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DCMSTRD: End-to-end Dense Captioning via

Multi-Scale Transformer Decoding
Zhuang Shao, Jungong Han, Kurt Debattista, Yanwei Pang

Abstract—Dense captioning creates diverse Region of Interests
(RoI) descriptions for complex visual scenes. While promising
results have been obtained, several issues persist. In particular:
1) it is hard to find the optimal parameters for artificially de-
signed modules (e.g., non-maximum suppression (NMS)) causing
redundancies and fewer interactions to benefit the two sub-
tasks of RoI detection and RoI captioning; 2) the absence of
a multi-scale decoder in current methods hinders the acquisition
of scale-invariant features, thus leading to poor performance.
To tackle these limitations, we bypass the artificially designed
modules and present an end-to-end dense captioning framework
via multi-scale transformer decoding (DCMSTRD). DCMSTRD
solves dense captioning by set matching and prediction instead.
To further enhance the discriminative quality of the multi-scale
representations during caption generation, we introduce a multi-
scale module, termed multi-scale language decoder (MSLD).
Our proposed method tested on standard datasets achieves a
mean Average Precision (mAP) of 16.7% on the challenging
VG-COCO dataset, demonstrating its effectiveness against the
current methods.

Index Terms—Dense Captioning, Artificially Designed Mod-
ules, End-to-end Dense Captioning framework via Multi-Scale
Transformer Decoding (DCMSTRD), Multi-Scale Language De-
coder (MSLD)

I. INTRODUCTION

Dense captioning is an extension of image captioning [1].

Instead of producing a single caption for the entire image,

dense captioning aims to detect all the Region of Interests

(RoIs) in the input and describe them via natural language.

Thanks to the salient-part descriptors that provide rich and

dense semantic visual information, dense captioning can ben-

efit other tasks, including visual question answering [2], image

segmentation [3], [4], and action recognition [5], [6].

Most current image captioning methods adhere to an

encoder-decoder architecture, a paradigm prompted by the

successful transfer of sequence-to-sequence training to achieve

machine translation [7]. In this architecture, a Convolutional

Neural Network (CNN) typically acts as an encoder to extract

image features before they are decoded by a trainable Re-

current Neural Network (RNN). Yet, the simplicity of these
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encoder-decoder frameworks leads to descriptions that do not

focus well on salient regions and object information in an

image. To remedy such issues, subsequent work focused on

designing different weight modules for each feature map.

Specifically, [8], [9] implemented a Bottom-Up and Top-Down

Attention algorithm, prioritizing different regions from the

learned weights of feature maps. Likewise, [10] devised a

dual-stream co-attention module to combine different kinds of

visual features to produce the corresponding different words.

Although these approaches have achieved relatively good per-

formances, further works have explored diverse architectures

and other unique evaluation metrics. This exploration has

been propelled along two intersecting trajectories. Firstly,

Transformer [11] frameworks were used to contribute to the

generation of image captions. For example, [12] proposed

an Attention on Attention model, which extended the self-

attention in the Transformer to optimise the results of attention.

[13] proposed a Transformer-based structure to align grid

features to reduce semantic noise in attention. Additionally,

[14] introduced RSTNet, an architecture combining spatial

information and adaptive attention to bridge the gap between

non-visual signals and textual content. Secondly, recent strides

in image captioning have enhanced the diversity and distinc-

tiveness of the generated captions. [15] proposed a framework

with latent spaces of context-object split to create more diverse

captions. In a similar vein, [16] presented a novel metric

named CIDErBtw to supervise the training, elevating the

distinctiveness of images sharing similar themes.

Generally, dense captioning emerges as a more intricate

task, compared to image captioning, due to the demand-

ing need for deep comprehension of visual scenes and the

generation of coherent natural language sequences for each

region of interest. [20] set the trajectory for dense captioning

and introduced an architecture named Fully Convolutional

Localization Network (FCLN), which constitutes a bilinear

interpolation location module to detect the RoIs and an LSTM

decoder to produce the descriptions. Following this pioneer-

ing work, many alternatives were proposed, which can be

roughly classified into two classes: context methods and non-

context methods. Initially, architectures were centred around

the adoption of Faster R-CNN [21] for RoIs localization

and Long Short-Term Memory (LSTM) module [22] for the

descriptors. This category aligns with so-called non-context

methods, which processed the RoIs independently but did

not leverage contextual knowledge for improved performance.

Addressing this challenge, [23] pioneered an approach that

combined RoI features with image features. This integration

can be seen as creating a global context by fusing these
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(a) The first example of visualisation results for dense captioning
from [17].
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(b) The second example of visualisation results for dense captioning
from [18].

Fig. 1: Current methods always rely on artificially designed

components especially non-maximum suppression (NMS),

which always render redundancies and fewer interactions to

benefit the two sub-tasks of RoI detection and RoI captioning.

Two examples of dense captioning visualization from [18] and

[17]. (The thresholds of pre-NMS and post-NMS are 0.7 and

0.5 respectively)

elements prior to captioning via an LSTM decoder. Never-

theless, this kind of context is too coarse, offering imprecise

cues during training. To alleviate this phenomenon, several

methods have been devised, delving into more refined forms

of contextualization. For instance, [24] integrated the global,

neighbours and target RoI features into a non-local similarity

graph for caption generation. Alternatively, with the supportive

data statistics, [19] extracted the object-level knowledge as

context clues and transformed them into descriptions forming

a close relationship between RoIs and detected objects via

object detection in the whole architecture. Inspired by the

Transformer architecture, Shao et al. [17] applied a Trans-

former model to encode objects and regions and devised a

special loss (ROCSU) to exploit the region-object correlation

score and improve the captioning performance. Furthermore,

[18] presented a Textual Context Module (TCM) to capture

the textual context and a Dynamic Vocabulary Frequency

Histogram (DVFH) re-sampling framework to improve the

word-learning efficiency during the training stage.

Despite the previous overall success of the aforementioned

methods, the realization of the dense captioning system still
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(b) The second example of visualisation results for dense captioning
from [19].

Fig. 2: Previous dense captioning methods always ignore the

learning of multi-scale features and therefore fail to learn

scale-invariant features for the same class of RoIs but with

different scales. Two examples of dense captioning visualiza-

tion from [18] and [19].

remains imperfect. We believe that limitations still exist, with

two, in particular, standing out as areas ripe for improvement.

Firstly, existing methods [19] [24] [17] [18] predominantly

adhere to a two-stage process, leveraging Faster R-CNN as

their RoI detection frameworks. However, Faster R-CNN relies

on an array of artificially designed modules, in particular,

non-maximum suppression (NMS). These artificially designed

modules usually include pre-defined parameters, but it is

extremely difficult to find the optimal combination of these

parameters for every image across the whole dataset. Hence,

these modules tend to induce redundancies while hampering

interactions to benefit the two sub-tasks of RoI detection and

RoI captioning. We display this limitation via two examples

chosen from the state-of-the-art methods [18] and [17] respec-

tively in Fig. 1.

Fig. 1a demonstrates the challenge of choosing optimal pa-

rameters for the NMS threshold and other artificially designed

components to effectively merge similar RoIs with a high

Intersection of Union (IoU) [21] value for all the images across

the dataset. This intricacy gives rise to repetitive captions.

Specifically, ‘a fence behind the man’ appears four times in

the results, while ‘a man is holding a skateboard’ and ‘a man

on a skateboard’ are also repetitive (appears twice). This also
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applies to Fig. 1b, in which ‘power lines above the train’ is

repeated four times and ‘a traffic light’ and ’train on the tracks’

repeat twice as a result of the poorly pre-defined threshold of

the NMS components for this image, which fails to merge

these repetitive results together.

Secondly, the decoders of previous dense captioning archi-

tectures are incapable of capturing multi-scale features, thus

struggling a lot to learn scale-invariant features for objects of

the same class but varying scales. As a result, the decoder is

likely to produce poor captions for such RoIs or even ignore

a part of multi-scale RoIs, leading to suboptimal performance.

Examples of this shortcoming are shown in Fig. 2. In Fig. 2a,

the decoder of [18] successfully captioned the two horses at

the front (with a similar size, relatively large) whereas it fails

to supply satisfactory captions for the differently sized horses

in the background. It either recognizes the horses as sheep

(the yellow RoI on the left with a caption of ‘a white sheep’

and the brown RoI in the middle with a caption of ‘a white

sheep grazing’) or person or people (the white RoI with a

description of ‘a person sitting’ on the right, the purple one in

the middle ‘a person standing’ and the yellow RoI ‘a group of

people’). Furthermore, in Fig. 2b, even if the decoder of [19]

roughly detected and described the RoIs (red and yellow) in

the bottom right corner, it is unable to detect any of the persons

in the background due to the missing of the multi-scale feature

module and only ends up with the large purple RoI and an

ambiguous sentence ‘a large group’, which is less accurate.

The main contributions of this paper are three-fold:

• We present an end-to-end dense captioning framework via

multi-scale transformer decoding (DCMSTRD), which

parallelizes the RoI selection and the captioning task.

DCMSTRD solves the dense captioning task by set

matching and prediction, instead of relying on artificially

designed modules, thus alleviating the redundancy issue

of conventional frameworks of prior works.

• A novel language module, named multi-scale language

decoder (MSLD), is proposed to boost the learning of the

multi-scale representations during the caption generation.

The most significant feature of MSLD lies in its capacity

to incorporate multi-scale features and supply more scale-

invariant features with RoIs consisting of objects with the

same class. This new module improves the accuracy of

the caption generation.

• A thorough validation of our proposed DCMSTRD

method on VGCOCO, VG V1.0 and VG V1.2 datasets

demonstrates a substantial performance improvement

over existing methods in terms of mean Average Precision

(mAP).

The following part of this paper is organized as follows:

To begin with, we review the prior works in Section II. Later

on, in Section III, we present the proposed methodology and

expound on the details of our presented DCMSTRD. Exper-

imental results are displayed in Section IV with qualitative

and quantitative discussions. Finally, we draw a conclusion

and discuss our potential future works in Section V.

II. RELATED WORK

A. Image Captioning

Image captioning [25]–[27] aims to generate descriptions

based on the provided image. In the early stages of research,

many solutions relied on retrieval-based methods. These ap-

proaches involved creating predefined templates within re-

trieval caption candidates [28] using simple visual feature

encoders [8]. Nevertheless, a limitation of this approach

was its inability to connect image descriptions with entirely

new objects across the entire dataset [28]. To address this

challenge, the field shifted towards deep learning methods

as the technology and hardware advanced. The adoption of

deep neural networks (DNN) became prevalent in the later

stages of development. Initially, [29] introduced an embedding

model of both image and text to build up a multi-modal

sentence production model, utilizing a Convolutional Neural

Network (CNN) as the encoder and a Long Short-Term Mem-

ory (LSTM) as the decoder, as well as [1] further proposed

a reinforcement learning framework. In a later work, [30]

designed a fine-grained region feature extractor using an R-

CNN object detector [31], enabling the generation of region-

level captions for the given image.

These encoder-decoder architectures assigned equal impor-

tance to all detected regions, neglecting the significance of

certain regions that could provide crucial visual cues for cap-

tioning. To address this concern, diverse attention mechanisms

were introduced due to their adaptable nature. [9] introduced a

model incorporating semantic attention, whilst [32] introduced

a bottom-up and top-down attentive module to represent

the input image with a set of objects detected by a fixed

object detector. In recent years, the adoption of Transformer

regime [11] has greatly influenced Natural Language Pro-

cessing (NLP) and various computer vision tasks including

image captioning. [33] pioneered and proposed a Transformer

pipeline for image captioning. This model extracted the whole

image feature and uniformly sampled features by dividing

the image into patches, which were input sequentially into

the Transformer encoder [11] one by one. Several other

Transformer-based solutions have also focused on enhanc-

ing captioning performance by exploring hidden properties.

Among these efforts, [13] incorporated grid features to coordi-

nate with Region of Interest (RoI) features, reducing semantic

noise in the attention mechanism of the older Transformer

architecture. Meanwhile, [14] presented RSTNet, a model

that incorporated spatial information to flatten grid features

and employed adaptive attention to connect textual and non-

visual cues. On a different note, some prior research have

sought to improve the variety and uniqueness of generated

captions. Notably, [15] introduced separate latent spaces of

context and objects to increase caption diversity. In another

approach, [16] introduced a novel evaluation metric, namely

CIDErBtw, which supervised the training process to generate

distinctive words for images sharing common themes.

B. Dense Captioning

Despite the ability to supply a general overview of an entire

image by image captioning, over time, it became evident that
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Fig. 3: The proposed DCMSTRD framework is made up of a Transformer Encoder, followed by an RoI detection detector, and a

novel multi-scale language decoder (MSLD). Provided an image, the Transformer encoder takes the features extracted from the

backbone and encodes them with the attention mechanism. The output and the RoI query are fed into the RoI detection decoder

made up of two layers and decoded by the mutual attention mechanism inside. The outputs of these two layers are connected

by the fc layer to attain the results of classification and bounding box regression before being matched with groundtruth by

a bipartite matching method (Hungarian algorithm). Finally, the output of the two layers of the RoI detection decoder and

the word embeddings are input into the novel multi-scale language decoder (MSLD) to capture multi-scale information and

sentence information is decoded thus generating dense captions for each RoI.

this approach fell short of achieving more intricate and detailed

descriptions. To remedy this, dense captioning [20] emerged as

a novel task, demanding an intelligent vision system capable

of both localizing and describing multiple significant regions

within an image using natural language [18].

Due to the richer and fine-grained local descriptions, dense

captioning can facilitate many industrial applications, such as

blind navigation and human-robot interaction, and autonomous

driving. To be specific, for blind navigation, after capturing

an image using a smartphone camera and uploading it, the

data is transferred to a distant server through a cloud system.

In the particular example in [34], on this remote server, a

Python script featuring a pre-trained dense captioning model

is utilised to produce captions for the image. Subsequently,

these generated captions are transmitted back to the user’s

smartphone through the cloud system, where they are later

converted into audio. For the human-robot interaction, when

a human’s image is captured by the camera of the robot, the

image is sent to the server with pre-trained dense captioning

to generate captions as useful instructions for the robot. Once

the robot receives these instructions, it further processes it to

finally take proper action for the user.

Existing dense captioning algorithms always adhere to two

trajectories: Non-context dense captioning and context-guided

dense captioning.

1) Non-context Dense Captioning: The pioneering frame-

work proposed by [20] consists of a Region Proposal Network

(RPN) based on Faster R-CNN, equipped with a bi-linear

interpolation location module as an encoder and an LSTM

as a decoder. Initially, all proposals are symbolized by the

aligned features. These features are later fed into the RPN for

binary foreground RoI detection. Identified foreground anchors

are transformed into RoIs with corresponding features, with

slight adjustments to bounding box coordinates. Finally, RoIs

are captioned using an LSTM captioning model.

2) Dense Captioning With Context: To further enhance

dense captioning performance, contextual knowledge was in-

troduced to guide the task. [23] pioneered to incorporate

context into dense captioning. In contrast to [20], this approach

fused region features with global context features extracted

from the entire image to generate descriptions. While the

additional context improved the performance, it was observed

that this form of contextual knowledge was too coarse to

encode fine-grained context effectively.

In pursuit of capturing more fine-grained and detailed

context, following endeavors were made. For instance, [24]
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incorporated RoI neighbors and target RoI features into a non-

local similarity graph to guide caption generation. Building

on this, [19] recognized the potential of objects in images

to provide valuable cues for locating RoIs, generating de-

scriptions, and offering corresponding evidence through data

statistics. Motivated by this revelation, authors pre-trained

an offline object detector as guidance information for model

training. Addressing the long-dependencies issue of LSTM

and the equal weighting of RoIs in [19], [17] leveraged

Transformer architecture to encode objects and regions. They

also introduced a specialized loss module (ROCSU) to deter-

mine region-object correlation scores, resulting in significant

performance improvements. Additionally, [18] identified the

importance of textual context in cooperation with visual con-

text during the captioning process, as well as the need for im-

proved word training efficiency. To address these challenges,

they introduced a Textual Context Module (TCM) within the

Transformer decoder and a Dynamic Vocabulary Frequency

Histogram (DVFH) to tackle these issues.

C. Transformer-based Object Detectors

Transformer-based architecture was first invented by [11]

and many following variants focused on the refinement of the

model structure. In particular, the Swin-Transformer scheme

was proposed in [35] to gain a better representation of images.

In addition, [36] introduced a Transformer in Transformer

framework, taking advantage of smaller patches for more fine-

grained features.

Recognising the Transformer’s effectiveness in handling

long sequential data, it found success in various computer

vision tasks, including object detection. [37] took the ini-

tiative to introduce DETR, an end-to-end pipeline for object

detection, which framed object detection as a set matching

problem between queries and ground-truth bounding boxes.

Subsequently, several upgraded versions, such as deformable

DETR [38], were proposed to accelerate training and improve

performance by focusing on local sampling points around

a reference. Despite the achievements in object detection,

the potential of Transformer-based models in addressing the

challenging task of dense captioning remains underexplored.

Drawing inspiration from the concise structure of traditional

Faster R-CNN frameworks without artificially designed com-

ponents, we integrated the DETR detector into the challenging

dense captioning task.

III. METHODOLOGY

Our end-to-end dense captioning framework, shown in

Fig. 3, is comprised of several key components. When pre-

sented with an image, our Transformer encoder utilizes at-

tention mechanisms to encode the features extracted from

the backbone. The RoI detection decoder, composed of two

sequential cascade decoder layers, performs both RoI clas-

sification and regression, followed by a prediction head,

in accordance with [37]. Our elaborately designed module,

known as MSLD, employs a multi-scale supervision scheme

in conjunction with a parallel decoder that takes cues from

one of the two RoI detection decoders as its input. This

innovative approach allows to generate discriminative multi-

scale features that are instrumental for the captioning task.

Furthermore, our MSLD leverages this multi-scale supervision

scheme to provide a variety of feature queries, guiding feature

learning for dense captioning across different object scales.

To facilitate feature learning across diverse scales, we employ

our MSLD module through a multi-scale extension, utilizing

features from various layers. Consequently, the resulting multi-

scale captioning features are harnessed to generate captions for

regions of interest (RoIs).

In the upcoming sections, we will initially introduce our

end-to-end dense captioning framework. Subsequently, we will

delve into the deployment of our novel multi-scale language

decoder (MSLD). Finally, we will provide detailed insights

into model training and optimization.

A. Dense captioning framework via multi-scale transformer

decoding (DCMSTRD)

1) Visual Feature Extraction: To capture rich features in

a given image, in our DCMSTRD, we adopt a pre-trained

ResNet-101 [39] backbone as in the work of [37] to ex-

tract the image features. To be specific, given an image

x ∈ R3×H0×W0 , the ResNet-101 backbone, derives a lower-

resolution activation map f ∈ RC×H×W , (C = 2048). To fit

the sequential input of the following Transformer encoder, we

collapse f to a feature map F ∈ RHW×C .

2) Transformer Encoder: The transformer encoder takes F

as input. The choice of the number of Transformer encoder

layers is determined empirically, taking into account two key

factors. First, dense captioning involves two complex subtasks:

RoI localization and RoI captioning. In similar compound

tasks, such as dense video captioning in works like [40]

and [41], as well as dense captioning in [18], it has been

observed empirically that using two Transformer layers yields

effective results. The second factor is the potential mem-

ory constraints. Compound tasks are often computationally

demanding, and using too many Transformer layer stacks

can lead to memory issues. To mitigate this, we opt for a

Transformer encoder with two encoder layers. Each of these

encoder layers follows a standard architecture, comprising a

multi-head self-attention module and a feed-forward network

(FFN). Additionally, positional encodings, as described in [42]

and [43], are incorporated into the input of each attention layer.

The outputs of these encoder layers are represented as E1 and

E2, both of which are in the form of RHW×C .

3) RoI detection decoder: The RoI detection decoder,

which also constitutes two decoder layers, takes E2 and N RoI

queries as inputs and N is remarkably larger than the typical

number of RoIs in an image. Each decoder layer contains a

standard self-attention layer and an encoder-decoder attention

layer as [37]. In this way, the N RoI queries are transformed

into the output features from each decoder layer, which are

represented as D1 and D2 both belonging to the space RN×C .

They are then independently decoded into box coordinates and

class labels by two fully connected layers, resulting in N final

predictions before binary set matching with the groundtruth.
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4) Set matching: After obtaining the box coordinates and

class labels from the features of each decoder layer D1, D2,

our DCMSTRD matches predicted RoIs with the groundtruth,

taking into account both RoI classification and box coordi-

nates. Specifically, we adopt the Hungarian matching algo-

rithm following [41] to assign the optimal bipartite matching

results. The matching cost function is defined as follows:

Cost = αclsCcls + αgiouCgiou + αRoICRoI , (1)

where Ccls represents the binary cross entropy loss of the

predicted classification score and the groundtruth label, Cgiou

represents the generalized IoU [44] of the RoI and groundtruth

coordinates, which are the center coordinates and the height

and width relative to the image size as in [37]. CRoI represents

the l1 loss between the predictions of the RoI coordinates

and the groundruth RoI coordinates. αcls, αgiou, and αCRoI

are hyperparameters set as 1.0, 2.0, 5.0 after [37]. These

coefficient values are empirical. It considers the information

from two aspects. Firstly, dense captioning is a compound

task, consisting of two complex tasks: RoI localisation and RoI

captioning. We found that many works on similar compound

tasks empirically adopted the similar group of values for these

coefficients. For example, [41] for dense video captioning,

and [45] for pedestrian search. The second reason for this

choice of numbers is that the RoI localisation is one of two

sub-tasks, which are relatively more important than the RoI

classification and therefore allocated a larger coefficient. After

conducting the matching algorithm, the matched RoIs are

selected, and the corresponding multi-scale features from D1,

D2 ∈ RN×C , denoted as H1, H2 ∈ Rn×C , where n represents

the RoI number of the groundtruth in the given image. H1 and

H2 also acts as the input of the multi-scale language decoder

(MSLD) that will be introduced in the following section.

B. Multi-scale dense captioning decoder (MSLD)

Scale variation poses a major challenge in dense captioning

as demonstrated in Fig. 2. To tackle this issue, we introduce an

innovative and simple extension of our multi-scale language

decoder (MSLD). The structural layout of this extension is

depicted in Fig. 4. To extract multi-scale captioning features,

it utilizes the features D1 and D2 ∈ RN×C , as introduced in

Section III-A3, during the testing phase, and relies on word

embeddings S as input during training. Comprising two layers

to maintain consistency with the RoI detection decoder, each

captioning decoder layer incorporates a self-attention layer for

fine-tuning language features and a vision-language attention

layer, which aids in learning multi-scale representations for the

captioning task. The process of MSLD is outlined as follows:

SA(Sl
≤t) =





LN(MA(sl1, S
l, Sl), sl1)

...

LN(MA(slt, S
l, Sl), slt)



 ;

V LA(Sl
≤t) =





LN(MA((SA(Sl
≤t)1), Hl, Hl), SA(Sl

≤t)1)
...

LN(MA((SA(Sl
≤t)t), Hl, Hl), SA(Sl

≤t)t)



 ;

Sl+1

≤t = LN(FFL(V LA(Sl
≤t)), V LA(Sl

≤t));

p(wt+1|S
L
≤t) = softmax(WV S

L
t+1),

(2)

where WV ∈ RVs×demb represents a matrix comprising word

embeddings for the entire dictionary encompassing all words

across the dataset. s0i , i = 1...t stands for a series of corre-

sponding word embeddings for the sentence with a dimension

of demb. The variable l indicates the layer index and takes

on values from the set 1,2. Sl
≤t = (sl1, ..., s

l
t) represents the

predicted words up to time step t+1, with a triangular matrix

masking out word information beyond this step. Here, SA

denotes the self-attention layer, and MA corresponds to the

multi-head attention, following the model proposed in [11].

LN stands for layer normalization, as described in [46]. V LP

signifies the vision-language attention mechanism, which at-

tends to language features up to step t, incorporating multi-

scale representations Hl from the RoI detection decoder. FFL

represents the feed-forward layer, following the formulation

in [11], and p(wt+1|S
L
≤t) refers to the probability distribution

over each word in the dictionary at time step t+ 1.

C. Training and Optimization Details

In this section, we will delve into the training and opti-

mization specifics of our experiments. To ensure that both

the localization of detected Regions of Interest (RoIs) and

descriptive captions closely align with ground truth in an end-

to-end fashion, we employ multiple loss components during

each training iteration, as outlined below:

L = λclsLcls + λgiouLgiou + λRoILRoI + λcapLcap, (3)

where Lcls represents the binary cross entropy loss of the

predicted RoI classification score and the groundtruth labels,

Lgiou represents the generalized IoU [44] of the matched

RoI (excluding the unmatched background) bounding boxes

and the groundtruth coordinates, in the form of the center

coordinates and their height and width relative to the image

size as in [37]. LRoI represents the l1 loss between the

matched predictions of the RoI coordinates and groundruth
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RoI coordinates. Lcap is the cross entropy loss of P =
{p(wi|θ), i ∈ [1, Senmax], which is the probability distribu-

tion of descriptive sentences for RoIs in the RoI batch, and

their groundtruth sentences word by word. θ represents all the

trainable parameters of the whole system and Senmax is the

pre-set maximum word number in each sentence, and it is set

to 10 for our experiments. λcls, λgiou, λLRoI
and λcap are

balance coefficients, which are set as 1.0, 5.0, 5.0, 5.0.

IV. RESULTS AND DISCUSSIONS

In this section, we report the results, discussion, and analysis

of our experiments conducted on three publicly available

datasets to assess the effectiveness of our proposed DCM-

STRD algorithm.

A. Datasets and Evaluation Metrics

We employ two types of datasets, namely the Visual

Genome dataset (VG) [47] and the VG-COCO dataset [19],

for our evaluation benchmarks. This choice aligns with state-

of-the-art methods [17]–[19], ensuring a fair comparison. We

provide detailed descriptions of each dataset, along with the

primary evaluation metrics.

1) Visual Genome (VG): VG is a large-scale dataset for

dense captioning. There are 77,398 images in the training split

and 5,000 images in the validation and test split, respectively.

It has two widely used versions: VG V1.0, VG V1.2. The

images of these are the same but the RoI groundtruth sentences

are different. For consistency with the experimental settings

in [17]–[19], [24], we also conduct our experiments on VG

V1.0 and VG V1.2. The training, validation, and test splits

are chosen similarly to [17]–[20], [24].

2) VG-COCO: As elaborated in [19], the RoI bounding

boxes in VG V1.0 and VG V1.2 are much denser than the

bounding boxes in other object detection benchmark datasets

such as MS COCO and ImageNet [48]. To obtain both fairer

object bounding boxes and RoI bounding boxes for each

image, following the configuration in [19], the intersection set

of VG V1.2 and MS COCO is adopted in our paper, which is

denoted as VG-COCO. VG-COCO is a smaller dataset than

VG and there are 38,080 images for training, 2,489 images

for validation and 2,476 for testing.

3) Evaluation Metrics: We also utilize the mean Average

Precision (mAP) metric after [17]–[20], [24]. mAP assesses

the precision of both localisations and RoI captions whilst

the mAP in object detection considers the object localisation

and the accuracy of the classification. Following the threshold

settings in [17]–[20], [24], average precision is calculated

under different combinations of IoU thresholds (0.3, 0.4, 0.5,

0.6, 0.7) to evaluate the predicted RoI locations and Meteor

[48] thresholds (0, 0.05, 0.10, 0.15, 0.20, 0.25) to assess

the similarity between predicted RoI captions the ground

truth sentences. With each group of thresholds (30 groups

in aggregate), the Average Precision (AP) can be calculated.

Finally, the mean value of these APs is the mAP score of all

30 threshold combinations.
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Fig. 5: Average precision of DCMSTRD and COCG methods

under different threshold combinations of Meteor scores and

IoU on the VG-COCO dataset.

TABLE I: The mAP (%) performance of dense captioning

algorithms on VG-COCO dataset

Method mAP(%)

FCLN [20] 4.23

JIVC [23] 7.85

Max Pooling [19] 7.86

COCD [19] 7.92

COCG [19] 8.90

ImgG [19] 7.81

COCG-LocSiz [19] 8.76

COCG&GT [19] 9.79

TDC+ROCSU [17] 11.58

ETDC(VGG16) [18] 12.28

ETDC+TCM+DVFH [18] 14.30

DCMSTRD(Ours) 16.10

B. Implementation Details

Our DCMSTRD is trained on a single NVIDIA GTX 2080
Ti GPU with a memory of 11GB using AdamW optimizer as

[37]. The image batch size is set to 1, the epoch is set to 60.

The initial learning rate is 10−5 and the backbone learning

rate is 10−6. The learning rate drop factor is 0.1 at epoch 50.

The momentum factor is set to 0.9, and weight decay is 10−4.

The RoI query number N is set to 1,500 and the multi-head

number in Eq. 2 is 8.

C. Quantitative Results and Analysis

In this section, we first display quantitative results and

discussions on three publicly available datasets: VG-COCO,

VG V1.0 and VG1.2 respectively. Subsequently, we quantify

the performance of our proposed DCMSTRD and MSLD

through ablation studies.

1) Experimental results, discussions, and analysis on VG-

COCO Dataset: In the evaluation of the VG-COCO dataset,

we conducted a comparative analysis of our DCMSTRD archi-

tecture alongside other baseline methods, as presented in Table

I. The results reveal a notable difference in mAP, with DCM-

STRD achieving a significant improvement of 16.10%. Com-
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TABLE II: The mAP (%) performance of dense captioning

algorithms on VG V1.0 dataset and VG V1.2 dataset

Method VG V1.0 mAP(%) VG V1.2 mAP(%)

FCLN [20] 5.39 5.16

JIVC [23] 9.31 9.96

ImgG [19] 9.25 9.68

COCD [19] 9.36 9.75

COCG [19] 9.82 10.39

CAG-Net [24] 10.51 —

ETDC(VGG16) 11.31 10.60

TDC+ROCSU [17] 11.49 11.90

ETDC+TCM+DVFH [18] 13.24 12.60

DCMSTRD 13.63 13.44

pared to the state-of-the-art ETDC+TCM+DVFH approach

in [18], DCMSTRD demonstrates a remarkable gain of 1.8

in terms of mAP. Additionally, when compared to the leading

LSTM method, COCG, DCMSTRD exhibits a substantial

mAP increase of 80.9%. Our method’s performance superi-

ority over other approaches is even more pronounced, with

DCMSTRD achieving a mAP that is over three times higher

than the initial FCLN method. Furthermore, when compared

to other comparative methods such as JIVC, Max Pooling, and

COCD, DCMSTRD achieves an absolute mAP improvement

of approximately 8. Notably, even when combining ground

truth localization of each RoI with the state-of-the-art method

COCG in COCG&GT, DCMSTRD still outperforms it with a

remarkable 65.45% increase in mAP. These results underscore

the superiority of DCMSTRD, attributable to the elimination

of artificially designed components, enhanced interactions

between sub-tasks, and the multi-scale feature representations

offered by our innovative MSLD module.

2) Experimental results, discussions, and analysis on VG

V1.0 : We also evaluated DCMSTRD on the VG V1.0

dataset, and the results are presented in the second column

of Table II. DCMSTRD achieved a notable mAP score of

13.63, surpassing all previous methods by a substantial mar-

gin on this dataset. Specifically, our method outperformed

ETDC+TCM+DVFH [18], TDC+ROCSU [17], and the COCG

method [19] by margins of 0.39, 2.14, and 3.81, respectively.

Furthermore, when compared to CAG-Net in [9], DCM-

STRD exhibites a significant improvement of 3.12 mAP.

This improvement can largely be attributed to the discrim-

inative multi-scale features learned by the MSLD module

within DCMSTRD. This module integrates scale information

from generated captions, thus enhancing precision. Moreover,

DCMSTRD’s advantage stems from its end-to-end learning

approach, which avoids the need for manually set thresholds

seen in artificially designed components like Faster R-CNN.

This approach contributed to the superior performance men-

tioned earlier. It’s worth noting that the mAP increase against

state-of-the-art methods on VG V1.0 is smaller compared to

VG-COCO. This discrepancy is likely due to VG V1.0 being

more than twice the size of VG-COCO, containing more RoIs

with complex scenes and captions. Consequently, describing

these RoIs becomes significantly more challenging.

3) Experimental results, discussions, and analysis on VG

V1.2: We conducted tests of our DCMSTRD approach on

the VG V1.2 dataset, and the resulting mAP scores are

TABLE III: The mAP (%) performance of ablation studies on

VG-COCO Dataset

DCMSTRD MSLD mAP(%)

✗(Faster R-CNN) ✓ 12.56
✓ ✗ 13.02
✓ concat 14.97
✓ ✓ 16.10

presented in the third column of Table II. DCMSTRD

achieves notable relative mAP improvements, surpassing

the ETDC+TCM+DVFH, TDC+ROCSU (11.90), and COCG

(10.39) methods by margins of 0.84, 1.54, and 3.05, respec-

tively, with an overall mAP of 13.44.

Remarkably, the mAP achieved by our DCMSTRD frame-

work exceeded the mAP of the FCLN method by more

than twice, underscoring the effectiveness of our proposed

DCMSTRD approach and MSLD architecture. Notably, on

VG V1.2, as with VG V1.0, the performance gap between

our method and other prior approaches is narrower compared

to VG-COCO. This could be attributed to the similar data

distributions in VG V1.0 and VG V1.2 (the same image set

with slightly different corresponding captions), resulting in

more RoIs with complex visual scenes and corresponding

captions, which pose greater challenges.

4) Comparison of average precision under different RoI de-

tection and description thresholds: Fig. 5 shows the compari-

son of average precision between our proposed DCMSTRD

and the COCG method in [19] as it is the only publicly

available that is comparable. It is easily seen that overall, our

proposed DCMSTRD outperforms the COCG method. In par-

ticular, DCMSTRD performs much better than COCG under

low thresholds of both detection and language. This is due

to two aspects: The general DCMSTRD applies RoI queries,

which can better learn the distribution of the locations of all the

RoIs thus providing a global optimization for the RoI detection

problem. Hence it is straightforward to generate qualified RoIs

against groundtruth RoI bounding boxes under lower thresh-

olds. Furthermore, our MSLD module successfully learns

the multi-scale features and enables the ability to recognize

objects in different scales thus creating more good-quality

descriptions under lower language thresholds. However, under

higher thresholds (IoU≥0.6 and Meteor≥0.15), COCG method

slightly outperforms DCMSTRD because in COCG, a pre-

trained object detector was deployed and thus providing more

valuable priors both for RoI locations and RoI captioning.

These extra clues help the model create some relatively better

RoI locations and captions under higher thresholds.

5) Ablation Studies: To validate the effectiveness of our

proposed DCMSTRD method and the MSLD module, we

also perform a variety of ablation studies. First of all, to

validate the advantage of our DCMSTRD framework, we

preserve the MSLD module but replace the RoI detection

decoder with a Faster R-CNN framework as [18]. It should

be noted that to carry out a fair comparison, we also delete

the prior knowledge of the pre-trained objects in the visual

encoder in [18]. This method is denoted as Faster R-CNN

with multi-scale language decoder (FRMSLD) as shown in
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the first row of Table III. It can be observed that without

the general DCMSTRD architecture, the FRMSLD fails to

choose the suitable parameters of the artificially designed

components inside for all the images across the whole dataset,

and therefore, the mAP drops to 12.56, which is inferior to

the proposed DCMSTRD+MSLD (16.10).

Moreover, we also develop a degraded model which only

maintains DCMSTRD but removes the MSLD module, de-

noted as DCMSTRD-MSLD as shown in the second row

of Table III to verify the impact of the MSLD module. To

be specific, the captioning decoder of DCMSTRD-MSLD is

implemented as follows:

SA(Sl
≤t) =





LN(MA(sl1, S
l, Sl), sl1)

...

LN(MA(slt, S
l, Sl), slt)



 ;

V LA(Sl
≤t) =





LN(MA((SA(Sl
≤t)1), H2, H2), SA(Sl

≤t)1)
...

LN(MA((SA(Sl
≤t)t), H2, H2), SA(Sl

≤t)t)



 ;

Sl+1

≤t = LN(FFL(V LA(Sl
≤t)), V LA(Sl

≤t));

p(wt+1|S
L
≤t) = softmax(WV S

L
t+1),

(4)

The notation is the same as Eq. 2. Note that in DCMSTRD-

MSLD, we only adopted the visual hidden states of the last

RoI detection decoder H2 into the captioning decoder without

multi-scale dense captioning decoding anymore. The differ-

ence between DCMSTRD method and DCMSTRD-MSLD

method is the existence of MSLD module (DCMSTRD is with

MSLD module while in DCMSTRD-MSLD it is removed).

The MSLD module fuses the multi-scale features while DCM-

STRD only takes the hidden states from the second layer of

RoI detection decoder. It can be seen that without MSLD

module, the performance is slightly better than FRMSLD by

0.46. Nonetheless, due to the missing MSLD, the machine is

incapable of learning multi-scale invariant features. Hence, it

suffers from the generation of poor captions for the RoIs of

the same class but with different scales or even fails to detect

a part of multi-scale RoIs. As a consequence, the mAP of

DCMSTRD-MSLD is 3.08 less than the DCMSTRD method,

standing at 13.02.

To further validate the effectiveness of the proposed MSLD

module, we also detach MSLD as DCMSTRD-MSLD but

input the concatenated output of RoI detection decoder H1

and H2 into the captioning decoder, denoted as DCMSTRD

(concat). Its deployment is as follows:

SA(Sl
≤t) =





LN(MA(sl1, S
l, Sl), sl1)

...

LN(MA(slt, S
l, Sl), slt)



 ;

V LA(Sl
≤t) =





LN(MA((SA(Sl
≤t)1), H,H), SA(Sl

≤t)1)
...

LN(MA((SA(Sl
≤t)t), H,H), SA(Sl

≤t)t)



 ;

Sl+1

≤t = LN(FFL(V LA(Sl
≤t)), V LA(Sl

≤t));

p(wt+1|S
L
≤t) = softmax(WV S

L
t+1)

(5)

where H is the concatenation of the multi-scale features H1

and H2, and other notations are as Eq. 2. According to the

experimental results in the last second row in Table III, when

concatenated RoI detection hidden states H is used to replace

the MSLD module, the mAP performance decreases to 14.97

but is still lesser than our proposed DCMSTRD by 1.13. This

is because in DCMSTRD (concat), even if the multi-scale

features are concatenated as input, the input for the two sub-

layers of the captioning decoder is consistent and therefore

fails to assign different tasks of tuning multi-scale features to

different captioning decoder layers, which hinders the whole

process of multi-scale feature tuning.

D. Qualitative Results and Discussions

The qualitative results and discussions are also exemplified

in this section to assess our DCMSTRD method. In the first

subsection, we show a couple of instances from the VG-

COCO and VG V1.2 datasets via showing all RoIs and

their generated captions from our DCMSTRD framework.

Following these instances, we show the qualitative results of

ablation studies of our proposed DCMSTRD method and the

DCMSTRD-MSLD method. Lastly, we perform a comparison

between DCMSTRD, the state-of-the-art COCG method, and

the provided ground truth.

1) Visual examples of dense captioning by DCMSTRD

method: In Fig. 6, we present two illustrative examples

of dense captioning results obtained using our DCMSTRD

method applied to two distinct datasets: VG-COCO and VG

V1.2. The first instance showcased in Fig. 6a originates from

the VG-COCO dataset, while the second example in Fig. 6b

is drawn from the VG V1.2 dataset. These visual samples

vividly exemplify the high-quality RoI detection and caption

generation achieved by our proposed DCMSTRD method.

First and foremost, our DCMSTRD model excels in gen-

erating descriptions for RoIs with impeccable grammatical

structure. The majority of the generated sentences exhibit a

high degree of accuracy and adhere to proper English grammar

conventions. This proficiency can be primarily attributed to

the inherent qualities of DCMSTRD, as it eliminates the need

for artificially designed components and associated thresholds.

Furthermore, DCMSTRD undertakes both sub-tasks concur-

rently, following an end-to-end approach, thereby facilitating

the discovery of optimal solutions across the entire dataset.
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(a) The example of dense captioning results achieved by DCMSTRD
method from VG-COCO.
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(b) The example of dense captioning results achieved by DCMSTRD
method from VG V1.2.

Fig. 6: Examples of dense captioning results achieved by our DCMSTRD framework.

Moreover, our proposed DCMSTRD method demonstrates

competence in detecting RoIs of varying scales. e.g., in the

first example in Fig. 6a, it adeptly identifies and characterizes

RoIs containing two baseball players, each at a different scale.

It also successfully distinguishes between distinct states or

actions of the objects within these RoIs, generating relevant

descriptions such as ‘baseball player swinging bat’ for the first

baseball player RoI and ‘a man holding a bat’ for the second.

In Fig. 6b, we further observe the proficiency of DCMSTRD

in identifying RoIs encompassing relatively large individuals,

depicted within the black, red, and white RoIs on the beach.

These are accompanied by precise and descriptive captions.

Impressively, the method extends its capabilities to detect

individuals at a considerably smaller scale, as evidenced by

the red RoI in the sea, accompanied by the apt description ‘a

group of people swimming’ These remarkable advantages are

attributable to our innovative MSLD module, which equips the

system with the capability to recognize and describe objects

effectively across a spectrum of scales.

2) Ablation studies: In this section, we undertake an in-

depth evaluation of the experimental results derived from

our DCMSTRD and MSLD components, individually dis-

secting the significance of each contribution. Specifically,

we present dense captioning results for both DCMSTRD

and the DCMSTRD-MSLD variants within the same image

from VG V1.0, as shown in Fig. 7. Overall, the DCMSTRD

approach exhibits a heightened focus on delivering precise and

detailed descriptions, particularly when it comes to people

depicted at various scales within the given image. Firstly,

the light green boxes associated with both methods highlight

that DCMSTRD excels in providing specific descriptions of

individual actions, such as ‘snowboarder doing a trick’, while

DCMSTRD-MSLD tends to produce relatively generic RoI

captions like ‘people snowboarding down a hill’. Moreover,

DCMSTRD demonstrates a greater propensity to detect each

RoI featuring a person independently, whereas DCMSTRD-

MSLD consistently describes groups of people together. Fur-

thermore, it is evident that our proposed DCMSTRD method

proficiently identifies all individuals on the snow slope, even

those at a minute scale, as exemplified by the person in the

purple bounding box with the caption ‘this is a guy in snow’.

Conversely, DCMSTRD-MSLD tends to overlook most of

these individuals. These findings can be attributed to two key

factors: firstly, DCMSTRD eliminates the need for artificially

designed components and their associated thresholds, thereby

enhancing the overall RoI detection process and performance.

Secondly, the MSLD component augments the learning of

multi-scale features, consequently bolstering the model’s abil-

ity to discriminate between individuals or objects at diverse

scales and improving its comprehension of specific human

actions or states. As a result of this, the model with MSLD

can strengthen its ability to discriminate people or objects at

various scales and have a better understanding of the specific

motion taken by a person or the state of a person.

3) Convergence Process of Training Loss: To better display

the training process of our proposed model, we show the

loss (objective) function value of our proposed model during

training in Fig. 8. We can observe that the loss function value

plummets during the initial several epochs, followed by a

gradual but slower decline until the 50th epoch where the

learning rate drops. The effect of this drop is considerable, and

the loss value starts to go down again due to the smaller and

careful pace during the optimisation. Eventually, the overall

loss keeps a trend of convergence at epoch 60, standing at the

value of around 2.25.

4) Comparative results with COCG method and ground

truth: Fig. 9 presents comparative qualitative results among

our DCMSTRD method, the state-of-the-art COCG method,

and the ground truth, serving as a straightforward means

to visually assess their performance. It is obvious that the

proposed DCMSTRD method achieves better performance for

both RoI detection and RoI description due to higher IoUs

and Meteor scores shown in the figure. It is noticeable that

DCMSTRD is expected to significantly surpass the COCG

method in Meteor language score performance. Our proposed

DCMSTRD method and MSLD module both contribute to this

better performance. On one hand, the DCMSTRD pipeline

can skip the sub-optimal parameter settings of artificially de-

signed components in prior works, thus leading to an optimal

detection result. For instance, in Fig. 9a, our DCMSTRD
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(a) The visualization results of DCMSTRD method.
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(b) The visualization results of DCMSTRD-MSLD method.

Fig. 7: The comparative qualitative results of the DCMSTRD method and the model that removes the MSLD module.
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Fig. 8: Loss (objective) function value of training.

method can cover the arm of the man whilst COCG method

only contains the body part due to the sub-optimal thresholds

predefined in the artificially designed modules. Furthermore,

our MSLD can benefit representative feature learning, espe-

cially for images with multi-scale information. In Fig. 9b,

our proposed MSLD framework can successfully recognize

multi-scale information of different horses and people, thus

generating satisfactory captions with a Meteor score of 0.26.

However, without taking multi-scale information into account,

COCG fails to learn the different shapes and the relations

between a group of people and horses and is impotent to

produce correct captions.

V. CONCLUSION

In this paper, a novel trainable dense captioning archi-

tecture, termed end-to-end dense captioning framework via

multi-scale transformer decoding (DCMSTRD) is introduced.

In particular, DCMSTRD replaces the artificially designed

modules and reschedules the dense captioning task as a set

prediction and matching problem. Furthermore, the learning

of multi-scale representations is very important to dense

captioning. To this end, we also proposed a novel module,

named multi-scale language decoder (MSLD). We assessed

our innovative approach on three publicly available datasets

and the results show that our method surpassed state-of-the-

art methods by a wide margin in terms of mean Average

Precision. Owing to its application portability, in our future

work, we will look at applying our model to different close

tasks such as image segmentation [4], event detection [49],

object detection [50], [51], pedestrian detection [52], [53],

pedestrian attribute recognition [54], person search [45], [55],

3D model retrieval [56], [57], zero-shot learning [58], and

magnetic resonance imaging [59] though there should be some

adjustment on DCMSTRD and MSLD modules according to

adjust to the requirements of each specific task.
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