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Abstract—Multimodal recommender systems amalgamate mul-
timodal information (e.g., textual descriptions, images) into a
collaborative filtering framework to provide more accurate rec-
ommendations. While the incorporation of multimodal informa-
tion could enhance the interpretability of these systems, current
multimodal models represent users and items utilizing entangled
numerical vectors, rendering them arduous to interpret. To
address this, we propose a Disentangled Graph Variational Auto-
Encoder (DGVAE) that aims to enhance both model and recom-
mendation interpretability. DGVAE initially projects multimodal
information into textual contents, such as converting images
to text, by harnessing state-of-the-art multimodal pre-training
technologies. It then constructs a frozen item-item graph and
encodes the contents and interactions into two sets of disentangled
representations utilizing a simplified residual graph convolutional
network. DGVAE further regularizes these disentangled represen-
tations through mutual information maximization, aligning the
representations derived from the interactions between users and
items with those learned from textual content. This alignment
facilitates the interpretation of user binary interactions via
text. Our empirical analysis conducted on three real-world
datasets demonstrates that DGVAE significantly surpasses the
performance of state-of-the-art baselines by a margin of 10.02%.
We also furnish a case study from a real-world dataset to
illustrate the interpretability of DGVAE. Code is available at:
https://github.com/enoche/DGVAE.

Index Terms—Multimodal Recommendation, Variational Auto-
Encoder, Disentangled Learning, Interpretability

I. INTRODUCTION

COLLABORATIVE filtering (CF) serves as a preeminent
strategy for facilitating the identification of items of

interest to users on e-commerce platforms [1]–[3]. However,
the increasing prevalence of multimedia information (e.g.,
images, texts, and videos) on these platforms presents new
challenges to the current CF paradigm. One such challenge
involves the effective utilization of multimodal information
and its successful integration into recommendation tasks. An-
other challenge, we argue, is the unsatisfactory interpretability
of current multimodal recommendations when incorporating
multimodal information.

To effectively incorporate multimodal information into the
existing CF framework, conventional methodologies have
employed techniques that concatenate or sum up the pre-
processed multimodal information with learnable item embed-
dings [4], [5]. More advanced recommendation approaches
have even utilized attention mechanisms to accurately cap-
ture users’ preferences for items [6]–[8]. These approaches
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facilitate a more nuanced understanding of user behavior
and preferences, leading to more accurate and personalized
recommendations. The recent increase in research on graph-
based recommendations [9]–[12] has inspired a new line
of work [13]–[17] that captures the high-order relationships
between item multimodal features and user-item interactions
leveraging the power of graph neural networks (GNNs).
Specifically, MMGCN [13] adopts graph convolutional net-
works (GCNs) to propagate and aggregate information on ev-
ery modality of the item. Building upon MMGCN, GRCN [14]
denoises the dyadic relations present in the interaction data by
identifying noise user-item edges based on the affinity score of
user preference and item content. Other authors in [18] lever-
age variational auto-encoders (VAEs) on graphs (VGAE [19])
to generate modality-specific numeric embeddings and fuse
them for recommendation. To effectively utilize multimodal
features in recommendation, researchers have even developed
approaches that complement the user-item interaction graph
by exploiting auxiliary graph structures. For instance, Dual-
GNN [15] introduces a user concurrence graph to capture
user preferences for modal features. LATTICE [16] posits
that the latent structures underlying the multimodal contents
of items can enhance representation learning. Consequently,
it introduces an item-item auxiliary graph based on modality
information and performs graph convolutions on this graph.

Although graph-based multimodal models demonstrate
promising performance in recommendation tasks, their re-
liance on numerical embeddings for representing users or
items poses a challenge to the interpretability of the models
and their recommendations. This lack of interpretability further
hampers the application of these models in industrial scenarios.
Interpretability is a crucial aspect of recommender systems
that facilitates the comprehension of the system’s output by its
users. It fosters trustworthiness and confidence in the decision-
making process, thereby enhancing the overall utility of the
system [20]–[22].

In this paper, we address the aforementioned issues by
extending VAEs to graph structures with a novel graph
VAE paradigm without compromising recommendation per-
formance. While VAEs have been applied to graphs in [18],
[19], they perform graph convolutions on user-item bipartite
graphs and represent hidden layer embeddings as mean and
standard deviation. We empirically and theoretically show
that this learning paradigm in multimodal recommendation
may degrade the learning of user and item representations, as
discussed in Section IV. In contrast, our proposed DGVAE fully
exploits multimodal information in two distinct ways. Firstly,
we convert raw information (e.g., images, text) of items from
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each modality into numerical embeddings using pre-trained
Transformers. Based on these embeddings, we construct an
item-item graph that explicitly models the relations between
items via multimodal perspectives. Secondly, we align raw
information of items from other modalities with the textual
content by harnessing pre-trained multimodal models. With
the textual contents, we frame user preferences into a user-
word matrix, where each element in the matrix denotes
the preference of a word for a given user. Our proposed
model performs graph convolutions on the item-item graph
to encode disentangled representations by reconstructing both
the user-item interaction matrix and the user-word preference
matrix. Finally, the proposed model regularizes the two sets
of disentangled representations by maximizing their mutual
information. We summarize the main contributions of this
paper as follows:

• To enhance the interpretability of multimodal recom-
mender systems, we propose DGVAE that projects multi-
modal information into textual contents and encodes the
projected textual content, as well as user ratings, into
two distinct sets of disentangled representations utilizing
graph convolutional networks.

• To interpret users’ numerical interactions with their pre-
ferred words, DGVAE regularizes the two sets of repre-
sentations by maximizing their mutual information. This
regularization ensures that the representations derived
from the interactions between users and items align with
those learned from the textual content.

• We conduct extensive experiments on three real-world
datasets to validate the efficacy of our proposed model.
The results demonstrate that our model significantly sur-
passes state-of-the-art methods in terms of recommenda-
tion accuracy. Furthermore, we delve into the recommen-
dation results and elucidate the interpretability of DGVAE
through a user case study conducted on a real-world
dataset.

II. RELATED WORK

A. Multimodal Recommendation

Multimodal recommendation models improve the perfor-
mance of classic CF models by incorporating the multimodal
information of items with deep learning or graph learning
techniques [23]. Early work, such as VBPR [4] and Deep-
Style [5], combines item ID embeddings and visual features
for matrix decomposition. In light of the advancements in
Transformer architectures, VECF [8] leverages attention mech-
anisms to effectively capture complex user preferences on
image patches. With the burgeoning adoption of Graph Neural
Networks (GNNs) within the domain of recommendation
systems [10], researchers have been motivated to assimilate
high-order semantic data into the methodology of acquiring
user and item representations through the implementation
of GNNs. MMGCN [13] employs graph convolution tech-
niques to each individual modality, subsequently aggregating
the results through a process of modal fusion. GRCN [14]
implements a refinement process on the bipartite user-item

graph by identifying and eliminating noise edges for effec-
tive recommendation. DualGNN [15] introduces a user co-
occurrence graph in conjunction with a preference learning
module, designed to accommodate the dynamic evolution of
users’ preferences over time. LATTICE [16] posits that previ-
ous approaches to extracting semantic information between
items have relied on implicit methods, which may result
in suboptimal performance. To address this issue, LATTICE
explicitly learns and constructs item-item relation graphs for
each individual modality, subsequently fusing them together to
obtain a latent item-item graph. By further freezing the item-
item graph, FREEDOM [24] significantly enhances the perfor-
mance of LATTICE’s recommendation results, achieving an
impressive boost of 19.07%. DMRL [25] uses a multimodal
attention mechanism to capture users’ attention on each factor
of different modalities. MVGAE [18] is the first work that
incorporates VGAE to learn the numeric embeddings for uni-
modal information. It then fuses the learned embeddings and
ID embeddings with the product of experts. Recently, we
also see an emerging of applying self-supervised learning in
multimodal recommendations [26], [27]. Specifically, SLM-
Rec [26] employs a self-supervised learning approach within
a graph neural network framework to effectively capture the
underlying relationships between interactions. On the other
hand, BM3 [27] introduces a novel self-supervised learning
methodology that addresses the challenges of high compu-
tational cost and inaccurate supervision signals. Both ap-
proaches demonstrate the potential of self-supervised learning
in improving the performance of recommendation systems.
Although existing multimodal recommendation models show
effective performance in recommendation, they all utilize the
pre-trained numeric embeddings from each modality for model
training and inference, thus lacking in interpretability.

B. Variational Auto-Encoders

As a Bayesian version of auto-encoders, VAEs have proven
to be effective in CF [28], [29]. MultiVAE [28] extends VAEs
to CF by designing a generative model that captures users’
preferences. Following this work, CVAE [30] first incorporates
both implicit feedback and content of items into a unified CF
paradigm. Specifically, the model learns two latent variables
from both contents of the item and its ratings via matrix
factorization. It then sums up the two variables to represent the
latent representation of the item. MD-CVAE [31] empowers
CVAE with a MultiVAE encoder and couples the two variables
learned from contents and ratings with regularization. Another
line of work aims to disentangle the representations of latent
variables [32], [33]. In [32], the authors propose MacridVAE
to disentangle user representations from macro- and micro-
perspectives. The macro perspective may refer to the high-
level concepts related to user intention, while the micro view
may reflect the low-level of an item. ADDVAE [33] extends
MacridVAE by incorporating content information into their
model. In cross-modal retrieval (e.g., image-text retrieval),
MD-VAE [34] is developed to disentangle the original numeric
representations of each modality into modality-invariant and
modality-specific features. The inference models in the above



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

CLIP

a) Stainless steel black watch …
b) Waterproof ankle boot …
c) Thermal gloves…
d) Leather credit card case …

Regularization 
Loss

Reconstruction Loss

Word Vector

Item-Item Graph

a) watch rubber strap …
b) leather cushion …
c) glove outdoor …
d) wallet bifold …

Sentence
Transformer

Transformer

…
…

Executing extractly once.

Graph 
Encoder

Graph 
Encoder

Decoder

Decoder

𝜇1

𝜇2

𝜇𝑘

𝜎2

𝜎1

𝜎𝑘

𝜇1

𝜇2

𝜇𝑘

𝜎2

𝜎1

𝜎𝑘

Rating Vector

MIM

Reconstruction Loss

MIM:    Mutual Information Maximization.

𝑣

𝑡

S

R

R𝑤
Z1
𝑤

Z2
𝑤

Z𝑘
𝑤

…
Z𝑘
𝑟

Z2
𝑟

Z1
𝑟

Z𝑤

Z𝑟

Fig. 1. The framework of DGVAE, which fully utilizes multimodal information to construct the word vector and the item-item graph. DGVAE learns its model
parameters by reconstructing both the word vector and the rating vector of a user. This figure is best viewed in color.

work usually harness simple matrix factorization (MF) or
multilayer perceptron (MLPs) to encode the rating or content
information. To encode high-order interactions in the user-
item graph, MVGAE [18] leverages the expressive power of
VGAE [19] to tackle the data sparsity and uncertainty problem.
MVGAE also lacks interpretability as it is built on numerical
embeddings from MLPs. In this paper, we propose a graph
variational auto-encoder (DGVAE) to exploit the high-order
interactions in the user-item graph via a simplified residual
GCN. Particularly, we design our model on the textual content
to enhance its interpretability.

III. METHODOLOGY

Fig. 1 illustrates the overall architecture of DGVAE. The
inputs to DGVAE consist of user-item interactions and multi-
modal information. To fully exploit multimodal information,
we employ pre-trained multimodal models to transform in-
formation from other modalities into text. Additionally, we
project raw modality-specific information into latent numerical
representations. Building upon these latent numerical repre-
sentations, we construct an item-item graph and freeze it for
performing graph convolutions.

A. Multimodal Information Preprocessing
Text-centered modality alignment. In this paper, we ad-

here to established methodologies [7], [16] by considering
only visual and textual modalities, denoted by M = {v, t}.
However, the proposed model can incorporate information
from other modalities by leveraging pre-trained multimodal
models [35], [36]. With visual information, we use CLIP [36]
to align an image with the top-k most relevant words describ-
ing this image. Here, we denote the number of most relevant
words extracted from images as a hyperparameter Topv .
Finally, we obtain an item’s multimodal textual representation
by concatenating texts from all modalities. As a result, we can
further construct user textual preference by concatenating the
textual representations of their interacted items.

Multimodal numerical representations. Apart from the
above alignment, we utilize a set of pre-trained models
to transform modality-specific information into embeddings.
These embeddings have proven to be effective in multimodal
recommendation [16]. For the processing of images, we em-
ploy a pre-trained CNN to extract 4,096-dimensional visual
embeddings from the image data [37]. In the processing of
textual data, we employ sentence-transformers [38] to extract
a 384-dimensional textual embedding from the concatenation
of the title, descriptions, categories, and brand of each item.
We denote the numerical embedding from modality m of an
item i as xm

i . We summarize the key notations used in our
model with Table I.

The construction of the homogeneous item graph. The
aforementioned numerical embeddings are employed in the
construction of a homogeneous item-item graph, which fa-
cilitates the exploitation of high-order semantic relationships
between items. Specifically, we first use cosine similarity
to compute the resemblance among items within a specific
modality m:

Sm
i,j =

(xm
i )

⊤
xm
j

∥xm
i ∥∥xm

j ∥
, (1)

where Sm
i,j represents the element located in the i-th row and

j-th column of the similarity matrix Sm ∈ RN×N . N is the
number of items.

The resultant similarity matrix Sm is dense and com-
putationally inefficient. To address, we employ a k-nearest
neighbor (kNN) strategy to trim unnecessary information and
transform the matrix into a sparse representation. This process
streamlines the computation and can be formally expressed as
follows:

Ŝm
i,j =

{
1, Sm

i,j ∈ top- k(Sm
i ),

0, otherwise.
(2)

It is worth noting that the matrix Ŝm differs from the weighted
similarity matrix used in LATTICE, which employs affinity
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values between items as its elements. In contrast, Ŝm repre-
sents the relationships between items using binary values, with
1 indicates the presence of a latent connection between two
items. For each item i, only the connection relations of its
top-k most similar edges are retained.

The discretized adjacency matrix Ŝm is then normalized as
S̃m = (Dm)−

1
2 Ŝm(Dm)−

1
2 , where Dm is the diagonal degree

matrix of Ŝm with dimensions N×N . The diagonal elements
of Dm are defined as Dm

i,i =
∑

j Ŝ
m
i,j . We further utilize the

resultant modality-aware adjacency matrices and construct the
latent homogeneous item graph by aggregating the structures
from each modality.

S =
∑

m∈M
αmS̃m, (3)

where αm denotes the importance score assigned to modality
m, andM represents the set of all modalities under considera-
tion. These parameters are used to weight the contributions of
different modalities in the construction of the homogeneous
item graph, thereby enabling the efficient representation of
complex relationships between items in a dataset. For sim-
plicity, when considering two modalities, we let αt = 1−αv .

In contrast to previous work, which dynamically updated
the latent item-item graph [16], we choose to fix it in order
to achieve a significant improvement in the efficiency of
DGVAE. Freezing S eliminates the computational and memory
costs that are quadratic in the number of nodes during model
training, resulting in a more efficient model.

B. Disentangled Graph Variational Auto-Encoder
On top of the constructed frozen item-item graph, DGVAE

performs graph convolutional operators to reconstruct the
users’ rating matrix and their textual preferences.

Definitions. Given a set of users U , we denote the number
of users as M = |U|. The user-item interaction matrix is
denoted as R ∈ RM×N , with each row representing a user’s
rating vector ru ∈ R1×N . We represent the user preference
matrix constructed in multimodal preprocessing (section III-A)
as Rw ∈ RM×W , where W is the number of words. Each
element rwu,i ∈ Rw denotes user u’s preference for word i.
We denote the number of disentangled latent prototypes as
K. The prototypes here may represent categories or brands of
items.

Graph encoder. DGVAE encodes user interactions and item
contents using GCNs across each disentangled prototype. The
graph encoder in DGVAE takes either a user-item interaction
matrix R or a user preference matrix Rw as input, and
generates a list of latent variables Zr = [Zr

1,Z
r
2, · · · ,Zr

K ]
as output, where Zr

k ∈ RM×d and d is the dimensional size.
Here, we elaborate on the process of DGVAE in reconstructing
the user-item rating matrix R. The reconstruction of the user
preference matrix Rw follows the same processes. In R, each
row ru ∈ R1×N denotes user u’s rating vector. The k-th
component zku ∈ Rd represents user u’s preference on latent
prototype k.

q(Zk | R) =

M∏
u=1

q(zku | R), (4)

where zku ∈ Zr
k is sampled from a multivariate Gaussian

distribution:

q(zku | R) = N
(
zku
∣∣ µk

u, diag
(
(σk

u)
2
))

. (5)

Here, the mean µk
u and the standard deviation σk

u are parame-
terized by a sequence model comprising a simplified residual
GCN (Res-GCN) and a single layer MLP:

eku = ru ⊙ c:,k, eku = Res-GCN
(

eku
∥eku∥2

)
, (6)(

aku,b
k
u

)
= MLP(eku), (7)

µk
u =

aku
∥aku∥2

, σk
u ← σ0 · exp

(
−1

2
bk
u

)
, (8)

where eku ∈ R1×N ,aku ∈ Rd, and bk
u ∈ Rd are latent

intermediate representations generated by Res-GCN and MLP.
The term ru ⊙ c:,k represents the Hadamard product between
the two vectors. σ0 is a hyperparameter. c:,k ∈ R1×N is the
k-th column of the prototype matrix C ∈ RN×K . Each row
ci ∈ RK in C represents the probabilities for this item belong
to each disentangled prototype. ci is drawn from a categorical
distribution:

ci ∼ CATEGORICAL (SOFTMAX([ρi,1, ρi,2, . . . , ρi,K ])) ,
(9)

ρi,k = him
⊤
k /τ, (10)

where mk ∈ R1×d is the representation of k-th prototype and
hi ∈ R1×d is the latent representation of an item (or word in
Rw). τ is a hyperparameter.

Given the frozen item-item graph S, our simplified residual
GCN (Res-GCN) in Eq. (6) propagates graph convolutions for
a user preference under category k as:

ekl = ekl−1S, (11)

where ekl is the l-th layer representation of a user intermediate
preference. When stacking L layers, Res-GCN readouts the
representation of an item by sum up its initial representation
with its L-th hidden representation:

ek = ek0 + ekL. (12)

Decoder. Our generative model predicts the rating of user
u with regard to prototype k over all items based on the latent
variables Zr and the prototype matrix C. For simplicity, we
omit the matrix identifier and denote user u’s latent variable
as zku.

p(ru|zu,C) =

K∑
k=1

exp
(
c:,k · (zkuH⊤)/τ

)
, (13)

where H denotes the latent representation matrix of items in
Eq. (10).

Regularizing disentangled prototypes with mutual infor-
mation maximization (MIM). With the user-item interactions
matrix R and user-word matrix Rw, we can obtain two
set of disentangled representations, Zr = [Zr

1,Z
r
2, · · · ,Zr

K ]
and Zw = [Zw

1 ,Z
w
2 , · · · ,Zw

K ], via the above graph encoder,
respectively.
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Following previous work [33], [39], we use a Compositional
De-Attention to fuse the information from the two sets. Given
the sets of disentangled representations, the Compositional De-
Attention computes an attentive score matrix A ∈ RK×K . By
alternatively using Zr and Zw as the key and query values,
we obtain two attentive matrices, A

r|w
k and A

w|r
k , respec-

tively. We then aggregate their disentangled representations
with regard to k-th prototype as Z

r|w
k =

∑K
j=1 A

r|w
k,j Z

r
k and

Z
w|r
k =

∑K
j=1 A

w|r
k,j Z

w
k , respectively.

As we are primarily interested in maximizing the informa-
tion between K latent prototypes, we define a Jensen-Shannon
MI estimator [40] to minimize the following objective:

LMI =

K∑
k=1

(
EU [sp(−Zr|w

k ⊙ Z
w|r
k )]+

K∑
j=1,j ̸=k

EU [sp(Z
r|w
k ⊙ Z

w|r
j )]

)
, (14)

where sp(x) = ln(1 + ex) is the softplus function. This
objective function encourages representations from the same
prototype to be close to each other, while repelling represen-
tations from different prototypes.

Optimization. We optimize the variational lower bound
LLB with respect to the parameters of Res-GCN and MLP
by reconstructing the interaction matrix R (or Rw):

LLB = Ep(C)

[
Eq(zu|R) [ln (p(ru | zu,C))]−
β ·KL (q(zu | R)∥p(zu))

]
, (15)

where q(zu | R) =
∏K

k=1 q(z
k
u | R) and β is a regularization

term. KL[q(·)∥p(·)] is the Kullback-Leibler divergence be-
tween q(·) and p(·). To optimize the approximate distribution
in Eq. (5), we utilize the reparameterization trick [41] for
training.

z(µ, σ) = µ+ ϵ⊙ σ, (16)

where ϵ ∈ N (0, I). The final learning objective is defined as:

L = LLB + λLMI (17)

where λ is a trade-off between the two types of losses.

TABLE I
NOTATIONS USED ACROSS THE WHOLE PAPER.

Symbols Descriptions
M Set of item modalities, i.e., visual and textual set v, t
xm
i Numerical embedding of an item i from modality m

M,N Number of of users, items
S The frozen item-item graph in matrix form
R,Rw User-item interaction and user-word preference matrices
Zr,Zw Disentangled latent representations on ratings and words
hi ∈ H Learnable representation of an item i
mk Learnable representation of a prototype k
ci ∈ C Categorical distribution of an item i over prototypes
eku,a

k
u,b

k
u A set of intermediate latent variables

IV. EXPERIMENTS

A. Datasets

We select three per-category datasets of the Amazon review
dataset to evaluate our model as well as the baselines. Namely,

TABLE II
STATISTICS OF THE EXPERIMENTAL DATASETS.

Dataset # Users # Items # Interactions Sparsity
Baby 19,445 7,050 160,792 99.88%
Sports 35,598 18,357 296,337 99.95%
Clothing 39,387 23,033 278,677 99.97%

(a) Baby, (b) Sports and Outdoors (denoted as Sports), and
(c) Clothing, Shoes and Jewelry (denoted as Clothing). The
dataset of Aamzon review has been widely used in previous
studies [16], [27]. The raw data from each dataset undergoes
a pre-processing procedure, which leverages a 5-core setting
for both items and users. The results of this filtering process
are presented in Table II, providing a comprehensive overview
of the data utilized in our analysis.

B. Evaluation Protocols

For a fair comparison, we follow the same evaluation
setting as [16], [27] with a random data splitting 8:1:1 on
the interaction history of each user for training, validation,
and testing. We also adopt the widely use Recall@K and
NDCG@K to evaluate the top-K recommendation perfor-
mance of our method as well as the baselines. We empirically
set K to 10 and 20, as in previous works, and present the
average metrics computed across all users in the test set. We
employ abbreviations to concisely report the average metrics
of Recall@K and NDCG@K for all users in the test set,
denoted as R@K and N@K, respectively.

Formally, we define the metric of Recall@K as:

Recall@K =
1

|UT |
∑
u∈UT

∑K
i=1 I[Iru(i) ∈ Itu]

|Itu|
,

where UT represents the set of users encompassed within the
test data, while Iru(i) denotes the i-th item recommended for
user u. The indicator function I[·] is employed to count the
number of recommended items that fall within the set of items
Itu, which represents the items that have interactions with user
u in the testing data.

We define NDCG@K is defined as follows.

NDCG@K =
1

|UT |
∑
u∈UT

DCG@K(u)

IDCG@K(u)
,

DCG@K(u) =

K∑
i=1

2I[I
r
u(i)∈It

u] − 1

log(i+ 1)
,

where IDCG@K(u) denotes the ideal ranking scenario in
which items that have interacted with user u are positioned
at the top.

In addition to the aforementioned evaluations, we further
assess the proposed model in the context of cold-start sce-
narios. Specifically, we adopt the widely studied item cold-
start setting outlined in [18]. In this setting, we randomly
sample 20% of items from the entire set and retain only
two ratings per item within the training set. These items are
then further divided into two equal subsets (10% each), with
their remaining interactions used for validation and testing.
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We further extend this analysis to the challenging zero-shot
cold-start scenario, where no interactions are retained for the
selected items in the training set.

C. Comparative Baselines

To demonstrate the effectiveness of DGVAE, we compare it
with the following two categories of state-of-the-art recom-
mendation methods.

General CF models. This category of models only utilize
the user-item interactions for recommendation.

• Multi-VAE [28] improves the expressive power of linear
factor models by extending VAEs into CF paradigms.
Particularly, the model adopts a multinomial likelihood
function parameterized by neural network to model user-
item interactions.

• MacridVAE [32] is a generative model based on β-
VAE that decouples the users’ latent factors behind their
decision marking processes.

• DGCF [42] devises a graph disentangling module to
refine the intent-aware graphs for disentangling factorial
representations.

• LightGCN [9] recommends items by simplifying the
vanilla GCN with the removal of non-linear activation
and feature transformation layers.

Multimodal models. The models in this category either
leverage numerical embeddings generated with pre-trained
models or use word vectors represented by tf-idf values [30],
[31].

• VBPR [4] extends the classic MF framework by incor-
porating visual features in BPR loss. Following previous
work [15], [16], the multimodal features of an item are
concatenated to form its visual feature, which is then
utilized for the purpose of user preference learning.

• MMGCN [13] first performs graph convolutions within
each modality of items, it then fuses the representations
from all modalities for final prediction.

• GRCN [14] learns a refined graph based on the represen-
tations of users and items. On top of the refined graph, it
performs graph convolutions to obtain the representations
of users and items.

• DualGNN [15] builds an auxiliary user-user correlation
graph to augment the representations of users in GCNs.

• LATTICE [16] exploits graph structure learning to ex-
plicitly learn the latent semantic relations between items
based on their multimodal features. The model performs
graph convolutions on both user-item bipartite graph and
the built item-item graph for recommendation.

• MVGAE [18] employs VGAE [19] to obtain modality-
specific embeddings of nodes and fuses the embeddings
for recommendation. The vanilla version, leveraging the
product-of-experts principle, actually led to performance
degradation, so we evaluate a variant of MVGAE with
the removal of its PoE component, which we dubbed
as MVGAE(w/o POE). This variant is closely related
to VGAE; however, MVGAE(w/o POE) performs graph
convolutions on a bipartite user-item graph.

• SLMRec [26] proposes the implementation of three data
augmentation techniques in self-supervised learning to
extract the multimodal patterns present in data for the
purpose of multimedia recommendation.

• BM3 [27] introduces a novel contrastive learning ap-
proach to bootstrap the representation of users and items
for multimodal recommendation, eliminating the need for
negative samples.

• DMRL [25] disentangles representations within indi-
vidual modalities and employs an attention module to
determine users’ preferences for these representations,
thereby enhancing recommendation accuracy.

D. Implementation and Hyperparameter Settings

To ensure a fair comparison and align our work with es-
tablished methodologies delineated in previous researches [9],
[16], we fixed the dimensionality of the embeddings for both
users and items at 64 for all models. The initialization of
the embedding parameters was performed utilizing the Xavier
method [43], while the Adam algorithm [44] was employed
as the optimizer. Furthermore, we meticulously adjusted the
parameters of each model in accordance with the specifications
outlined in their respective publications. The number of GCN
layers in the item-item graph is fixed at 2 for reduction of the
hyperparameter searching space in DGVAE. We empirically
set the number of words Topv fused from images at 5,
both the visual feature ratio αv and β at 0.1. A grid search
is conducted on the hyperparameters of DGVAE across all
datasets to determine its optimal settings. Specifically, the
number of latent prototypes in {3, 4, 5} and τ = 0.1. The
regularization term λ in {0.1, 0.2, 0.3, 0.4, 0.5}. For the
purpose of convergence, we set the early stopping epochs at
20. In accordance with the methodology outlined in [16], the
R@20 metric on the validation data is utilized as the training
stopping indicator. For multimodal baselines, we employ the
implementation encapsulated within the MMRec library [45].

E. Performance Comparison

Overall performance. Table III shows the overall perfor-
mance with regard to Recall and NDCG obtained by the base-
lines. First, we observe that graph-based models, encompass-
ing both general collaborative filtering and multimodal cat-
egories, exhibit competitive performance in recommendation
accuracy. Graph-based models are capable of exploiting the
high-order interactions of users to alleviate the data sparsity.
As a result, our proposed DGVAE harnessing the item-item
graphs can outperform the best baselines, BM3 and DMRL,
across all evaluation metrics. Second, disentangled MacridVAE
obtains better performance over Multi-VAE. The performance
of MacridVAE is superior to the disentangled graph model
DGCF, which perform graph convolutions on user-item inter-
actions. Analogously, DMRL exhibits superior performance
among all baselines across the majority of evaluation metrics.
The results demonstrate the powerful expressiveness of disen-
tangled VAEs in recommendation. Third, with the exception
of MMGCN, models incorporating multimodal information
demonstrate a significant performance improvement compared
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TABLE III
THE OVERALL PERFORMANCE OF VARIOUS RECOMMENDATION METHODS IS COMPARED IN TERMS OF RECALL AND NDCG METRICS. THE GLOBAL

BEST RESULTS FOR EACH DATASET AND METRIC ARE DENOTED IN BOLDFACE, WHILE THE SECOND-BEST RESULTS ARE UNDERLINED. THE
IMPROVEMENT PERCENTAGE, DENOTED AS improv., IS CALCULATED AS THE RATIO OF PERFORMANCE INCREMENT FROM THE BEST BASELINE TO DGVAE

FOR EACH DATASET AND METRIC. TO ENSURE THE STABILITY OF OUR METHOD, EXPERIMENTS WERE CONDUCTED ACROSS 5 DIFFERENT SEEDS, AND
THE IMPROVEMENTS WERE FOUND TO BE STATISTICALLY SIGNIFICANT AT A LEVEL OF p < 0.01 USING A PAIRED t-TEST. *

Dataset Baby Sports Clothing
Metric R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20
Multi-VAE 0.0353 0.0579 0.0189 0.0248 0.0420 0.0620 0.0230 0.0282 0.0232 0.0358 0.0123 0.0156
MacridVAE 0.0463 0.0703 0.0264 0.0327 0.0558 0.0811 0.0325 0.0390 0.0352 0.0518 0.0195 0.0237
DGCF 0.0441 0.0709 0.0239 0.0308 0.0515 0.0774 0.0285 0.0352 0.0311 0.0474 0.0168 0.0210
LightGCN 0.0479 0.0754 0.0257 0.0328 0.0569 0.0864 0.0311 0.0387 0.0361 0.0544 0.0197 0.0243
VBPR 0.0423 0.0663 0.0223 0.0284 0.0558 0.0856 0.0307 0.0384 0.0281 0.0415 0.0158 0.0192
MMGCN 0.0421 0.0660 0.0220 0.0282 0.0401 0.0636 0.0209 0.0270 0.0227 0.0361 0.0120 0.0154
GRCN 0.0532 0.0824 0.0282 0.0358 0.0599 0.0919 0.0330 0.0413 0.0421 0.0657 0.0224 0.0284
DualGNN 0.0513 0.0803 0.0278 0.0352 0.0588 0.0899 0.0324 0.0404 0.0452 0.0675 0.0242 0.0298
LATTICE 0.0547 0.0850 0.0292 0.0370 0.0620 0.0953 0.0335 0.0421 0.0492 0.0733 0.0268 0.0330
MVGAE(w/o POE) 0.0307 0.0520 0.0151 0.0206 0.0246 0.0446 0.0116 0.0167 0.0207 0.0337 0.0104 0.0137
SLMRec 0.0521 0.0772 0.0289 0.0354 0.0663 0.0990 0.0365 0.0450 0.0442 0.0659 0.0241 0.0296
BM3 0.0564 0.0883 0.0301 0.0383 0.0656 0.0980 0.0355 0.0438 0.0422 0.0621 0.0231 0.0281
DMRL 0.0543 0.0847 0.0322 0.0405 0.0672 0.1008 0.0393 0.0484 0.0549 0.0791 0.0311 0.0373
DGVAE 0.0636 0.1009 0.0340 0.0436 0.0753 0.1127 0.0410 0.0506 0.0619 0.0917 0.0336 0.0412
improv. 12.77% 14.27% 5.59% 7.65% 12.05% 11.81% 4.33% 4.55% 12.75% 15.93% 8.04% 10.46%

CLIP

Visual Modality

Textual Modality

D
G
V
A
E

Title: Alpine Swiss 
Zippered Bifold Men's 
Wallet with Deluxe 
Credit Card Flip Pocket 
Genuine Lambskin 
Leather Comes in a Gift 
Bag -Black

3 Latent Prototypes Prediction

Fig. 2. An illustration of interpretability of DGVAE. The left part shows the interacted items by user “A1E3O99XB3BN3W”. The middle part visualizes the
learned latent prototypes of DGVAE. The right part presents the learned prototypes and the recommended item.

to those lacking such information. For MMGCN, we speculate
the reason may result from their graph convolutional operators
are merely performed on raw user-item graph. Whilst the line
of graph-based multimodal models (e.g., GRCN, DualGNN,
LATTICE) either refine the raw graph or leverage auxiliary
graphs of user-user or item-item for graph convolutions. Whilst
other models (e.g., SLMRec, BM3) injects contrastive signals
into user-item interactions for effective learning. DMRL [25]
effectively leverages multimodal information and disentangles
the representations, resulting in superior performance in the
majority of cases when compared to the baselines. DGVAE
freezes the item-item graph for training also achieve com-
petitive recommendation accuracy. Fourth, it is worth noting
that the performance of MVGAE is unacceptably poor. As
MVGAE is built upon MMGCN, we remove its PoE compo-
nent and find MVGAE(w/o POE) can boost the performance of

vanilla MVGAE by nearly 10×. To illustrate the performance
degradation in MVGAE, we resort to the definition of PoE
in [46].

P (x|{θm}) =
1∫

dx
∏

m∈M fm(x|θm)

∏
m∈M

fm(x|θm),

(18)
where f(x) is an expert defined as a probabilistic model
that represents the input space or modality in MVGAE.
The definition of PoE requires the probabilities from each
modality should be prominent to obtain a good result. In a
multimodal context, MVGAE requires all multimodal features,
calculated by experts, to be prominent in order to achieve an
informative final item representation. However, in practice, this
requirement may be difficult to satisfy, potentially leading to a
degradation in the recommendation quality of the vanilla MV-
GAE. The removal of PoE in MVGAE makes it comparable to
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Fig. 3. Performance of DGVAE compared with various baselines under
different cold-start settings.

MMGCN in terms of magnitude, although it is still inferior to
MMGCN. Lastly, our proposed model, DGVAE, benefits from
both graph convolutions and disentangled VAEs, achieving the
best recommendation accuracy across three datasets. We will
illustrate its interpretability in the following sections.

Performance in cold-start settings. Fig. 3 delineates a
comparative analysis of the performance (i.e., R@20) for
DGVAE and a selection of key baseline models under various
cold-start scenarios. Intuitively, one would anticipate that mul-
timodal models, given their ability to harness a comprehensive
array of content information, would exhibit superior perfor-
mance in recommendation tasks. This intuitive expectation
is empirically validated in our observations, as depicted in
Fig. 3, where the general recommendation model, LightGCN,
demonstrates a performance that is noticeably inferior when
contrasted with the multimodal models. Compared to the
zero-shot cold-start scenario, models trained with even a few
more ratings (e.g., two per selected item) exhibited significant
improvements in performance across all tested algorithms.
This suggests that access to even minimal user interaction
data facilitates more accurate inference of user preferences,
leading to enhanced performance for recommendation models.
Furthermore, Fig. 3 reveals that our proposed model demon-
strates exceptional efficacy in cold-start situations. This is pri-
marily attributed to the capabilities of DGVAE, which adeptly
captures the interrelationships among items through two key
mechanisms: the exploitation of the rich content inherent in
items via a high-order item-item graph, and the reconstruction
of item textual semantics using a VAE. Remarkably, the results
are obtained even in the absence of user-item interactions,
underscoring the robustness of our model. In our future
research, we aim to further enhance the resilience of DGVAE
in the context of a code-start scenario, particularly within the
framework of sequential recommendation systems [47], [48].

F. Interpretability

We analyze the interpretability of the proposed model and
recommendation results by exemplifying a user instance with
the ID of “A1E3O99XB3BN3W” from the Clothing dataset.
This user has 5 interactions in the training set and 1 interaction
in the test set. The detailed descriptions and cover images of
the products this user interacted with, which are hosted on

Amazon, are listed in Table VI in Appendix A. Fig. 2 shows
the visual and textual information of these interacted products.
With raw cover images, we use a pre-trained multimodal
model CLIP [36] to transform the images into words. The
left part of Fig. 2 presents the word clouds of visual and
textual modalities, where the size of the words is proportional
to their frequency in the input text. In the visual modality, we
observe that the words “bifold” and “wallet” are frequently
used to describe the cover images of the products. However,
these words do not appear frequently in the textual modality.
The right part of Fig. 2 shows the products recommended by
DGVAE and purchased by this user.

Interpretability of recommendation results. For this user
(i.e., A1E3O99XB3BN3W), DGVAE recommends a wallet
which shows in the right of Fig. 2. When we compare
the recommended product with the products this user has
interacted with, we can interpret the user’s preference on this
product (i.e., B004M6UDC8). Thanks to the multimodal pre-
trained model, the title of the recommended product is highly
related to the visual information extracted from the cover
images of previously interacted products. Previous multimodal
models leveraging the numerical embeddings of products are
difficult to understand the connections between recommended
products and the interacted products.

Model interpretability. We conduct a further investigation
into why DGVAE predicts the product of “B004M6UDC8” for
user “A1E3O99XB3BN3W”. We visualize the top predicted
words under each latent prototype in the middle of Fig. 2.
The three latent prototypes in the figure can be differentiated
from each other with the help of mutual information theory. To
be specific, the top prototype highlights some product related
to money and cards, but pays less attention to a bifold wallet.
Conversely, the second prototype focuses on a bi-fold item
from a Swiss brand. The last prototype shows interest in topics
related to Swiss watches.

Fig. 2 also reveals that the latent prototypes may learn
some counter-intuitive representations. Firstly, the frequently
occurred words (e.g., men, clothing, shoes) in the textual
modality may not be captured by any latent prototype. The
reason is that these words have commonly appeared in the
Clothing dataset, thus, the importance of these words is
understated with tf-idf. Secondly, we observe some words (e.g.,
Swiss) do not exist in both the visual and textual modalities but
are attended to the latent prototypes of the user’s preference.
We speculate the reason may result from the graph convolu-
tional operators of DGVAE. Because graph convolutions can
learn a node’s representation from its neighbors. Take the
item of watch in Fig. 2 for example, DGVAE may learn word
“Swiss” from other similar watches that tagged with “Swiss”
label. Thus, DGVAE use the word “Swiss” to describe the
watch purchased by user “A1E3O99XB3BN3W”. Thanks to
the graph convolutional layer of DGVAE, even items with few
interactions can learn rich semantic information from their
neighbors.

G. Ablation Study
We carry out a series of ablation studies, which involved

the process of ablating the item-item graph, the ablating of
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Fig. 4. Comparison of DGVAE with its variants.

the mutual alignment between ratings and multimodal features
in DGVAE, as well as the impact of multimodal features with
regard to performance of DGVAE, etc.

Components of DGVAE. Fig. 4 shows the performance of
DGVAE with the following variants:

• DGVAE(w/o G) is a variant of DGVAE without the item-
item graph.

• DGVAE(w/o MIM) is a variant of DGVAE without the
regularization of mutual information maximization.

The result shows that the performance of DGVAE(w/o G)
is slightly worse than its full version on Baby and Sports.
Specifically, the R@20 for DGVAE improved over DGVAE(w/o
G) are 3.5% and 1.3% on Baby and Sports. However, we
observe a significant performance boost on the largest dataset,
Clothing. To be specific, the improvements are 8.9% on
R@20 and 10.2% on N@20. We posit that the observed
phenomenon is likely attributable to the effective utilization
of latent multimodal relationships among items. These re-
lationships are leveraged in the assembly of an item-item
graph, which serves as a substantial supplement to user-item
interactions. This approach demonstrates particular efficacy in
the context of datasets characterized by a sparse quantity of
user interactions. Moreover, it is noteworthy that DGVAE(w/o
MIM) exhibits the least effective performance, underscoring
the critical role of mutual information maximization in the
functionality of DGVAE. However, DGVAE(w/o MIM) exhibits
a marginal enhancement over the disentangled collaborative
filtering method, MacridVAE, even in the absence of aligning
ratings and multimodal information via mutual information
maximization.

Multimodal features in DGVAE. We further examine the
impact of various uni-modal information on the performance
of DGVAE. We have devised the following variants of DGVAE:

• DGVAE-text is a variant of DGVAE that only utilizes the
text information associated with items.

• DGVAE-image is a variant of DGVAE that only utilizes
the image information associated with items.

The resulted Fig. 5 indicates that within the DGVAE frame-
work, the text modality holds greater importance than the
image modality. Moreover, when juxtaposed with the per-
formance metrics in Table III of the main manuscript, it is
observed that the DGVAE framework, when utilizing solely on
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Fig. 5. Comparison of DGVAE under different uni-modal features.

single modality information, is on par or even surpasses the
performance of the best baselines.

Visual pre-trained model for image conversion. Rather
than employing the CLIP [36] for image-to-text conversion,
we have incorporated BILP-2 [49] into our proposed model,
DGVAE. We then assess the impact of different image-to-text
encoders on its performance, shown in the following Table IV.

TABLE IV
COMPARATIVE ANALYSIS OF DGVAE WITH VARIOUS IMAGE-TEXT

ENCODERS. THE BEST RESULTS ARE IN BOLDFACE.

Dataset image-text encoders R@10 R@20 N@10 N@20

Baby CLIP 0.0636 0.1009 0.0340 0.0436
BLIP-2 0.0641 0.1011 0.0346 0.0441

Sports CLIP 0.0753 0.1127 0.0410 0.0506
BLIP-2 0.0765 0.1146 0.0418 0.0516

Clothing CLIP 0.0619 0.0917 0.0336 0.0412
BLIP-2 0.0622 0.0910 0.0341 0.0414

The results presented in the table suggest that the DGVAE
model, when equipped with BLIP-2, exhibits a marginally
superior performance compared to the CLIP model. This
observation implies that an enhanced image-text encoder can
potentially lead to an improved image representation, thereby
augmenting the recommendation performance. However, as
depicted in Fig. 5 of the revised manuscript, the performance
of the DGVAE model utilizing image data is not comparable to
that of text data. Consequently, the performance improvement
attributed to the superior image representation of BLIP-2 is
relatively limited, as evidenced in the aforementioned table.

H. Hyperparameter Sensitivity Study

In this section, we study how hyperparameters in DGVAE
would affect its performance. Specifically, we evaluate DGVAE
with the number of latent prototypes in {2, 3, 4, 5, 6} and
the number of words attending into textual information from
images varying in {0, 5, 10, 15, 20}.

Number of prototypes. We plot the performance of DGVAE
with respect to R@20 and N@20 under different numbers of
prototypes in Fig. 6. Across all datasets, we observe a perfor-
mance degeneration when disentangling too many prototypes
in DGVAE. On the contrary, too few prototypes equipped in
DGVAE may not possible to decouple the disentangled user
representations. Therefore, the results in Fig. 6 suggest that 3
or 4 prototypes would be a relational choice for DGVAE.
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Fig. 7. Performance of DGVAE varies with the number of words extracted
from images.

Number of words extracted from images. In DGVAE,
we use a pre-trained multimodal model CLIP [36] to extract
the most related words from the cover of a product. DGVAE
fuses the Topv related words ranked by CLIP into the textual
descriptions of items. We plot the performance of DGVAE
varying with the number of words in Fig. 7. It is worth
noting that “0” value in x-axis means DGVAE does not use
visual multimodal information for recommendation. The figure
reveals that the visual information generated from CLIP places
a limited impact on the performance of DGVAE, especially on
Baby and Sports. The dataset of Clothing is more sensitive to
the number of words expressed by images fused in DGVAE.
This observation is in line with the findings reported in [16].

To quantify the contribution of visual modality, we calculate
the averaged improvements of DGVAE incorporating visual
information on R@20 and N@20 as 3.9% and 2.3%, respec-
tively. The improvement in Clothing is particularly significant,
reaching 8.8% on R@20. The results match the intuition that
visual features are informative for multimodal models with the
vision-sensitive dataset.

I. Discussions and Limitations

Failure recommendation case of DGVAE. Since no recom-
mendation model can predict all users’ responses perfectly, we
were intrigued by the cases where collaborative signals can
accurately predict outcomes, yet multimodal recommenders
(i.e., DGVAE) do not succeed. Consequently, we conducted
an analysis of the recommendation results produced by Light-
GCN [9] and our proposed DGVAE on the Clothing dataset.

For simplicity consideration, our analysis is focused on
users who have only one instance in the test data of the
Clothing dataset. This subset comprises 37,937 users out of
a total of 39,387 users. Remarkably, within this group of
37,937 users, there exist 2019 users where DGVAE accurately
predicts their preference, whereas LightGCN does not. And

there are 586 users where LightGCN can accurately predicts
their preference, whereas DGVAE does not.

Among these 586 users, we exemplified one representative
user (“A3JJ2LAPAM96FJ”) and his/her interacted items in
training/test/recommended data of DGVAE in the subsequent
Table V. The table illustrates that the system, denoted as
DGVAE, recommended a fishing shirt to the user, a recom-
mendation derived from the user’s previous interactions with
swim board shorts and t-shirts. The presence of multimodal
information may potentially influence the collaborative signal,
causing it to deviate from its intended direction. Therefore,
adapting the alignment of multimodal features to correspond
with users’ preferences remains a significant scientific chal-
lenge in multimodal recommendation.

TABLE V
FAILURE CASE OF DGVAE.

Items in Training Item(s) in Test Top-recommendation
ID: B00009ZM7Z
Title: merrell men’s
jungle moc slip-on shoe

ID: B0018OM1TU
Title: levi’s men’s
559 relaxed straight
leg jean

ID: B0002XSXWC
Title: columbia men’s
bonehead short sleeve
fishing shirt

ID: B00AN53FMW
Title: hurley men’s
one and only 22 inch
supersuede boardshort
swim board shots
ID: B00BJJJA1G
Title: levi’s men’s
grosevelt t-shirt, charcoal
heather, x-large, t-shirts

Discussion of popular bias in DGVAE. In DGVAE, text or
words serve a dual purpose: they are utilized to construct the
item-item graph and to align user ratings via word vectors.
Hence, we discuss the influence of popularity bias among the
textual words from two distinct viewpoints.

• TF-IDF (Term Frequency–Inverse Document Fre-
quency) text vectorization. DGVAE employs word vec-
tors characterized by Term Frequency-Inverse Docu-
ment Frequency (TF-IDF) values. The TF-IDF scoring
mechanism quantifies a word by multiplying the Term
Frequency (TF) of the word by its Inverse Document
Frequency (IDF) [31]. In this specific context, the textual
information associated with each user is considered a
‘document‘. For a word that is prevalent across all N
documents, the IDF is calculated as logN

N = 0, indicating
that the IDF value for such a word tends to be small in the
word vectors. This characteristic can potentially rectify
the bias towards popular words.

• Pre-trained models. DGVAE uses encoders pre-trained
on a large and diverse corpus that covers many domains
and languages, such as Sentence Transformers [38] and
CLIP. The resultant embeddings might also have learned
some general representations for rarely used words, or
at least some subword units that can approximate them.
Consequently, the embeddings of sentences that incorpo-
rate these seldom-used words could still hold significance
and prove beneficial for downstream tasks, such as the
construction of an item-item graph in DGVAE. However,
a potential limitation arises if the current pre-trained
models solely depend on word frequency to generate
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TABLE VI
DETAILED MULTIMODAL INFORMATION ASSOCIATED WITH THE EVALUATED PRODUCTS OF AMAZON.

Item ID Title Cover Image Hosted on Amazon

B004M6UDC8
Alpine Swiss Zippered Bifold Men’s Wallet with
Deluxe Credit Card Flip Pocket Genuine Lambskin
Leather Comes in a Gift Bag-Black

http://ecx.images-amazon.com/images/I/41b--etdxtL. SX342 .jpg

B002YOMJPY Timberland Men’s White Ledge Mid Waterproof
Ankle Boot

http://ecx.images-amazon.com/images/I/41qzONzIe1L. SX395 .jpg

B0007UMA3I Mens Leather Zippered Credit Card Case http://ecx.images-amazon.com/images/I/41OlFMkIq1L. SX342 .jpg

B004FG8BY2 Invicta Men’s 90242-001 Chronograph Black Dial
Black Leather Dress Watch

http://ecx.images-amazon.com/images/I/51Qt3faT4-L. SY300 .jpg

B005Z2LQ56 Extra Warm Metro Fleece Ear Warmers http://ecx.images-amazon.com/images/I/31oIsqGtKnL. SX342 .jpg

B003MYUQKA Invicta Men’s 6977 Stainless Steel and Black
Polyurethane Watch

http://ecx.images-amazon.com/images/I/51tAWqLFSWL. SY300 .jpg

sentence embeddings. This could lead to the production
of generic or redundant summaries that fail to accurately
reflect the users’ preferences.

V. CONCLUSION

In this paper, we propose DGVAE that is capable of encoding
and disentangles both ratings and multimodal information
with GCNs. By performing graph convolutions on a frozen
item-item graph, DGVAE can learn the disentangled latent
representations of items from their neighbors. To enable
the model interpretability, we project multimodal information
into text leveraging pre-trained multimodal models and map
user preferences with the words of their interacted items.
By regularizing the latent variables learned from user-item
ratings and user textual preferences with mutual information
maximization, DGVAE can interpret the decisions of users
with words. We evaluate the performance of our model on
three real-world datasets against the state-of-the-art baselines.
The experimental results show that DGVAE outperforms the
strongest baseline with significant gains. Finally, we demon-
strate the model interpretability by exemplifying an instance
in a real-world dataset.
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APPENDIX A
DETAILED DESCRIPTIONS OF INTERPRETED PRODUCTS

We provide links to cover images of the interpreted products
hosted on Amazon in Table VI. These products are studied in
Section IV-F.

APPENDIX B
IMPLEMENTATION DETAILS

We denote the numerical embeddings pre-trained from
Sentence Transformer [38] on items’ textual contents as Xt.
Each row in Xt denotes the embedding of an item in textual
modality. Analogously, the numerical embeddings in visual
modality are denoted as Xv . We represent the user preference
vectors generated with tf-idf as Rw. Table VII summarizes
the hyperparameter settings and multimodal information used
in each multimodal baseline. For each baseline’s hyperparam-
eters, we use their default values mentioned in the papers if
not implemented with the official codebase.

TABLE VII
IMPLEMENTATION DETAILS OF MULTIMODAL BASELINES. GRID

SEARCHING IS PERFORMED ON EACH BASELINE TO ENSURE OPTIMAL
PERFORMANCE.

Model Multimodal
Features Hyperparameters

VBPR Xt, Xv
regularization weight: {2.0, 1.0, 0.1,
0.01, 0.001, 0.0001, 1e-05}

MMGCN Xt, Xv

regularization weight: {0, 0.00001,
0.0001, 0.001, 0.01, 0.1}
learning rate: {0.0001, 0.0005,
0.001.0.005, 0.01}

GRCN Xt, Xv

regularization weight: {0.00001,
0.0001, 0.001, 0.01, 0.1}
learning rate: {0.0001, 0.001, 0.01,
0.1, 1}

DualGNN Xt, Xv

regularization weight: {0.1, 0.01,
0.001, 0.0001, 0.00001}
learning rate: {0.1, 0.01, 0.001,
0.0001, 0.00001}

LATTICE Xt, Xv

regularization weight: {0,
10−5, 10−4, 10−3}
learning rate: {0.0001, 0.0005, 0.001,
0.005}

MVGAE* Xt, Xv

regularization weight: {0.0001, 0.001,
0.01, 0.1, 0}
learning rate: {0.0001, 0.001, 0.01,
0.1}

SLMRec Xt, Xv

learning rate and regularization
weight: {0.0001, 0.001, 0.01, 0.1}
τssl, τ : {0.1, 0.2, 0.5, 1.0}
α: {0.01, 0.05, 0.1, 0.5, 1.0}

BM3 Xt, Xv

regularization weight: {0.01, 0.1}
dropout: {0.3, 0.5}
No. of GCN layers: {1, 2}

DMRL* Xt, Xv
λθ, λd: {1e−5, 1e−4, · · · , e}
No. of the factors: {1, 2, 4, 8}

*In order to maintain consistency with other multimodal methods, DMRL
does not utilize any review data. Additionally, we have consulted with the
authors to ascertain the performance of MVGAE.
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