Image Segmentation, Cross-Modality
Guidance, Masked Self-Distillation, Vision and Language

I. INTRODUCTION

REFERRING image segmentation (RIS) aims to segment
specific regions of input images corresponding to the

given language expression. RIS has become one of the most
challenging vision-language tasks due to its requirement for
mutual understanding across the two different modalities. In
addition, compared with conventional single-modality (i.e.
image or video) segmentation, RIS partly resolves the limita-
tions of segmentation targets solely on predefined categories.
Considering that diverse targets are required in real-world
downstream tasks, RIS could potentially be employed in a
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Fig. 1. The illustration of our pipeline for referring image segmentation task.

wide range of applications, including language-based human-
object interaction and interactive image editing.

Since the concept of RIS task was initially proposed in
[1], different multimodal frameworks for referring image seg-
mentation have been designed to deal with the feature extrac-
tion and interaction between visual and linguistic modalities,
including the first attempt of introducing recurrent LSTM
network [1], CLIP-driven framework [2], language-aware vi-
sion Transformer network [3], and convolution-free network
[4]. However, due to the considerable differences between
visual and language modalities, feature alignment has become
a crucial challenge for precise segmentation. Previous works
have made great efforts to overcome this challenge. For in-
stance, CRIS [2] achieves semantic consistency by propagating
semantic information from textual representations to each
image pixel, yet it neglects to correlate the important visual
information with language representations. LAVT [3] enhances
the model’s capability of cross-modality alignment through
a multi-stage structure, yet such a sophisticated network is
inflexible for further improving fine-grained feature alignment.
It is notable that without aligning cross-modality information
correctly, models are prone to the mis-segmentation problem
(i.e. over- and under-segmentation). As shown in Fig. 1,
models could not generate a complete segmentation mask of
the main parts without adequate exploration of the correlation
between image regions and their relevant words, leading to
the under-segmentation problem. Besides, image regions with
essentially weak relevance to the whole expression may be
wrongly guided by some misleading words in the given text,
resulting in the over-segmentation problem. As shown in
the second column on the right side of Fig. 1, rather than
generating the segmentation mask of the specific boy wearing
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dark glasses, CRIS [2] has segmented redundant parts (i.e.
another boy in purple without wearing glasses) since the less
important words (boy in purple) are wrongly considered as
the most relevant with the image. Although advanced models
could be adopted for comprehensive feature extraction of
the given images and texts, a novel generic framework is
expected to overcome the aforementioned two drawbacks and
effectively realize more fine-grained feature alignment.

Therefore, to better assist models in mastering the capability
of fine-grained feature alignment, we explore the potential
of masked self-distillation applying to referring image seg-
mentation task for the first time. In this paper, we provide
a Cross-Modality Masked Self-Distillation framework (CM-
MaskSD) to densely correlate the multimodal features in a
simple and efficient manner. As shown in Fig. 1, our proposed
framework enables effective mutual guidance between visual
and textual modalities by taking advantage of the bidirectional
cross-modality interaction. Except for the main branch for
realizing the segmentation task, two symmetric branches are
additionally designed for masked self-distillation. In essence,
we intend to introduce a bidirectional cross-modality guided
masking strategy to mask the feature vectors that may lead to
incorrect segmentation results due to erroneous cross-modal
feature correlations. By constraining the segmentation results
before and after masking to be consistent, the knowledge distil-
lation implicitly occurs between the main segmentation branch
and the introduced two masked self-distillation branches—the
model implicitly reinforces the cross-modality features that
should be strongly correlated, while attenuating those that
should be weakly associated. This facilitates a finer-grained
alignment of cross-modality visual and textual features, aiming
to minimize the occurrence of segmentation errors (i.e. over-
segmentation and under-segmentation). To further pursue the
highly efficient architecture, the weights of both the main
segmentation branch and the two distillation branches are
shared together to greatly reduce the introduced parameters.
In this way, since both the teacher and student model in the
traditional distillation pipeline here correspond to the same
model weights in our architecture, which essentially does not
include the conventional knowledge is transferred from one
structure to another, the term “self-distillation” is derived from
this structural design.

Specifically, the first branch is the language-guided masked
visual self-distillation branch, in which we introduce the
textual global features from the language encoder to guide
the masked visual self-distillation. The correlation vector is
firstly calculated between the visual feature embeddings of
image patches and the textual global token, then the TopK text-
related image patches that are most related to textual global
representations are selected. After this correlation filtering
operation, the relatively irrelevant visual tokens with low
correlation values are filtered out and the strongly corre-
lated visual tokens are saved for the following masked self-
distillation design. In this manner, the subsequent masking
strategy will be more effective and targeted in addressing
erroneous cross-modal feature associations that can lead to
mis-segmentation. Then we randomly mask the embedded
features of TopK related image patches with a masking ratio

α and send all the resulted visual tokens into the follow-
ing model for segmentation. To implicitly guide model to
achieve dense alignment between visual and textual features,
the optimization target is conducted by pulling closer the
segmentation results of masked visual self-distillation branch
and the main segmentation branch (i.e. without any masking).
Similarly, the visual-guided masked language self-distillation
branch is symmetric to the aforementioned masked visual self-
distillation branch. Finally, by jointly employing the bilateral
masked self-distillation branches, our framework could realize
more fine-grained multimodal feature alignment, hence ac-
complishing the referring image segmentation task in a more
precise manner. Noticeably, based on the main segmentation
branch (i.e. a strong baseline), our masked self-distillation
design solely introduces negligible parameters yet can greatly
boost model performance via sharing weights between the self-
distillation branches and the main branch. The experimental
results clearly show that our framework achieves superior
performance over previous state-of-the-art (SOTA) methods on
the three benchmark datasets for RIS task.

Our main contributions can be summarized as follows:
• We present the first study to explore the powerful potential

of masked multimodal modeling with self-distillation for
RIS task. Our proposed novel framework CM-MaskSD can
inherit the transferred knowledge of image-text semantic
alignment from CLIP model to realize the dense text-patch
feature alignment for higher segmentation accuracy.

• By fully taking advantage of the proposed correlation filter-
ing mechanism and cross-modality guided masking strategy
in our dual masked self-distillation branches, our method
can effectively achieve more fine-grained vision-language
feature alignment, which is crucial for the RIS task.

• Our CM-MaskSD is a simple yet effective and generic
framework, among which our masked self-distillation design
is essentially plug-and-play and easy-to-implement.

• The experimental results on the three benchmark datasets for
referring image segmentation convincingly demonstrate the
superiority of our CM-MaskSD over previous state-of-the-
art methods. Moreover, via sharing weights, our framework
can consistently boost model performance with only intro-
duced negligible parameters and none extra computational
costs for inference.

II. RELATED WORK

Referring Image Segmentation is to generate the category
masks of target objects in an image according to the given
natural language description. Since the input consists of mul-
timodal information, constructing an effective framework for
feature modeling and interaction between textual and visual
features is considered the most crucial part of the entire task.
The RIS task is first brought up in [1], which simply con-
catenates linguistic and visual features extracted by LSTM [5]
and convolutional neural network separately, and predicts the
final segmentation mask through a fully connected network.
Some of the subsequent works [6]–[12] follow the paradigm
of modeling text expression and image features independently,
and then set fusion pipeline to introduce language information
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into pixel-level activation. However, [13] believes that joint
modeling is more intrinsic for RIS task and proposes the
multimodal ConvLSTM to encode visual information, spa-
tial cues and the sequential interaction between each word.
Nevertheless, rather than regarding the input sentence as an
individual unit, MattNet [14] treats it as a hybrid of ob-
jects’ position, appearance and relationship to others, putting
forward a two-stage network to select generated regions of
interest with textual guidance. Different from the aforemen-
tioned methods that employ implicit feature interaction and
fusion between visual and linguistic modalities, [15] tends to
adopt a progressive manner, using entity and attribute words
to perceive all the entities involved in the expression and
further inferring the relationship between entities to highlight
the relevant objects of referring expression. Besides, motivated
by previous application of contrastive learning in language-
image pre-training, CRIS [2] propagates fine-grained semantic
information from text to visual embeddings via a joint visual-
language decoder and enhances cross-modality consistency
with contrastive learning.

As Transformer and attention mechanisms have been well
studied in various linguistic and visual downstream tasks, their
advantage over convolutional neural networks in capturing
long-range dependency seems apparent. In CMSA [16], cross-
modality self-attention module is employed to obtain long-
range dependency between two modalities. VLT [17] redefines
RIS as a direct attention problem, introducing Transformer and
multi-head attention to query a given image with the language
expression. ReSTR [4] is proposed as the first convolution-
free, Transformer-based referring image segmentation model,
which only uses different Transformer encoders to realize the
respective feature extraction of text and image and the follow-
ing multiple interactions between them. Furthermore, LAVT
[3] operates early multimodal feature fusion on the constructed
multi-level Transformer encoder, achieving significantly better
cross-modality alignment. In addition, [18] considers negative
sentences as inputs to enhance the robustness of model to the
misdescription or misleading by the given text.
Mask Image/Language Modeling is an effective self-
supervised pre-training pattern for learning general represen-
tations, which has been studied in the field of natural language
processing (NLP) and computer vision (CV). BERT [19] and
its variants [20] [21] yield SOTA performance in a broad
range of NLP tasks by introducing masked language modeling
(MLM). With the success of MLM in the NLP field and
the emergence of vision Transformers [22], BEiT [23] and
BEiTV2 [24] introduce a classifier to predict masked image
tokens, which is supervised by the encoded visual patches
from offline tokenizer. SimMIM [25] directly adopts the low-
level image features (i.e. pixel’s RGB value) as prediction
targets, leading to considerable performance gains compared to
conventional self-supervised pretext tasks. Instead of feeding
masked tokens as input to the encoder, MAE [26] develops a
straightforward decoder to reconstruct image patches, resulting
in a significant decrease in pre-training computational costs.
To break the limitation that MAE-based methods can only
be performed on the standard vision Transformers [22] and
explore the potential of masking operation for various down-

stream tasks, a lot of works [27]–[30] have been proposed.
Following the great performance obtained by knowledge

distillation in many works [31]–[35], a powerful model com-
pression technique, knowledge distillation has also shown
impressive performance in masked image modeling. Instead
of directly imitating the output of teacher network, MGD
[36] allows the student model to recover teacher model’s
feature representations with randomly masked feature maps,
achieving excellent improvements on various visual down-
stream tasks. Similarly, DMAE [37] aligns the intermediate
features between teacher model and student model, studying
the potential of distilling knowledge from MAE. However,
considering that not all pixels of feature maps contribute
equally to model performance, MasKD [38] utilizes masked
feature distillation to prompt student model to adaptively learn
the values of the teacher model’s feature maps at each position
based on their informative contribution. Such an attention-
aware idea can also be directly applied to the masking process.
For instance, MaskedKD [39] leverages the attention maps
learned by student model to mask the input image of teacher
network, providing a simple yet efficient strategy to reduce the
distillation cost of ViT.

Different from the above works, in this paper, we conduct
the pioneering exploration on building an effective and also
efficient masked self-distillation architecture on both text and
image modalities for better accomplishing RIS task. Specif-
ically, two symmetric distillation branches are designed to
enhance the model’s comprehension of mutual correlations
between the feature representations of language expression and
image. Among each branch, cross-modality guided correlation
filtering and the following masking operation are performed
to promote the expected fine-grained feature alignment.

III. METHODOLOGY

As shown in Fig. 2, our Cross-Modality Masked Self-
Distillation (CM-MaskSD) framework includes a multi-modal
main segmentation branch and two symmetric masked self-
distillation branches that are designed for achieving more fine-
grained feature alignment between referring expression and
visual representations. The details of our CM-MaskSD are
presented in the following.

A. Main Segmentation Branch

Since CLIP [40] is capable of directly learning transferable
visual concepts from large-scale collections of image-text
pairs, we leverage the pre-trained weights of CLIP as our
segmentation backbone. To obtain the extracted visual and
linguistic feature representations, the image encoder and the
text encoder are employed respectively. Given the input image
I and referring text T , we first send them to the feature
embedding layer to obtain the visual embedding EI and textual
embedding ET . These embedded feature tokens are then fed
to their respective encoders to obtain the visual and textual
feature representations, which can be expressed as follows:

Vlocal, vglobal = CLIP Image Encoder(EI)

Wlocal, wglobal = CLIP Text Encoder(ET )
(1)
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Fig. 2. The architecture of our CM-MaskSD framework. It consists of a multimodal segmentation branch and two symmetric masked self-distillation branches
that are designed for more fine-grained visual and textual feature alignment. During training, the main segmentation loss Lossseg coupled with two self-
distillation loss LossLMV SD and LossV MLSD are jointly employed to pull close the segmentation masks generated by main branch and cross-modality
guided masked self-distillation branches. For inference, only the main segmentation branch is preserved to acquire the final segmentation masks.

where Vlocal and Wlocal are the output sequences of visual
and textual tokens respectively, each of which corresponds to a
single visual image patch or a textual word. vglobal denotes the
[class] token that serves as the image-level representation
with strong semantics. wglobal is the text-level representation
which is the aggregated feature representation of all textual
tokens Wlocal. Subsequently, an effective neck module is used
to fuse the multimodal feature F by taking Vlocal and wglobal

as input, followed by a vision-language decoder that generates
the final segmentation results Mseg . Specifically, the neck
module composes of several linear layers followed by non-
linear functions which is utilized to perform cross-modality
fusion between hierarchical visual representation and textual
representation with an output of multi-modal representation.
And the vision-language decoder follows the standard architec-
ture of Transformer design, in which the multi-modal feature
representations sequentially pass through the multi-head self-
attention and multi-head cross-attention structure with textual
features as key and value. Note that the employed neck and
vision-language decoder are solely introduced to provide a
strong segmentation baseline, which follows the same standard
architecture as CRIS [2].

F = Neck(Vlocal, wglobal)

Mseg = Vision-Language Decoder(F,Wlocal)
(2)

B. Cross-Modality Masked Self-Distillation
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Fig. 3. The illustration of the introduced correlation filtering and cross-
modality guided masking strategy in our language-guided masked visual self-
distillation branch.

Although employing the CLIP model [40] as backbone can
inherit powerful image-level visual concepts from large-scale
pre-training, this form of knowledge is insufficient for refer-
ring image segmentation owing to the absence of fine-grained
cross-modality feature alignment. To better solve this issue,
we propose the CM-MaskSD framework to implicitly realize
dense alignment between word-level textual representations
and pixel-level visual features.
Language-Guided Masked Visual Self-Distillation
(LMVSD). Based on the obtained visual and linguistic features
in Sec. III-A, we utilize the text-level representation wglobal

to guide the masked visual self-distillation. Initially, given
wglobal ∈ R1×C and Vlocal = (v0, v1, . . . , vN−1) ∈ RN×C ,
where vi ∈ R1×C , we calculate the correlation vector p
between them. Next, the T visual feature tokens among
Vlocal that have the TopK highest correlation values in the
correlation vector p (i.e. p

′
) will be selected. Since mis-

segmentation arises due to incorrect cross-modal associations
are mainly found among high-correlation visual feature
tokens while visual feature tokens with inherently weak
correlations can not significantly affect the final segmentation
results, we anticipate that the segmentation results before and
after masking off erroneously strongly-associated tokens will
remain consistent in our following masked self-distillation
design. After the correlation filtering, only the visual tokens
p

′
with relatively high correlations are retained and the

relatively low-correlation tokens are abandoned, making the
the subsequent masking strategy more effective, which can
be expressed as follows:

pi = wglobal · vi, where i = 0, 1, . . . , N − 1

p = (p0, p1, ..., p
′

1, ..., p
′

2, ..., p
′

T , ..., pN−1)
(3)

where · denotes the dot product, T = TopK × N , TopK
and T refer to the operation of directly selecting top K% of
visual feature tokens with the highest correlation values and
the number of selected visual tokens after correlation filtering.

As shown in Fig. 3, these T visual tokens can be categorized
into two groups: (1) feature tokens that do not match the
expectation (i.e. the specific visual tokens are essentially
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not correlated with the current text), which may mislead
the entire model and further induce over-segmentation (e. g.
visual tokens of the adult sheep, as the mth visual token
highlighted with orange color in Fig. 3) and (2) feature tokens
that match our expectations (i.e. the specific visual tokens
are strongly correlated with the current text in essence) and
correlate densely with the given expression (e. g. visual tokens
of the baby sheep, as the nth visual token highlighted with
purple color in Fig. 3), which directly contributes to the
model’s segmentation accuracy. Then we randomly mask the
selected T feature tokens according to a suitable masking ratio
α%, which involves replacing them with randomly initialized
learnable tokens v

′
.

Vmasked = (v0, ..., v
′

1, ..., v
′

2, ..., v
′

α%×T , ..., vN−1) (4)

When the first type of visual tokens are masked, we apply
a self-distillation loss LossLMV SD to ensure that the cor-
responding segmentation result MLMV SD is consistent with
the output prediction of main segmentation branch. In this
way, the model can associate the accurate fine-grained visual-
textual features more closely and at the same time draw a
clear line between the visual-textual features that should not
produce strong associations. Therefore, the model will not
be misguided by other misleading textual information, greatly
avoiding the model from over-segmentation. Simultaneously,
when the second type of visual feature tokens are masked,
we also use LossLMV SD to ensure that the segmentation
result MLMV SD of this branch is consistent with the output
prediction of main segmentation branch. Since masking the
corresponding tokens makes it harder for the visual distillation
branch to predict segmentation result that is consistent with
the main branch, this design can essentially guide the model
to generate more complete segmentation masks, implicitly
preventing the model from under-segmentation. With this
language-guided masked visual self-distillation branch, the
model can realize a more fine-grained alignment between the
textual global features and the visual tokens than before.

To predict the segmentation results MLMV SD, we feed the
masked visual tokens Vmasked into the combination of the
CLIP image encoder, neck and vision-language decoder, which
stays the same architecture as the main segmentation branch.
To be noticed, the parameters of all these three components
are shared with the main segmentation branch to pursue a
parameter-efficient architecture.

V
′

local, v
′

global = CLIP Image Encoder(Vmasked)

FLMV SD = Neck(V
′

local, wglobal)

MLMV SD = Vision-Language Decoder(FLMV SD,Wlocal)
(5)

Visual-Guided Masked Language Self-Distillation
(VMLSD). Symmetric to LMVSD elaborated
above, the acquired global visual feature vglobal
is utilized to guide the masked language self-
distillation process in our proposed VMLSD. Given
vglobal ∈ R1×C and Wlocal = (w0, w1, . . . , wN−1), where
wi ∈ R1×C ,Wlocal ∈ RN×C , we calculate the correlation

vector q between vglobal and each wi, which measures the
image-word similarity.

qi = vglobal · wi, where i = 0, 1, . . . , N − 1

q = (q0, q1, ..., q
′

1, ..., q
′

2, ..., q
′

T , ..., qN−1)
(6)

where T = TopK ×N . Then, the T textual tokens in Wlocal

that have the TopK highest correlation values in q (i.e. q
′
) are

selected by our correlation filtering operation, and α% of them
are randomly masked by randomly initialized learnable tokens
w

′
which have the same shape as wi.

Wmasked = (w0, ..., w
′

1, ..., w
′

2, ..., w
′

α%×T , ..., wN−1) (7)

Through this process, the masked textual tokens Wmasked

are obtained and fed into the combination of the CLIP text
encoder, neck and vision-language decoder that stays the
same architecture as main segmentation branch, to predict
the segmentation results MVMLSD. Similarly, the parameters
of the CLIP text encoder, neck and vision-language decoder
in VMLSD branch are all shared with the main branch to
ensure the model efficiency. Benefiting from this visual-guided
masked language self-distillation branch, the whole network
can realize a more fine-grained alignment between the visual
global features and the textual word tokens than previous.

W
′

local, w
′

global = CLIP Image Encoder(Wmasked)

FVMLSD = Neck(W
′

local, vglobal)

MVMLSD = Vision-Language Decoder(FVMLSD, Vlocal)
(8)

C. Network Optimization

During training, a compound loss function Losstotal is
adopted to constrain our model to align the word-level rep-
resentations with the relevant pixel-level visual features. The
compound loss consists of three components: (1) Lossseg ,
which following CRIS [2] is a binary cross entropy (BCE)
loss used to optimize the main segmentation branch and ensure
accurate segmentation results; (2) LossLMV SD, a binary cross
entropy loss, which constrains the consistency between the
output of the LMVSD branch and the segmentation results out-
put by the main segmentation branch Mseg; (3) LossVMLSD,
similar to LossLMV SD, which constrains the consistency
between the output of the VMLSD branch and the final
segmentation results Mseg . LossLMV SD and LossVMLSD

jointly ensure a more dense alignment between the referring
expression words and image patches, implicitly preventing the
whole model from over-segmentation and under-segmentation.
The total loss is defined as follows:

Lossseg = BCELoss(Mseg, GT )

LossLMV SD = BCELoss(MLMV SD,Mseg)

LossVMLSD = BCELoss(MVMLSD,Mseg)

Losstotal = Lossseg + λ1LossLMV SD + λ2LossVMLSD

(9)

Here, GT denotes ground truth. λ1 and λ2 are hyper-
parameters that control the relative importance of the two
self-distillation losses. By optimizing this joint loss Losstotal,
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TABLE I
COMPARISONS WITH THE STATE-OF-THE-ART APPROACHES ON THREE REFERRING IMAGE SEGMENTATION BENCHMARK DATASETS. “⋆” DENOTES

THE POST-PROCESSING OF DENSECRF [41]. “-” DENOTES THAT THE RESULT IS NOT PROVIDED. THE EVALUATION METRIC IS MIOU.

Method Vision
Backbone

Language
Encoder

RefCOCO RefCOCO+ G-Ref
val test A test B val test A test B val test

RMI⋆ [13] ResNet-101 LSTM 45.18 45.69 45.57 29.86 30.48 29.50 - -
DMN [7] ResNet-101 SRU 49.78 54.83 45.13 38.88 44.22 32.29 - -
RRN⋆ [8] ResNet-101 LSTM 55.33 57.26 53.95 39.75 42.15 36.11 - -
MAttNet [14] ResNet-101 Bi-LSTM 56.51 62.37 51.70 46.67 52.39 40.08 47.64 48.61
CMSA⋆ [16] ResNet-101 None 58.32 60.61 55.09 43.76 47.60 37.89 - -
QRN [11] ResNet-101 LSTM 59.75 60.96 58.77 48.23 52.65 40.89 42.11 -
BCAN⋆ [42] ResNet-101 LSTM 61.35 63.37 59.57 48.57 52.87 42.13 - -
CMPC⋆ [15] ResNet-101 LSTM 61.36 64.53 59.64 49.56 53.44 43.23 - -
LSCM⋆ [43] ResNet-101 LSTM 61.47 64.99 59.55 49.34 53.12 43.50 - -
MCN [44] DarkNet-53 Bi-GRU 62.44 64.20 59.71 50.62 54.99 44.69 49.22 49.40
CGAN [45] DarkNet-53 Bi-GRU 64.86 68.04 62.07 51.03 55.51 44.06 51.01 51.69
EFNet [46] ResNet-101 Bi-GRU 62.76 65.69 59.67 51.50 55.24 43.01 - -
LTS [47] DarkNet-53 Bi-GRU 65.43 67.76 63.08 54.21 58.32 48.02 54.40 54.25
VLT [17] DarkNet-53 Bi-GRU 65.65 68.29 62.73 55.50 59.20 49.36 52.99 56.65
DenseCLIP [48] CLIP-ViT-Base CLIP 61.88 65.82 56.40 42.53 47.29 36.07 - -
ReSTR [4] ViT-Base Transformer 67.22 69.30 64.45 55.78 60.44 48.27 - -
SeqTR [49] DarkNet-53 Bi-GRU 67.26 69.79 64.12 54.14 58.93 48.19 55.67 55.64
CRIS [2] CLIP-RN101 CLIP 70.47 73.18 66.10 62.27 68.08 53.68 59.87 60.36
RefTr [50] ResNet-101 BERT-Base 70.56 73.49 66.57 61.08 64.69 52.73 58.73 58.51
LAVT [3] Swin-Base BERT-Base 72.73 75.82 68.79 62.14 68.38 55.10 61.24 62.09

CM-MaskSD (Ours) CLIP-ViT-Base CLIP 72.18 75.21 67.91 64.47 69.29 56.55 62.67 62.69
CM-MaskSD (Ours) CLIP-ViT-Large CLIP 74.89 77.54 71.28 67.47 71.80 59.91 66.53 66.63

our model can learn to generate more accurate and fine-
grained segmentation results that are precisely aligned with
the referring expressions. To be noticed, during the inference
phase, only the main segmentation branch is reserved to obtain
the corresponding segmentation masks.

IV. EXPERIMENTAL RESULTS

To evaluate the designing rationale of our method, com-
prehensive experiments are conducted on three benchmark
datasets, including RefCOCO, RefCOCO+ and G-Ref.

A. Datasets

RefCOCO [51] is one of the largest and most commonly
used datasets collected from the MSCOCO [52] for RIS task,
including 142,209 annotated expressions (average length of 3.6
words) for 50,000 objects in 19,994 images, which is split into
training, validation, test A, and test B with 120,624, 10,834,
5,657 and 5,095 samples respectively.

RefCOCO+ [51] dataset contains 141,564 language ex-
pressions (average length of 3.5 words) with 49,856 objects
in 19,992 images, which is separately split into training,
validation, test A, and test B with 120,624, 10,758, 5,726,
and 4,889 samples. Compared to RefCOCO, some language
expressions with absolute location descriptions are deleted in
RefCOCO+ dataset, which makes it more challenging for RIS.

G-Ref [53], as the third benchmark dataset, includes
104,560 referring expressions (average length of 8.4 words)
for 54,822 objects in 26,711 images. It collects the language
expressions from Amazon Mechanical Turk, which is different
from the former two datasets. Following previous work, the
standard UMD partition [1] is adopted for evaluation.

B. Implementation Details

Experimental Setup. Our proposed framework is imple-
mented based on Pytorch [54] and trained with Tesla V100
GPUs. Considering the crucial scalability and the ease of
implementation, the Vision Transformer [22] is adopted as the
image encoder for all the experiments. The text and image
encoder are initialized by CLIP [40], while the rest part of
model weights are randomly initialized. During training, the
input images are resized to the resolution of 576×576 and
532×532 for ViT-Base and ViT-Large respectively for exper-
imental comparisons with previous SOTA methods. To make
an efficient and fair comparison, the resolution of 480×480
is adopted for ablation study. The Adam optimizer with 32
batch size and a weight decay of 0.0005 are adopted to train
the model for 100 epochs. With a warm-up strategy for 10
epochs during training, the initial learning rate is set to 0.00001
with a cosine decay schedule. Following CRIS [2], due to the
extra [SOS] and [EOS] tokens, the input sentences are set
with a maximum sentence length of 17 for RefCOCO and
RefCOCO+, 22 for G-Ref. During inference, the predicted
results by our method is upsampled back to the original
image size and binarized with a threshold of 0.35 to the final
segmentation result. Any extra post-processing operations can
be exploited to further boost the segmentation accuracy of our
framework, but are not employed in this work.
Evaluation Metrics. To evaluate our proposed method, we
adopt mean Intersection-over-Union (mIoU) and Precision@X
as evaluation metrics. The mIoU measures the ratio between
the intersection area and the union area of the prediction
and ground truth among the test samples. The Precision@X
measures the percentage of test samples with an IoU score
higher than the threshold X that ranges from 0.5 to 0.9 with
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an interval of 0.1. The Precision@X focuses on the location
ability of different methods.

C. Main Results

Quantitative Analysis. To validate the superiority of our
CM-MaskSD and make a fair comparison, our method is
evaluated against the SOTA methods on RefCOCO [51],
RefCOCO+ [51] and G-Ref [53] datasets. As presented in
Table I, our method outperforms the previous methods in terms
of segmentation accuracy across all evaluation subsets of the
three benchmark datasets. With ViT-Base [22] used as visual
backbone and Transformer [55] as text encoder that are initial-
ized by CLIP [40], our method obtains comparable or better
performance compared with the latest SOTA method LAVT
[3], especially showing dominant superiority on RefCOCO+
and G-Ref datasets. In comparison with CRIS [2] which also
employs the CLIP model [40] as vision backbone and language
encoder, significant performance improvement is achieved
by our CM-MaskSD across all three benchmark datasets.
Besides, to further explore the potential of our framework,
ViT-Large initialized by CLIP [40] is further introduced as
a stronger visual backbone. It can be clearly seen that the
employment of ViT-Large as vision backbone enables our
approach to further push the SOTA results. Specifically, on
RefCOCO dataset, our method achieves much higher SOTA
results compared to LAVT, resulting in a significant margin
of 2.16%, 1.72%, and 2.49% mIoU on the validation, testA
and testB sets respectively. On G-Ref dataset, our method
surpasses the previous SOTA method LAVT [3] by a large
gap (i.e. 5.29% and 4.54% mIoU on the validation set and
test set respectively). The same promising results can also be
found on RefCOCO+ dataset. It is noteworthy that, instead of
utilizing more powerful backbone (e. g. Swin Transformer)
that is pre-trained through strongly supervised manner as
feature extractor like LAVT [3], our CM-MaskSD solely takes
advantage of the simple yet effective ViT structure pre-trained
through unsupervised manner [40], not to mention that our
method possesses strong scalability and doesn’t contain any
complex designs. Based on the above analysis, all the results
convincingly demonstrate that our CM-MaskSD framework
can better accomplish the RIS task by pursuing finer-grained
cross-modality feature alignment.
Qualitative Analysis. In addition, CRIS [2] and our CM-
MaskSD are further adopted for qualitative comparison since
they both attempt to explore the powerful knowledge of CLIP
model [40] for RIS. The visualizations in Fig. 4 convincingly
illustrate that our method can accomplish RIS task more
accurately and generate much better fine-grained segmentation
masks of corresponding objects, greatly reducing errors caused
by over-segmentation and under-segmentation.

D. Ablation Studies

We conduct extensive experiments to justify the effective-
ness of our design choice on RefCOCO validation set. ViT-
Base initialized by CLIP is adopted for all the ablation study.
Design of Masked Self-Distillation Manner. We first probe
into the rationale of the proposed masked self-distillation
design. As presented in Table II, taking ViT-Base as the

Language: “boy in purple wearing dark glasses”

Language: “center truck”

Language: “small girl in middle”

Language: “muffin behind big one in front”

(a) Image (b) CRIS (c) Ours (d) GT

Fig. 4. The visual comparison of segmentation results on RefCOCO validation
set. (a) input image. (b) CRIS. (c) our CM-MaskSD. (d) ground truth.

vision backbone, the baseline model obtains 70.45% mIoU
score on RefCOCO validation set. Either adding a single
LMVSD branch or VMLSD branch to the whole architec-
ture consistently leads to an considerable accuracy increase
(1.00% and 0.53% mIoU). Since the sequence length of visual
tokens is much higher than the textual sequence and the RIS
task is visually oriented in essence, the experimental results
that masked visual self-distillation branch can bring higher
performance improvements is clearly reasonable. In addition,
by jointly employing both LMVSD and VMLSD branches in
a nearly parameter-free and strictly computation-free manner
via sharing weights, our method attains 1.23% improvements
against the baseline. The above results fully demonstrate the
benefit of exploiting the masked self-distillation framework
for densely aligning linguistic and visual features. Besides, to
show the advantage and designing rationale of our framework,
we also present the visual comparison of the segmentation
results in Fig. 5. It is clear that, compared with the baseline,
our method can better solve the segmentation problem of
under-segmentation and over-segmentation, benefiting from
the introduced bilateral masked self-distillation branches.

TABLE II
ABLATION STUDY ON THE DESIGN OF MASKED SELF-DISTILLATION

MANNER.

LMVSD VMLSD Pr@0.5 Pr@0.7 Pr@0.9 mIoU Params(M) FLOPs(G)

- - 82.73 70.82 17.99 70.45 207 165.96
✓ - 83.90 73.54 20.08 71.45 266 165.96
- ✓ 83.09 71.77 18.64 70.98 264 165.96
✓ ✓ 83.29 73.15 21.45 71.68 210 165.96

Language-Guided Masked Visual Self-Distillation. Next,
we explore the potential of our proposed LMVSD branch
with different hyper-parameter settings. Table III shows the
ablation results of masking ratio α, TopK, and loss weight
λ1 of LMVSD branch. We sequentially explore the effects of
these three hyper-parameters. Starting with loss weight λ1, five
diverse settings (i.e. 0.1, 0.25, 0.5, 0.75, 1.0) are selected. It
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Language: “person holding a snowboard”

Language: “zebra front one”

Language: “zebra on the right”

Language: “darker brown animal”

(a) Image (b) Baseline (c) Ours (d) GT

Fig. 5. Qualitative analysis for ablation study on our masked self-distillation
design. (a) input image. (b) baseline. (c) our CM-MaskSD. (d) ground truth.

TABLE III
ABLATION STUDY ON LANGUAGE-GUIDED MASKED VISUAL

SELF-DISTILLATION.

Masking
Ratio α

TopK Loss
Weight λ1

Pr@0.5 Pr@0.7 Pr@0.9 mIoU

(a) Loss weight λ1

0.25 0.5 0.1 83.20 71.88 19.40 70.93
0.25 0.5 0.25 83.73 73.03 19.74 71.36
0.25 0.5 0.5 83.51 72.61 19.13 71.17
0.25 0.5 0.75 83.90 73.54 20.08 71.45
0.25 0.5 1.0 82.63 72.53 20.79 70.72

(b) Mask ratio α

0.1 0.5 0.75 83.18 73.39 19.83 71.12
0.25 0.5 0.75 83.90 73.54 20.08 71.45
0.5 0.5 0.75 83.37 73.34 20.27 71.24
0.75 0.5 0.75 82.78 72.64 20.00 70.79

(c) TopK

0.25 0.25 0.75 83.21 73.41 20.61 71.09
0.25 0.5 0.75 83.90 73.54 20.08 71.45
0.25 0.75 0.75 82.88 73.13 19.68 70.93
0.25 1.0 0.75 83.08 73.13 20.77 71.01

is clear that λ1 = 0.75 enables the combination of baseline
and our LMVSD branch to achieve the best performance.
On this basis, lower λ1 would result in inadequate self-
distillation effect and would not take full advantage of the
masked self-distillation design, while higher λ1 leads to an
adverse effect to the overall compound loss function during
optimization process. Then we analyze the effect of different
values of masking ratio α and TopK. Quantitative results
in Table III show that with masking ratio set as 0.25 and
TopK set as 0.5, the introduction of LMVSD branch leads to
the best model performance. Higher masking ratio increases
the difficulty of extracting visual features and generating the
same segmentation masks as the main segmentation branch
during self-distillation process, while lower masking ratio
could cause certain information redundancy which hinders the
whole structure from unleashing the power of masked self-
distillation pipeline. Besides, if the TopK is set too high,
our introduced correlation filtering may not effectively filter

out relatively irrelevant visual tokens. On the contrary, if
TopK is set too low, the range of the selected visual tokens
after correlation filtering will be limited and much of the
highly correlated visual tokens may be lost. Noticeably, if our
proposed correlation filtering is not performed (i.e., setting
TopK=100%), the model’s performance consistently declines
as expected, which fully proves the effectiveness of our
correlation filtering insight.

TABLE IV
ABLATION STUDY ON VISUAL-GUIDED MASKED LANGUAGE

SELF-DISTILLATION.

Masking
Ratio α

TopK Loss
Weight λ2

Pr@0.5 Pr@0.7 Pr@0.9 mIoU

(a) Loss weight λ2

0.1 0.5 0.05 82.76 71.78 18.73 70.58
0.1 0.5 0.1 83.09 71.77 18.64 70.98
0.1 0.5 0.25 83.02 71.40 18.69 70.41
0.1 0.5 0.5 82.34 70.86 18.52 70.02
0.1 0.5 0.75 81.12 69.92 18.17 69.47
0.1 0.5 1.0 81.07 70.25 17.76 69.28

(b) Mask ratio α

0.05 0.5 0.1 83.26 71.93 18.52 70.71
0.1 0.5 0.1 83.09 71.77 18.64 70.98
0.25 0.5 0.1 82.72 71.11 18.17 70.43
0.5 0.5 0.1 82.82 71.92 17.97 70.51
0.75 0.5 0.1 82.67 71.31 18.24 70.54

(c) TopK

0.1 0.25 0.1 83.22 72.12 18.18 70.68
0.1 0.5 0.1 83.09 71.77 18.64 70.98
0.1 0.75 0.1 82.66 71.09 18.07 70.23
0.1 1.0 0.1 82.92 71.66 18.32 70.57

Visual-Guided Masked Language Self-Distillation. To fur-
ther explore the potential of our proposed VMLSD branch,
similar ablation study like LMVSD branch are conducted.
Table IV presents the experimental results. Different from
the ablation study on LMVSD branch, the baseline with our
VMLSD branch inserted obtains the best model performance
when loss weight λ2, masking ratio α and TopK are set
as 0.1, 0.1 and 0.5, respectively. Since the referring image
segmentation is essentially a vision-dominated task, dislike
the optimal setting λ1 = 0.75 in the LMVSD branch, the
VMLSD branch with λ2 = 0.1 yields the best segmentation
accuracy. Besides, since the visual-guided masking operation
is performed at the word level, based on the textual low
redundancy due to the short expression length (average 3.6
words on RefCOCO dataset), a high α will lead to the
missing of important textual information. Additionally, similar
to LMVSD branch, either the TopK is set unsuitably high
or low, the segmentation accuracy would decrease, since
the employed correlation filtering can not effectively filter
out irrelevant textual information or much of the strongly
correlated word tokens are accordingly lost for masked self-
distillation. Furthermore, if TopK is set as 100% (i.e. our
correlation filtering is removed), it would result in masking
many unimportant regions that have minimal impact on the
final segmentation results. Masking these regions and then
constraining the consistency of corresponding segmentation
results before and after masking (i.e. pre- and post- mask-
ing) would essentially become meaningless. Consequently,
the masking operation would be highly inefficient, leading to
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insufficient learning of cross-modality feature alignment and
thus deteriorated model performance.

TABLE V
ABLATION STUDY ON THE PROPOSED CROSS-MODALITY GUIDED

MASKING STRATEGY IN OUR MASKED SELF-DISTILLATION STRUCTURE.

LMVSD VMLSD Masking
Operation Pr@0.5 Pr@0.7 Pr@0.9 mIoU

- - - 82.73 70.82 17.99 70.45
✓ - ✓ 83.90 73.54 20.08 71.45
✓ - - 83.06 71.77 19.00 70.78
- ✓ ✓ 83.09 71.77 18.64 70.98
- ✓ - 82.96 71.83 18.89 70.88
✓ ✓ ✓ 83.29 73.15 21.45 71.68
✓ ✓ - 82.99 72.28 19.22 71.12

Necessity of Masking Operation in Masked Self-Distillation
Structure. Although we have explored the influence of differ-
ent mask ratios on our masked self-distillation architecture, the
model performance when masking operation is removed has
not been fully discussed. In this case, to prove the necessity
of our proposed masking strategy, we further investigate the
model performance when masking operation is not performed
in the whole structure. As shown in Table V, for introducing
either a single masked self-distillation branch or both of the
LMVSD and VMLSD branches, removing the masking oper-
ation consistently results in a considerable decline in model
accuracy, confirming the effectiveness of the proposed cross-
modality guided masking strategy to better guide the whole
architecture to achieve dense multimodal feature alignment.

TABLE VI
ABLATION STUDY ON DIFFERENT SUPERVISION SCHEMES FOR

PARAMETER-EFFICIENT MASKED SELF-DISTILLATION STRUCTURE.

LMVSD VMLSD Supervision
Manners Pr@0.5 Pr@0.7 Pr@0.9 mIoU

- - - 82.73 70.82 17.99 70.45
✓ - Distillation 83.90 73.54 20.08 71.45
✓ - Ground Truth 82.89 71.72 17.76 70.73
- ✓ Distillation 83.09 71.77 18.64 70.98
- ✓ Ground Truth 82.91 71.05 17.81 70.55
✓ ✓ Distillation 83.29 73.15 21.45 71.68
✓ ✓ Ground Truth 83.25 72.72 18.83 70.95

Supervision Scheme in Masked Self-Distillation Structure.
Additionally, we also investigate two different supervision ap-
proaches and their impact on our entire framework, including
directly supervising the two distillation branches with ground
truth or employing our proposed self-distillation manner. The
quantitative results presented in Table VI validate the effec-
tiveness and rationality of our current design choice. From
the perspective of design logic, it would be natural to think of
directly supervising the two distillation branches with ground
truth. Although it is true that this supervision manner is not
logically infeasible, we found that this manner is sub-optimal
for our overall framework and aligns more with auxiliary loss
supervision, rather than the distillation motivation underlying
our cross-modality masked self-distillation framework. Typi-
cally, using ground-truth for supervision can more directly and
effectively assist the model. However, in our case, where we
aim to better guide cross-modality feature alignment through
our proposed cross-modality guided masking operation that
masks out the visually or textually misleading regions and

enforces consistency between pre- and post-masking segmen-
tation results, using ground-truth as direct supervision signal
for both the two distillation branches and main segmentation
branch simultaneously would make ground-truth act as an
ineffective intermediate quantity. In contrast, our original
intention is to directly enforce consistency between pre- and
post-masking segmentation results, and it is more direct and
effective to use the main segmentation branch’s output as
labels for the two self-distillation branches rather than guiding
them independently towards ground truth.

TABLE VII
ABLATION STUDY ON SHARING WEIGHTS FOR PARAMETER-EFFICIENT

MASKED SELF-DISTILLATION STRUCTURE.

LMVSD VMLSD Sharing
weights Pr@0.5 Pr@0.7 Pr@0.9 mIoU Params(M) FLOPs(G)

- - - 82.73 70.82 17.99 70.45 207 165.96
✓ - - 83.90 73.54 20.08 71.45 266 165.96
✓ - ✓ 83.47 73.02 18.53 71.13 210 165.96
- ✓ - 83.09 71.77 18.64 70.98 264 165.96
- ✓ ✓ 83.29 71.80 18.28 70.88 207 165.96
✓ ✓ - 83.26 72.24 19.03 71.26 323 165.96
✓ ✓ ✓ 83.29 73.15 21.45 71.68 210 165.96

Sharing Weights for Parameter-Efficient Distillation Struc-
ture. Finally, we investigate the potential of our CM-MaskSD
in the case of sharing weights for a parameter-efficient struc-
ture. The experimental results are presented in Table VII.
Through sharing parameters of neck module and vision-
language decoder between the main branch and self-distillation
branch, the introduction of either LMVSD branch or VMLSD
branch leads to the performance improvement of 0.68% and
0.43% mIoU respectively compared with the baseline. Al-
though the resulted improvement is a little inferior to that
without sharing parameters, employing the LMVSD branch
or VMLSD branch in this parameter-efficient manner can con-
sistently boost model performance with almost no additional
parameters introduced. When both of the LMVSD branch and
the VMLSD branch are simultaneously introduced, it leads
to a 0.81% accuracy increase over the baseline under the
circumstance of not sharing weights, which is not promising
as the mIoU score 71.45% made by solely introducing our
LMVSD. We believe it is because that not sharing weights
can not fully unleash the power of our cross-modality masked
self-distillation structure due to the optimization difficulties,
since all the parameters of these three branches (i.e. VMLSD
branch, LMVSD branch and main segmentation branch) need
to be optimized at the same time and there may be op-
timization collision between different parts. Thus, in order
to effectively optimize the whole structure and to pursue a
parameter-efficient framework, our CM-MaskSD adopts the
designing scheme of sharing parameters and achieves the
highest segmentation accuracy with only introduced negligible
extra parameters (i.e. 3M) and none extra computational costs.

V. CONCLUSION AND FUTURE WORK

In this paper, we present the first study to explore the
potential of masked multimodal modeling with self-distillation
for RIS task and propose a novel framework CM-MaskSD that
exploits masked multimodal modeling with self-distillation. It
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inherits transferred knowledge of image-text semantic align-
ment from CLIP and achieves dense feature alignment for
improved segmentation accuracy. Our CM-MaskSD is scalable
and flexible, among which our masked self-distillation design
is essentially plug-and-play and easy-to-implement. Extensive
experiments on three RIS benchmark datasets demonstrate that
our CM-MaskSD greatly outperforms previous SOTA methods
with negligible introduced parameters.

Our approach provides a novel solution to better guide
the model to realize fine-grained feature alignment in RIS,
inspiring new research in this direction. One potential limi-
tation could be that our framework mainly concentrates on
ViT-based structures, but recent research suggests that our
correlation filtering and cross-modality guided masking strat-
egy can be accordingly adjusted to overcome this limitation.
This provides a future research direction to develop a more
general and powerful masked self-distillation framework that
can assist various types of Transformer-based (i.e. hierarchical
Swin Transformer) and CNN-based models in achieving dense
multimodal feature alignment.
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