Abstract:
Micro-videos, as an increasingly popular form of user-generated content (UGC), naturally include diverse multimodal cues. However, in pursuit of consistent representation...Show MoreMetadata
Abstract:
Micro-videos, as an increasingly popular form of user-generated content (UGC), naturally include diverse multimodal cues. However, in pursuit of consistent representations, existing methods neglect the simultaneous consideration of exploring modality discrepancy and preserving modality diversity. In this paper, we propose a multimodal progressive modulation network (MPMNet) for micro-video multi-label classification, which enhances the indicative ability of each modality through gradually regulating various modality biases. In MPMNet, we first leverage a unimodal-centered parallel aggregation strategy to obtain preliminary comprehensive representations. We then integrate feature-domain disentangled modulation process and category-domain adaptive modulation process into a unified framework to jointly refine modality-oriented representations. In the former modulation process, we constrain inter-modal dependencies in a latent space to obtain modality-oriented sample representations, and introduce a disentangled paradigm to further maintain modality diversity. In the latter modulation process, we construct global-context-aware graph convolutional networks to acquire modality-oriented category representations, and develop two instance-level parameter generators to further regulate unimodal semantic biases. Extensive experiments on two micro-video multi-label datasets show that our proposed approach outperforms the state-of-the-art methods.
Published in: IEEE Transactions on Multimedia ( Volume: 26)