
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

PointGL: A Simple Global-Local Framework for
Efficient Point Cloud Analysis

Jianan Li⋆†, Jie Wang⋆, and Tingfa Xu†

Abstract—Efficient analysis of point clouds holds paramount
significance in real-world 3D applications. Currently, prevailing
point-based models adhere to the PointNet++ methodology, which
involves embedding and abstracting point features within a
sequence of spatially overlapping local point sets, resulting
in noticeable computational redundancy. Drawing inspiration
from the streamlined paradigm of pixel embedding followed by
regional pooling in Convolutional Neural Networks (CNNs), we
introduce a novel, uncomplicated yet potent architecture known
as PointGL, crafted to facilitate efficient point cloud analysis.
PointGL employs a hierarchical process of feature acquisition
through two recursive steps. First, the Global Point Embed-
ding leverages straightforward residual Multilayer Perceptrons
(MLPs) to effectuate feature embedding for each individual point.
Second, the novel Local Graph Pooling technique characterizes
point-to-point relationships and abstracts regional representa-
tions through succinct local graphs. The harmonious fusion of
one-time point embedding and parameter-free graph pooling
contributes to PointGL’s defining attributes of minimized model
complexity and heightened efficiency. Our PointGL attains state-
of-the-art accuracy on the ScanObjectNN dataset while exhibiting
a runtime that is more than 5 times faster and utilizing only
approximately 4% of the FLOPs and 30% of the parameters
compared to the recent PointMLP model. The code for PointGL
is available at https://github.com/Roywangj/PointGL.

Index Terms—Point cloud, feature embedding, graph

I. INTRODUCTION

Acquiring concise geometric features from point clouds
stands as a pivotal stride across a spectrum of 3D tasks [1],
[2], [3] and multimedia applications [4], [5], [6], [7]. Amid
the gamut of methods for point cloud analysis, point-based
models have been exhaustively investigated owing to their
adept equilibrium between precision and efficiency. Notewor-
thy among these is PointNet++ [8], which is hailed as the
progenitor in this domain. Although subsequent endeavors
have predominantly fixated on enhancing precision, these
enhancements frequently exact a toll in terms of augmented
computational intricacy. Hence, our study strives to fashion a
point-based model that amalgamates simplicity and potency,
thereby facilitating expeditious analysis of point clouds.

Contemporary point-based models conventionally embrace
the PointNet++ pipeline. This pipeline encompasses the group-
ing of input points into local sets and subsequently executes

*Equal contribution. † Correspondence to: Jianan Li and Tingfa Xu.
J. Li, J. Wang and T. Xu are with Beijing Institute of Technology, Beijing

100081, China {lijianan,ciom_xtf1}@bit.edu.cn
J. Li and T. Xu are also with the Key Laboratory of Photoelectronic Imaging

Technology and System, Ministry of Education of China, Beijing 100081,
China.

T. Xu is also with Chongqing Innovation Center, Beijing Institute of
Technology, Chongqing 401135, China.

30

40

50

60

70

80

90

0 500 1000 1500 2000 2500

O
A

 (
%)

Inference Speed (samples/second)

ASSANET-L
[80.8%, 926.7]

PointMLP
[85.4%, 230.2]

DGCNN
[78.1%, 517.7]

RepSurf
[84.3%, 377.2]

PointMLP-elite
[83.8%, 681.1]

PointNet++
[77.9%, 1473.4]

PointGL (Ours)
[86.9%, 1395.6] PointGL-elite (Ours)

[84.2%, 2035.3]

PointNet
[68.2%, 2029.6]

Fig. 1. Comparing Accuracy and Speed Among Various Approaches on
the ScanObjectNN Dataset. Our PointGL achieves the highest predictive
accuracy and exhibits the fastest inference speed compared to alternative
approaches.

point-wise embedding procedures within these local point sets.
The ensuing phase entails employing symmetrical aggregation
functions to distill local geometric features within each dis-
tinct point set. Nonetheless, a comprehensive scrutiny of this
pipeline has brought to the fore two intrinsic drawbacks that
curtail computational efficiency.

The initial inadequacy we discerned pertains to the sub-
stantial overlapping of the resultant local point sets acquired
through grouping within the 3D space. This overlap results in a
singular input point being encompassed by multiple point sets
concurrently. Given that the embedding of points is executed
individually within each local point set, this scenario leads to
the replication of point embeddings for the same point across
diverse point sets. Although minor disparities may arise in
these embeddings due to variances in the relative positions
of input points, we posit that this process entails noteworthy
redundant computations.

The second inherent flaw is interconnected with the con-
straints posed by the process of extracting local features
via point-wise embedding, succeeded by the application of
symmetric functions like max pooling. This methodology can
potentially lead to the erosion of intricate geometry due to
its relatively feeble depiction of point-to-point relationships.
Despite subsequent endeavors aimed at ameliorating this con-
cern through the integration of more intricate encoders, such as
convolutional schemes [9], [10], graph-based techniques [11],
or self-attention mechanisms [12], [13], these enhancements
frequently entail a marked escalation in computational expen-
diture. As a result, it becomes imperative to identify more

ar
X

iv
:2

40
1.

11
65

0v
1

 [
cs

.C
V

]
 2

2
Ja

n
20

24

https://github.com/Roywangj/PointGL

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

efficient approaches for the delineation and amalgamation of
point-to-point relationships while upholding a commendable
level of precision.

The abovementioned constraints impel us to explore a
novel, efficient point-based paradigm guided by a concise
design philosophy. Our design is grounded in a pivotal insight
that individualized per-point feature embedding may not be
indispensably correlated with optimal performance, and may
inadvertently give rise to superfluous computational efforts.
To surmount this, we execute feature embedding for each
input point prior to the grouping of sets. This approach
entails a singular embedding operation per point, engender-
ing notable computational economies. Nonetheless, a pivotal
quandary arises from the isolation of feature embedding for
each point, consequently overlooking the interdependencies
amongst points. These interrelationships, however, play a
momentous role in capturing spatial geometric attributes.

In light of this, we introduce an additional step subsequent
to the per-point embedding process, which intricately inter-
links points within a designated local region and encapsulates
their correlations within the local representation. To accom-
plish this task while preserving efficiency, we advocate for
the incorporation of a graph structure, as it is adeptly suited
for delineating interactions among nodes (points), thereby
ensuring efficiency by streamlining the computation of edge
features (relations).

Building upon the previously elucidated concepts, we have
devised a novel architecture termed PointGL, tailored for the
efficient analysis of point clouds. PointGL elucidates hierar-
chical features from the input point cloud via the integration
of multiple progressive learning stages. Each of these stages
encompasses two distinct phases: a Global Point Embedding
phase and a Local Graph Pooling phase. The former as-
sumes responsibility for the embedding of features per point,
achieved by characterizing each point through elementary
residual multi-layer perceptron (MLP) blocks. On the other
hand, the latter encapsulates regional features by establishing
connections amongst points within a designated local region,
effectively constituting a rudimentary graph. To ensure stream-
lined operations, we endow the graph edges with difference
features derived from the disparities between the regional
center point and its adjoining neighbors. Remarkably, our
investigations have unveiled the remarkable informativeness
of these edge features in delineating regional point-to-point
relationships. Subsequently, these features are amalgamated
via straightforward max pooling techniques, culminating in
the extraction of regional representations.

Significantly, the process of local graph pooling is dis-
tinguished by its concise and efficient workflow, requiring
minimal introduction of additional parameters. This inherent
efficiency stems from the meticulous orchestration of global
point embedding and local graph pooling, culminating in
a streamlined and proficient framework for analysing point
clouds. This framework not only excels in delivering high
predictive accuracy but also exhibits notable swiftness in
computational execution.

We have undertaken an extensive evaluation of PointGL
across multiple benchmark datasets. As illustrated in Fig. 1,

our PointGL framework attains a state-of-the-art level of
accuracy while concurrently delivering remarkable efficiency
in inference speed. Noteworthy is the observation that our
approach executes computations at nearly the same pace as
PointNet++, yet remarkably enhances the overall accuracy by
9%. Additionally, PointGL achieves accuracy levels compa-
rable to those of PointMLP [14], yet operates more than 5
times faster, utilizing only about 4% of the Floating-Point
Operations (FLOPs) and 30% of the parameters.

Moreover, we have extended our assessments to encompass
segmentation and object detection, reaffirming the efficacy of
PointGL in diverse downstream tasks. Furthermore, PointGL
consistently showcases robustness in the face of point cloud
corruptions. This resilience is substantiated by its attainment
of state-of-the-art results across both the ModelNet-C and
ShapeNet-C benchmarks, thereby solidifying its potential as
a promising contender for real-world applications.

In summary, this study contributes in the following ways:
• We introduce PointGL, which pioneers a novel and

efficient point-based paradigm tailored for point cloud
analysis. Despite its straightforward design, PointGL
emerges as a potent tool for analyzing point clouds,
thereby enriching the repertoire of existing point-based
models.

• A novel local graph pooling operation is introduced,
enabling the streamlined extraction of local geometric
features. Notably, this operation demands minimal pa-
rameterization and seamless integration into pre-existing
models.

• PointGL emerges as a lightweight model characterized by
diminished computational intricacy. This attribute strikes
an optimal equilibrium between precision and efficiency.
Furthermore, its pronounced resilience in the face of
corruptions reinforces its viability for real-world appli-
cations.

II. RELATED WORK

Learning on Point Clouds. The acquisition of discriminative
features from point clouds constitutes a foundational endeavor
for diverse 3D vision applications. Nonetheless, the inherent
irregularity within point cloud data poses a challenge to con-
ventional methodologies, such as voxel-based techniques [15],
[16], and view-based approaches [17], [18], [19], [20], [21].
The former method involves projecting point clouds onto
structured voxel grids, while the latter transforms them into
2D images. Both methodologies aim to capitalize on solu-
tions developed for structured data, yet they suffer from a
reduction of information due to the inherent projection pro-
cess. In contrast, point-based techniques [22], [8], [11] tackle
this issue by directly processing the raw point cloud data.
PointNet [22], a pivotal advancement in 3D comprehension,
employs multiple shared multi-layer perceptrons (MLPs) to
learn individual point-wise features. This is achieved while
maintaining permutation invariance through a max-pooling
operator. Its successor, PointNet++ [8], enhances this approach
by extracting both global and local geometric information
through MLPs and a hierarchical architecture. This enables

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

the extraction of more robust representations of point clouds.
In this paper, we propose a more efficient and simplified
hierarchical learning paradigm designed to capture the local
geometric features of point clouds.
Extraction of Local Geometric Features. The identification
of local geometric features holds significant importance within
the realm of point cloud analysis, a notion underscored by
Liu et al. [23]. Previous investigations in this domain [8],
[11] have introduced diverse methodologies to address this
challenge. For instance, PointNet++ [8] has employed shared
MLPs coupled with max pooling, while DGCNN [11] in-
troduced EdgeConv to capture interpoint relationships and
DC-GNN [24] incorporates a channel dropout mechanism
alongside a hierarchical feature selection strategy at each
network layer for dynamic graph construction. Alternative
strategies [25], [13] have explored deformable kernels, as
exemplified by KPConv [25], or integrated attention mecha-
nisms, as showcased in Point Transformer [13], to model point
interactions. Furthermore, PointMLP [14] utilizes a straight-
forward feed-forward residual MLP module accompanied by a
geometric affine module to extract local features. This serves
to demonstrate that a simplistic hierarchical MLP architecture
can yield commendable performance while sidestepping the
need for intricate local geometric extractors. In a similar vein,
PointNext [26] employs an Inverted Residual MLP to abstract
local features, yielding favorable results. Within this study, we
propose a parsimonious yet efficacious local graph pooling
approach, which manifests exceptional prowess in abstracting
local features. Notably, this comes at the expense of minimal
supplementary parameters and computational overhead.
Architectural Frameworks for Point Clouds. Within the
realm of point cloud analysis, various architectural frameworks
have emerged to process point cloud data. These include MLP-
based approaches [22], [8], [14], convolution-based meth-
ods [27], [28], [9], graph-based models [11], [29], relation-
based models [30], and transformer-based models [12], [13].
While these architectures have demonstrated impressive ac-
curacy, they often suffer from protracted inference times. In
contrast, this paper advocates for a concise design philosophy,
eschewing convoluted architectures in favor of presenting a
streamlined yet potent framework for efficient point cloud
analysis. This approach endeavors to strike a harmonious
balance between accuracy and efficiency, a facet of particular
significance in real-world applications.
Robustness of Point Cloud Models. The assessment of the
robustness of deep learning models is imperative prior to
their deployment in real-world scenarios. In recent times, the
research community has directed its efforts toward formulating
benchmarks to gauge the resilience of models using 2D
image datasets. Examples include ImageNet-C [31], Imagenet-
V2 [32], and ObjectNet [33]. Concerning 3D point cloud data,
Ren et al. [34] have introduced a classification scheme for
common 3D corruptions and subsequently conducted an ex-
tensive evaluation of extant point cloud classification models.
Their findings underscore the susceptibility of prevailing point
cloud models to corruptions. In contrast, the uncomplicated
architectural framework advocated in this study exhibits com-
mendable robustness in the presence of corruptions.

III. METHOD

A. Revisiting Point-based Approaches

Point-based methods, notably exemplified by PointNet [22]
and PointNet++ [8], stand as pioneering instances in this
domain, furnishing a foundational framework for subsequent
endeavors. PointNet++ undertakes the hierarchical abstraction
of intrinsic geometric features across multiple stages, facili-
tated by a collection of N points, each characterized by Carte-
sian coordinates denoted as P =

{
pi ∈ R1×3|i = 1, · · · ,N

}
.

Within the s-th stage, PointNet++ employs the farthest point
sampling (FPS) algorithm to select Ns points. For each of
these sampled points, K neighbors are queried, thereby consti-
tuting Ns local point sets. Subsequently, PointNet++ proceeds
to acquire insights into the local patterns within each local
point set through the expression:

gi = A
j=1,··· ,K

{h (fi,j)} , (1)

Here, fi,j signifies the feature of the j-th neighboring point
pertaining to the i-th sampled point and gi denotes the aggre-
gated local feature for the i-th sampled point. The function
h(·) is implemented by a multi-layer perceptron (MLP), thus
conducting spatial encoding for a given point. Meanwhile,
A represents a symmetric function, like max pooling, em-
ployed to consolidate the encoded point features. Through
the aggregation of multiple stages, featuring diminishing Ns

and augmented spatial coverage within each local point set,
PointNet++ progressively engenders abstracted local geomet-
ric features coupled with an expanding receptive field.

Subsequent point-based methodologies [10], [35], [25],
[13], [36] have primarily directed their efforts towards en-
hancing the effectiveness of h(·) to more adeptly capture
interrelations between points, achieved by integrating convo-
lution, graph, or attention mechanisms. Notably, the majority
of these methodologies adhere to the overarching framework
established by PointNet++: during each stage, input points are
conglomerated into a sequence of local point sets, wherein
feature embedding is executed for the points within each
point set. Subsequently, local features are distilled through an
aggregation function. However, a comprehensive scrutiny of
this framework has illuminated two inherent limitations that
could potentially impede computational efficiency.

Primarily, it is evident that during the s-th stage, there are
Ns−1 input points. Following the process of grouping, Ns

local point sets emerge, with each assemblage accommodating
K neighboring points. Typically, Ns constitutes merely half
of Ns−1, and K is selected from the range of [16, 64], thus
implying that the majority of input points are represented
in multiple point sets. Given that h(·) operates on every
point within each point set, on average, every input point
necessitates a cumulative count of NsK/Ns−1 feature embed-
dings. While point embeddings within distinct point sets might
encompass varying spatial details, such as relative coordinates
concerning a point set center, we posit that subjecting an
individual point to multiple feature embeddings might not be
pivotal for performance enhancement. However, this approach
unavoidably introduces a substantial degree of computational

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

Fig. 2. Comprehensive Architecture of PointGL. PointGL’s architecture involves the extraction of hierarchical features from input point clouds through the
stacking of multiple learning stages. Each stage initiates with a global point embedding phase, wherein feature embedding for individual points is conducted
using residual MLP blocks. Following this, a local graph pooling phase captures and abstracts point-to-point relations into local representations by constructing
a concise regional graph centered around each sampled point. The synergistic fusion of global point embedding and local graph pooling culminates in a coherent
and efficient hierarchical framework for point cloud analysis.

superfluity. It’s paramount to recognize that this impact be-
comes significantly magnified upon the integration of intricate
spatial encoders in lieu of conventional MLPs.

Secondly, a noteworthy observation pertains to the fact that
PointNet++ embarks on the abstraction of geometric features
within a local point set via point-wise MLP, succeeded by a
symmetric function. Regrettably, this approach is prone to di-
luting intricate geometric subtleties, primarily stemming from
its limited capacity to model interpoint relationships. This
shortcoming has prompted subsequent studies to address the
concern through the introduction of intricate spatial encoders
or aggregation functions. Yet, the unintended consequence of
these endeavors has been the imposition of exorbitant compu-
tational demands and a significant expansion in memory usage,
thus compromising overall efficiency. Hence, the endeavor to
enhance efficiency while upholding accuracy necessitates a
more streamlined approach to the modeling and aggregation
of interpoint relationships. These two limitations collectively
impel us to embark on an exploration of a novel point-based
paradigm.

B. PointGL Framework

The comprehensive architecture of our PointGL is eluci-
dated in Fig. 2, detailing its process of learning hierarchi-
cal features from input point clouds through the stacking
of a total of S learning stages. In the context of the s-th
stage, the input is constituted by Ns−1 points denoted as
Ps−1 = {(pi,fi) | i = 1, · · · ,Ns−1}. Here, each point i is
characterized by its xyz Cartesian coordinates represented as
pi ∈ R3, along with an associated feature vector fi ∈ RDs−1 .
The outcome of this stage encompasses Ns sampled points
denoted by Ps = {(pi, gi) | i = 1, · · · ,Ns}. Within this set,
each sampled point i is distinguished by a feature vector
gi ∈ RDs that encapsulates the localized pattern surrounding
it.

Our PointGL introduces a novel and efficient approach to
learn local patterns through a dual-step process. The first
step, known as Global Point Embedding, entails the execution
of feature embedding for each point within the input set
Ps−1. Diverging from the methodology of PointNet++, which
generates spatially overlapping local point sets and rigor-
ously encodes features for each point within each point set,
PointGL undertakes feature embedding solely once for every
input point. This strategic divergence substantially mitigates
redundant computations. Subsequently, in the subsequent step
known as Local Graph Pooling, points are selectively sampled
from Ps−1, and the relationships between each sampled point
and its neighboring points are meticulously modeled and
collectively integrated to formulate localized representations.
Remarkably, this entire sequence is accomplished exclusively
through straightforward operations, effectively upholding com-
putational efficiency. In the following sections, we proceed to
provide an in-depth elaboration of both of these fundamental
steps.
Global Point Embedding. This phase entails the embedding
of each input point within Ps−1 by training a function Φ :
RDs−1 → RDs dedicated to feature embedding. The feature
embedding process is as follows:

vi = Φ (fi) , i = 1, · · · ,Ns−1, (2)

where vi is the embedded feature for the i-th point. Following
the approach introduced in [14], we adopt the perspective of
Φ(·) as a sequence of residual point MLP blocks. Precisely,
this function is learned through a sequence of uniform residual
MLP blocks. The composition of MLP encompasses a fully
connected (FC) layer, batch normalization (BN), and rectified
linear unit (ReLU) activation, succeeded by another layer of
FC and BN.

The employment of point-wise MLPs imparts invariance to
point permutations upon the function Φ(·), which is capable of

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

approximating a diverse array of continuous functions. Addi-
tionally, the point embedding procedure necessitates minimal
operations, primarily reliant on meticulously optimized feed-
forward MLPs. Furthermore, given that point embedding is
executed solely once for each input point, the efficiency of
our PointGL remains unimpeded even with the integration of
more intricate or deeper MLPs.
Local Graph Pooling. The objective of this phase is to
derive local patterns through the modeling and aggregation of
interpoint relationships within a confined area. Recognizing
the efficacy of graphs in representing sets of objects (nodes)
and their interconnections (edges), a logical approach to cap-
ture point-to-point relationships within a limited region is to
establish a local graph by connecting internal points. Within
this construct, each node corresponds to a point, and the edges
symbolize interactions between pairs of points. Through the
amalgamation of all edge features within the local graph, we
can effectively unearth local patterns.

To achieve this, we undertake the process through three
distinct steps of local point association followed by feature
aggregation: i) We initiate the process by sampling Ns points
from the input data at the current stage utilizing the far-
thest point sampling (FPS) technique. Following this, we
employ the k-nearest neighbors (kNN) algorithm to gather
K neighboring points corresponding to each of the sampled
points. ii) Subsequently, each sampled point is connected to
its respective neighbors, effectively constituting a series of
local graphs. These graphs encode the point-to-point relations
through the incorporation of edge features. iii) In the final step,
we subject the edge features of each local graph to a symmetric
aggregation function. This operation yields the local feature
representation.

The pivotal stride involves generating edge features capa-
ble of effectively encoding relationships among points while
upholding efficiency. To accomplish this, we embrace a rudi-
mentary yet remarkably efficacious strategy, encompassing the
computation of the difference feature between a sampled point
and each of its neighbors as the edge feature:

ej,k = α⊙ (vj,k − vj) + β. (3)

In this context, vj ∈ RDs and vj,k ∈ RDs signify the
features of the j-th sampled point and its k-th neighboring
point, respectively. The parameters α,β ∈ RDs are subject to
learning, with the initial value of 1 and 0, respectively, while
⊙ signifies the Hadamard product.

The local output representation for the j-th sampled point,
denoted as gj , is derived by aggregating the edge features
linked with all the edges emanating from this point. This
aggregation is defined as:

gj = A (ej,k| k = 1, · · · ,K) , (4)

where K is the number of neighboring points. We opt for the
employment of the max pooling operation as the aggregation
function A (·) due to its efficacy and simplicity.

Beyond its simplicity and compactness, our approach to
local graph pooling offers several salient advantages: i) it re-
tains invariance to the ordering of neighbors, thereby ensuring
resistance to variations in point permutations; ii) it refrains

Algorithm 1 Pseudo code of PointGL in a Pytorch-like style.
Input:
xyz - [N, 3], coordinate of the input point cloud, where N

denotes the number of points
points - [N, C], feature of the input point cloud, where C

denotes the dimension of the feature
ns - number of the points selected by Farthest Point

Sampling (FPS) algorithm
K - number of the neighboring points by k-nearest neighbor

(kNN) algorithm
α - affine transformation parameter, default 1.0
β - affine transformation parameter, default 0.0

Output:
new_xyz - [ns, 3], coordinate of the output point cloud,

where ns denotes the number of points
new_points - [ns, C’], feature of the output point cloud,

where C’ denotes the dimension of the feature

Function local_graph_pooling(xyz, points, ns, K, α, β):
Select points by FPS algorithm
fps_idx = furthest_point_sample(xyz, ns)
new_xyz = gather(xyz, fps_idx)
new_points = gather(points, fps_idx)

Find neighboring points by k-NN algorithm
grouped_xyz, grouped_points = knn(query_xyz=new_xyz,

support_xyz=xyz, feat=points, k_number=K)

Generate edge features
grouped_points = grouped_points - new_points
grouped_points = α * grouped_points + β

Aggregate local features
new_points = grouped_points.max[0]

return new_xyz, new_points

In Each Processing Stage:
Step1: Global Point Embedding
points = residual_MLPs(points)

Step2: Local Graph Pooling
new_xyz, new_points = local_graph_pooling(xyz, points, ns

, K, α, β)

from involving intricate operations, thus ensuring commend-
able computational efficiency; iii) it is nearly parameter-free,
facilitating its seamless integration in a plug-and-play manner.

C. Architectural Details

As elucidated earlier, each learning stage within our
methodology samples a subset of points from the input, en-
dowing each sampled point with local geometric information.
Through the accumulation of multiple stages, this design pro-
gressively furnishes a smaller number of points, each enriched
with an extended contextual awareness.

The PointGL network is structured with S = 4 stages.
These stages exhibit escalating embedding dimensions of
Ds = {128, 256, 512, 1024}, complemented by a diminishing
count of sampled points denoted as Ns = {512, 256, 128, 64}.
Each stage encompasses a residual MLP block, leveraging
K = 24 nearest neighbors for the purpose of local feature
aggregation.

To further optimize efficiency, drawing inspiration
from [14], we have introduced an advanced iteration of
PointGL, denoted as PointGL-elite. This variant refines the
feature embedding dimensions based on the original PointGL
framework. For a comprehensive overview of the architectural
nuances, please consult Table I. In addition, Algorithm 1
shows the implementation of PointGL.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

TABLE I
ARCHITECTURAL SPECIFICATIONS. MLPS SPECIFICATION: OUTPUT CHANNEL COUNT OF FULLY CONNECTED (FC) LAYERS. POOLING

SPECIFICATION: (Ns : NUMBER OF SAMPLED POINTS, K: NUMBER OF NEIGHBORING POINTS).

Model PointGL PointGL-elite

Stage S1 S2 S3 S4 S1 S2 S3 S4

MLPs

[128] [256] [512] [1024] [64] [128] [256] [256]

[128, 128] [256, 256] [512, 512] [1024, 1024] [16, 64] [32, 128] [64, 256] [64, 256]

[128, 128] [256, 256] [512, 512] [1024, 1024]

Pooling (512, 24) (256, 24) (128, 24) (64, 24) (512, 24) (256, 24) (128, 24) (64, 24)

Output 512×128 256×256 128×512 64×1024 512×64 256×128 128×256 64×256

TABLE II
PERFORMANCE COMPARISON ON SCANOBJECTNN AND MODELNET40 DATASETS. THE TABLE PRESENTS METRICS INCLUDING OVERALL

ACCURACY (OA, %); MEAN PER-CLASS ACCURACY (MACC, %); PARAMETER COUNT (#PARAMS); AND FLOPS. ADDITIONALLY, WE ASSESS THE
PROCESSING SPEED OF ALL METHODS IN SAMPLES PER SECOND ON A SINGLE GEFORCE RTX 3090 GPU AND TWO CORES OF AN INTEL XEON GOLD

5218R CPU@2.10GHZ. (†: MULTI-SCALE INFERENCE AS PER [35].)

Method Input
ScanObjectNN ModelNet40

#Params FLOPs Train
Speed

Infer
SpeedOA(%) mAcc(%) OA(%) mAcc(%)

PointNet [22] 1k P 68.2 63.4 89.2 86.0 3.47M 0.45G 1104.3 2029.6
DGCNN [11] 1k P 78.1 73.6 92.9 90.2 1.82M 2.43G 275.4 517.7
KPConv [25] 7k P - - 92.9 - 14.30M - 152.8 309.9
ASSANet (L) [37] 1k P 80.8 77.7 92.9 - - 2.72G 312.8 926.7
PointASNL [38] 1k P∗ - - 93.2 - 10.1M 1.80G - -
MVTN [39] multi-view 82.8 - 93.8 92.0 4.24M 1.78G - -
PAConv† [10] 1k P - - 93.9 - 2.44M 1.68G - -
RPNet [30] 1k P∗ - - 94.1 - 2.70M 3.90G - -
CurveNet [40] 1k P - - 93.8 - 2.14M 0.66G 126.8 278.9
PointNet++ [8] 1k P 77.9 75.4 90.7 88.4 1.48M 0.86G 693.6 1473.4
PointMLP [14] 1k P 85.4 83.9 94.1 91.3 13.24M 15.67G 88.4 230.2
PointMLP† [14] 1k P 86.5 85.1 94.5 91.4 13.24M 15.67G 88.4 230.2
PointMLP-elite [14] 1k P 83.8 81.8 93.6 90.9 0.72M 0.91G 324.9 681.1
RepSurf-U [41] 1k P 84.3 81.3 94.4 91.4 1.48M 0.90G 73.4 377.2
RepSurf-U† [41] 1k P 84.6 81.9 94.7 91.7 1.48M 0.90G 73.4 377.2
PointGL 1k P 86.9 85.2 93.0 90.4 4.16M 0.63G 600.7 1395.6
PointGL-elite 1k P 84.2 82.2 92.6 89.8 0.49M 0.05G 1103.5 2035.3

IV. EXPERIMENT

A comprehensive evaluation of the PointGL approach was
undertaken across diverse benchmarks to gauge its effective-
ness. Furthermore, we conducted experiments to evaluate the
method’s robustness in the face of corruptions, and performed
ablation studies to validate both the chosen design principles
and parameter configurations.

A. Shape Classification on ScanObjectNN

Data and Setup. The fundamental assessment of point cloud
analysis methods relies on 3D object classification. For our
primary evaluation, we utilized the ScanObjectNN bench-
mark [42]. This benchmark draws upon real-world object
instances to provide an authentic assessment of the model’s
performance. The benchmark constitutes a multi-class clas-
sification task, which comprises a total of 2, 902 real-world
point clouds from across 15 distinct classes.

During the training phase, both the PointGL and PointGL-
elite models underwent training for 250 epochs utilizing the
AdamW optimizer with a batch size of 32. The optimizer
utilizes a learning rate of 0.002 and weight decay of 0.05. The

CosineAnnealingLR [43] scheduler is employed to decrease
the learning rate to the minimum value of 1e-4, and the warm
up epochs is set to 0. The evaluation metrics encompass overall
accuracy (OA) and class-average accuracy (mAcc) calculated
on the test set.

Main Results. The Table II furnishes a comparative analysis
between PointGL and state-of-the-art techniques. To ensure
a comprehensive evaluation of the various methods, an as-
sortment of metrics was considered, encompassing accuracy
and efficiency measurements such as classification accuracy,
model complexity (parameter count and FLOPs), and process-
ing speed. Notably, our PointGL exhibited superior levels of
accuracy and efficiency within the purview of this benchmark
assessment.

In a specific context, PointGL showcased a cutting-edge
overall accuracy of 86.9%, asserting its dominance over
preceding methodologies such as PointMLP [14] and Rep-
Surf [41]. Moreover, our self-contained PointGL demonstrated
superiority over both PointMLP and RepSurf, even when
employing a multi-scale inference strategy [35]. Of significant
note is our approach’s substantial performance advantage

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

TABLE III
ABLATIONS ON GLOBAL POINT EMBEDDING AND LOCAL GRAPH POOLING ON THE SCANOBJECTNN DATASET.

Position OA(%) mAcc(%) #Params FLOPs Train
Speed

Infer
Speed

Pos-kNN 86.2 84.0 4.16M 7.55G 222.1 563.8
Pre-kNN (Ours) 86.9 85.2 4.16M 0.63G 600.7 1395.6

(a) Perform point embedding before/after kNN.

Depth OA(%) mAcc(%)

16 layers 86.9 85.2
24 layers 86.6 84.6
32 layers 86.4 84.5

(b) Number of embedding layers.

Max Pool Local Graph α-β OA(%) mAcc(%)

✓ ✗ ✗ 82.1 80.3
✓ ✓ ✗ 86.1 ↑4.0 84.5 ↑4.2
✓ ✓ ✓ 86.9 ↑0.8 85.2 ↑0.7

(c) Component ablation.

K OA(%) mAcc(%)

12 85.8 83.7
24 86.9 85.2
36 86.4 85.0

(d) Number of neighboring points.

Model OA(%) mAcc(%)

PointNet++ 77.9 75.4
PointNet++ (LGP) 78.7 ↑0.8 75.7 ↑0.3
PointMLP 85.4 83.9
PointMLP (LGP) 85.9 ↑0.5 84.3 ↑0.4

(e) Plug-and-play capability.

over PointNet++ by a substantial margin (86.9% vs. 77.9%),
thereby underscoring the supremacy of our local graph pooling
mechanism for the abstraction of local patterns.
Computational Efficiency. Regarding computational effi-
ciency, our PointGL operates at a pace that is nearly compara-
ble to PointNet++, widely acknowledged as the swiftest point-
based model with a hierarchical framework. When contrasted
with the recent PointMLP, our PointGL boasts a mere 30% of
the parameter count (4.16M vs. 13.24M) and a mere 4% of
the FLOPs (0.63G vs. 15.67G), all while delivering over 5×
the speed in inference (1, 395 vs. 230 samples/s).

In contrast to the more contemporary RepSurf-U, our
PointGL experiences a slight increase in FLOPs, yet manages
to achieve 7.2× and 2.7× faster speeds during training
and inference, respectively. These findings underscore that a
reduction in model complexity doesn’t necessarily guarantee
heightened efficiency. Our straightforward approach of global
point embedding followed by local graph pooling effectively
curtails redundant computations across local point sets, thereby
serving as the fundamental basis for efficiency enhancement.

To further optimize efficiency, we introduce an accelerated
version of PointGL termed PointGL-elite. With a mere 0.49M
parameters, PointGL-elite significantly reduces FLOPs to just
0.05G, accounting for only 5% of the FLOPs found in
its PointMLP-elite counterpart (0.91G). Despite maintaining
a competitive accuracy level of 84.2% OA, PointGL-elite
achieves an exceptional inference speed of 2, 035 samples/s,
surpassing the speeds of PointMLP-elite and PointNet++ by
nearly 3× and 1.4×, respectively. These outcomes firmly
establish PointGL-elite as the point-based model with minimal
model complexity and the swiftest inference rate.

B. Shape Classification on ModelNet40

Data and Experimental Setup. Furthermore, we conducted
evaluations using the ModelNet40 benchmark [44], which is a
multi-class classification task that encompasses a collection
of 9, 843 training and 2, 468 test CAD models, distributed
across 40 distinct categories. The training process for both
PointGL and PointGL-elite involved employing the Stochastic
Gradient Descent (SGD) optimizer over 300 epochs with a
batch size of 32. The optimizer is configured with a learning
rate of 0.1, momentum of 0.9 and weight decay of 2e-4. The

learning rate is decayed to the minimum value of 0.005 using
the CosineLRScheduler scheme.
Main Findings and Results. The comprehensive comparison
with leading state-of-the-art methodologies is presented in
Table II. In the absence of utilizing a voting mechanism, our
PointGL and PointGL-elite attain impressive overall accura-
cies of 93.0% and 92.6%, respectively, notably surpassing
PointNet++ by a considerable margin of 2.3% and 1.9%.
Although exhibiting a slight decrease in accuracy compared
to CurveNet, our approach showcases substantial reductions
in model complexity while simultaneously achieving enhanced
efficiency. Specifically, PointGL-elite stands out with just 23%
of the parameters and 8% of the FLOPs, while exhibiting
training and inference speeds that are accelerated by 7.7-fold
and 6.3-fold, respectively.

C. Ablation Studies

Global Point Embedding. To validate our key observation
that conducting per-point feature embedding within each local
point set, akin to the PointNet++ approach, is unnecessary for
achieving optimal performance and would introduce signifi-
cant computational redundancy, we devised a model variant.
This variant involves relocating the point embedding step to
the local graph pooling stage, positioned immediately after the
k-nearest neighbors (kNN) operation.

Table IIIa confirms that PointGL outperforms the model
variant, achieving higher accuracy while significantly reducing
model complexity and improving efficiency. Specifically, while
maintaining an equivalent parameter count, PointGL reduces
FLOPs by an impressive factor of 11× and demonstrates
approximately 2.7× faster training speed, coupled with an
inference speed enhancement of approximately 2.5×. These
results effectively validate the critical importance of the global
point embedding design within the PointGL framework.

To examine the effect of the number of residual MLP
blocks on point embedding and its consequent impact on
performance, we manipulated the quantity of these blocks
within each learning stage, creating PointGL variants with 16,
24, and 32 layers by adjusting the number of blocks to 1, 2, and
3, respectively. As illustrated in Table IIIb, the addition of extra
embedding layers does not consistently result in improved
accuracy.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

Fig. 3. Salient geometric characteristics attained during the initial learning
stage of PointGL on the ModelNet40 dataset. Each point’s color corresponds
to its received vote count, wherein a more intense red hue signifies a greater
vote count, while a deeper blue shade indicates a lower count of votes.

TABLE IV
PART SEGMENTATION RESULTS ON THE SHAPENETPART DATASET.

Method Inst.
mIoU(%)

Cls.
mIoU(%)

Infer
Speed

PointNet [22] 83.7 80.4 -
DGCNN [11] 85.2 82.3 -
KPConv [25] 86.4 85.1 -
GDANet [45] 86.5 85.0 100.8
CurveNet [40] 86.6 - 60.0

PointNet++ [8] 85.1 81.9 276.3
PointMLP [14] 86.1 84.6 179.6
PointGL 85.6 83.8 284.6
PointGL-elite 85.0 83.0 309.0

Local Graph Pooling. The findings from Table IIIc reveal the
results of integrating each constituent aspect of local graph
pooling into a foundational architecture that employs direct
max pooling after the kNN operation. Evidently, the creation
of graphs to encapsulate point-to-point relationships emerges
as a crucial factor within PointGL, leading to a significant
improvement of the base architecture’s overall accuracy by
4.0%. The inclusion of learnable parameters, specifically α
and β, results in an additional enhancement of 0.8% in overall
accuracy, resulting in a peak accuracy of 86.9%. This strongly
underscores the validity of our design decisions.

Furthermore, we represent α ∈ RDs and β ∈ RDs as
Ds-dimensional learnable vectors, employed for channel-wise
adjustment of responses in differential features. To assess the
efficacy of our design, ablative experiments were conducted
by substituting both α and β with learnable scalars. The
experimental results indicate a noticeable performance degra-
dation due to this modification, resulting in an overall accuracy
reduction of 0.7%. These experiments affirm the effectiveness
of the channel-wise feature adjustment design.

Next, we proceed to further validate the impact of the values
of K, representing the number of neighboring points in the
kNN algorithm. As presented in Table IIId, both excessively
small (K = 12) and large (K = 36) values for K resulted in a

P
o

in
tG

L
P

o
in

tN
et

+
+

G
ro

u
n

d

T
ru

th

Fig. 4. Visualization of part segmentation outcomes on the ShapeNetPart
dataset. In contrast to PointNet++, PointGL’s predictions exhibit a more robust
alignment with the ground truth.

TABLE V
SEMANTIC SEGMENTATION RESULTS ON THE S3DIS AREA-5 DATASET.

Method mIoU
(%)

OA
(%)

mAcc
(%) #Params FLOPs Infer

Speed

PointNet [22] 41.1 - 49.0 3.6M - 205.6
DGCNN [11] 47.9 83.6 - 1.3M 44.9G 10.6
ASSANet-L [37] 66.8 - - 766.4M 86.0G 47.9
KPConv [25] 67.1 - 72.8 14.9M - -
RepSurf-U [41] 68.9 90.2 76.0 1.0M 3.4G 128.6
PT [13] 70.4 90.8 76.5 7.8M 3.1G 47.2

PointNet++ [8] 53.5 83.0 - 3.0M 6.5G 169.4
PointGL 65.6 88.6 71.9 3.5M 2.5G 184.1

decrease in predictive accuracy. This occurs because small K
values may lead to a diminished receptive field for features,
while large K values may attenuate local detailed features.
Optimal predictive accuracy was achieved with a suitable
value for K = 24. As a result, we adopted K = 24 in our
experiments.

We have successfully implemented the local graph pooling
as a versatile drop-in block, distinguished by its minimal
parameter requirement and enhanced efficiency. To assess
its adaptability in point-based models like PointNet++ and
PointMLP, we replaced the native max pooling with our local
graph pooling, excluding the sampling and kNN operations.
The results shown in Table IIIe demonstrate that the straight-
forward incorporation of local graph pooling consistently
enhances performance across a range of models. This un-
derscores the universal nature of our pooling approach, high-
lighting its seamless applicability within existing point-based
models to improve feature aggregation, all while incurring
minimal additional parameters and computational overhead.
Visualization of Features. To deepen our understanding of
the behavior of our hierarchical network, Fig. 3 offers a visual
representation of the focal areas to which the network directs
its attention during its initial learning stage. This was achieved
by gathering the indices generated by the max pooling process
within each local graph and subsequently consolidating these
indices across all local graphs, resulting in votes for each input

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

TABLE VI
PERFORMANCE ON KITTI Validation SET. * DENOTES RESULTS FROM OPENPCDET.

Method Car (IoU=0.7) Pedestrian (IoU=0.5) Cyclist (IoU=0.5)
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Second* [46] 88.83 78.60 77.33 57.88 53.26 49.00 81.05 67.62 63.06
PointPillar* [47] 87.05 77.29 75.65 56.49 50.83 46.84 79.56 63.35 59.53
Part-A2-free* [48] 89.07 78.64 78.10 68.02 63.13 58.32 86.70 72.33 69.59

PointRCNN* [49] 88.57 78.53 77.75 60.38 53.44 49.36 87.89 73.29 67.65
+ LGP 88.72 78.55 ↑0.02 77.66 61.60 54.38 ↑0.94 49.86 87.54 73.63 ↑0.34 71.31

PV-RCNN* [50] 89.58 83.19 78.86 63.72 57.35 53.40 84.93 71.67 68.29
+ LGP 89.43 83.49 ↑0.30 78.86 65.87 59.35 ↑2.00 54.56 86.36 72.67 ↑1.00 69.09

SECOND PV-RCNN PV-RCNN + LGP

Fig. 5. Illustrative outcomes of 3D object detection on the KITTI dataset. Ground-truth and predicted objects are distinguished by red and green boxes,
respectively. Integration of local graph pooling effectively recovers diminutive objects that were overlooked by the PV-RCNN baseline in intricate distant
scenarios.

point. Points that contribute more significantly to the local
representation, embodying recognized patterns, accumulate
increased votes. The highlighted structural elements encom-
passing planes, lines, corners, and similar features affirm the
network’s proficiency in discerning and encapsulating crucial
local geometric attributes.

D. Object Part and Scene Segmentation
The versatility of our PointGL framework allows for its

extension to a variety of tasks. To assess its performance
in the context of 3D shape part segmentation, we conducted
experiments on the ShapeNetPart dataset [51]. This dataset
comprises a collection of 16, 881 shapes distributed across 16
distinct classes, each annotated with 50 parts. We randomly
sampled 2, 048 points as inputs [8] and trained the model for
350 epochs using the Adam [52] optimizer with a batch size
of 32. The optimizer is configured with betas=(0.9, 0.999) and
learning rate of 0.003. The stepLR scheduler is also employed
to decrease the learning rate with step size of 40 and gamma
of 0.5.

As demonstrated in Table IV, our PointGL achieved remark-
able performance, boasting an instance average mean Inter-

section over Union (mIoU) of 85.6%, while also maintaining
notable inference speed. Furthermore, our approach outper-
formed the PointNet++ baseline in the majority of categories.
Fig. 4 visually reinforces how PointGL’s predictions closely
align with the ground truth.

Moreover, our PointGL approach underwent evaluation on
the S3DIS Area-5 dataset [53], which pertains to 3D semantic
segmentation. In our experimental setup, we train the PointGL
model with a batch size of 32 over 100 epochs, employing the
AdamW optimizer. The optimizer is specifically configured
with a learning rate of 0.01 and a weight decay rate of
1e-4. To manage the learning rate schedule, we utilize the
CosineLRScheduler scheme, which reduces the learning rate
progressively until it reaches a minimum value of 1e-5. As
presented in Table V, PointGL achieved remarkably compet-
itive performance, achieving an mIoU of 65.6%, surpassing
established benchmarks like PointNet++ (53.5%), while simul-
taneously performing on par with contemporary methods like
RepSurf-U. Significantly, these achievements were reached
with a lower FLOP count and maintained high-speed infer-
ence. These results underscore the adaptability of our PointGL
approach and its potential for utilization across a spectrum of

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

TABLE VII
CLASSIFICATION PERFORMANCE UNDER REAL-WORLD CORRUPTIONS ON

THE MODELNET40-C DATASET.

Method OA(%) mCE↓ Sca Jit D-G D-L A-G A-L Rot

DGCNN [11] 92.6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PointNet [22] 90.7 1.42 1.27 0.64 0.50 1.07 2.98 1.59 1.90
PointNet++ [8] 93.0 1.07 0.87 1.18 0.64 1.80 0.61 0.99 1.41
RSCNN [35] 92.3 1.13 1.07 1.17 0.81 1.52 0.71 1.15 1.48
GDANet [45] 93.4 0.89 0.83 0.84 0.79 0.89 0.87 1.04 0.98
SimpleView [55] 93.9 1.05 0.87 0.72 1.24 1.36 0.98 0.84 1.32
PAConv [10] 93.6 1.10 0.90 1.47 1.00 1.01 1.09 1.30 0.97
CurveNet [40] 93.8 0.93 0.87 0.73 0.71 1.02 1.35 1.00 0.81
PCT [12] 93.0 0.93 0.87 0.87 0.53 1.00 0.78 1.39 1.04
RPC [34] 93.0 0.86 0.84 0.89 0.49 0.80 0.93 1.01 1.08

PointGL 93.4 0.77 1.01 1.15 0.60 1.19 0.24 0.26 0.94

downstream tasks.

E. Object Detection

Data and Setup. Our proposed Local Graph Pooling operation
seamlessly integrates into point cloud backbones, facilitating
the extraction of intricate geometric features that can pro-
foundly benefit downstream tasks, such as object detection.
To demonstrate the effectiveness of our approach, we replaced
the native set abstraction layer with our proposed module in
prominent detection frameworks, specifically PV-RCNN [50]
and PointRCNN [49]. We then evaluated the resulting object
detectors on the widely used KITTI dataset [54]. The dataset
comprises a training set of 7, 481 samples, conventionally split
into 3, 712 and 3, 769 samples for training and validation,
respectively. Our detector was trained for 80 epochs using the
Adam optimizer, initialized with a learning rate of 0.01. The
weight decay of the optimizer is set to 0.01. The evaluation
metric employed was the per-class Average Precision (AP).
Results. The outcomes of integrating our innovative Local
Graph Pooling operation into the PV-RCNN [50] baseline are
detailed in Table VI. This integration resulted in significant im-
provements of 0.3, 2.0, and 1.0 in AP for the Car, Pedestrian,
and Cyclist categories, respectively. These results strongly
emphasize the effectiveness of our approach in enhancing
the acquired feature representation with intricate geometric
details, which substantially contribute to the successful de-
tection of objects of various scales. Moreover, the benefits
of our proposed methodology extend beyond PV-RCNN, as
it also yields improvements in other state-of-the-art detectors
like PointRCNN, highlighting its versatile applicability across
diverse detection frameworks.
Visualization. Qualitative results obtained through the appli-
cation of our approach are vividly depicted in Fig. 5. This vi-
sualization distinctly illustrates instances where the PV-RCNN
baseline faces challenges in detecting small objects, especially
in scenarios with sparse point density. In contrast, the incor-
poration of our proposed Local Graph Pooling operation leads
to a significant improvement in detection performance in such
scenarios. This empirical observation strongly emphasizes the
effectiveness of our method in capturing crucial geometric
details necessary for achieving accurate long-range object

TABLE VIII
SEGMENTATION PERFORMANCE UNDER REAL-WORLD CORRUPTIONS ON

THE SHAPENET-C DATASET.

Method mCE↓ Scale Jitter Drop-G Drop-L Add-G Add-L Rotate

DGCNN [11] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PointNet [22] 1.18 1.08 1.05 0.98 1.13 1.39 1.17 1.44
PointNet++ [8] 1.11 0.95 1.08 0.86 1.98 0.89 1.08 0.95
PAConv [10] 0.93 0.93 1.07 0.93 0.93 0.74 0.95 0.95
GDANet [45] 0.92 0.92 1.01 0.94 0.95 0.71 0.96 0.97
PT [13] 1.05 1.08 1.07 1.03 1.08 1.11 1.07 0.91
Point-MLP [14] 0.98 0.97 1.13 0.89 0.99 0.93 1.06 0.88
OcCo-DGCNN [57] 0.98 0.96 1.07 0.96 1.02 0.94 1.00 0.89
Point-BERT [58] 1.03 0.94 1.10 0.87 0.93 1.17 1.20 1.03
Point-MAE [59] 0.93 0.91 1.04 0.85 0.88 0.78 1.03 1.00

PointGL 0.82 0.99 1.10 0.94 1.05 0.42 0.43 0.84

detection, even in situations characterized by limited dense
point data.

F. Robustness Analysis

Real-world applications dealing with point cloud data often
encounter challenges arising from sensor inaccuracies and
complex scene structures, leading to data corruptions. Thus,
the ability to handle point cloud corruptions effectively be-
comes crucial for practical applications. To assess the re-
silience and versatility of our proposed PointGL approach, we
conducted a series of experiments on the ModelNet-C [34] and
ShapeNet-C [56] datasets. Our evaluation covers tasks such
as point cloud classification and part segmentation, conducted
under various corruption scenarios.
Results on ModelNet-C. We assess the robustness of our
proposed PointGL approach using the ModelNet-C [34] point
cloud classification corruption test suite. This suite encom-
passes seven distinct types of corruptions, each spanning five
severity levels. This comprehensive assessment framework
provides a rigorous evaluation of the model’s inherent ro-
bustness. Our model is trained on the clean ModelNet40 [44]
dataset and subsequently evaluated on the ModelNet-C [34]
test suite. Training utilizes the SGD optimizer with a batch
size of 32 and a learning rate of 0.1, conducted over 300
epochs.

Table VII presents a comprehensive summary of the eval-
uation results for point cloud classification models applied to
the ModelNet-C dataset. The results highlight a significant
observation - many state-of-the-art methods, known for their
high Overall Accuracy (OA) on the clean ModelNet40 dataset,
exhibit notable vulnerability when subjected to corruptions. In
contrast, our proposed PointGL excels by achieving the lowest
mean Corruption Error (mCE) of 0.77 across all corruption
scenarios. This accomplishment unquestionably demonstrates
the robustness of our model. These findings underscore the
substantial potential of PointGL in practical real-world sce-
narios.
Results on ShapePart-C. The ShapeNet-C [56] benchmark
is specifically designed to systematically assess the robust-
ness of point cloud segmentation models across a range
of corruptions. This benchmark encompasses seven distinct

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

corruption categories, each calibrated at five different severity
levels. To rigorously evaluate the robustness of our proposed
PointGL, we conducted an extensive set of experiments on
the ShapeNet-C [56] dataset, focusing on the task of part
segmentation. Throughout the model training procedure, we
employed the AdamW optimizer for a duration of 300 epochs,
with batch size of 16. The optimizer’s configuration comprised
a learning rate of 0.0002 and a weight decay coefficient of
0.05. Furthermore, we applied the CosineLRScheduler scheme
to modulate the learning rate, gradually reducing it to a
minimum value of 1e-6. The warm-up epoch period is set
to 10.

The performance of our proposed PointGL on the ShapeNet-
C benchmark is highlighted in Table VIII. The achieved class-
wise mIoU score of 0.82 significantly outperforms the state-
of-the-art PointMAE method by a substantial margin of 0.11.
Notably, PointMAE is a masked autoencoder (MAE) model
trained on a substantial volume of unlabeled point cloud
data. This noteworthy achievement underscores that PointGL
effectively harnesses vital local information while preserving
the integrity of semantic information. The demonstrated per-
formance not only speaks to the robustness of our approach but
also underscores its broad applicability across different tasks.

V. CONCLUSION

In this paper, we introduce PointGL, an architecture that
combines simplicity and potency to employ a novel compact
paradigm for efficient point cloud analysis. Our approach
initiates by generating feature embeddings for individual
points through residual MLPs. Subsequently, we introduce
an innovative technique called local graph pooling, aimed at
capturing regional features while minimizing extra learnable
parameters and computational overhead. Our experiments on
diverse benchmarks consistently demonstrate PointGL’s supe-
rior performance compared to previous state-of-the-art models,
achieving this with significantly reduced model complexity
and heightened efficiency. We anticipate that our PointGL
architecture will serve as an inspiration for the community to
reevaluate efficient network design strategies tailored to point
clouds.

REFERENCES

[1] S. Deng, Q. Dong, B. Liu, and Z. Hu, “Superpoint-guided semi-
supervised semantic segmentation of 3d point clouds,” in ICRA, 2022.

[2] Y. Zhao, X. Zhang, and X. Huang, “A divide-and-merge point cloud
clustering algorithm for lidar panoptic segmentation,” in ICRA, 2022.

[3] X. Chen, H. Zhao, G. Zhou, and Y.-Q. Zhang, “Pq-transformer: Jointly
parsing 3d objects and layouts from point clouds,” IEEE RAL, 2022.

[4] Q. Yang, H. Chen, Z. Ma, Y. Xu, R. Tang, and J. Sun, “Predicting
the perceptual quality of point cloud: A 3d-to-2d projection-based
exploration,” IEEE TMM, 2020.

[5] S. Qiu, S. Anwar, and N. Barnes, “Geometric back-projection network
for point cloud classification,” IEEE TMM, 2021.

[6] X.-F. Han, Y.-F. Jin, H.-X. Cheng, and G.-Q. Xiao, “Dual transformer
for point cloud analysis,” IEEE TMM, 2022.

[7] M. Shabbir, A. Shabbir, C. Iwendi, A. R. Javed, M. Rizwan, N. Herenc-
sar, and J. C.-W. Lin, “Enhancing security of health information using
modular encryption standard in mobile cloud computing,” IEEE Access,
vol. 9, pp. 8820–8834, 2021.

[8] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” in NeurIPS, 2017.

[9] W. Wu, Z. Qi, and L. Fuxin, “Pointconv: Deep convolutional networks
on 3d point clouds,” in CVPR, 2019.

[10] M. Xu, R. Ding, H. Zhao, and X. Qi, “Paconv: Position adaptive
convolution with dynamic kernel assembling on point clouds,” in CVPR,
2021.

[11] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds,” ACM TOG,
2019.

[12] M.-H. Guo, J.-X. Cai, Z.-N. Liu, T.-J. Mu, R. R. Martin, and S.-M. Hu,
“Pct: Point cloud transformer,” Computational Visual Media, 2021.

[13] H. Zhao, L. Jiang, J. Jia, P. H. Torr, and V. Koltun, “Point transformer,”
in ICCV, 2021.

[14] X. Ma, C. Qin, H. You, H. Ran, and Y. Fu, “Rethinking network design
and local geometry in point cloud: A simple residual mlp framework,”
in ICLR, 2022.

[15] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network
for real-time object recognition,” in IROS, 2015.

[16] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao,
“3d shapenets: A deep representation for volumetric shapes,” in CVPR,
2015.

[17] H. Guo, J. Wang, Y. Gao, J. Li, and H. Lu, “Multi-view 3d object
retrieval with deep embedding network,” TIP, 2016.

[18] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas,
“Volumetric and multi-view cnns for object classification on 3d data,”
in CVPR, 2016.

[19] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view
convolutional neural networks for 3d shape recognition,” in ICCV, 2015.

[20] A. Saha, O. Mendez, C. Russell, and R. Bowden, “Translating images
into maps,” in ICRA, 2022.

[21] L. Wiesmann, R. Marcuzzi, C. Stachniss, and J. Behley, “Retriever: Point
cloud retrieval in compressed 3d maps,” in ICRA, 2022.

[22] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in CVPR, 2017.

[23] Z. Liu, H. Hu, Y. Cao, Z. Zhang, and X. Tong, “A closer look at local
aggregation operators in point cloud analysis,” in ECCV, 2020.

[24] M. Meraz, M. A. Ansari, M. Javed, and P. Chakraborty, “Dc-gnn:
drop channel graph neural network for object classification and part
segmentation in the point cloud,” International Journal of Multimedia
Information Retrieval, vol. 11, no. 2, pp. 123–133, 2022.

[25] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and
L. J. Guibas, “Kpconv: Flexible and deformable convolution for point
clouds,” in ICCV, 2019.

[26] G. Qian, Y. Li, H. Peng, J. Mai, H. Hammoud, M. Elhoseiny, and
B. Ghanem, “Pointnext: Revisiting pointnet++ with improved training
and scaling strategies,” NeurIPs, 2022.

[27] Y. Xu, T. Fan, M. Xu, L. Zeng, and Y. Qiao, “Spidercnn: Deep learning
on point sets with parameterized convolutional filters,” in ECCV, 2018.

[28] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “Pointcnn:
Convolution on x-transformed points,” NeurIPS, 2018.

[29] Z.-H. Lin, S. Y. Huang, and Y.-C. F. Wang, “Learning of 3d graph
convolution networks for point cloud analysis,” IEEE TPAMI, 2021.

[30] H. Ran, W. Zhuo, J. Liu, and L. Lu, “Learning inner-group relations on
point clouds,” in ICCV, 2021.

[31] D. Hendrycks and T. Dietterich, “Benchmarking neural network ro-
bustness to common corruptions and perturbations,” arXiv preprint
arXiv:1903.12261, 2019.

[32] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar, “Do imagenet
classifiers generalize to imagenet?” in ICML, 2019.

[33] A. Barbu, D. Mayo, J. Alverio, W. Luo, C. Wang, D. Gutfreund,
J. Tenenbaum, and B. Katz, “Objectnet: A large-scale bias-controlled
dataset for pushing the limits of object recognition models,” NeurIPs,
2019.

[34] J. Ren, L. Pan, and Z. Liu, “Benchmarking and analyzing point cloud
classification under corruptions,” arXiv preprint arXiv:2202.03377,
2022.

[35] Y. Liu, B. Fan, S. Xiang, and C. Pan, “Relation-shape convolutional
neural network for point cloud analysis,” in CVPR, 2019.

[36] J. Wang, J. Li, L. Ding, Y. Wang, and T. Xu, “Papooling: Graph-based
position adaptive aggregation of local geometry in point clouds,” arXiv
preprint arXiv:2111.14067, 2021.

[37] G. Qian, H. Hammoud, G. Li, A. Thabet, and B. Ghanem, “Assanet:
An anisotropic separable set abstraction for efficient point cloud repre-
sentation learning,” in NeurIPS, 2021.

[38] X. Yan, C. Zheng, Z. Li, S. Wang, and S. Cui, “Pointasnl: Robust
point clouds processing using nonlocal neural networks with adaptive
sampling,” in CVPR, 2020.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

[39] A. Hamdi, S. Giancola, and B. Ghanem, “Mvtn: Multi-view transfor-
mation network for 3d shape recognition,” in ICCV, 2021.

[40] T. Xiang, C. Zhang, Y. Song, J. Yu, and W. Cai, “Walk in the cloud:
Learning curves for point clouds shape analysis,” in ICCV, 2021.

[41] H. Ran, J. Liu, and C. Wang, “Surface representation for point clouds,”
in CVPR, 2022.

[42] M. A. Uy, Q.-H. Pham, B.-S. Hua, T. Nguyen, and S.-K. Yeung,
“Revisiting point cloud classification: A new benchmark dataset and
classification model on real-world data,” in ICCV, 2019.

[43] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with
warm restarts,” arXiv preprint arXiv:1608.03983, 2016.

[44] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao,
“3d shapenets: A deep representation for volumetric shapes,” in CVPR,
2015.

[45] M. Xu, J. Zhang, Z. Zhou, M. Xu, X. Qi, and Y. Qiao, “Learning
geometry-disentangled representation for complementary understanding
of 3d object point cloud,” in AAAI, 2021.

[46] Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded convolutional
detection,” Sensors, 2018.

[47] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,” in
CVPR, 2019.

[48] S. Shi, Z. Wang, J. Shi, X. Wang, and H. Li, “From points to parts: 3d
object detection from point cloud with part-aware and part-aggregation
network,” IEEE TPAMI, 2020.

[49] S. Shi, X. Wang, and H. Li, “Pointrcnn: 3d object proposal generation
and detection from point cloud,” in CVPR, 2019.

[50] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li, “Pv-rcnn:
Point-voxel feature set abstraction for 3d object detection,” in CVPR,
2020.

[51] L. Yi, V. G. Kim, D. Ceylan, I.-C. Shen, M. Yan, H. Su, C. Lu, Q. Huang,
A. Sheffer, and L. Guibas, “A scalable active framework for region
annotation in 3d shape collections,” ACM TOG, 2016.

[52] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[53] I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis, M. Fischer,
and S. Savarese, “3d semantic parsing of large-scale indoor spaces,” in
CVPR, 2016.

[54] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research, 2013.

[55] A. Goyal, H. Law, B. Liu, A. Newell, and J. Deng, “Revisiting point
cloud shape classification with a simple and effective baseline,” in ICML,
2021.

[56] J. Ren, L. Kong, L. Pan, and Z. Liu, “Pointcloud-c: Benchmarking and
analyzing point cloud perception robustness under corruptions,” preprint,
2022.

[57] H. Wang, Q. Liu, X. Yue, J. Lasenby, and M. J. Kusner, “Unsupervised
point cloud pre-training via occlusion completion,” in ICCV, 2021.

[58] X. Yu, L. Tang, Y. Rao, T. Huang, J. Zhou, and J. Lu, “Point-bert: Pre-
training 3d point cloud transformers with masked point modeling,” in
CVPR, 2022.

[59] Y. Pang, W. Wang, F. E. Tay, W. Liu, Y. Tian, and L. Yuan, “Masked
autoencoders for point cloud self-supervised learning,” in ECCV, 2022.

	Introduction
	Related Work
	Method
	Revisiting Point-based Approaches
	PointGL Framework
	Architectural Details

	Experiment
	Shape Classification on ScanObjectNN
	Shape Classification on ModelNet40
	Ablation Studies
	Object Part and Scene Segmentation
	Object Detection
	Robustness Analysis

	Conclusion
	References

