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Abstract

Information diffusion prediction aims at predicting the target users in
the information diffusion path on social networks. Prior works mainly fo-
cus on the observed structure or sequence of cascades, trying to predict to
whom this cascade will be infected passively. In this study, we argue that
user intent understanding is also a key part of information diffusion predic-
tion. We thereby propose a novel Multi-scale Context-enhanced Dynamic
Attention Network (MCDAN) to predict which user will most likely join
the observed current cascades. Specifically, to consider the global interac-
tive relationship among users, we take full advantage of user friendships
and global cascading relationships, which are extracted from the social
network and historical cascades, respectively. To refine the model’s abil-
ity to understand the user’s preference for the current cascade, we propose
a multi-scale sequential hypergraph attention module to capture the dy-
namic preference of users at different time scales. Moreover, we design a
contextual attention enhancement module to strengthen the interaction
of user representations within the current cascade. Finally, to engage
the user’s own susceptibility, we construct a susceptibility label for each
user based on user susceptibility analysis and use the rank of this label
for auxiliary prediction. We conduct experiments over four widely used
datasets and show that MCDAN significantly overperforms the state-of-
the-art models. The average improvements are up to 10.61% in terms of
Hits@100 and 9.71% in terms of MAP@100, respectively.

Keywords: User intention understanding, information diffusion prediction, con-
text interaction, graph neural networks

∗Xiaowen Wang, Lanjun Wang, Yuting Su, and An-An Liu are with the Tianjin Univer-
sity, Tianjin 300072, China. Xiaowen Wang and An-An Liu are also with the Institute of
Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China.
Yongdong Zhang is with the University of Science and Technology of China, Hefei 230026,
China. (Corresponding authors: 1. Lanjun Wang, E-mail: wang.lanjun@outlook.com; 2.
An-An Liu, E-mail: anan0422@gmail.com).

1

ar
X

iv
:2

30
8.

04
26

6v
1 

 [
cs

.S
I]

  8
 A

ug
 2

02
3



1 Introduction

Information diffusion prediction, which is also known as cascade prediction, is a chal-
lenging but critical task in many real-world application domains, such as influence
maximization [1], influential user detection [2], online advertising [3], recommenda-
tion [4–7] and rumor detection [8]. Recent works on diffusion prediction rely on the
achievements of deep neural networks, jointly learning the structure of the social graph
and dynamic diffusion graph through Graph Neural Networks (GNN) [9–11].

Figure 1: Illustrative examples for traditional next infected user prediction (left)
and user-aware next infected user prediction (right).

However, as shown in Fig. 1(left), existing works always focus on predicting to
whom this cascade will be infected [9]. In this context, there is no difference between
information diffusion and virus transmission, where users are always passively infected.
This is not consistent with the fact that information diffusion is a two-way selection
process. Fig. 1(right) shows a realistic scenario on social networks, in which a user
receives a lot of information every day, but he/she only selects a few of them to forward
and/or to reply. That is to say, from the user’s perspective, when the cascade appears
within the user’s visible range, the user makes a decision on whether to join or not
based on their own intention for this cascade. As a result, instead of predicting who is
the next infected user, the task is more appropriately expressed as ‘who is most likely
to join this cascade’. Apart from unidirectional information infection, we argue that
user intent understanding is also a key part of information diffusion prediction.

The challenges of understanding user intention in information diffusion prediction
lie in accurately portraying the target user portrait, which consists of user interaction,
cascade memory, and user susceptibility. First, user interaction refers to interactive
relationships between the target user and others. Since information diffusion is built
on social networks, most of the existing methods take advantage of the social con-
nections [9–11]. Although the who-follow-who relations can represent friendship, it is
not enough or exact to represent global dependencies. Second, cascade memory refers
to the representation of the current cascade. Previous works capture users’ dynamic
preference through time series slicing and look up the memory for each cascade [10,11].
Regrettably, these models suffer from information loss due to their reliance on a single
time scale. Meanwhile, the context interaction within the cascade also needs to be
captured, which cannot be learned only by looking up the stored memory. Third,
user susceptibility refers to the personal attribute of the target user regarding whether
he/she is susceptible to infection. Although some works consider the social role [12] or
social influence [13], they are not straightforward to describe user susceptibility. To the
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best of our knowledge, no previous works consider the concept of user susceptibility.
To address these challenges, we propose a Multi-scale Context-enhanced Dynamic

Attention Network (MCDAN) to achieve the user-aware next infected user prediction.
First, to more accurately represent the global dependencies of users, we do not only
take advantage of their friendships from the social network but also consider global
cascading relationships, which come from historical cascades. The intention behind
this is that people are more likely to interact with friends as well as people who
have interacted with them before. Second, to refine the model’s ability to understand
the user’s preferences for the current cascade, we propose a multi-scale sequential
hypergraph attention module to capture the dynamic preference of users at different
time scales and design a contextual attention enhancement module to strengthen the
interaction of user representations within the current cascade. Third, to present the
user’s own susceptibility, we construct a susceptibility label for each user based on user
susceptibility analysis and use the rank of this label for the final auxiliary prediction.

In summary, the main contributions are as follows:

• We propose a user-aware framework named MCDAN which aims at predicting
the target user in the information diffusion path by understanding the user’s
intention. Through this framework, we fully utilize user portraits composed of
user interaction, cascade memory, and user susceptibility.

• We build a global cascading graph based on historical cascades, which patches
the friendship graph and learns the global user interaction.

• We propose a multi-scale sequential hypergraph attention module to encode the
multi-scale cascade memory.

• To enhance the context dependency of the current cascade, a contextual atten-
tion enhancement module is also proposed after memory look-up.

• We assign susceptibility labels to users based on historical cascades. The labels
ranking helps lock the target user.

• Extensive experiments demonstrate the superiority of our method. We out-
perform state-of-the-art baseline methods on four public datasets with average
improvements of 10.61% in Hits@100 and 9.71% in MAP@100, respectively. In
addition, we conduct ablation studies to demonstrate the effectiveness of each
part and parameter analysis experiments to discuss the sensitivity of different
key parameters.

The rest of this paper is organized as follows. In Section 2, we briefly review the
related works including traditional models and deep learning models for information
diffusion prediction. In Section 3, we define the problem and introduce the proposed
MCDAN model. In Section 4, we report all the results of comparative experiments, ab-
lation study experiments, and parameter analysis experiments. Finally, we summarize
the paper in Section 5.

2 Related Work

2.1 Information Diffusion Prediction

Information diffusion prediction is to predict the trajectories as well as the participants
in information spreading in the future based on observed cascades and relevant known
information. So far, there are many methods for modeling and predicting information
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cascading and data types related to cascading [10,11,14–20]. Here we categorize them
into two categories: traditional models and deep learning models.

Traditionally, earlier works mainly focus on feature-based models [14–16] and gen-
erative models [21–23]. In feature-based models, different features can be extracted
from given information through feature engineering, and classical machine learning
methods are used for prediction [24, 25]. Most features are manually constructed, fo-
cusing on extracting features from information content [26,27]. In generative models,
the spreading of information is widely characterized by probabilistic statistical gener-
ative approaches such as epidemic models [23] and stochastic point processes [21, 22].
However, feature-based models are not generalizable to different scenarios [28], which
are inefficient in large-scale networks. Although generative models are easily applica-
ble to modeling information diffusion, they mainly help process modeling but are less
powerful in making accurate predictions.

With advances in deep neural networks, prior works utilize or expand related
networks to learn potential information [10, 11, 17–20], which can be classified into
cascades diffusion based models and social graph based models. For the cascades
diffusion based models, typically, DeepDiffuse combines the LSTM network and at-
tention mechanism to learn time information [18]. SNIDSA incorporates a structure
attention module and gating mechanism into a recurrent neural network (RNN) for
integrating the structural and sequential information [19]. For the social graph based
models, they are with an intuition behind that people have common interests with
their friends. FOREST introduces social relationships through GNN [9]. Inf-VAE
embeds social homophily into the prediction model [20]. With a deeper understanding
of information diffusion, DyHGCN jointly learns the structure of the social graph and
dynamic diffusion graph [10]. MS-HGAT further introduces diffusion hypergraphs into
user representation learning, among which designs a sequential hypergraph attention
network to learn user preference dynamically [11]. However, existing works neglect
the complete portrayal of user portraits, resulting in information loss in the global
dependency of users, the integrity of information, and the user’s own susceptibility.

2.2 User Portrait Modeling

User portrait is a concept first proposed by Alan Cooper, and it is interpreted as a
concrete representation of the target user [29]. The modeling of user portraits aims to
reflect user intention through data analysis, including behaviour patterns and interest
preference [30].

Researches on user portrait mainly focus on three directions [31], which are user
attribute annotation [32], user preference understanding [33–35], and user behavior
analysis [36]. For user attribute annotation, existing works collect some feature in-
formation through social annotation systems [32]. User portrait is then built on the
extracted features [37,38]. For user preference understanding, existing models include
user preference prediction [34] and similar user mining [4,39]. The user preference pre-
diction model builds user portraits based on historical information in dynamic social
networks [34]. The similar user mining model searches for similar users by mining the
same user habits from mobile devices [39]. For user behaviour analysis, the existing
methods learn from historical behaviours, establish user behaviour profiles, and ana-
lyze potential relationships among users [38, 40, 41]. The methods are mainly applied
in fields such as marketing [42] and recommendation [43].

In our study, we are the first to apply the concept of user portrait to information
diffusion prediction. The purpose of user portrait modeling is to understand user
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intention in information diffusion scenarios, with key elements being user susceptibility,
information portrayal, and the relationships between users.

3 Method

Figure 2: An overview of the proposed MCDAN framework. It comprises four
components: (a) Global Static Learning, which aims at learning the global
users’ dependencies; (b) Multi-scale Dynamic Learning, which aims at storing
the dynamic users’ preference memory based on hypergraphs over M different
time scales(we set M = 3 for example in Fig. 2); (c) Memory Look-up, which
aims at depicting the representations for the observed current cascade and (d)
Contextual Attention Prediction, which aims at encoding the cascade with a
CAE module and predicting the next user based on user susceptibility analysis.

3.1 Problem Formulation

Since information diffusion prediction aims at predicting the future diffusion process
based on the current cascades and relevant knowledge [11], the task is defined as
follows. Suppose that a collection of diffusion cascades C is propagated among a
set of users U . The user set is recorded as U = {u1, u2, ..., uN}, where N denotes
the maximum user number. The collection of diffusion cascades is recorded as C =
{c1, c2, c3, ..., cH}, where H denotes the maximum historical cascade number. Given a
friendship graph GF = (U , EF ) where EF means the friendship edges and an observed
current cascade c = {(ui, ti)|ui ∈ U} where ti means the time ui join the current
cascade. The target is to estimate the probability ŷ of each user from the U joining this
cascade c at the next step and predict the candidate by ranking all the probabilities.

3.2 Framework

In this study, we apply the social network as a friendship graph GF and historical cas-
cades C to construct a global cascading graph GC . Meanwhile, we construct diffusion
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hypergraphs GD which are based on different time scales.
The overall framework of the proposed MCDAN is depicted in Fig. 2. As shown, the

model consists of four modules, namely Global Static Learning, Multi-scale Dynamic
Learning, Memory Look-up and Contextual Attention Prediction.

(a) Global Static Learning module aims at learning the user interaction and storing the
global static memory XS from the friendship graph GF and the global cascading
graph GC .

(b) Multi-scale Dynamic Learning module aims at constructing multi-scale hyper-
graphs GD and storing the dynamic users’ preference memory XD based on the
hypergraphs.

(c) Memory look-up module is used to depict the representations for the current cas-
cade from static memoryXS and dynamic memoryXD, which learned from Global
Static Learning module and Multi-scale Dynamic Learning module, respectively.
The output of this module is two embeddings named global static user embedding
ZS and multi-scale dynamic user embedding ZD.

(d) Contextual Attention Prediction module then encodes global static user embed-
ding ZS and multi-scale dynamic user embedding ZD with a Contextual Attention
Enhancement(CAE) module and applies an insusceptibility mask to obtain the fi-
nal output.

We then introduce each module in detail in the following sections.

3.3 Global Static Learning

Since the social network represents the friendship and cascading graph from historical
cascades represents the historical interaction, we learn the global users’ dependencies
from the related prior knowledge. Specifically, the global cascading graph is recorded
as GC = (U , EC), where EC means the historical cascading edges. Given the friend-
ship graph GF and global cascading graph GC , we feed them into the Global Fusion
Heterogeneous Graph Convolutional Networks(HGCN) as shown in Fig. 3.

Specifically, we use two multi-layer graph convolutional networks (GCN) [44] to
learn user friendship representation and user cascading representation from the two
graphs, respectively. The layer-wise propagation rule can be defined as follows:

XF (l + 1) = ReLU(D̃
− 1

2
F ÃF D̃

− 1
2

F XF (l)WF ) (1)

where XF (0) ∈ RN×d is randomly initialized user friendship embedding with normal

distribution, ÃF = AF+I is built based on the adjacency matrix AF of the given graph
GF , D̃F is the corresponding degree matrix, and WF is a trainable weight matrix.

We can obtain the user cascading representation XC through GCN in a similar
layer-wise propagation rule as follows:

XC(l + 1) = ReLU(D̃
− 1

2
C ÃCD̃

− 1
2

C XC(l)WC) (2)

where XC(0) ∈ RN×d is randomly initialized user cascading embedding with normal

distribution, ÃC = AC + I is built based on the adjacency matrix AC of GC , D̃C

denotes degree matrix, and WC is a trainable weight matrix.
Finally, we fuse user friendship representation XF and user cascading represen-

tation XC to obtain the final global static memory XS . The gated fusion module is
depicted as follows:

XS = αXF + (1− α)XC (3)

6



Figure 3: Illustration of the proposed Global Fusion HGCN. The friendship
graph and global cascading graph are fed into GCN to obtain user friendship
representation and user cascading representation, respectively. Then, the rep-
resentations are fused to obtain the final global static user representation.

α =
exp(WT

S σ(W1XF ))

exp(WT
S σ(W1XF )) + exp(WT

S σ(W1XC))
(4)

where XS ∈ RN×d, σ(·) represents the tanh activation function, W1 denotes the
transformation matrix and WS is the vector of attention which both W1 and WS are
trainable.

3.4 Multi-scale Dynamic Learning

Although the static memory describes the users’ dependencies globally, it is not enough
to reflect the temporal user interaction relationships. As shown in Fig. 2(b), we further
construct hypergraphs based on all the historical cascades over different time scales.
Then, we apply the Sequential Hypergraph Attention Network(HGAT) module to
learn dynamic user interactions from the hypergraphs.

3.4.1 Multi-scale slicing

We construct the diffusion hypergraph set GD based on historical cascades C over
M different time scales. In each time scale, we arrange the cascades in chronological
order and split the historical diffusion timeline into Γ time intervals. The multi-scale
hypergraphs are constructed as follows:

GD = {GΓ
D|Γ = Γ1,Γ2, ...,ΓM}

GΓ
D = {Gτ

D = (Uτ , Eτ
D)|τ = 1, 2, 3, ...,Γ}

(5)

where M denotes the number of time scales, Γ denotes number of time intervals which
can be set as {Γ1,Γ2, ...,ΓM} and the total timeline is cut into Γ pieces of time intervals,
Gτ

D denotes the diffusion hypergraph of the τ -th time interval, Uτ and Eτ
D denote the

corresponding users and hyperedges of the users, respectively.
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Here we go through this process with a brief example. Suppose that M is 2 and
corresponding Γ are {4, 8}, we have 100 cascades with 8 minutes. Firstly, for Γ = 4, we
divide the cascades into 4 subsets with 2 minutes each in chronological order. Here the
length of the time interval is 2 minutes. Note that since there are 100 cascades in total,
each subset contains 100 subsequences at most. Secondly, we construct the hypergraph
based on the subsequences of each time interval. In each hypergraph, once the users
of the same cascade appear in the same time interval, a hyperedge is built. Also note
that since there are 100 subsequences at most, the maximum number of hyperedges
in one hypergraph is 100. Thirdly, we repeat the above steps with Γ = 8, in which
the number of subsets is 8 and the length of the time interval is 1 minute. Finally,
we obtain a single-scale set of 4 hypergraphs and a single-scale set of 8 hypergraphs
corresponding to M = 2 and Γ = {4, 8}.

3.4.2 Sequential HGAT

Given the diffusion hypergraph set GD with a size M , we apply M Sequential HGAT
modules to learn M single-scale dynamic user memories. The final output of the
modules is depicted as follows:

XD = {XΓ
D|Γ = Γ1,Γ2, ...,ΓM}

XΓ
D = Sequential HGAT (GΓ

D)
(6)

where XΓ
D denotes the single-scale dynamic memory learned from a single-scale set of

diffusion hypergraphs GΓ
D through a Sequential HGAT module.

Specifically, a Sequential HGAT module consists of Γ blocks. Each block corre-
sponds to a hypergraph for each time interval. In each block, as shown in Fig. 4, we

Figure 4: Illustration of a Sequential HGAT block. In each block, an LH -layer
HGAT module and a gated fusion module are applied.

first apply an LH -layer HGAT to model the high-order interaction among users from
a hypergraph for each time interval, the process can be formulated as follows:

Xτ
D(LH) = HGAT (Xτ

D(0), Gτ
D) τ = 1, 2, 3, ..,Γ (7)

where Gτ
D denotes the corresponding diffusion hypergraph in the time interval τ ,

Xτ
D(0) denotes the initial user representation, and the output Xτ

D(LH) is stored in
single-scale memory XΓ

D described in Equation(6).
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Then, as shown in Fig. 4, we connect Xτ
D(0) and Xτ

D(LH) with a gated fusion
module in chronological order to obtain the initial user representation of the next time
interval as follows:

Xτ+1
D (0) = gfX

τ
D(0) + (1− gf )X

τ
D(LH) (8)

gf =
exp(WT

DHσ(WgX
τ
D(0)))

exp(WT
DHσ(WgXτ

D(0))) + exp(WT
DHσ(WgXτ

D(LH)))
(9)

where Wg denotes the transformation matrix and WDH is the vector of attention.
Note that we use the friendship representation XF stored in global static memory
as the initial user representation of HGAT in the first time interval to warm up the
Sequential HGAT module, i.e. X1

D(0) = XF .
Furthermore, we illustrate the process of HGAT in detail. Given the diffusion

hypergraph Gτ
D, in each LH -layer HGAT, we have two steps to obtain the high-order

interaction among users. That is, (i) nodes to single hyperedge and (ii) hyperedges
to nodes. Fig. 5 shows the learning process of a single hyperedge eτj in the diffusion
hypergraph Gτ

D.

Figure 5: Illustration of an LH -layer HGAT block in the hyperedge eτj of Gτ
D.

(i) Nodes to single hyperedge: The first step of HGAT aims to learn the represen-
tation oτj of hyperedge eτj by aggregating the initial user representation xτ

i of all
the connected nodes uτ

i :

oτj (l + 1) = ReLU(
∑

uτ
i ∈eτj

Wh1x
τ
i (l)) (10)

where oτj (l + 1) denotes the learned representation of the hyperedge eτj , Wh1

denotes the trainable parameter, and xτ
i (l) denotes the initial user representation.

(ii) Hyperedges to nodes: The second step is based on the learned representations
of hyperedges, we integrate all the hyperedges Eτ

D,i joined by uτ
i in the time

interval τ to update the user representation xτ
i :

xτ
i (l + 1) = ReLU(

∑
eτj ∈Eτ

D,i

Wh2o
τ
j (l + 1)) (11)

where xτ
i (l + 1) denotes the updated user representation, and Wh2 denotes the

trainable parameter. Note that all the final updated user representations i.e.
xτ
i (LH) constitute the output Xτ

D(LH) described in Equation(7).
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3.5 Memory Look-up

In this section, we depict the current cascade c with the global static memory XS

obtained from Equation(3) and multi-scale dynamic memory XD obtained from Equa-
tion(6).

As shown in Fig. 2(c), for the static memory, we arrange it with the order of user
in the given cascade c = {(ui, ti)|ui ∈ U}, thus obtaining global static user embedding:
ZS = {xi

S |ui ∈ U, xi
S ∈ XS}, where ZS ∈ R|c|×d.

For the dynamic memory, we first obtain each single-scale dynamic user embedding
and then fuse them with a multi-scale fusion module.

To obtain the single-scale dynamic user embedding from each single-scale dynamic
memory XΓ

D, we query the corresponding users’ representation at the nearest time
interval based on the given cascade c = {(ui, ti)|ui ∈ U} as well. Since ti denotes the
time that ui join and if it is divided into the time interval τ , the representation can
be represented as: ZΓ

D = {xi,τ
D |ui ∈ U, ti ∈ τ, xi,τ

D ∈ XΓ
D}, where ZΓ

D ∈ R|c|×d.
After obtaining M single-scale dynamic user embeddings, we propose a multi-scale

fusion module to obtain the final multi-scale dynamic user embedding ZD ∈ R|c|×d:

ZD =
∑

Γ∈{Γ1,Γ2,...,ΓM}

mΓZ
Γ
D

mΓ =
exp(WT

Dσ(WmZΓ
D))∑

Γ exp(WT
Dσ(WmZΓ

D))

(12)

where Wm denotes the transformation matrix and WD is the vector of attention.

3.6 Contextual Attention Prediction

In order to further capture the context information within the current cascade, as
shown in Fig. 2(d), we propose a Contextual Attention Enhancement(CAE) module
to enhance the context dependency. Based on the user susceptibility analysis, we then
feed the context-enhanced embeddings to obtain the final predicted user. We illustrate
the process in detail in the following sections.

3.6.1 CAE module

Instead of using an RNN [9] or a single masked Multi-Head Self-Attention(MHSA)
module [10, 11] to decode the given user embeddings, we design an encode-decode
module to learn the context information.

(i) Self-attention encode: Given the static user embedding ZS , we first apply a
masked MHSA module to learn the hidden embeddings hS :

MaskedAtt(Q,K, V ) = softmax(
QKT

√
dΩ

+M)V,

hω = MaskedAtt(ZSW
Q
ω , ZSW

K
ω , ZSW

V
ω ),

hS = [h1;h2; ...;hΩ]W
O

(13)

where WQ
ω , WK

ω , WV
ω and WO are trainable parameters, dΩ = d/Ω, d is the

dimension of the embedding and Ω denotes the number of heads of attention.
The mask matrix M is defined as Mij = 0 if i ≤ j otherwise −∞, which is used
to avoid label leakage.
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Then, we obtain the attentive representation as context embedding Zc
S through

the two layers fully-connected neural network named Feed Forward network:

Zc
S = ReLU(hSWE1 + b1)WE2 + b2 (14)

where WE1 and WE2 are trainable matrices, b1 and b2 are trainable bias param-
eters. Note that residual connection is realized by the Add & Norm layer.

(ii) Context-attention decode: The context-attention decoder has three steps:

First, we apply a masked MHSA module to obtain the masked hidden embedding
hc
S , h

c
S = hS where hS is from Equation(13).

Second, we feed the masked hidden embedding hc
S and context embedding Zc

S

into a multi-head attention(MHA) module to obtain the context-enhanced hidden
embedding hca

S . Specifically, we set hc
S as Q, Zc

S as the K and V . The process
can be formulated as follows:

Att(Q,K, V ) = softmax(
QKT

√
dΩ

)V,

hca
ω = Att(hc

SW
Qca

ω , Zc
SW

Kca

ω , Zc
SW

V ca

ω ),

hca
S = [hca

1 ;hca
2 ; ...;hca

Ω ]WOca

(15)

where WQca

ω , WKca

ω , WV ca

ω and WOca

are trainable matrices.

Third, we apply a Feed Forward network to learn the context-enhanced user
embedding Zca

S :
Zca

S = ReLU(hca
S WE3 + b3)WE4 + b4 (16)

where WE3 and WE4 are trainable matrices, b3 and b4 are trainable bias param-
eters.

Meanwhile, given the dynamic user embedding ZD, we obtain the dynamic context-
enhanced user embedding Zca

D in a similar way.
After then, we incorporate the static context-enhanced user embedding Zca

S and the
dynamic context-enhanced user embedding Zca

D to obtain the final context-enhanced
user embedding Z. We implement a new gated fusion module to realize:

Z = βZca
S + (1− β)Zca

D (17)

β =
exp(WT

Z σ(W2Z
ca
S ))

exp(WT
Z σ(W2Zca

S )) + exp(WT
Z σ(W2Zca

D ))
(18)

where W2 denotes the transformation matrix and WZ is the vector of attention.

3.6.2 Prediction based on user susceptibility

Before the final prediction, we construct a susceptibility label for each user based on
all the historical cascades. Specifically, we calculate the frequency of infection for each
user based on the given cascades. Then we match the user susceptibility score based
on this frequency, thus obtaining the susceptibility label.

Based on the susceptibility label, we sort the user set U with the label ranking.
We set an insusceptible threshold to put users who rank behind it as insusceptible
users.
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Table 1: Statistics of the preprocessed datasets in our experiments

Datasets Twitter Douban Android Christianity

# Users 12,627 12,232 2,927 1,651
# Fri. Links 309,631 198,496 24,459 21,955
# Cas. Links 73,036 51,797 23,958 11,328
# Cascades 3,442 3,475 678 589
Avg. Length 32.60 21.76 42.05 26.02

Finally, we compute the diffusion probabilities with the mask of the insusceptible
users:

ŷ = softmax(WpZ +Mask) (19)

where Wp denotes the trainable parameter, and Mask is used to mask users who are
set as insusceptible.

During the training, we apply the cross-entropy loss as the objective function:

Loss(θ) = −
|c|∑
t=2

N∑
i=1

ytilog(ŷti) (20)

where θ denotes all the parameters to be trainable. If the user ui join in cascade c at
the step t, yti = 1, otherwise yti = 0.

4 Experiments

In this section, we first illustrate the datasets, implementation details and baseline
models used in our experiments, and then we report the results of comparative exper-
iments, ablation study experiments, and parameter analysis experiments to demon-
strate the effectiveness of our proposed MCDAN model.

4.1 Experiment Setting

4.1.1 Datasets

Following the previous work [11], we conduct our experiments on four publicly available
datasets, i.e., Twitter [45], Douban [46], Android [20] and Christianity [20]. The first
two datasets are collected from social media, the last two are collected from Stack-
Exchanges.

For a fair comparison, we preprocess the four datasets according to the method
in [11] by removing cascades with lengths beyond 200. The statistics of the prepro-
cessed datasets are shown in Table 1. Specifically, #Fri.Links denotes the number
of edges in the friendship graph from the social network. #Cas.Links denotes the
number of edges in the global cascading graph which is built based on the historical
cascades. Note that all isolated edges are not counted.

For each dataset, we randomly split the dataset by 8:1:1 for training, validation,
and testing.
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4.1.2 Implementation Details

We implement the proposed MCDAN via PyTorch [47]. Specifically, we apply Adam
as the optimizer, and the learning rate is initialized as 0.01. The batch size of training
and the dimension of embeddings are both set to 64.

For global static learning (Sec. 3.3), we apply two two-layer GCNs to learn the
friendship graph and global cascading graph, respectively. For multi-scale dynamic
learning(Sec. 3.4), the number of time scales M is set to 3 and the corresponding
numbers of time intervals are set to {4, 8, 16}. During each time scale, one-layer
HGAT is adopted to learn the high-order interaction from each hypergraph. For
contextual attention prediction(Sec. 3.6), the number of heads in multi-head attention
Ω is set to 14. The insusceptible label threshold ratiot is set to adapt to the datasets.
Here we set it to 12% for Twitter, 6.9% for Douban, 0.17% for Android and 0.15% for
Christianity.

4.1.3 Evaluation Metrics

Following previous works [9–11,20], the evaluation metrics we use in this study are two
ranking metrics, that is, Hits score on top k (Hits@k) and Mean Average Precision on
top k(MAP@k), where k = {10, 50, 100}.

4.2 Baselines

To verify the effectiveness of the proposed MCDAN, we compare it with the following
baselines in two categories.

4.2.1 Cascades Diffusion based

These methods infer future diffusion processes based on the given cascades without
social information.

• DeepDiffuse [18] combines the LSTM network and attention mechanism to model
the diffusion path.

• Topo-LSTM [48] extends standard LSTM to Topo-LSTM to model the cascade
diffusion.

• NDM [17] models the cascades by self-attention mechanism and CNNs.

• SNIDSA [19] integrates structural attention modules and gating mechanisms
into RNN for model learning.

4.2.2 Social Graph based

These methods utilize social information and given cascades for diffusion prediction.

• FOREST [9] incorporates the social connections through graph neural networks
into RNN for prediction.

• Inf-VAE [20] learns social homophily by utilizing graph neural network archi-
tectures and integrates it into a variational autoencoder.

• DyHGCN [10] jointly learns the graph representations of the social graph and
diffusion graph for dynamic diffusion modeling.

• MS-HGAT [11] proposes a memory-enhanced sequential hypergraph attention
network on the basis of the social graph and diffusion hypergraphs.
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4.3 Overall performance

Table 2: Overall results with Hits@k scores for k = 10, 50, 100 on four public
datasets(%). The average improvement is up to 10.61% in terms of the Hits@100
score.

model
Twitter Douban Android Christianity

@10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100

DeepDiffuse 5.79 10.80 18.39 9.02 14.93 19.13 4.13 10.58 17.21 10.27 21.83 30.74
Topo-LSTM 8.45 15.80 25.42 8.57 16.53 21.47 4.56 12.63 16.53 12.28 22.63 31.52

NDM 15.21 28.23 32.30 10.00 21.13 30.14 4.85 14.24 18.97 15.41 31.36 45.86
SNIDSA 25.37 36.64 42.89 16.23 27.24 35.59 5.63 15.22 20.93 17.74 34.58 48.76

FOREST 28.67 42.07 49.75 19.50 32.03 39.08 9.68 17.73 24.08 24.85 42.01 51.28
Inf-VAE 14.85 32.72 45.72 8.94 22.02 35.72 5.98 14.70 20.91 18.38 38.50 51.05
DyHGCN 31.88 45.05 52.19 18.71 32.33 39.71 9.10 16.38 23.09 26.62 42.80 52.47
MS-HGAT 33.50 49.59 58.91 21.33 35.25 42.75 10.41 20.31 27.55 28.80 47.14 55.62

MCDAN(ours) 38.45 55.78 64.25 49.39 58.58 62.81 11.89 25.10 32.79 35.49 56.92 67.41

The comparison results over four datasets are reported in Table 2 and Table 3,
which correspond to two metrics, Hits@k and MAP@k, respectively. Since MS-
HGAT [11] is the SOTA model, all the experimental results of baselines reported
are cited from it. From these two tables, we obtain the following observations:

1. Our MCDAN model achieves optimal predictive performance. Compared with the
SOTA model MS-HGAT [11], we have achieved better performance on all four
datasets with average improvements of 10.61% in the Hits@100 score and 9.71% in
the MAP@100 score, respectively. Especially, for the Douban dataset, our MCDAN
reaches up to 20.06% improvement in Hits@100 score and 28.59% in MAP@100
score.

2. Regarding the Hits@100 metric shown in Table 2, our method improves 5.34%
in Twitter, 20.06% in Douban, 5.24% in Android and 11.79% in Christianity by
comparing with the SOTA model, respectively. Since the Hits@100 metric refers
to the hitting rate of the first 100 results, the reason for such improvement is our
method presents more global interaction and context information at different scales,
which helps learn more potential interactions from both historical cascades and the
current cascade.

3. Regarding the MAP@100 metric shown in Table 3, our method improves 3.51%

Table 3: Overall results with MAP@k scores for k = 10, 50, 100 on four public
datasets(%). The average improvement is 9.71% in terms of the MAP@100
score.

model
Twitter Douban Android Christianity

@10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100

DeepDiffuse 5.87 6.80 6.39 6.02 6.93 7.13 2.30 2.53 2.56 7.27 7.83 7.84
Topo-LSTM 8.51 12.68 13.68 6.57 7.53 7.78 3.60 4.05 4.06 7.93 8.67 9.86

NDM 12.41 13.23 14.30 8.24 8.73 9.14 2.01 2.22 2.93 7.41 7.68 7.86
SNIDSA 15.34 16.64 16.89 10.02 11.24 11.59 2.98 3.24 3.97 8.69 8.94 9.72

FOREST 19.60 20.21 21.75 11.26 11.84 11.94 5.83 6.17 6.26 14.64 15.45 15.58
Inf-VAE 19.80 20.66 21.32 11.02 11.28 12.28 4.82 4.86 5.27 9.25 11.96 12.45
DyHGCN 20.87 21.48 21.58 10.61 11.26 11.36 6.09 6.40 6.50 15.64 16.30 16.44
MS-HGAT 22.49 23.17 23.30 11.72 12.52 12.60 6.39 6.87 6.96 17.44 18.27 18.40

MCDAN(ours) 25.89 26.69 26.81 40.70 41.13 41.19 7.47 8.04 8.15 22.88 23.78 23.94
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Table 4: Ablation study with Hits@k scores for k = 10, 50, 100 on four public
datasets(%). Note that we use underlining to mark the results of the most
effective component.

model
Twitter Douban Android Christianity

@10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100

MCDAN 38.45 55.78 64.25 49.39 58.58 62.81 11.89 25.10 32.79 35.49 56.92 67.41

w/o G 32.02 49.94 60.27 28.97 42.72 49.11 10.88 22.61 29.99 32.59 51.12 64.96
w/o M 38.16 54.96 63.17 39.65 52.43 57.58 11.58 22.92 30.61 31.47 52.46 62.05
w/o C 35.41 50.49 58.55 20.50 34.86 41.97 11.11 21.45 28.67 31.92 52.46 61.38
w/o L 34.94 51.64 60.58 45.77 55.64 60.05 11.34 21.06 28.44 32.14 52.90 66.29

in Twitter, 28.59% in Douban, 1.19% in Android and 5.54% in Christianity by
comparing with the SOTA model, respectively. Since the MAP@100 metric refers to
the mean average precision of the first 100 results, the reason for such improvement
is our method of user susceptibility analysis as an auxiliary prediction can eliminate
more erroneous candidates and improve the precision of retrieval. In addition, the
enrichment of the potential interaction also improves prediction precision.

4.4 Ablation study

We conduct ablation studies on the different components of the proposed MCDAN
model over the four public datasets. The variants of the model are designed as:

w/o Global cascading graph: remove global cascading graph. The Equation(3) is
replaced by:

XS = XF (21)

w/o Multi-scale diffusion hypergraphs: replace the multi-scale diffusion hyper-
graphs with single-scale diffusion hypergraphs. Here we set the number of time in-
tervals to 8, which is the same as the previous models [10, 11]. The Equation(12) is
replaced by:

ZD = ZΓ
D (22)

where Γ = 8.
w/o CAE module: replace the contextual attention enhancement module with

only a multi-head self-attention decoder for each user embedding. The Equation(17)
is replaced by:

Z = γZc
S + (1− γ)Zc

D (23)

γ =
exp(WT

γ σ(W3Z
c
S))

exp(WT
γ σ(W3Zc

S)) + exp(WT
γ σ(W3Zc

D))
(24)

where Zc
S denotes the user static embedding obtained through Equation(14), Zc

D de-
notes the user dynamic embedding obtained in a similar way from ZD, W3 denotes
the transformation matrix and Wγ is the vector of attention.

w/o Label ranking mask: remove the final insusceptible label mask. The Equa-
tion(19) is replaced by:

ŷ = softmax(WpZ) (25)

The ablation results are reported in Table 4 and Table 5 which are related to
two metrics, Hits@k and MAP@k. From these two tables, we obtain the following
observations:
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Table 5: Ablation study with MAP@k scores for k = 10, 50, 100 on four public
datasets(%). Note that we use underlining to mark the results of the most
effective component.

model
Twitter Douban Android Christianity

@10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100

MCDAN 25.89 26.69 26.81 40.70 41.13 41.19 7.47 8.04 8.15 22.88 23.78 23.94

w/o G 19.90 20.72 20.87 19.68 20.30 20.39 6.63 7.17 7.27 20.34 21.23 21.42
w/o M 25.18 25.96 26.08 29.89 30.50 30.57 6.99 7.50 7.61 20.20 21.14 21.28
w/o C 23.59 24.29 24.40 11.17 11.87 11.97 6.85 7.29 7.39 19.26 20.16 20.28
w/o L 22.73 23.49 23.62 37.36 37.81 37.87 7.09 7.52 7.62 19.64 20.52 20.71

Table 6: Results of the impact of the number of time scales M on four public
datasets(%). (Hits@k scores for k = 10, 50, 100)

M Γ
Twitter Douban Android Christianity

@10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100

1 8 38.16 54.96 63.17 39.65 52.43 57.58 11.58 22.92 30.61 31.47 52.46 62.05

3 4,8,16 38.45 55.78 64.25 49.39 58.58 62.81 11.89 25.10 32.79 35.49 56.92 67.41

5 2,4,8,16,32 34.86 52.04 61.25 45.11 54.96 59.88 10.65 22.92 31.24 32.37 50.89 65.63

1. Our MCDAN model achieves the best performance over all the datasets, which
confirms that all components of our model are effective.

2. Regarding social media-based datasets i.e. Twitter and Douban, the requirements
for different components in different datasets are not completely consistent. As
the Hits@k metric shown in Table 4 and the MAP@k metric shown in Table 5,
we observe that for the Twitter dataset, the most effective component is the global
cascading graph, the least useful one is the multi-scale diffusion hypergraphs. How-
ever, for the Douban dataset, the most effective component is the CAE module,
and the least powerful one is the masking of insusceptibility labels. The difference
shows the different propagation tendencies of different datasets. Specifically, the
Twitter dataset exhibits global propagation consistency, while the Douban dataset
focuses more on the contextual information of the current sequence.

3. Regarding Stack-Exchanges-based datasets i.e. Android and Christianity, the con-
clusion is consistent with results on the social media-based datasets. Specifically,
we observe that for the Android dataset, the least powerful component is the multi-
scale diffusion hypergraphs. While for the Christianity dataset, the least effective
one is the masking of insusceptibility labels. However, compared with social media-
based datasets, the performance differences of variant models on these two datasets
are not significant, which may be limited by the size of the datasets.

4.5 Parameter Analysis

In this part, we further conduct some sensitivity analysis experiments of key parame-
ters on the four datasets to identify how they influence the prediction performance.

4.5.1 Impact of the historical cascades proportion

Since the global cascading graph is constructed based on the historical cascades, which
is confirmed as an effective component. Here we further explore how they affect the
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Table 7: Results of the impact of the number of time scales M on four public
datasets(%). (MAP@k scores for k = 10, 50, 100)

M Γ
Twitter Douban Android Christianity

@10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100

1 8 25.18 25.96 26.08 29.89 30.50 30.57 6.99 7.50 7.61 20.20 21.14 21.28

3 4,8,16 25.89 26.69 26.81 40.70 41.13 41.19 7.47 8.04 8.15 22.88 23.78 23.94

5 2,4,8,16,32 22.90 23.68 23.82 34.79 35.26 35.33 6.88 7.44 7.56 20.27 21.22 21.43

Table 8: insusceptible label threshold setting.

tratio
Twitter Douban Android Christianity

0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.08

# insusceptible users 252 505 757 1010 244 489 734 978 58 117 175 234 33 66 99 132

prediction performance when the historical cascades proportion changes across the
range of {0, 0.2, 0.4, 0.6, 0.8, 1}, where 0 denotes that no historical cascades are given,
while 1 denotes that all the cascades of the training set are given to construct the
graph.

The results are reported in Fig. 6. We observe that as the proportion increases, the
prediction performance of the model improves. More specifically, for the social media-
based datasets i.e. Twitter and Douban, there is a significant increase in performance
between 0 and 0.2, and the trend gradually stabilizes afterward. For the Android
dataset, the overall performance improvement is relatively slow. A similar trend is
also reflected in Hits@k of the Christianity dataset, but another metric MAP@k shows
a linear increase after 0.4.

4.5.2 Impact of the number of scales M

In this study, we propose a multi-scale diffusion hypergraphs learning structure and
confirm its effectiveness through the ablation study. Here we further discuss how the
number of time scales M and the corresponding numbers of time intervals Γ affect
the prediction performance. We change the number M across the range of {1, 3, 5}.
For the single scale, we set the corresponding number of time intervals Γ to 8. For
the three scales we propose in MCDAN, we set the corresponding numbers of time
intervals Γ to {4, 8, 16} as in Sec. 4.3. For the five scales, we set the corresponding
numbers of time intervals Γ to {2, 4, 8, 16, 32}.

The results in Table 6 and Table 7 show that the method with the three scales
we apply in the study (M = 3) achieves the best performance. It is also noted that
excessive time scales may increase memory burden and may not necessarily result in
optimal performance.

4.5.3 Impact of the insusceptible label threshold

Since the insusceptible label threshold may affect the performance, we thus construct
experiments to explore the impact. We change the insusceptible label threshold tratio
across the range of {0, 0.02, 0.04, 0.06, 0.08} and record the insusceptible user size of
datasets in Table 8.

From Fig. 7, we find that it is not the higher threshold that leads to better per-
formance. For example, for the Douban dataset, compared with 0.08, 0.06 has better
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performance. This is because an excessively large threshold may cause some inactive
users to lose access to information, leading to prediction failure. From the results of
different datasets, we also find that the threshold should not be an invariant constant,
which needs to be adapted to the dataset.

5 Conclusion

In this study, we propose a novel Multi-scale Context-enhanced Dynamic Attention
Network (MCDAN) for diffusion prediction. Different from the previous studies which
select the infected user unidirectionally, our model aims at predicting the target user by
understanding the user’s intention. We construct user representations based on global
user dependency and context enhancement from three perspectives of user portrait,
which are users’ global relationships, multi-scale dynamic preference, and user suscep-
tibility. Comprehensive experiments constructed on four public datasets demonstrate
the superiority of the proposed model.
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(a) Hits@k on Twitter (b) Hits@k on Douban

(c) Hits@k on Android (d) Hits@k on Christianity

(e) MAP@k on Twitter (f) MAP@k on Douban

(g) MAP@k on Android (h) MAP@k on Christianity

Figure 6: Results of the impact of the historical cascades proportion on the four
public datasets.
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(a) Hits@k on Twitter (b) Hits@k on Douban

(c) Hits@k on Android (d) Hits@k on Christianity

(e) MAP@k on Twitter (f) MAP@k on Douban

(g) MAP@k on Android (h) MAP@k on Christianity

Figure 7: Results of the impact of the insusceptible label threshold on the four
public datasets.
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