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Abstract—Recognizing novel sub-categories with scarce sam-
ples is an essential and challenging research topic in computer
vision. Existing literature addresses this challenge by employing
local-based representation approaches, which may not suffi-
ciently facilitate meaningful object-specific semantic understand-
ing, leading to a reliance on apparent background correla-
tions. Moreover, they primarily rely on high-dimensional local
descriptors to construct complex embedding space, potentially
limiting the generalization. To address the above challenges, this
article proposes a novel model, Robust Saliency-aware Distillation
(RSaD), for few-shot fine-grained visual recognition. RSaD intro-
duces additional saliency-aware supervision via saliency detection
to guide the model toward focusing on the intrinsic discriminative
regions. Specifically, RSaD utilizes the saliency detection model
to emphasize the critical regions of each sub-category, providing
additional object-specific information for fine-grained prediction.
RSaD transfers such information with two symmetric branches
in a mutual learning paradigm. Furthermore, RSaD exploits
inter-regional relationships to enhance the informativeness of
the representation and subsequently summarize the highlighted
details into contextual embeddings to facilitate the effective
transfer, enabling quick generalization to novel sub-categories.
The proposed approach is empirically evaluated on three widely
used benchmarks, demonstrating its superior performance.

Index Terms—Few-shot Fine-grained Visual Recognition, Few-
shot Learning, Saliency Detection, Mutual Learning

I. INTRODUCTION

F INE-GRAINED visual recognition (FGVR) is crucial and
challenging research that aims to distinguish visually

similar objects within a specific category, such as different
species of birds or types of cars. With the significant ad-
vancements in computer vision [1]–[3], extensive research
[4]–[6] has been conducted to improve the performance of
FGVR. However, due to the considerable expenses entailed
in fine-grained annotation and the relative scarcity of rare
categories, the extensive applicability of such approaches is
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Fig. 1: The statistical analysis of both external environments
and intrinsic attributes across two sub-categories within the
CUB-200-2011 dataset. The results reveal that 1) environments
and specific attributes across different sub-categories may ex-
hibit significant similarities; 2) within the same sub-category,
identical attributes can vary considerably.

limited by the annotated data scarcity issue. Unlike machines,
humans can distinguish subtle variations among previously
unseen sub-categories, even when presented with one sample.
Therefore, improving the generalizability of FGVR models
in data-scarce scenarios is imperative, thereby reducing the
disparities between humans and machines. Thus, this paper
focuses on the few-shot fine-grained visual recognition (FS-
FGVR) task, which involves utilizing scarce training examples
per category (typically 1 or 5 samples) to recognize unseen
similar-looking sub-categories.

The main challenge of FS-FGVR is quickly capturing
key regions between similar-looking sub-categories. Existing
works [7]–[10] are mainly dedicated to solving this challenge
in a local representation manner. In local representation-based
approaches, the relationship between the support set (training
data) and query set (testing data) is explored by the feature
alignment [8], [9] or feature reconstruction [10] to highlight
semantic-related local features as the key regions. Despite the
remarkable accomplishments in these approaches, there has
been a lack of substantial focus on exploring the intrinsic struc-
ture (specifically, background and foreground) of fine-grained
images, which are crucial factors for FGVR [11]–[13]. Fig.1(a)
illustrates that environments across different sub-categories
may exhibit notable similarities. The local-representation-
based approach may inadequately promote object-relevant
semantic understanding, thereby shifting attention towards
apparent background correlations, which causes misclassifi-
cation. Recent studies [11]–[14] have attempted to address
this issue by integrating saliency detection models intended
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to redirect the model’s attention to object-related features.
However, these models generally apply saliency information
for data or feature enhancement at the pixel or feature level.
Such approaches present a considerable challenge in under-
standing high-dimensional saliency information with limited
samples. The Deutsch–Norman late-selection filter model [15]
in neuroscience indicates that humans will amplify mean-
ingful information and weaken irrelevant information after
processing it for meaning. Considering the previously stated
observations, this paper designs a saliency-aware guidance
strategy to encourage the model to focus on the object-relevant
regions during prediction (low-dimensional space), thereby
effectively reducing the negative impact of background clutter.

Furthermore, when confronted with novel fine-grained vi-
sual concept tasks, humans tend to identify noticeable distinc-
tions and memorable attributes between them. It is rational
that simple salient patterns can easily generalize to unseen
sub-categories [16]. Previous approaches [8], [9] have often
relied on high-dimensional deep local descriptors to establish
embedding spaces through Bilinear Pooling [17] and Rela-
tion Network [18] techniques. Despite the fine-grained nature
of these embedding spaces, their inherent space complexity
poses challenges in terms of generalization and computational
demands. Moreover, as depicted in Fig.1(b), it is evident that
partial characters may not provide reliable clues for FS-FGVR.
Some works [19]–[21] indicate that capturing the difference in
holistic view can also effectively distinguish unseen similar-
like visual concepts. Based on the above observations, this
paper designed the representation highlight&summarize mod-
ule by learning a simplified contextual embedding space to
ensure quick generalization towards novel sub-categories.

To address the above challenges, this paper proposes a
Robust Saliency-aware Distillation model called RSaD to
generate fine-grained intrinsic and transferable embedding
for FS-FGVR. Specifically, RSaD consists of the Saliency-
aware Guidance (SaG) strategy and Representation High-
light&Summarize (RHS) module. The SaG is designed to
exploit explicit intrinsic relationship of sub-categories via the
distillation technique on the salient region probability distribu-
tion. The alignment of salient region probability distribution
reduces the impact of background clutter, which provides more
pure object information for fine-grained prediction. Subse-
quently, the RHS module is designed to highlight the object-
relevant deep descriptors and squeeze them as the contextual
embedding. It can effectively capture discriminative, simple
patterns across sub-categories, facilitating rapid generaliza-
tion to novel sub-categories while maintaining a low model
complexity. Extensive experiments are conducted on widely
used benchmarks to evaluate the proposed approach. Results
indicate that the proposed model outperforms current state-of-
the-art FS-FGVR approaches, confirming its effectiveness. To
sum up, this work makes the following contributions:

1) This article proposes a novel saliency-aware guidance
strategy for FS-FGVR. This method first exploits object-
specific information via the distillation technique on the
salient region probability distribution, which provides
more accurate clues for fine-grained prediction.

2) This article proposes the RHS module, which involves

learning a robust embedding space to facilitate rapid
generalization towards novel sub-categories.

3) Extensive experiments are conducted to verify the effec-
tiveness of the proposed approach. The results demon-
strate that the proposed approach achieves comparable
performance with state-of-the-art approaches.

The remainder of this article is as follows: Section II
provides a brief review of related work. Section III presents the
details of the RSaD model. Section IV presents and analyzes
comparative experiment results. Then, Section V discusses the
impact of different modules proposed in this article. Finally,
Section VI concludes with a summary and outlook.

II. RELATED WORK

A. Fined-Grained Visual Recognition

Fine-grained Visual Recognition (FGVR) and fine-grained
image retrieval [22] have emerged as critical components in
fine-grained image analysis [23]. FGVR identifies visually
similar objects within the same meta-category, typically at a
sub-category or individual instance level. Early research [24]–
[26] on FGVR was based on hand-crafted features such
as attributes, SIFT [27] and part annotations. However, the
ability of such methods was somewhat limited due to the
drawbacks of hand-crafted features, i.e., lack of information
and high labeling effort [28]. Benefiting from the success of
convolutional neural networks (CNNs), research on FGVR
has shifted towards learning deep feature representations. For
example, Lin et al. [29] introduced bilinear CNN models to
generate rich deep features for FGVR, while Kong et al. [30]
designed a low-rank bilinear pooling strategy to reduce the
computational effort required by high-dimensional bilinear
features. Some previous works [31]–[34] have leveraged object
detection models such as FRN and R-CNN to select infor-
mative regions. These part-based approaches are practical in
locating and analyzing fine-grained local features. However,
these methods often incur significant computational costs and
substantial data requirements, primarily attributable to the
necessity of detailed analysis using auxiliary sub-networks or
selective strategies [35]. More recently, several studies [6],
[36]–[38] utilized vision transformer [3] to improve model
capacity in FGVR. Regardless of the demonstrated successes,
large-scale data is necessary for model training. Learning with
limited data remains an open problem in FGVR. Thus, this
paper focuses on the FS-FGVR task, which entails effectively
leveraging limited training examples per sub-categories.

B. Few-Shot Fine-Grained Visual Recognition

Recently, research [7], [39] has emerged focusing on a more
practical and challenging setting, termed FS-FGVR (Few-
Shot Fine-Grained Visual Recognition). FS-FGVR aims to
distinguish novel sub-categories with limited samples. Thanks
to the success of few-shot learning [40], FS-FGVR research
has made significant progress in recent years and can be
broadly classified into two groups:

Global representation-based methods aim to learn discrim-
inative global features between sub-categories. Li et al. [41]
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proposed the bi-similarity network, which considers various
metric functions to find a better global feature space. Xu et
al. [21] introduced a dual attention mechanism to provide a re-
fined global embedding for recognition. Xu et al. [20] utilized
β-TCVAE [42] to learn transferable intra-class variance to
generate additional global features applicable to novel classes.

Local representation-based methods focus on learning the
discriminative parts of the whole image. They argue that global
representations obtained by pooling lack critical spatial infor-
mation in FS-FGVR. In local representation-based approaches,
the relationship between the support set and query set is
primarily leveraged through local descriptor alignment or local
descriptor reconstruction to emphasize semantically related lo-
cal features as discriminative features. Wei et al. [39] proposed
a novel exemplar-to-classifier mapping strategy that can learn
a discriminative classifier within bilinear CNN features in a
parameter-economic way. Li et al. [7] replaced the traditional
image-to-class measure with a local descriptor-based measure
to capture differences at a finer spatial level. Wu et al. [9]
proposed an object-aware long-short-range spatial alignment
strategy to align discriminative semantic parts between query
and support sets. Zhang et al. [43] explored cross-image object
semantic relations to distinguish subtle feature differences.
Wertheimer et al. [10] investigated the relationship between
support-query pairs through local feature reconstruction.

Despite the promising results of the methods above, they ei-
ther lack sufficient supervision signal for recognition or require
complex structures to capture local relations. Moreover, there
has been limited emphasis on systematically exploring the in-
trinsic structure, particularly the differentiation between back-
ground and foreground components, in FS-FGVR. Recently,
several studies [12], [44] have emerged that explicitly address
the reduction of background clutter at the pixel level, lead-
ing to notable performance improvements. However, learning
background noise filters at the pixel level, particularly with low
model capacity, poses a significant challenge. Unlike the above
work, this paper first leverages object-specific information
in prediction by employing the distillation technique on the
probability distribution of salient regions, thereby enhancing
the precision of object information for fine-grained prediction.

C. Saliency Detection

Saliency detection is a computer vision technique that
identifies regions of an image or video most visually signif-
icant to a human observer. Over the past few years, saliency
detection has proven effective in various downstream tasks
such as person re-identification [45] and visual tracking [46].
Several works have recently adopted saliency detection in
few-shot learning research. Specifically, Zhang et al. [11]
employed a saliency detection model to separate foreground
and background regions and generate additional samples by
combining viable foreground-background. Wang et al. [12]
proposed a foreground object transformation strategy. They
extracted the object’s foreground by employing a saliency
detection model and generating additional samples by the
transformation learned in the foreground. Zhao et al. [13],
[14] designed a complementary attention mechanism guided

by saliency, which employs saliency detection signals to learn
interpretable representation. In contrast to the above works,
this article efficiently utilizes saliency detection signals from
the viewpoint of knowledge distillation.

D. Knowledge Distillation

Knowledge distillation [47] aims to transfer dark knowledge
from a pre-trained large model to a smaller model, reducing
its computational resource occupation. Existing works mainly
include unidirectional knowledge distillation and bidirectional
knowledge distillation. The former approach [48]–[51] typ-
ically requires designing a solid network to serve as the
teacher, generating soft labels to facilitate the student net-
work’s learning. However, obtaining strong teachers requires
considerable effort, and negative transfer frequently arises due
to the significant capacity gap between the teacher and student
networks [52]. Zhang et al. [53] proposed a deep mutual
learning paradigm in a bidirectional view to address these is-
sues. Bidirectional knowledge distillation has drawn increasing
attention in the community due to its simplicity and effec-
tiveness [54]–[56]. Despite the demonstrated achievements in
knowledge distillation, previous works have primarily focused
on scenarios with large sample sizes. In situations with limited
data, the likelihood of negative transfer increases considerably
due to high inductive bias. Ma et al. [57] proposed partner-
assisted learning, a two-stage learning scheme that transfers
the good embedding space from the pre-trained partner to
the few-shot learner. Zhou et al. [58] proposed a binocular
mutual learning approach that benefits few-shot learners by
incorporating global and local views. Ye et al. [59] proposed
the LastShot framework, which enables the few-shot learner to
perform comparably to the pre-trained model. Differently, this
article focuses on the distillation of saliency prior under the
limited sample in a peer-teaching manner rather than relying
on dark knowledge provided by the strong model.

III. THE ADOPTED METHODOLOGY
This section presents a robust saliency-aware distillation

model for few-shot fine-grained visual recognition. The pro-
posed model includes two core components: saliency-aware
guidance and representation highlight&summarize module.
The details are explained as follows.

A. Problem Definition

FS-FGVR aims to learn general feature representation on
large-scale sub-categories with annotations that can be gen-
eralized to unseen sub-categories. To simulate this scenario,
the dataset D is typically divided into base set Dbase and
novel set Dnovel by category, where Dbase ∩ Dnovel = ∅. Dbase
represents the prior knowledge while Dnovel represents the
novel knowledge. For the typical FS-FGVR setup, models are
trained (or tested) on N -way K-shot episodes sampled from
Dbase (or Dnovel). Each episode consists of a support set DS and
a query set DQ, sampled from the same N class. The model
updates its parameters using the support set DS consisting
of K samples per class, where K is set to 1 or 5 in few-
shot setups. Moreover, the generalization performance of the
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Fig. 2: The framework of the proposed RSaD for few-shot fine-grained visual recognition. This framework consists of three
hierarchical levels of operations. At the image level, the framework generates the saliency serving as input for the symmetric
branch. At the feature level, it highlights crucial features while aggregating significant information. Finally, the two branches
independently optimize the cross-entropy (CE) loss while simultaneously providing complementary signals at the distribution
level via mutual learning.

updated model is evaluated using the query set DQ. To be
more specific, the general training objective can be expressed
as

L∗ = argmin
L

∑
(x,y)∈DQ

base

ℓ
(
L
(
x;DS

base

)
, y
)
, (1)

where L refers to the few-shot learner, whereas x and y denote
the samples and corresponding labels from DS

base , the support
set in the base set. Additionally, ℓ represents the loss function,
i.e., cross-entropy loss.

B. Saliency-aware Guidance (SaG) for FS-FGVR

Backgrounds typically have a negative impact on FS-FGVR.
The backgrounds probably amplify the variance within a class
and diminish the variance between classes, which misleads
the learning of inherent discriminative feature embeddings.
Since the saliency detection model effectively highlights image
regions associated with human visual attention, it is natu-
ral to utilize these models to provide crucial supplementary
supervision in the meta-training phase of few-shot learners.
To this end, this article presents the SaG strategy, which
introduces additional saliency-aware supervision to guide the
model toward focusing on the intrinsic discriminative features.
SaG consists of two steps: augmented saliency generation and
saliency-aware knowledge transfer.

1) Augmented Saliency Generation: To generate reliable
saliency-aware supervision signals, it is crucial to ensure the
quality of the generated saliency. Thus, this article employs
multiple saliency detection models for image preprocessing
and incorporates the resultant foreground as auxiliary data dur-
ing model training. As shown in Fig. 3, two saliency detection
models, BAS-Net [60] and U2-Net [61] are ensembled. Both

are pre-trained on the DUTS-TR [62] dataset, which does not
overlap with FS-FGVR benchmarks. The models h1(·) and
h2(·) process the given image I and produce saliency maps
with pixel values ranging from [0, 1], where a higher value
indicates a more critical region. Next, binarization operations
are performed on the two maps, followed by an OR operation
to produce a binary mask. Then, the saliency of the image can
be obtained by taking the Hadamard product of the image and
the mask, as shown below:

FI = I ⊙Mask(I), (2)

where FI represents the saliency prior. And Mask(I) repre-
sents the mask of the image I calculated by the following
formula:

Mask(I) = σ (h1(I)) | σ (h2(I)) , (3)

where the binary operation represented by | denotes logical
OR, while the binarization process implemented by the acti-
vation function is denoted by σ. The activation function σ is
defined as follows:

σ (h(I)ij) =

{
1, if h(I)ij ≥ t
0, otherwise , (4)

where the value of the saliency map matrix in row i and
column j is denoted by h(I)ij . The masked threshold, denoted
as t, is set to 0.5 in this article. Notably, the cost associated
with generating auxiliary data is acceptable as it involves a
one-time consumption cost.

2) Saliency-aware Knowledge Transfer: In order to lever-
age the rich prior knowledge, knowledge distillation is a
natural way. Moreover, according to the Deutsch–Norman late-
selection filter model, critical information selection occurs
exclusively after a comprehensive analysis of all inputs at
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Fig. 3: Augmented Saliency Generation. For the input image,
this module generates multiple saliency maps. Next, binariza-
tion operations are performed on these maps, followed by an
OR operation. Then, the priors are synthesized through the
Hadamard product of the input image and mask.

a higher level. Inspired by this, this article provides high-
level supervision to enable the model to concentrate on objects
during prediction, effectively mitigating the adverse effects of
background clutter. As illustrated in Fig. 2, this paper intro-
duces a symmetric structure of the main branch. Considering
the saliency as the input for the additional branch, the resulting
feature representation mapped to the latent space distinctly
assumes an object-focused nature. While this feature exhibits
an object-focused characteristic, transferring guidance from
the feature dimension poses challenges, particularly when data
availability is limited. Hence, this paper proposes to offer guid-
ance from the standpoint of prediction distribution. The model
prioritizes object relationships by minimizing the discrepancy
between the distribution generated from raw images pI and
that produced from saliency pS . The discrepancy between
probability distributions can be measured using KL divergence
as follows:

DKL(pI ||pS) =
∑
i

pI(i) log
pI(i)

pS(i)
. (5)

Nevertheless, employing traditional unidirectional supervi-
sion may not be optimal due to the large gap in representation
between the saliency and the raw data and the potential risk of
error amplification. After carefully considering these factors,
this article utilized the deep mutual learning paradigm [53]
to align the probabilities between the image and foreground
bidirectionally. The loss function for saliency-aware guidance
can be defined as follows:

LSaG = DKL (pI∥pS) +DKL (pS∥pI) . (6)

Notably, the article applies the same data augmentation to
both images and their corresponding prior before feeding them
into the network to ensure that the input difference remains
within an acceptable range and maintains consistency in the
probability.

C. Representation Highlight&Summarize (RHS) Module

The saliency-aware guidance described in the previous sec-
tion facilitates the network to learn object-focused information

within the distribution perspective. However, it provides lim-
ited guidance for attention towards the representation produced
by the backbone network. Moreover, the quality of representa-
tion also significantly impacts the effectiveness of guidance. To
provide robust, deep information for fine-grained prediction,
the RHS module is devised to simultaneously highlight and
summarize crucial patterns within the representation level
across multiple objects.

1) Representation Highlight: Due to significant differences
in posture and scale, the global representation obtained by
common FSL may not be sufficient for FS-FGVR. Inspired
by previous work [9], [44], different sets’ relationships are
established to obtain informative representation. As illustrated
in Fig. 2, the encoder fθ(·) produces high-level semantic
representations for all images in the N -way K-shot episode
T =(DS ,DQ). Next, the semantic representations of each class
in DS are aggregated to compute the prototypes by the
following formula:

pti =
1∣∣DS
i

∣∣ ∑
x∈DS

i

fθ(x), (7)

where pti represents the prototype of the i-th class and DS
i

refers to the i-th class within the support set. Then, the RHS
module applies 1 × 1 convolution to project the prototype
feature map pt and query feature map fq to key k and query
q, respectively, to filter out redundant information. Then, the
semantic relation between k and q is explored. The relation
matrix M between q and k can be calculated using the
following formula:

Mij(q, k) = Softmax
(〈
qTi , kj

〉)
, (8)

where qi ∈ Rc×1 and kj ∈ Rc×1 are the local descriptor of
q and k, respectively, and M ∈ Rhw×hw. <,> denotes the
metric function. This article chooses cosine similarity as the
metric function due to its superior ability to measure local
representation similarity.

The prototype feature representation can be highlighted by
computing a linear combination of the first-order and second-
order representations by using the following equation:

pt = k̂ ·M + p̂t, (9)

where pt denotes the refined prototype feature representation.
The first-order representation is represented by p̂t

s ∈ Rc×hw,
which is the spatially vectorized form of pt. The second-
order representation is obtained by rearranging the first-order
representation using a relation matrix M .

2) Representation Summarize: Existing research is mainly
based on high-dimensional local descriptors, which may
present a potential overfitting concern. Considering the po-
tential risk for overfitting and computational efficiency, the
RHS summarizes the highlighted information into contextual
embedding. The RHS employs a combination of global max
pooling and global average pooling to aggregate features while
retaining the dominant feature, which can be expressed as{

p̃t = 1
h×w

∑
i∈hw p̄ti +maxi∈hw p̃ti,

f̃q = 1
h×w

∑
i∈hw fq

i +maxi∈hw fq
i ,

(10)



IEEE TRANSACTIONS ON MULTIMEDIA 6

where p̃t and f̃q are the final refined representation of proto-
type feature representation pt and query feature representation
fq .

D. Overall Learning Objective

Recalling the objectives for an FS-FGVR algorithm, the
optimization problem arises as

Ltotal = Lcls1 + Lcls2 + αLSaG , (11)

where Lcls1 and Lcls2 are the classification losses for two
branches, respectively, calculated as follow:

P
(
y = c | x;DS) = exp

(〈
f̃q, p̃tc

〉)
∑

n∈N exp
(〈

f̃q, p̃tn

〉) , (12)

Lcls =
∑

(x,y)∈DQ

−y logP
(
y = c | x;DS) , (13)

where <,> is the metric function. The article selects cosine
similarity as the metric function in the probability computation
to ensure consistency with the metric space of the RHS mod-
ule. α is the hyper-parameter, which controls the interaction
degree of saliency-aware guidance.

IV. PERFORMANCE EVALUATION

The benchmarks are introduced in Sec. IV-A, followed
by the detailed implementation of the proposed approach
in Sec. IV-B. The results of comparison experiments with
different methods are presented in Sec. IV-C, IV-D, and IV-E,
respectively.

A. Datasets

This article evaluates the performance of the proposed
approach on three commonly used fine-grained benchmarks,
including CUB-200-2011 [63], Stanford Dogs [64] and Stan-
ford Cars [65]. Details of those benchmarks are described
below:

• CUB-200-2011 consists of 11, 788 images depicting 200
species of birds. Following the setup of [44], the article
randomly assigns 100, 50, and 50 classes to the training,
validation, and testing. To ensure a fair comparison,
none of the methods compared in this study utilize the
bounding-box annotations provided by this benchmark.

• Stanford Dogs contains 20, 580 images depicting 120
species of dogs. Following the setup of [44], this article
randomly ad assigns 70, 20, and 30 classes for training,
validation, and testing, respectively.

• Stanford Cars comprises 16, 185 images depicting 196
car models. Following the setup of [44], this article
randomly assigns 130, 17, and 49 classes to the training,
validation, and testing, respectively.

B. Implementation Details

Network architecture: Following the previous research
[44], this article employs ResNet-12 as the primary backbone
to evaluate model performance. ResNet-12 consists of four
residual blocks, each with three convolutional layers utilizing
a 3×3 kernel and a 2×2 max-pooling layer. Unlike previous
studies [20], [58] that employed wider-width ResNet-12 with
a drop-block as a regularizer, this study uses a ResNet-12 with
filter numbers 64-128-256-512 without introducing the drop-
block to ensure a fair comparison. Moreover, the model’s per-
formance on the commonly-used shallower backbone Conv4
in FS-FGVR is discussed in Section IV-E.

Pre-training Stage: Some recent work [66]–[68] observed
that pre-trained models for whole-classification have improved
the transferability of novel classes in meta-learning mod-
els. Currently, almost all state-of-the-art methods [9], [20],
[43] utilize a two-stage approach involving pre-training and
episodic training for training in the context of FS-FGVR tasks.
This article follows the pre-training setting in [68], [69]. Dur-
ing the pre-training stage, a fully-connected layer is appended
at the end of the backbone for whole-class classification.
All the images apply standard data augmentation, including
random crop and random flip. For ResNet-12, the study utilizes
the SGD optimizer with Nesterov acceleration, incorporating a
learning rate of 0.001, weight decay of 0.0005, and momentum
of 0.9. The model is trained from scratch for 300 epochs, with
the learning rate decreasing by 0.1 at epoch 75 and epoch 150.
As for Conv4, this study employs the SGD optimizer with a
learning rate of 0.001, momentum of 0.9, and weight decay
of 0.0005. The model is trained from scratch for 200 epochs,
with the learning rate decreasing by 0.1 at epoch 85 and epoch
170.

Episodic Training Stage: After pre-training, the pre-trained
model removed the last fully connected layer and fine-tuned
the model following the standard meta-learning scheme. For
CUB-200-2011 and Stanford Dogs under ResNet-12 back-
bone, this article utilizes the Adam optimizer with an initial
learning rate of 0.001 during the episodic training stage and
optimizes the model over 40,000 episodes, except for the 5-
way 1-shot setting, which involves 60000 episodes. For the rest
of the cases, this article employed the AdamW optimizer with
an initial learning rate of 0.001 during the episodic training
stage. This article optimized the proposed model over 40000
episodes in a 15-way 5-shot setting, evaluating its performance
in both 1-shot and 5-shot settings for training stability.

C. Comparison With State-of-the-Art Approaches

The following experiments present a comparison of the
proposed network with state-of-the-art approaches, compris-
ing four generic FSL methods (ProtoNet [40], DN4 [7],
Baseline++ [66], CAN [70]) and five specialized FS-FGVR
methods (TOAN [8], BSNet [41], OLSA [9], AGPF [71]
and BSFA [44]). The performance evaluation is conducted
on three fine-grained benchmarks mentioned in Sec. IV-A.
The performance evaluations of the proposed framework on
different benchmarks are presented in Sec. IV-C1, Sec. IV-C2,
and Sec. IV-C3, respectively.
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TABLE I: This table reports the accuracy (%) of 5-way 1-shot and 5-shot tasks on three popular benchmarks using ResNet-12.
The accuracy refers to the mean value with 95% confidence intervals on 600 episodes. The best results are presented in bold.
∗ indicates that those results are obtained from the original paper, while † denotes that the results are reported in [44]. The
remaining results are reproduced using the open-source code under the same experimental settings.

Method Backbone CUB-200-2011 Stanford Dogs Stanford Cars
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ProtoNet [40] ResNet-12 73.52 ± 0.98 87.57 ± 0.52 61.46 ± 0.94 83.03 ± 0.58 75.46 ± 0.89 91.18 ± 0.41

DN4 † [7] ResNet-12 64.95 ± 0.99 83.18 ± 0.62 49.70 ± 0.85 71.59 ± 0.68 75.79 ± 0.84 94.14 ± 0.35

Baseline++ [66] ResNet-12 72.07 ± 0.91 86.16 ± 0.54 64.63 ± 0.82 82.37 ± 0.56 76.14 ± 0.82 91.15 ± 0.40

CAN † [70] ResNet-12 76.98 ± 0.48 87.77 ± 0.30 64.73 ± 0.52 77.93 ± 0.35 86.90 ± 0.42 93.93 ± 0.22

TOAN∗ [8] ResNet-12 66.10 ± 0.86 82.27 ± 0.60 49.77 ± 0.86 69.29 ± 0.70 75.28 ± 0.72 87.45 ± 0.48

BSNet† [41] ResNet-12 73.48 ± 0.92 83.84 ± 0.59 61.95 ± 0.97 79.62 ± 0.63 71.07 ± 1.03 88.38 ± 0.62

OLSA∗ [9] ResNet-12 77.77 ± 0.44 89.87 ± 0.24 64.15 ± 0.49 78.28 ± 0.32 77.03 ± 0.46 88.85 ± 0.46

AGPF† [71] ResNet-12 78.73 ± 0.84 89.77 ± 0.47 72.34 ± 0.86 84.02 ± 0.57 85.34 ± 0.74 94.79 ± 0.35

BSFA [44] ResNet-12 82.22 ± 0.85 90.49 ± 0.47 69.62 ± 0.92 82.50 ± 0.58 89.42 ± 0.68 95.36 ± 0.36

RSaD ResNet-12 82.45 ± 0.79 92.02 ± 0.44 73.75 ± 0.93 86.65 ± 0.54 87.27 ± 0.70 95.01 ± 0.49

1) Results on the CUB-200-2011 Dataset: As presented in
Table I, the RSaD outperforms FSL methods, and FS-FGVR
methods on the CUB-200-2011 dataset. Specifically, RSaD
achieves comparable performance with state-of-the-art method
BSFA in 5-way 1-shot and 5-way 5-shot tasks, respectively.
This indicates its ability to capture class correlations at various
granularities effectively. One key factor contributing to the
superior performance of RSaD lies in its ability to provide
saliency guidance and region relations, resulting in better
embedding spaces. In contrast to the proposed approach,
BSFA incorporates a crop function aimed at discerning the
foreground of images in both the training and testing phases.
The crop function learned under the ResNet-12 backbone
may be biased, potentially contributing to BSFA’s inferior
performance relative to the proposed approach.

2) Results on the Stanford Dogs Dataset: In order to eval-
uate the capability of RSaD in handling more challenging FS-
FGVR tasks, this section further presents its performance on
the more complex dataset Stanford Dogs. As shown in Table I,
RSaD outperforms state-of-the-art FS-FGVR approaches by a
substantial margin in the Stanford Dogs dataset. Specifically,
RSaD achieves 4.54%, 1.03%, 9.22%, 11.42% and 23.6%
performance gain for the 1-shot setting and 3.45%, 2.06%,
7.80%, 6.46% and 16.79% performance gain for the 5-shot
setting compared with the BSFA and four other FS-FGVR
methods, respectively. An explanation for the remarkable
performance of RSaD could be its ability to mitigate noise in
complex environments, such as the background. This enables
the model to allocate increased attention toward the intrinsic
dissimilarities within the image.

3) Results on the Stanford Cars Dataset: To further eval-
uate the efficacy of the RSaD, this article conducted experi-
ments on the simpler benchmark, Stanford Cars. As depicted
in Table I, RSaD achieves competitive results compared to
state-of-the-art methods. Specifically, Our method outperforms
all typical FSL methods and some FS-FGVR methods under
1-shot and 5-shot. However, RSaD performs slightly worse
than the state-of-the-art methods BSFA by 2.15% for 1-shot,

TABLE II: Comparison with other few-shot knowledge distil-
lation based methods and saliency-guided approach on CUB-
200-2011.The best results are shown in bold. ∗ indicates that
those results are obtained from the original paper.

Method Backbone CUB-200-2011

5-way 1-shot 5-way 5-shot

FOT∗ [12] ResNet-18 80.40 89.68
SGCA∗ [14] ResNet-12 79.84 ± 0.42 90.91 ± 0.22
SGCA++∗ [13] ResNet-12 80.69 ± 0.42 91.43 ± 0.22

Protonet [40] ResNet-12 73.52 ± 0.98 87.57 ± 0.52
Meta-Basline [68] ResNet-12 76.49 ± 0.87 87.86 ± 0.52
BML∗ [58] ResNet-12 76.21 ± 0.63 90.45 ± 0.36
LST-Proto∗ [59] ResNet-12 75.80 ± 0.21 90.22 ± 0.12
LST-FEAT∗ [59] ResNet-12 80.20 ± 0.21 91.49 ± 0.12

RSaD ResNet-12 82.45 ± 0.79 92.02 ± 0.44

and 0.35% for 5-shot, respectively. Their superior performance
may be attributed to their additional structure and spatial
descriptor comparison. Considering the trade-off between
computational efficiency and performance, RSaD avoids in-
corporating excessive additional structure. Furthermore, RSaD
employs spatial descriptor aggregation to avoid cost-expensive
spatial descriptor comparison. Undoubtedly, RSaD provides
significant computational efficiency advantages, as shown in
Sec. X for details.

D. Comparison With Saliency-Guided Approaches and KD-
Based Approaches

As the proposed approach is a hybrid of saliency-guided
and knowledge-distillation (KD) based approaches, this sub-
section compares RSaD with the saliency-guided and KD-
based methods. The comparison results are presented in
Sec. IV-D1 and Sec. IV-D2, respectively.

1) Comparison With Saliency-Guided Approaches: This
article compares RSaD with three other saliency-guided meth-
ods: SGCA [14], SGCA++ [13] and FOT [12]. SGCA and
SGCA++ obtain transferable representations through learning
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TABLE III: This table reports the accuracy (%) of 5-way 1-shot and 5-shot tasks on three popular benchmarks using Conv4.
The best results are presented in bold. ∗ indicates that those results are obtained from the original paper. The remaining results
are reproduced using the open-source code under the same experimental settings.

Method Backbone CUB-200-2011 Stanford Dogs Stanford Cars
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ProtoNet [40] Conv4 51.78 ± 0.93 74.72 ± 0.69 41.60 ± 0.82 56.98 ± 0.75 46.38 ± 0.79 64.58 ± 0.67

LRPABN∗ [72] Conv4 63.63 ± 0.77 76.06 ± 0.58 45.72 ± 0.75 60.94 ± 0.66 60.28 ± 0.76 73.29 ± 0.63

MattML∗ [73] Conv4 66.29 ± 0.56 80.34 ± 0.30 54.84 ± 0.53 71.34 ± 0.38 66.11 ± 0.54 82.80 ± 0.28

SoSN∗ [74] Conv4 64.56 ± 0.91 77.82 ± 0.57 48.21 ± 0.72 63.15 ± 0.67 62.88 ± 0.72 76.10 ± 0.28

TOAN∗ [8] Conv4 65.34 ± 0.75 80.43 ± 0.60 49.30 ± 0.77 67.16 ± 0.49 65.90 ± 0.72 84.24 ± 0.48

BSFA [44] Conv4 59.40 ± 0.97 74.42 ± 0.62 49.13 ± 0.84 63.27 ± 0.73 56.06 ± 0.89 73.28 ± 0.68

MLSO∗ [75] Conv4 68.21 ± 0.78 82.18 ± 0.47 55.62 ± 0.58 71.98 ± 0.71 67.83 ± 0.63 84.83 ± 0.48

RSaD Conv4 71.15 ± 0.92 84.03 ± 0.62 59.42 ± 0.95 75.30 ± 0.69 65.43 ± 1.29 81.75 ± 0.88

saliency-guided attention, while FOT synthesizes additional
samples using a saliency map matching strategy. Table II
presents the results. Compared to SGCA, RSaD achieves
2.61% and 1.11% performance gain in 1-shot and 5-shot tasks
under backbone ResNet-12. Furthermore, RSaD outperforms
SGCA, which is a refined version of SGCA. Compared to
FOT, RSaD achieves 3.43% and 2.45% performance gain in 1-
shot and 5-shot tasks under backbone ResNet-18. The superior
performance of RSaD shows that the salient features obtained
by RSaD are beneficial for learning a better embedding space.

2) Comparison With KD-Based FSL Approaches: This ar-
ticle compared RSaD with several recently published KD-
based FSL approaches, including Meta-Baseline [68], BML
[58] and LST [69]. Meta-Baseline employs a simple process
of meta-learning over a whole-classification pre-trained model.
BML utilizes mutual learning to align the feature distributions
between local and global views. LST proposes a general
learning strategy that allows the model to learn from the pre-
trained strong classifier. Both their method and the proposed
method are based on the typical FSL approach ProtoNet [40],
resulting in improved learning of the embedding space. LST-
FEAT is an improved version of LST-Proto that applies LST
with self-attention to the ProtoNet. Performance comparison is
shown in Table II. As can be seen, knowledge distillation can
significantly improve the performance of FSL methods. The
experiment results indicate that saliency prior may offer higher
quality dark knowledge for knowledge distillation than using
pre-trained models, potentially contributing to our model’s
superiority over other approaches. Moreover, even if pre-
trained dark knowledge is optimized, unidirectional knowledge
distillation may not be optimal in the 1-shot scenario.

E. Few-shot Fine-Grained Classification with Shallow Back-
bone Network

This article conducts experiments on shallower backbone
Conv4 to further evaluate the model performance. Conv4 is
composed of four blocks, each containing a 3× 3 convolution
layer, a batch normalization layer, a ReLU activation layer, and
a 2 × 2 max-pooling layer. The experiments provide a thor-
ough comparison of the proposed network with state-of-the-
art approaches, including three FSL methods (ProtoNet [40],

SoSN [74], MLSO [75]), as well as four specialized FS-
FGVR methods (LRPABN [72], MattML [73], TOAN [72],
BSFA [44]) using a Conv4 backbone. The results in Table III
demonstrate that the proposed approach has a performance
advantage over shallow backbones. Due to the low capac-
ity of Conv4, BSFA fails to generate optimal foreground
object coordinates for background suppression, resulting in
significant performance degradation. However, our proposed
approach maintains superior performance despite the low-
capacity backbone due to effective probability distribution
comparison in a lower-dimensional space determined by the
number of ways. Overall, RSaD consistently performs well
on multiple backbones, thus providing strong evidence of its
effectiveness.

V. ANALYSIS AND DISCUSSION

This section presents a series of ablation studies and
visualizations to investigate each module’s significance.
Sec. V-A introduces the module-wise ablation experiment,
while Sec. V-B, V-C, and V-D demonstrate the impact
of saliency-aware guidance and RHS module. Additionally,
Sec. V-E provides an analysis of the model complexity.

A. Module-Wise Ablation Study

Table IV displays the results of module-wise ablation ex-
periments performed on ResNet-12. The baseline is a model
obtained through meta-learning on a whole-classification
pre-trained model. RHS refers to the representation high-
light&summarize module, while SaG stands for saliency-
aware guidance strategy. The results in Table IV demonstrate
the effectiveness of the SaG and RHS module on the FS-
FGVR task. SaG gains more significant improvement than
the SaG module, indicating that prior saliency provides more
valuable information for optimizing the model than second-
order features. Combining SaG and RHS modules further
improves the model’s performance. The main reason is that the
RHS module optimizes representation and results in higher-
quality supervision. In this way, the model leverages such
supervision more effectively, improving overall performance.
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TABLE IV: Ablation experiments of the proposed method on
CUB-200-2011 and Stanford Dogs datasets under backbone
ResNet-12. The best results are highlighted in bold.

SaG RHS CUB-200-2011 Stanford Dogs

1-shot 5-shot 1-shot 5-shot

77.58±0.90 88.24±0.52 69.40±0.88 84.42±0.55
✓ 80.28±0.87 91.18±0.46 72.03±0.87 85.42±0.52

✓ 78.50±0.86 88.87±0.52 72.66±0.87 86.13±0.52
✓ ✓ 82.45±0.79 92.02±0.44 73.75±0.93 86.65±0.54

B. Discussion on Impact of SaG strategy

The SaG strategy plays a vital role in learning discriminative
features in the proposed method. This strategy involves two
primary stages: augmented saliency generation and saliency-
aware knowledge transfer. This subsection conducts experi-
ments and Grad-CAM [76] visualization on the CUB-200-
2011 dataset to investigate the impact of in SaG strategy.

1) Impact of Augmented Saliency Generation: This article
integrates two distinct saliency detection models (U2-Net [61]
and BASNet [60]) using an OR operation within augmented
saliency generation to produce saliency maps. This subsection
conducts quantitative comparisons to explore the individual
contributions of these saliency detection models. As shown in
Table V, utilizing a single saliency detection model can yield
high performance, illustrating that both models can effectively
generate saliency from images. Furthermore, employing an
ensemble strategy leads to consistently superior classification
performance in all scenarios. This suggests that the ensemble
approach offers a more dependable prior for model training,
thus alleviating the performance constraints encountered by
individual models in certain instances.

TABLE V: Quantitative evaluation of the augmented saliency
generation strategy on CUB-200-2011 and Stanford Dogs
dataset. The best results are in bold.

Prior CUB-200-2011 Stanford Dogs

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

U2-Net 82.09±0.81 91.88±0.42 72.71±0.88 85.49±0.53
BASNet 81.72±0.79 91.86±0.43 72.42±0.87 86.36±0.50

Ensemble 82.45±0.79 92.02±0.44 73.75±0.93 86.65±0.54

Furthermore, this article presents a visualization of repre-
sentative examples to demonstrate the efficacy of the ensemble
strategy. As illustrated in Fig. 4, BASNet may produce incom-
plete segmentation results for the whole object, while U2-Net
typically performs robustly. This inconsistency may originate
from BASNet’s reliance on a predict-refine architecture and the
potential loss of local information due to dilated convolution
[77], [78]. Conversely, BASNet tends to provide comprehen-
sive segmentation in scenarios with occlusion, attributable to
its utilization of hybrid boundary loss. Hence, the ensemble
of the two models can produce more accurate saliency maps
for further training.

2) Impact of Saliency-aware Knowledge Transfer: To fur-
ther assess the impact of the SaG strategy, this article conducts
Grad-CAM visualizations. Figs.5(b) and 5(c) visualize the

Raw Image U2-Net BAS-Net Ensemble

（a）

（b）

（c）

（d）

Fig. 4: Visual comparison of the ensemble strategy with the
individual model. The saliency produced by the ensemble
model is more precise and more reliable than others.

class activation regions on the baseline and the proposed ap-
proach. The baseline model is obtained through meta-learning
on a pre-trained classification model without using saliency as
auxiliary information. The RHS module is excluded from the
proposed framework in this study to eliminate any potential
influence of the RHS module. Fig. 5 illustrates that the class
activation map generated by our proposed approach primarily
focuses on the object itself while paying less attention to the
background. In contrast, the baseline approach focuses on the
part of the background in addition to the object itself. This
indicates that introducing the SaG strategy can reduce inter-
ference from the background and capture the critical regions of
the different sub-class. Thus, the robustness and generalization
capabilities of the proposed model are improved.

(d)

(c)

(b)

(a)

Fig. 5: The visualization of local regions obtained from Grad-
CAM. (a) prototype, (b) baseline, (c) our RSaD w/o RHS, and
(d) query. The Grad-CAM Map identifies significant regions
in the input image that affect classification decisions, where
darker regions indicate higher importance. The specimens
within each column belong to the same subclass, while those
in different columns belong to distinct classes. Compared
with baseline, RSaD pays more attention to the distinguishing
characteristics of objects themselves.
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C. Discussion on Impact of RHS module

The RHS module is similar to the regular cross-attention
module but lacks the value projection. To evaluate the effec-
tiveness of the RHS module, this section conducts compar-
ative experiments on the CUB-200-2011 and Stanford Dogs
datasets. This study substituted the highlighted sub-module in
the RHS with a cross-attention module. The results in TableVI
indicate that the RHS approach outperforms the cross-attention
mechanism, particularly in the 1-shot scenario. It is reason-
able to assert that incorporating a value projection has the
potential to introduce inconsistencies with the key projection,
thereby leading to inaccurate alignment between prototypes
and queries. Additionally, omitting a value projection enhances
parameter efficiency, resulting in performance gain in the few-
shot setup.

TABLE VI: Comparison results of RHS module and cross
attention. CA represents the cross-attention. The best results
are presented in bold.

Backbone CUB-200-2011 Stanford Dogs

1-shot 5-shot 1-shot 5-shot

RSaD w/o RHS 80.28±0.87 91.18±0.46 72.03±0.87 85.42±0.52
RSaD w/ CA 81.58±0.81 91.53±0.40 72.47±0.84 86.50±0.49
RSaD w/ RHS 82.45±0.79 92.02±0.44 73.75±0.93 86.65±0.54

The DBI (Davies-Bouldin Index) is employed as a quanti-
tative metric to assess the quality of model embedding space.
It is defined as follows:

DBI =
1

n

n∑
i=1

max
j ̸=i

(
σi + σj

d(ci, cj)

)
, (14)

where n represents the number of samples, ci denotes the clus-
ter of the i-th sub-class, σi signifies the average distance from
the sample to the cluster in the i-th sub-class, and d(ci, cj)
represents the distance between different clusters. A smaller
DBI value indicates a better clustering effect. As depicted in
Table VII, applying RHS module can significantly improve
the embedding space and the generalization performance in
unseen subclasses.

To further confirm the efficacy of the RHS module, t-
SNE [79] visualization is performed. According to the results
shown in Fig. 6, two observations are highlighted. Firstly,
introducing the RHS module can significantly reduce the intra-
class distance, resulting in a tighter cluster of objects within
the same category. This leads to an improved discriminative
capability of the model. Secondly, applying the RHS module
can effectively enhance the model’s generalization ability,
resulting in consistently high performance in the novel set.

D. Discussion on Impact of KD

Considering the adoption of a symmetric structure and
bidirectional distillation method in RSaD, it is reasonable to
perform quantitative experiments to examine the effects of
various distillation methods. Table VIII presents the compara-
tive results of various distillation methods, incorporating both
directional and structural asymmetry. The ”UD-KD” model

TABLE VII: Quantitative experiment on the effect of RHS
module. The terms ”Base” and ”Novel” indicate testing in
the Base set and Novel set, respectively. The best results are
presented in bold.

Method Backbone Split DBI ↓

RSaD w/o RHS ResNet-12 Base 3.7632
RSaD w/ CA ResNet-12 Base 3.0955
RSaD w/ RHS ResNet-12 Base 2.9593 (↓ 0.8102)

RSaD w/o RHS ResNet-12 Novel 3.3140
RSaD w/ CA ResNet-12 Novel 2.9642
RSaD w/ RHS ResNet-12 Novel 2.8374 (↓ 0.4766)

is the unidirectional knowledge distillation model. The loss
function is defined as follows:

Ltotal = Lcls + α ∗DKL (pI∥pS) , (15)

where Lcls is the loss function calculated by the cross-entropy,
and DKL(, ) represents the KL divergence. Here, pI denotes
the logit distribution generated by the main branch, while
pS represents the corresponding saliency logit distribution
generated by the auxiliary branch. The auxiliary branch in
”UD-KDP” is pre-trained, and its weights are frozen during
training. The results demonstrate that RSaD outperforms the
UD-KD model, suggesting that the bidirectional knowledge
distillation strategy is better suited for distilling imperfect
knowledge. Moreover, this study explores the performance
of three different asymmetric branches on the CUB-200-
2011 dataset: ResNet-12-Conv4 (strong-weak), ResNet-12-
Visformer-tiny [80] (similar parameters but different struc-
ture), and ResNet-12-ResNet-18 (weak-strong). Employing a
symmetric branch structure demonstrates superior performance
compared to using an asymmetric branch structure.

TABLE VIII: The effect of different mutual information dis-
tillation approaches. The best results are presented in bold.

Method Backbone CUB-200-2011

5-way 1-shot 5-way 5-shot

UD-KD ResNet-12/ResNet-12 80.55±0.81 89.57±0.48
UD-KDP ResNet-12/ResNet-12 81.02±0.82 91.00±0.45

RSaD ResNet-12/Conv4 81.70±0.81 91.60±0.40
RSaD ResNet-12/Visformer 79.50±0.84 91.47±0.42
RSaD ResNet-12/ResNet-18 79.72±0.82 90.88±0.47

RSaD ResNet-12/ResNet-12 82.45±0.79 92.02±0.44

A parameter sensitivity analysis of the importance factor
α is conducted to further explore the impact of saliency-
aware supervision signal. According to the results shown
in Table IX, two insights are gained. Firstly, The degree
of saliency-aware supervision signal is significant. Excessive
saliency-aware supervision signal causes the model to overly
focus on fitting the foreground distribution instead of the
label distribution, while insufficient mutual information results
in the model degrading to baseline performance. Secondly,
the degree of saliency-aware supervision signalvaries across
datasets. Considering the confidence of mutual information,
less saliency-aware supervision signal may be more suitable
for challenging datasets.
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(a) (b) (c) (d)

Fig. 6: t-SNE visualization results for 5-way 1-shot tasks of different models on various sets in Dataset CUB-200-2011. (a)
RSaD w/o RHS module on base set, (b) RSaD w/ RHS module on base set, (c) RSaD w/o RHS module on novel set, (d) RSaD
w/ RHS module on novel set. Triangles represent prototypes, circles represent queries, and different colors indicate distinct
subclasses. The labels of the base set and the novel set are disjoint.

TABLE IX: Effect of the degree of the saliency-aware super-
vision. The best results are presented in bold.

α Backbone CUB-200-2011 Stanford Dogs

1-shot 5-shot 1-shot 5-shot

0.1 ResNet-12 78.95±0.83 89.12±0.50 71.78±0.91 85.32±0.55
1.0 ResNet-12 80.48±0.82 90.36±0.46 73.75±0.93 86.65±0.54
5.0 ResNet-12 82.45±0.79 92.02±0.44 72.65±0.92 86.58±0.55
10.0 ResNet-12 80.71±0.82 91.15±0.45 68.90±0.92 84.62±0.59

E. Model Complexity Analysis

The model complexity analysis is critical for model evalua-
tion. This work presents a comparative analysis with four state-
of-the-art open-source approaches to establish the superiority
of the proposed approach. Two commonly used evaluation
metrics, ”Params.(M)” and ”FLOPs(G)” are employed to an-
alyze model complexity. Params.(M) refers to the number of
parameters in the model, measured in millions. Meanwhile,
FLOPs(G) denotes the number of arithmetic operations re-
quired to model feedforward, measured in billions.

As shown in Table X, the proposed approach is compu-
tationally inexpensive compared to state-of-the-art FG-FSL
approaches such as BSFA and AGPF. There is a significant
gap in FLOPs(G) despite having similar model parameters,
with only half that of the other two approaches. Moreover, the
proposed approach is inferior to the traditional FSL approach
CAN in terms of model complexity due to the need for a de-
tailed exploration of the relationship between different regions.
Nevertheless, the proposed approach significantly improved
over CAN in classification performance (see Table I). Fur-
thermore, the proposed approach brings a negligible increase
of 0.52 and 0.06 in Params.(M) and FLOPs(G), respectively.
Three possible reasons account for this insignificant raise:
1) No spatial comparison in the proposed method during
logit computation compared to the DN4 and BSFA. This
article employs spatial descriptor aggregation followed by
cost-effective channel comparison to improve computational
efficiency. 2) No complex structure is introduced compared to
AGPF. AGPF introduces a feature pyramid structure to capture
the variations between sub-classes, which is computationally
expensive, while the proposed method introduces a lightweight
RHS module. 3) The proposed approach employs a dual-

branch network without an increase in model complexity.
During the testing phase, only the main branch is preserved.

TABLE X: Comparison with state-of-the-art few-shot fine-
grained visual recognition methods in model complexity. The
best results are shown in bold.

Method Backbone Complexity

Params.(M) FLOPs(G)

DN4 [7] ResNet-12 12.42 67.39
CAN [70] ResNet-12 8.04 12.75
AGPF [71] ResNet-12 8.77 51.53
BSFA [44] ResNet-12 8.04 50.64

Baseline ResNet-12 8.00 24.80
RSaD ResNet-12 8.52(↑ 0.52) 24.86(↑ 0.06)

VI. CONCLUSION

This article proposed RSaD for few-shot fine-grained vi-
sual recognition. RSaD leveraged saliency-aware guidance to
improve model performance while maintaining computational
efficiency. Specifically, RSaD integrated multiple saliency
models to produce saliency maps of superior quality. Subse-
quently, RSaD introduced SaG, which leveraged the distilla-
tion technique on the salient region probability distribution to
exploit explicit intrinsic relationships among sub-classes. RHS
was designed to highlight deep descriptors relevant to the ob-
jects of interest and squeeze them into contextual embedding
to ensure transferable representation. Extensive experiments
demonstrated that the proposed model achieved comparable
performance to the current state-of-the-art approach while
maintaining low model complexity.

Recently, several methods [81]–[83] have been designed
to segment objects in an image all at once. These efficient
and promptable methods offer more robust saliency priors
than saliency detection models. Future research in this article
is not limited to few-shot fine-grained classification but will
focus on developing a generalized few-shot visual recognition
framework based on solid segmentation models. Furthermore,
there have been significant breakthroughs in semi-supervised
few-shot learning methods [84], [85] in recent years. Semi-
supervised learning within FS-FGVR is a promising avenue
worth investigating in future work.
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