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DFR-Net: Density Feature Refinement Network for
Image Dehazing Utilizing Haze Density Difference

Zhongze Wang, Haitao Zhao, Lujian Yao, Jingchao Peng, Kaijie Zhao.

Abstract—In image dehazing task, haze density is a key feature
and affects the performance of dehazing methods. However, some
of the existing methods lack a comparative image to measure
densities, and others create intermediate results but lack the
exploitation of their density differences, which can facilitate
perception of density. To address these deficiencies, we propose a
density-aware dehazing method named Density Feature Refine-
ment Network (DFR-Net) that extracts haze density features from
density differences and leverages density differences to refine
density features. In DFR-Net, we first generate a proposal image
that has lower overall density than the hazy input, bringing in
global density differences. Additionally, the dehazing residual of
the proposal image reflects the level of dehazing performance
and provides local density differences that indicate localized
hard dehazing or high density areas. Subsequently, we introduce
a Global Branch (GB) and a Local Branch (LB) to achieve
density-awareness. In GB, we use Siamese networks for feature
extraction of hazy inputs and proposal images, and we propose
a Global Density Feature Refinement (GDFR) module that can
refine features by pushing features with different global densities
further away. In LB, we explore local density features from the
dehazing residuals between hazy inputs and proposal images
and introduce an Intermediate Dehazing Residual Feedforward
(IDRF) module to update local features and pull them closer
to clear image features. Sufficient experiments demonstrate that
the proposed method achieves results beyond the state-of-the-art
methods on various datasets.

Index Terms—Image Processing, Image Dehazing, Deep Learn-
ing, Density-aware.

I. INTRODUCTION

HAZE is a common atmospheric phenomenon caused by
the accumulation of aerosol particles. It can cause severe

quality degradation of images, which can affect subsequent
computer vision tasks. Therefore, developing effective tech-
niques for haze removal is essential to improve the quality of
images and ensure accurate results of downstream tasks [1–3].

After decades of study, researchers [4, 5] model this atmo-
spheric phenomenon as:

I(x) = J(x)t(x) + A(1− t(x)) (1)

where I(x) represents the hazy image; J(x) represents the
clear image; t(x) and A stand for the transmission map (T-
map) and the global atmospheric light separately. And this
model is commonly called the atmospheric scattering model
(ASM).
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Fig. 1. The main idea of our DFR-Net. By utilizing the density difference
between the input (I) and the generated proposal image (P), global and local
density features are refined in different ways: features of different global
densities are pushed farther apart and local density features are pulled in
towards clear image features.

To improve image quality and highlight image details cap-
tured in hazy weather, numerous image dehazing methods have
been proposed. Prior-based methods [6–10] rely on statistical
analysis of haze images and handcrafted priors to recover haze-
free images. However, these methods have limitations in their
robustness due to their reliance on specific assumptions, which
may not hold in different scenes.

With the success of deep neural networks in high-level
tasks, data-driven dehazing methods [10–15] have become
mainstream. Compared to prior-based methods, deep learning
methods demonstrate stronger capabilities in feature extraction
and image restoration. However, early deep learning methods
neglect the uneven distribution of haze, resulting in redun-
dancy in network design and inefficiency in feature extraction
[15]. One idea to improve these methods is to enable the
network to learn features about the haze density.

Research works [15–19] have proposed density-aware de-
hazing methods. Haze density describes the distribution of
haze and impacts the effectiveness of a dehazing method.
Several methods [16, 18, 19] estimate the T-map to obtain haze
density information, which is inversely proportional to the T-
map [16]. However, these methods require T-map labels, which
can be difficult to obtain. To avoid this problem, methods
[15, 17] directly extract density-related features. Nonetheless,
these methods still have shortcomings: they lack a comparator
to measure density, and the learning process of density features
lacks interpretability.

As image dehazing is an ill-posed problem, estimating a
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clear image directly from a hazy input using a feedforward
network is challenging [20]. Additionally, distinguishing haze
densities from a single hazy image is also difficult, and a
comparable image that helps the network learn to perceive dif-
ferent haze densities is necessary for density-awareness. While
some research works [15, 20, 21] have proposed methods that
generate intermediate images to alleviate this problem, they
do not take the density differences between the intermediate
results and the hazy inputs into much consideration, limiting
the network’s ability to fully perceive haze density.

To address this issue, we propose a Density Feature Re-
finement Network (DFR-Net) that achieves density awareness
by utilizing density difference. To fully explore haze density
feature, we first generate a dehazing proposal image (P, as
shown in Fig. 1), that can provide a comparison of density
information from both global and local perspectives. Our
proposal image is generated by a simple U-net structure and
has an overall lower haze density than the haze input (I), which
brings global density differences. The different dehazing per-
formance of different areas reflected in the dehazing residuals
(res) leads to differences in local density and hints to areas
with haze removal challenges. Subsequently, we propose a 2-
branch structure consisting Global Branch (GB) and Local
Branch (LB) based on the density difference information
between P and I to comprehensively extract density features
and refine them in different ways.

In detail, the scenes are the same between P and I, differing
only in haze density. Therefore, we propose to use Siamese
structures for feature extraction for P and I, enabling the
network to understand both the different densities in one
forward process. In addition, considering that the two features
contain part of the same information, to push them farther
away and highlight the density information, we design a
Global Density Feature Refinement (GDFR) module to refine
the features. Locally, the dehazing residual between P and I
contains hints of the local density information. The dehazing
residual represents the performance of dehazing and areas
with small residual values tend to be more heavy or hard
dehazing regions. Hence, we propose to learn local density
features from the dehazing residual (P−I) in a split and merge
(S&M) way. To refine local features, several Intermediate
Dehazing Residual Feedforward (IDRF) modules are used,
which can pull local features closer to clear image features.
The refinement illustration is exemplified in Fig.1. Both the
two branches give a predicted haze-free image and we perform
an adaptive fusion on them to gain the final dehazing result.

Compared to other density-aware methods, on the one hand,
our DFR-Net does not rely on additional T-map annotations
and does not predict the T-map, thus reducing the manual
workload and the possible loss of information due to the
T-map prediction process [22]. On the other hand, unlike
the way other methods extract density features, e.g., PMNet
extracts density features from the splicing of hazy inputs and
pseudo-haze-free images via an SHA module, we analyze the
relationship of haze density between P and I, and design
a network with interpretability to extract and refine density
features from the density difference. This makes our DFR-Net
contain density-related prior knowledge.

hazy input (𝑰)

Proposal Image
Generator(PIG)

Local Branch

Global Branch

proposal image (𝑷)

A

dehaze residual (𝒓𝒆𝒔)

: cross-branch connection
A : adaptive fusion

𝑱𝑮𝑩

𝑱𝑳𝑩

final result ( 𝑱 )

Fig. 2. The pipeline of DFR-Net. DFR-Net first generates a proposal image
(P) by PIG, and P is input to the subsequent two-branch network together
with the hazy input (I). Each branch predicts a pseudo-clear image and we
perform an adaptive fusion to obtain the final result. Note that the global
density features in Global Branch are fed into Local Branch by cross-branch
connections.

Overall, the main contributions of our work are as follows:
• We propose to learn and refine the haze density feature

of a hazy image by utilizing the difference information
between a generated proposal image (P) and a hazy
input (I) and an end-to-end method named DFR-Net is
designed to achieve density-aware dehazing.

• We extract haze density features both globally and locally.
In GB, a Global Block is introduced, which can explore
the image features of P and I. To highlight the features
that can better describe the density information, a GDFR
module is proposed. In LB, local density features are
extracted from the dehazing residual between P and I.
Additionally, a IDRF module is presented to refine local
density features stage by stage.

• Sufficient experiments are conducted on our DFR-Net
and demonstrate that it can achieve better results over
the existing state-of-the-art (SOTA) methods on multiple
commonly used datasets.

II. RELATED WORKS

A. Density-aware Dehazing Methods

In recent years, several methods [15–18, 23–25] have at-
tempted to improve the dehazing performance by enabling the
network to perceive haze density.

1) Density-awareness via estimating T-map: Haze density
is influenced by several factors and is inversely proportional to
T-map, so some methods learn density information by estimat-
ing T-map. Lou et al. [19] predict a T-map first for nighttime
image dehazing. Zhang et al. [16] estimate a low-resolution T-
map and then jointly input the feature map and the estimated
T-map to a Laplacian pyramid decoder to achieve a restored
image. Yang et al. [18] propose a semi-supervised method
that does not require paired data. The method estimates T-
map, scattering coefficient, and depth to reconstruction hazy
images and restores clear images. However, these methods
require additional labeled data and might be inaccurate due
to the complexity of practical scenes [12].
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Fig. 3. The illustration of GB, global block and GDFR module. Note the global density features are fed into LB by cross-branch connections.

2) Density-awareness via extracting density features di-
rectly: Research works [15, 17, 26] directly learn haze density
information without estimating a T-map. Deng et al. [17]
design a Haze-Aware Representation Distillation (HARD)
module to extract global brightness and a haze-aware map.
Chen et al. [26] propose an attention mechanism based on dark
channel prior to describe haze concentration. However, not
estimating the T-map would result in a lack of a comparator
to measure density. Generating intermediate results and using
the information contained therein can address this issue.

B. Dehazing Methods with Intermediate Results

Considering the difficulty of recovering images directly
from the haze input, dehazing methods [15, 20, 21, 27] which
generate intermediate results (or one result) inside the network
to facilitate the dehazing process are proposed. Bai et al.
[20] first generate a reference image by a deep pre-dehazer,
and then develop a progressive feature fusion module to fuse
the hazy and reference features, which achieves high metrics
on several datasets. Chen et al. [21] first remove light and
thick smoke by a Smoke Remove Network (SRN) to gain a
coarse output, which is concatenated with the original input
and fed to a Pixel Compensation Network (PCN) to recover
the missing pixels in the thick smoke. Hong et al. [27] propose
an Uncertainty-Driven Dehazing Network. In this method,
intermediate results are together generated with uncertainty
maps for uncertainty features extraction. Ye et al. [15] also

pre-generate a pseudo-haze-free image. The hazy input and the
pseudo-haze-free image are concatenated to estimate a Density
Encoding Matrix describing the relationship between haze
density and absolute position and mixed up to the following
deep layers.

Despite the above methods extracting feature from inter-
mediate results, they do not fully consider the differences
between these results and the haze inputs, especially the
differences in haze density. Simple concatenation [20, 21] or
linear summation [15] might lead the networks to rely on the
uncertain learning process and lose the capture of information
about the differences between the two images. In addition,
the lack of a targeted design that addresses the relationship
between the intermediate results and the original input leads
the extracted features not fine enough and limits the dehazing
performance.

Our DFR-Net improves on the aforementioned methods by
exploring and refining density features through the utilization
of density differences between a generated proposal image and
the hazy input, thereby achieving an awareness of haze density
and superior dehazing performance.

III. METHOD

As illustrated in Fig. 2, DFR-Net generates a proposal
image using a Proposal Image Generator (PIG), which is a
simple U-Net, to facilitate density-awareness. Besides, DFR-
Net consists of two primary parts: Global Branch (GB) and
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Local Branch (LB). The GB and LB are responsible for
learning and refining global and local haze density features,
respectively, and generate a pseudo result each. In the end, an
adaptive fusion is used to obtain the final dehazing result. This
section presents a detailed introduction of our method’s main
ideas.

A. Proposal Image for Density-awareness

In DFR-Net, we first generate a proposal image (P) that
provides information about the difference in haze density. P
exhibits lower overall density than the input image (I), and
inconsistent dehazing performance in some local areas. Taking
these characteristics into account, we are motivated to extract
and refine haze density features in the subsequent network.

To generate P, we employ a Proposal Image Generator
(PIG), which is a simple U-net comprising multiple Residual
Blocks (ResBlocks). We pre-train PIG with paired images
and incorporate it into subsequent branches as an end-to-end
network.

B. Global Branch

1) Overview: The Global Branch (GB) is designed to
extract and refine global density features using the overall
haze density difference. As depicted in Fig. 3 (top), GB
consists of a 7-stage U-Net with 7 global blocks, where
each block has a Siamese structure with N i

GB(i ∈ [1, ..., 7])
ResBlocks for feature extraction and a GDFR module for

global density feature refinement. The inputs to GB are I and P
∈ RH×W×3, which are embedded to F 0

I GB , F 0
P ∈ RH×W×C

using a convolutional layer. Upsampling or downsampling is
performed between every two blocks. To obtain the predicted
dehazing residual, the output features of the last global block
are fed to a restore block, and the predicted dehazing residual
is added to I to obtain a pseudo result, ĴGB .

We design the global block as a basic unit in GB, taking the
haze density relationship between I and P into consideration.
Specifically, the i-th global block is composed of a Siamese
structure with N i

GB ResBlocks for feature extraction and a
GDFR module for global density feature refinement. For the
i-th global block, the inputs are the outputs of the previous
block, F i−1

I GB and F i−1
P , the outputs are F i

I GB , F i
P and the

refined global density feature, F i
G.

2) Siamese ResBlocks for global feature extraction:
Siamese structure shares weights and can measure similarity
[28–30] or dissimilarity [31, 32] between samples effectively.
So we utilize a Siamese structure to extract image features
from both P and I, which enables the network to establish
a relationship between images with different haze densities.
Moreover, compared to a single hazy input structure, the
Siamese structure enables the features extracted by the network
to better perceive the variation in haze density.

3) GDFR for global feature refinement: To further refine
the extracted features, we propose the Global Density Feature
Refinement (GDFR) module, which aims to highlight the
features that better describe global density information and
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thus pull apart the features of images with different densities.
For the implementation, we compute the difference between
the feature maps of I and P, and then square each element in
the difference map. This subtractive operation filters out non-
density information, and the resulting feature channels with
larger differences can better describe density information. We
perform global average pooling (GAP) and sigmoid operation
on the feature differences to obtain density-related channel
weights, denoted as Wc. We then multiply these weights with
F i
I GB channel-wise:

F̃ i
I = F i

I GB ⊗ σ(GAP (POW ((F i
P − F i

I GB), 2))) (2)

where GAP (·) stands for global average pooling, σ(·) repre-
sents sigmoid operation, ⊗ stands for channel-wise multiply
and POW (a, b) represents a power of exponent b for each
element of a.

In spatial dimension, we first multiply the channel weights
by the squared feature difference. Next, we apply channel-wise
average pooling (CAP) and sigmoid operations to obtain a 2-
D weight map that represents the spatial density difference
Ws. Higher value in Ws indicates that haze has been more
effectively removed here. Therefore, 1−Ws can represent an
attention map that guides the network’s focus. Here 1 denots
a 2-D tensor of ones with the same shape of Ws. We then
multiply 1−Ws and F̃ i

I and add the result to F i
I GB to obtain

the finally refined global density feature F i
G:

F i
G = (1−σ(CAP (POW ((F i

P −F i
I GB), 2))))⊙F̃ i

I+F i
I GB

(3)
where CAP (·) stands for channel-wise average pooling.

After the last block, we concatenate F 7
P and F 7

G and input
the concatenated feature to a restore block, which is composed
of four ResBlocks and a convolutional layer, to obtain the
dehazing residual.

resGB = RBGB(cat(F
7
P , F

7
G)) (4)

where RBGB(·) denotes the calculation of the restore block
in GB and cat(·) denotes the channel-wise concatenation
operation. And the pseudo-clear image of GB can be obtained
by: ĴGB = I + resGB .

C. Local Branch

1) Overview: LB extracts local density features from the
dehazing residual of P and I , which contains local density
differences and indicates hard dehazing or high haze density
areas. To refine these local features, we propose the IDRF
module that gradually adjusts the features to match those of
clear images.

The main body of LB is a 7-stage U-net, as illustrated in
Fig. 4 (top). Each stage is composed of N i

LB(i ∈ [1, ..., 7])
ResBlocks. LB takes I and res∈ RH×W×3 as inputs and
embeds them to shallow features F 0

I LB ∈ RH×W×C , F 0
L ∈

RH×W×CL using a normal convolutional layer and a multi-
scale convolutional layer, respectively. In the encoder stages,
local and image features are extracted by a split and merge
way, and in the decoder stages, DAFF fuses shallow image
features, deep image features, local features, and refined global

features from GB. The dehazing residual can be obtained by
a restore block, and the pseudo result ĴLB can be obtained by
summing it and I.

2) S&M for local feature extraction: The local features
are extracted in an S&M way. Firstly, F 0

I LB and F 0
L are

merged by concatenation and fed into stage-1, resulting in an
output feature with (C + CL) channels. The output feature
is then processed by the S&M module. As shown in Fig.
4 (b), the input feature is split into an image feature and a
local density feature. Notably, the number of channels for the
image feature varies from stage to stage, while the number
of channels for the local feature is consistently fixed at CL.
To utilize the global density information obtained from GB,
the image feature is concatenated with the refined global
feature from GB. Afterwards, the concatenated feature and
local feature are downsampled by 1 × 1 convolutional layers
and pixel-unshuffle, respectively. The downscaled features are
then concatenated and fed into the next stage. This design
allows local features to fully interact with hazy image features,
thus enhancing the reliability of local features.

3) DAFF for feature fusion: Several methods introduce
skip connection to aggregate shallow and deep features and
simply concatenate or add them together [33, 34], which
might result in a loss of information. To fully utilize the
information relevant to density, we employ Density Aware
Feature Fusion (DAFF). Specifically, given a set of features:
{F i

LB out, F
7−i
LB out, F

7−i
G }(i ∈ [1, 2, 3]), which represent the

output feature of the i-th, (7−i)-th stage of LB and the refined
global feature of the (7−i)-th block in GB, we first align them
to a same shape and split the image features and local den-
sity features. Then we perform convolutions and LeakyReLU
(Conv+LReLu) on F 7−i

G and the results are concatenated with
F i
I LB and F 7−i

I LB respectively and input to Channel-Spatial
Density Attention (CSDA) modules, as illustrated in Fig. 4 (c).
Moreover, the local feature F 7−i

L is projected to a 2-D local
attention map (Mlocal) by Conv+LReLu and Mlocal is fed to
CSDAs. Finally, the outputs of CSDAs are concatenated and
compressed to the channel number of the subsequent stage by
a 1× 1 convolutional layer.

4) IDRF for local feature refinement: To refine the local
density feature, we further introduce IDRF module. As shown
in Fig. 5, IDRF takes F i

I LB as input to obtain intermediate
dehazing residual resiinter by an intermediate restore block
(IRB) composed of two ResBlocks and a convolutional layer.
Then the resiinter is projected to a CL-channel feature em-
bedding F

′

L which is subsequently concatenated with local
features as shown in Fig. 4 (a) and (b). With this process,
local density features can be updated by the current dehazing
residual. To optimize this module and pull local features
in towards clear image features, we employ a local density
refinement loss (LLDR) which will be introduced in Sec. III-D.

Similar to GB, LB predicts a pseudo-clear result: ĴLB = I+
resLB . Finally we fuse the pseudo-results of the two branches
with a learnable parameter α: Ĵ = α× ĴGB +(1−α)× ĴLB .

D. Loss Function
The overall loss fuction of our DFR-Net can be formulated

as: L = LRec + λ1LP + λ2LRD + λ3LLDR, where LRec and
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TABLE I
QUANTITATIVE COMPARISON OF DFR-NET WITH THE STATE-OF-THE-ART IMAGE DEHAZING METHODS ON DIFFERENT DATASETS (PSNR (DB)/SSIM).

BEST RESULTS ARE BOLDED AND SECOND BEST RESULTS ARE UNDERLINED. CELLS WHERE RESULTS ARE NOT AVAILABLE ARE REPLACED BY ”-”

Method RESIDE-outdoor Haze4K NH-HAZE Dense-Haze

PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM

Non-Density-Aware

DCP [6] (TPAMI’ 10) 19.13 0.815 14.01 0.760 10.57 0.522 11.01 0.416
DehazeNet [35] (TIP’ 16) 24.75 0.927 19.12 0.840 12.86 0.545 9.48 0.438
AOD-Net [12] (ICCV’ 17) 24.14 0.920 17.15 0.830 15.40 0.571 12.82 0.468

GDNet [36] (ICCV’ 19) 30.86 0.982 23.29 0.930 18.33 0.667 14.96 0.530
MSBDN [37] (CVPR’ 20) 33.48 0.982 22.99 0.850 19.23 0.713 15.13 0.555
FFA-Net [38] (AAAI’ 20) 33.57 0.984 26.96 0.950 19.87 0.694 12.22 0.444

AECR-Net [14] (CVPR’ 21) - - - - 19.88 0.722 15.80 0.466
CEEF [3] (TMM’ 22) 19.13 0.792 - - - - - -

SGID-PFF [20] (TIP’ 22) 30.20 0.975 - - - - - -
UDN [27] (AAAI’ 22) 34.92 0.987 - - - - - -

QCNN-H [39] (TC’ 23) 28.74 0.964 - - - - - -
MFINEA [40] (NN’ 23) 33.88 0.981 - - - - 18.34 0.609

DehazeFormer-B [41] (TIP’ 23) 34.95 0.984 30.29 0.985 17.37 0.725 - -

Density-Aware

HDDNet [16] (TC’ 22) 22.52 0.910 - - - - - -
DeHamer [23] (CVPR’ 22) 35.18 0.986 - - 20.66 0.684 16.62 0.560
PMNet [15] (ECCV’ 22) 34.74 0.990 33.49 0.980 20.42 0.731 16.79 0.510

DFR-Net (ours) 35.34 0.993 34.63 0.993 21.21 0.810 18.85 0.674

IRB

Projection

C
on

v@
k3

C
on

v@
k3

Resize

𝑭𝑰𝒐𝑳𝑩
𝒊

Resize

𝑱
𝑱↓𝑰↓

𝑰

𝒓𝒆𝒔𝒊𝒏𝒕𝒆𝒓
𝒊

𝑱𝒊𝒊𝒏𝒕𝒆𝒓

𝑭𝑳
′

IRB : intermediate restore block

ℒ𝐿𝐷𝑅

Fig. 5. The illustration of IDRF module. The projected feature F
′
L will be

used to update local features in corresponding S&M or DAFF module.

LP denote L1 loss and perceptual loss [44] between the pre-
dicted haze-free output Ĵ and ground truth J , LRD and LLDR

represent representation dissimilarity loss and local density
refinement loss, and λ1, λ2 and λ3 are hyper-parameters for
loss regulation.

1) Representation Dissimilarity Loss: In this paper, we
introduce a Siamese structure to learn density-related features
from I and P. To motivate the Siamese structure to learn
more information about the differences between the inputs,
we design representation dissimilarity loss:

LRD =

n∑
i=1

⟨F i
P , F

i
I GB⟩ (5)

where ⟨a, b⟩ represents the calculation of the cosine similarity
between a and b. We compute cosine similarities between
the intermediate features of I and P and minimize them to

let the Siamese structure learn more representation about the
difference between the two inputs.

2) Local Density Refinement Loss: To achieve the pulling
of local features from haze images to clear images, we
introduce local density refinement loss.

LLDR =
1

k

k∑
j=1

∥Ĵj
inter(x)−Downj(J(x))∥1 (6)

where k denotes the number of IDRF modules which are
applied, Ĵj

inter(x) is the j-th intermediate predicted clear
output, and Downj(·) is the operation that downsamples
ground truth to the size of the corresponding intermediate
output.

IV. EXPERIMENTS

A. Datasets and Metrics

We conduct experiments on several datasets to train our
method and test our method’s dehazing performance. The
datasets include: (1) RESIDE outdoor [45], which contains
313950 synthetic outdoor hazy/clear image pairs for training
and 500 pairs for testing; (2) Haze4K [42], which includes a
training set of 3000 indoor-outdoor mixed image pairs and a
testing set of 1000 image pairs; (3) NH-HAZE [46], a real-
world dataset for the NTIRE 2020 competition, which consists
of 55 pairs of non-homogeneous hazy images and clear images
of real scenes (45, 5 and 5 pairs for training, validation and test
respectively); (4) Dense-Haze [43, 47], a real-world dataset for
the NTIRE 2019 competition and contains 55 pairs of dense-
haze images and corresponding clear images (with same data
split as NH-HAZE). We evaluate the dehazing effectiveness of
our method using two commonly used image quality metrics:
PSNR (dB) and SSIM.
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(g) GT(e) PMNet (f) Ours(a) hazy (b) DCP (c) AOD-Net (d) FFA-Net

Fig. 6. Visual comparison of various methods on Haze4K [42] dataset. Areas where our method works better are boxed out and zoomed in, or you can zoom
in yourself to get a better view.

(b) DCP (c) AOD-Net (f) GT(d) Dehamer (e) Ours(a) hazy

Fig. 7. Visual comparison of various methods on Dense-Haze [43] dataset. Areas where our method works better are boxed out and zoomed in, or you can
zoom in yourself to get a better view.

B. Implementation Details

1) Network Configuration: In our work, we use the Basic
Block structure proposed in [38] as our ResBlock. {N1

GB ,
N2

GB , N3
GB , N4

GB , N5
GB , N6

GB , N7
GB} and {N1

LB , N2
LB ,

N3
LB , N4

LB , N5
LB , N6

LB , N7
LB} are set to {2, 2, 3, 4, 3,

2, 2} and {4, 6, 8, 10, 6, 8, 8}. In particular, we set the
basic feature dimension of GB and LB, C, to 32 and the local
density dimension CL to 4. All upsampling or downsampling
operations are implemented by 1× 1 convolution with pixel-
shuffle or pixel-unshuffle. And we use IDRF module after
every stage in LB except the last stage.

2) Training Settings: The PIG is pre-trained and spliced
with GB and LB. And the whole network is trained in an
end-to-end fashion. We use AdamW optimizer (β1 = 0.9,
β2 = 0.999, weight decay is 1e−4) to train the model and
iterate 600k times with the initial learning rate 1e−4 reduced
to 1e−6 with the cosine annealing [48]. Following [33], we
perform progressive learning in our training process, which
leads the network to adapt to those inputs close to the size in
practical applications. For loss regulation, we set λ1 = 0.2,
λ2 = 0.001 and λ3 = 0.1. The data augmentations include
random cropping, horizontal flipping, and vertical flipping.

C. Comparison with State-of-the-art Methods

Our comparison methods include DCP [6], DehazeNet
[35], AOD-Net [12], GDNet [36], MSBDN [37], FFA-Net

[38], AECR-Net [14], CEEF [3], SGID-PFF [20], UDN [27],
QCNN-H [39], MFINEA [40] , DehazeFormer [41], HDDNet
[16], DeHamer[23] and PMNet [15].

1) Quantitative Evaluations: The quantitative results are
shown in Table I. It demonstrates that our method achieves
the highest metrics on RESIDE-outdoor, Haze4K, Dense-Haze
and NH-HAZE datasets, outperforming other SOTA methods.
Notably, DFR-Net achieves a 1.14dB PSNR gain on the
Haze4K dataset and significant improvements in SSIM on all
datasets.

Among the density-aware methods, our DFR-Net out-
performs all other methods [15–17, 23]. Compared to the
transmission-aware (density-related) methods DeHamer [23]
and HDDNet [16], we directly extract density features from
hazy images and obtain better performance. DFR-Net also
surpasses PMNet on metrics on multiple datasets by utilizing
density difference information between I and P, rather than
simply concatenating them.

2) Qualitive Evaluations: Fig. 6 shows visual comparisons
between our DFR-Net and SOTA methods on Haze4K dataset,
demonstrating that our DFR-Net can more effectively remove
haze than other methods. Specifically, AOD-Net [12] and FFA-
Net [38] still leave haze residue in most areas, DCP [6]
removes some of the haze but suffers from color distorion.
While PMNet [15] achieves better dehazing performance than
previous methods, our method is able to recover clearer
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hazy

PMNet

Ours

Various Haze Density
High← →Low

Various Haze Density
High← →Low

(a) (b)

PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

23.86 / 0.980 25.86 / 0.981 27.29 / 0.981 27.55 / 0.986

25.45 / 0.987 26.64 / 0.993 27.36 / 0.993 27.70 / 0.995

PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

31.23 / 0.989 27.86 / 0.983 30.86 / 0.989 31.92 / 0.991

34.05 / 0.998 37.28 / 0.998 38.86 / 0.999 42.96 / 0.999

Fig. 8. Visual comparison with PMNet on Haze4K [42] dataset. Note that the densities of the input images are varied for each set of images of the same
scene, gradually decreasing from left to right. Please zoom in for a better view.

images.

In addition, we compare the visual quality performance of
our method with other methods on real-world dataset (Dense-
Haze) in Fig. 7. Compared to other methods, our DFR-Net
removes the overall haze while achieving fine restoration in
image details. This is attributed to the pulling in of the image
features towards a clear image at each stage in LB, which
reduces the occurrence of color distortion and blurring of
details in our results.

We further compare the visual results of our DFR-Net with
those of PMNet [15] on the Haze4K dataset. Fig. 8 illustrates
the dehazing outcomes of PMNet and DFR-Net for both
indoor and outdoor images with varying haze densities. DFR-
Net exhibits more consistent dehazing performance across
different haze densities compared to PMNet. In particular,
DFR-Net demonstrates superior performance in preserving
local image details, as depicted in Fig. 8 (a). Conversely,
PMNet struggles to accurately restore local details in the
dehazed images. Additionally, DFR-Net outperforms PMNet
in handling images with high global haze density, as shown in
Fig. 8 (b). The incorporation of both global and local density
difference information in DFR-Net contributes to its robust-
ness in perceiving and effectively addressing different haze
densities. The global density component enables the network
to better comprehend variations in haze densities, allowing
for improved performance on images with diverse densities.
On the other hand, the local density component motivates the
network to identify and restore details in regions with high
density, resulting in finer dehazed images with enhanced visual
quality. Further details and discussions regarding these aspects
are presented in Sec. IV-D.

D. Ablation Studies

The main innovation of DFR-Net is the extraction and
utilization of global and local haze density information. There-
fore, we conduct ablation experiments and analyses in this
section to demonstrate the effectiveness of our utilization of
haze density information.

We conduct ablation experiments on the modules and loss
functions proposed in this paper to evaluate their effectiveness
on dehazing. We first establish a base network (①), which
consists of a non-weight sharing GB (pseudo-Siamese struc-
ture), and an LB that takes the directly concatenated I and
P as input and aggregates features by concatenation. Only
LRec and LP are employed to optimize the base network.
Then we define several variants to verify the effectiveness
of our proposed modules and loss functions on dehazing: ②
+Siamese: Use the Siamese structure for feature extraction.
③ +LRD: Incorporate LRD into the total loss function. ④
+GDFR: Use GDFR to obtain refined global density features.
⑤ +DAFF: Aggregate features by DAFF. ⑥ +DR: Explore
local density from Dehazing Residual (DR) in LB. ⑦ +IDRF:
Use IDRF after each stage of LB, except the last one. ⑧
+LLDR (our default setting): Include LLDR in the total loss
function. Among them, variants ②-④ and ⑤-⑧ gradually
introduce global and local haze density respectively. The
ablation results are presented in Table II. Subsequently, we
will analyze the effectiveness of introducing global and local
haze density separately.

1) Ablation studies on utilizing global density difference
and global feature refinement: We carry out experiments on
variants ②, ③, ④ to verify the effectiveness of our design
using global density difference to extract and refine global
density-related features. To ensure fairness, we adjust the
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TABLE II
ABLATION STUDIES ON PROPOSED MODULES AND LOSS FUNCTIONS ON THE HAZE4K DATASET. NOTE THAT FLOPS AND PARAMS ARE MEASURED ON

256 × 256 IMAGES.

Label Setting PSNR (dB) FLOPs (G) Params (M)

w/o density difference ① base 30.52 222.46 35.76

+ global density difference
② +Siamese 31.21 241.94 35.15
③ +LRD 31.55 241.94 35.15
④ +GDFR 32.65 242.63 35.15

+ local density difference

⑤ +DAFF 32.89 271.54 40.52
⑥ +DR 33.01 271.56 40.52
⑦ +IDRF 33.52 286.60 42.11
⑧ +LLDR (default) 34.63 286.60 42.11

(b) base
20.91 / 0.792

(a) hazy
PSNR / SSIM

(d) w/ local density
(variant �)

21.89 / 0.850

(c) w/ global density
(variant �)
21.22/ 0.819

(e) GT
∞ / 1

Fig. 9. Visualization of the ablation experiments on exploring and utilizing global / local haze density difference. Areas with large variance in dehazing
effectiveness are framed out. Please zoom in for a better view.

(a)hazy

Various Haze Density
High← →Low

(b) w/o global
density

(c) w/ global
density

PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

32.32 / 0.978 34.42 / 0.987 35.17 / 0.988 38.15 / 0.994

38.31 / 0.995 40.51 / 0.996 40.82 / 0.997 42.01 / 0.998

Fig. 10. Visualization of the ablation experiments on utilizing global density
difference and global feature refinement. Note that the haze densities of the
input image are varied and gradually decrease from left to right. Please zoom
in for a better view.

ResBlock numbers of the Siamese structure to approximately
match the number of parameters in the base network. Table
II indicates that sharing parameters enables better feature
learning from proposal images and delivers a 0.69 dB PSNR
improvement. To motivate the network to learn more density-
related information, LRD is employed and the inclusion of
it leads to a 0.34 dB PSNR improvement. In addition, the
introduction of GDFR brings 1.10 dB PSNR performance gain
by refining global densities features.

We also conducted experiments to validate the effectiveness
of incorporating global density difference information. Fig. 10
showcases the dehazing results obtained without (variant ①)

(a) hazy image (b) proposal image (c) dehazing residual

(d) local feature from
stage-1 of variant �

(w/ local density)

(e) local feature from
stage-4 of variant �

(w/ local density)

(f) local feature from
stage-6 of variant �

(w/ local density)

(g) local feature from
stage-1 of variant �
(w/o local density)

(h) local feature from
stage-4 of variant �
(w/o local density)

(i) local feature from
stage-6 of variant �
(w/o local density)

Fig. 11. Visualization (heatmap form) of the local density features from
variant ⑧ and ⑤. The black arrows in (d) point out the hard regions found
by the network by utilizing the dehazing residual.

and with (variant ④) global density information, using image
inputs with varying densities. When global density difference
information is not introduced, we observed low quantitative
metrics, unstable dehazing results, and inconsistent perfor-
mance within the same scene. As depicted in Figure 10, variant
① produces suboptimal dehazing outcomes.

However, upon incorporating global density differences, the
network exhibits improved capability to perceive variations in
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TABLE III
ABLATION STUDIES ON THE USAGE OF IDRF. ✔ INDICATES THAT THE

OUTPUT FEATURES OF THIS STAGE WILL BE PROCESSED FOR IDRF.

Stage PSNR (dB) Params (M)
1 2 3 4 5 6

IDRF
✔ ✔ ✔ 33.06 41.32

✔ ✔ ✔ 32.89 41.32
✔ ✔ ✔ ✔ ✔ ✔ 33.52 42.11

global densities. This is achieved through the exploration of
global density differences between the proposal image and the
input image using the Siamese structure, as well as the re-
finement of density features using the Global Density Feature
Refinement (GDFR) module. As a result, the network becomes
more robust to images with different density levels, enabling
the generation of consistent and visually clear dehazed images.

2) Ablation studies on utilizing local density difference and
local feature refinement: We perform experiments on variants
⑥, ⑦, ⑧ for validation of the effectiveness of utilizing local
density difference. As shown in Table II, extracting local
features from dehazing residual, IDRF and LLDR result in
0.12, 0.41 and 1.11 dB PSNR performance gains.

To demonstrate the necessity of ultilizing local density
difference, intermediate local features of the network using
dehazing residual to extract features (variant ⑧) or not (variant
⑤) are visualized in Fig. 11, which shows that high density
and hard dehazing areas are captured in the shallow stage
of our method. And as the network deepens, the local maps
are gradually flattened, which implies the local features are
updated stage by stage. However, variant ⑤ fails to achieve
these performances.

3) Ablation studies on the location of IDRF usage: We
carried out ablation experiments to determine the optimal
placement of the IDRF module within the network architec-
ture. We compared three cases: using IDRF only in the encoder
stages, only in the decoder stages, and in all stages. The results,
as shown in Table IV-D1, indicate that employing IDRF in all
stages yields the best overall performance.

Furthermore, we observed that incorporating IDRF in the
encoder stage leads to improved quantitative metrics compared
to its use in the decoder stages. This can be attributed to the
fact that the refinement of local features should commence as
early as possible in the network. The primary role of IDRF is
to update the current local features and facilitate the alignment
of the restored image features with clear image features.
Without this refinement process, the network’s local features
remain relatively unchanged, resulting in less attention being
paid to regions with relatively high density or hard features that
require careful handling at the current stage. By introducing
IDRF at an earlier stage, the network can be guided more
effectively to bring the image features closer to the features
of clear images.

4) Ablation studies on the effectiveness of DAFF: We
further conduct ablation experiments on the effectiveness of
DAFF. DAFF is designed to fully fuse the global density
features passed by cross-branch connections, the image fea-
tures of the LB branch, and the local density features. And

TABLE IV
ABLATION STUDIES ON THE EFFECTIVENESS OF DAFF. THE
EXPERIMENTS ARE CONDUCTED ON THE HAZE4K DATASET.

Methods concat [15] SK Fusion [41] DAFF

PSNR (dB) 33.19 33.80 34.63

we compare the PSNR performance with other two fusion
strategies: concatenation [15] and SK Fusion [41]. Table IV
demonstrate that our DAFF achieves better results than the
other two methods.

As described in Section III-C3, DAFF first combines the
global features with the image features, enabling the features
to be aware of global density information. It then introduces
the local features through the CSDA mechanism, facilitat-
ing pixel-level refinement of the features. In contrast, both
concatenation and SK Fusion methods focus primarily on
channel attention, without considering the attentional role of
the local density map on the spatial dimensions of the features.
The superior performance of DAFF can be attributed to its
comprehensive fusion strategy, which takes into account both
global and local density information. This enables our method
to capture and utilize density-related information more effec-
tively, resulting in improved dehazing performance compared
to concatenation and SK Fusion methods.

V. CONCLUSION

In this paper, we propose DFR-Net, a density-aware method
for image dehazing that utilizes haze density differences to
extract and refine density-related features. To achieve this, we
generate a proposal image and explore density representation
from it and the hazy input. We use two branches to extract
and refine global and local density features, respectively, based
on the density differences between the proposal image and
the hazy input. In Global Branch, features of images with
different densities are pushed away, while in Local Branch,
hazy image features are gradually pulled closer to those of
clear images. Our experimental results demonstrate that DFR-
Net achieves high-performance image dehazing ability, and our
ablation studies show that our designs enable fine awareness
and refinement of density information.
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