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Generalized Processor Sharing With Light-Tailed
and Heavy-Tailed Input
Sem Borst, Michel Mandjes, and Miranda van Uitert

Abstract—We consider a queue fed by a mixture of light-tailed
and heavy-tailed traffic. The two traffic flows are served in accor-
dance with the generalized processor sharing (GPS) discipline.
GPS-based scheduling algorithms, such as weighted fair queueing,
have emerged as an important mechanism for achieving service
differentiation in integrated networks. We derive the asymptotic
workload behavior of the light-tailed traffic flow under the
assumption that its GPS weight is larger than its traffic intensity.
The GPS mechanism ensures that the workload is bounded above
by that in an isolated system with the light-tailed flow served in
isolation at a constant rate equal to its GPS weight. We show that
the workload distribution is in fact asymptotically equivalent to
that in the isolated system, multiplied with a certain pre-factor,
which accounts for the interaction with the heavy-tailed flow.
Specifically, the pre-factor represents the probability that the
heavy-tailed flow is backlogged long enough for the light-tailed
flow to reach overflow. The results provide crucial qualitative
insight in the typical overflow scenario.

Index Terms—Generalized processor sharing (GPS),
heavy-tailed traffic, large deviations, light-tailed traffic, Markov
fluid, regular variation, weighted fair queueing, workload asymp-
totics.

I. INTRODUCTION

T HE next-generation Internet is expected to support a wide
variety of services, such as voice, video, and data applica-

tions. Voice and video communications induce far more strin-
gent quality-of-service (QoS) requirements than the typical sort
of data applications which currently account for the bulk of the
Internet traffic. The integration of heterogeneous services thus
raises the need for differentiated QoS, catering to the specific
requirements of the various traffic flows.

One potential approach to achieve service differentiation is
through the use of discriminatory scheduling algorithms, which
distinguish between packets of various traffic streams. Because
of scalability issues, it is practically infeasible, though, to
manipulate packets at the granularity level of individual traffic
flows in the core of any large-scale high-speed network. To
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avoid these complexity problems, traffic flows may instead be
aggregated into a small number of classes with roughly similar
features, with scheduling mechanisms acting at the coarser level
of aggregate streams. With a little simplification, the majority
of applications may, for example, be broadly categorized into
just two classes, one containingstreamingtraffic (e.g., audio
and video communications), the other one comprisingelastic
traffic (e.g., file transfers). This is a crucial element of the
DiffServ proposal [5], which defines the expedited forwarding
(EF) class for delay-sensitive traffic and the assured forwarding
(AF) class for traffic with some degree of delay tolerance.

In view of the delay requirements, it is desirable that
streaming applications receive some sort of priority over elastic
traffic, at least over short time scales. Strict priority scheduling
may, however, not be ideal, since it may lead to starvation of
the best-effort traffic. Even temporary starvation effects may
cause end-to-end flow control mechanisms such as TCP to
suffer a severe degradation in throughput performance. The
generalized processor sharing (GPS) discipline provides a
potential mechanism for implementing priority scheduling in
a tunable way, with strict priority scheduling as an extreme
option [28]. In GPS-based scheduling algorithms, such as
weighted fair queueing (WFQ), the link capacity is shared in
proportion to certain class-defined weight factors. By setting
the weight factor for the best-effort class relatively low, one
can still provide some degree of priority to the streaming
applications, while avoiding starvation of the elastic traffic.

Besides achieving service differentiation, scheduling mecha-
nisms also play a role in controlling the performance impact of
bursty traffic. Extensive measurements have shown that bursty
traffic behavior may extend over a wide range of time scales,
and may manifest itself in long-range dependence and self-sim-
ilarity [23], [30]. The occurrence of these phenomena is com-
monly attributed to extreme variability and heavy-tailed charac-
teristics in the traffic patterns [3], [13]. These observations have
triggered a strong interest in queueing models with heavy-tailed
traffic processes (see, for instance, [29] and [33]).

Although the presence of heavy-tailed traffic characteristics
is widely acknowledged, the practical implications for network
performance and traffic engineering remain controversial. For
small buffer sizes, the effect of heavy-tailed traffic characteris-
tics is not as dramatic as indicated by theoretical studies for in-
finite buffer sizes, especially at high levels of multiplexing [12],
[17], [24], [32]. For large buffer sizes, flow control mechanisms
such as TCP prevent heavy-tailed activity patterns from over-
whelming the buffers [2].

In this paper, we specifically examine the potential role of
GPS-based scheduling mechanisms in protecting light-tailed
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traffic flows from the impact of heavy-tailed traffic processes.
Large-deviations results for GPS models with light-tailed traffic
may be found in [26] and [34]. Workload asymptotics for GPS
queues with heavy-tailed traffic flows were obtained in [6] and
[21]. The latter results show a sharp dichotomy in qualitative
behavior, depending on the traffic intensities and the relative
values of the weight parameters. For certain weight combina-
tions, an individual flow with heavy-tailed characteristics is
effectively served at aconstantrate, which is only influenced
by the average rates of the other flows. In particular, the flow
is essentially immune from excessive activity of flows with
heavier-tailed characteristics. For other weight combinations,
however, a flow may be strongly affected by the activity of
heavier-tailed flows and may inherit their traffic characteristics.
The latter result, in fact, also applies for light-tailed flows when
their traffic intensity exceeds their GPS weight. In this paper,
we derive the asymptotic workload behavior of the light-tailed
flow for the more plausible situation where its GPS weight is
larger than its traffic intensity.

The remainder of this paper is organized as follows. In
Section II, we present a detailed model description and state
some important preliminary results. In Section III, we provide
an overview of the main results of the paper, which characterize
the exact asymptotic behavior of the workload distribution of
the light-tailed flow. The subsequent sections give a sketch
of the proofs. We start in Section IV with deriving lower and
upper bounds for the workload distribution of the light-tailed
flow. In Section V, we proceed to prove some auxiliary results
for the light-tailed flow in isolation. Although the bounds
seem quite crude by themselves, we show in Section VI that
they asymptotically coincide, yielding the exact asymptotic
behavior. One of the asymptotic terms involves the probability
that the heavy-tailed flow is backlogged long enough for
overflow to occur, which is computed in Sections VII and VIII.

II. M ODEL DESCRIPTION

We now present a detailed model description (see Fig. 1). We
consider two traffic flows sharing a link of unit rate. Traffic from
the flows is served in accordance with the GPS discipline, which
operates as follows. Flowis assigned a weight ,
with . As long as both flows are backlogged, flowis
served at rate , . If one of the flows is not backlogged,
however, then the service rate is reallocated to the other flow,
which is then served at the full link rate (if backlogged). (It may
occur that one of the flows is not backlogged, while generating
traffic at some rate . In that case, only theexcessservice
rate , is reallocated to the other flow.) Denote by
the workload of flow at time and by a random variable
whose distribution is the limit distribution of for
(assuming it exists). The goal of this paper is to derive the exact
asymptotic behavior of the workload distribution of flow 1, i.e.,
we calculate for .

We introduce the following notation. For , we denote by
the amount of traffic generated by flowduring the time

interval . For , denotes the negative counterpart
of the amount of traffic generated by flowin . Assuming
that is reversible and has stationary increments, we define

Fig. 1. Schematic representation of our model.

to be the amount of traffic generated
in , , , . Define as the amount of ser-
vice received by flow during . Then the following identity
relation holds:

for all (1)

For any , denote by
the workload at time in a fictitious queue with service ratefed
by flow (viewed in isolation). Denote by the traffic intensity
of flow (as will be defined in detail below). For , is
a random variable whose distribution is the limit distribution of

for (assuming it exists). Then a similar identity
relation as above holds:

for all (2)

In the next two sections, we describe the traffic model that we
consider for both flows. We first introduce some additional no-
tation. For any two real functions and , we use the nota-
tional convention to denote

(or as ). Also,
denotes , and denotes

. For any two random variables

and , we write to denote that they have the same
distribution function. For any positive real-valued random vari-
able with distribution function , , denote by

the distribution function of the residual lifetime of, i.e.,
, and by a random vari-

able with that distribution. The classes ofsubexponential, regu-
larly varying, andintermediately regularly varyingdistributions
are denoted with the symbols, , and , respectively. The
definitions of these classes may be found in [4].

A. Traffic Model Flow 1

We assume that flow 1 is light-tailed. Specifically, we make
the assumption that the input process is a Markov-
modulated fluid. Such a process can be described as follows.
There is an irreducible Markov chain with a finite state space

. The corresponding transition rate matrix is de-
noted by , where we follow the convention
that . Since the Markov chain is irreducible,
there is a unique stationary distribution, which we denote by
the (column) vector . When the source is in state, traffic is
generated (as fluid) at constant rate . Let be the
diagonal matrix with the coefficients on the diagonal. De-
note the mean rate by . Denote the peak rate
by . It is important to observe that the
class of Markov fluid input is closed under superposition, i.e.,
the superposition of Markov fluid sources can again be mod-
eled as a Markov fluid source. The following standard result
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for Markov-modulated fluid sources follows directly from [15],
[20], and [22].

Proposition 2.1: For any

• The moment generating function of reads

with the all one (column) vector of dimension.
• For continuous and differentiable

For finite positive

• Denoting by the unique positive root of ,
we have , and

Although we restrict ourselves to Markov fluid input, we
believe that our results are valid for a more general class of
light-tailed input. This will be discussed in greater detail in Re-
mark 6.1.

B. Traffic Model Flow 2

We assume that flow 2 is heavy-tailed. The input process
is either instantaneous or on–off, with heavy-tailed

burst sizes or on periods, respectively.
1) Instantaneous Input:Here, flow 2 generates instan-

taneous traffic bursts according to a renewal process. The
interarrival times between bursts have distribution function

with mean . The burst sizes have distribution
function with mean . Thus, the traffic intensity
is . We assume that is regularly varying of
index , i.e., for some . The next
result, which is due to Pakes [27], then yields the tail behavior
of the workload distribution of flow 2 in isolation.

Theorem 2.1:If and , then

2) Fluid Input: Here, flow 2 generates traffic according to
an on–off process, alternating between on and off periods. The
off periods have distribution function with mean .
The on periods have distribution function with mean

. While on, flow produces traffic at constant rate
, so the mean burst size is . The fraction of time that

flow 2 is off is . The traffic intensity is
. We assume that

is regularly varying of index , i.e., for some
. The next result, which is due to Jelenkovic´ and Lazar

[18], then yields the tail behavior of the workload distribution
of flow 2 in isolation.

Theorem 2.2:If and , then

III. OVERVIEW OF THE RESULTS

Throughout this paper, we assume , , which
ensures stability of both flows. We first briefly discuss in Sec-
tion III-A what happens if this condition fails to hold. In addi-
tion, we make the assumption that in case of fluid input
of flow 2. Otherwise, the workload of flow 2 would be zero, so
the workload of flow 1 would be equal to the total workload.
The tail distribution of the latter quantity has been obtained in
[10]. In Section III-B, we provide a heuristic explanation of the
main results of this paper. The main result is then given in Sec-
tion III-C, where we also present an example.

A. Case

To put things in perspective, we first briefly review the case
that , while . If either: 1)
(instantaneous input); or 2) with (fluid
input), then from [6]

with a random variable whose distribution is the busy-pe-
riod distribution in a queue with constant service ratefed by
flow 2.

The above result may be interpreted as follows. Large-devi-
ations arguments suggest that the most likely way for flow 1 to
build a large queue is that flow 2 generates a large burst, or expe-
riences a long on period, while flow 1 itself shows roughly av-
erage behavior. Note that when flow 2 produces a large amount
of traffic, so that it becomes backlogged for a long period of
time, it receives service at rate. Thus, it will experience a busy
period as if it were served at constant rate. During that pe-
riod, flow 1 receives service at rate, while it generates traffic
roughly at rate , so its queue will grow approximately at rate

. When flow 2 is not backlogged, the corresponding
queue will drain approximately at rate .

Thus, the backlog of flow 1 behaves as that in a queue with
constant service rate fed by an on–off source with peak
rate . The on and off periods correspond to the busy and idle
periods of flow 2 when served at constant rate, respectively.
Recall that the workload asymptotics of such an on–off source
are given by Theorem 2.2. Setting , ,

, and identifying with , we obtain the above
result for the workload asymptotics of flow 1.

B. Heuristic Explanation of Main Results

We now focus on the case . Before presenting the
main result, we first provide a heuristic derivation of the asymp-
totic behavior of based on large-deviations argu-
ments as in [1]. The overflow scenario described above for the
case cannot occur, and now flow 1 also must de-
viate from its “normal” behavior in order for the queue to grow.
Specifically, large-deviations results suggest that flow 1 must
behave as if its traffic intensity is temporarily increased from

to some larger value (as will be specified below).
During that time period, flow 2 is continuously backlogged, con-
suming service rate , thus leaving service rate for flow 1.
(Notice that if flow 2 were not permanently backlogged, then
flow 1 would have to show even greater anomalous activity in
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Fig. 2. Overflow scenario—instantaneous input flow 2.

order for a given backlog level to occur.) Prior to that period,
flow 1 shows normal behavior, leaving an average service rate
of for flow 2.

To summarize, the intuitive argument is as follows (see
Fig. 2). A large backlog of level of flow 1 occurs as a
consequence of two rare events: 1) flow 1 shows similar
“abnormal” behavior as is the typical cause of overflow when
served in isolation, thus behaving as if its traffic intensity is
increased from to for a period of time ;
and 2) during that period, flow 2 is constantly backlogged,
demanding capacity , with remaining for flow 1. As we
will see later, the persistent backlog is most likely caused by
flow 2 generating a large burst or initiating a long on period
prior to that period.

These considerations lead to the following characterization of
the asymptotic behavior of :

(3)

The second term represents the probability that flow 2 is con-
tinuously backlogged during a period of time , re-
ceiving a service rate starting from some time on, and
having received a service rate prior to time . Here
is a random variable whose distribution is the limit distribution
of for , with

representing the drain time in a queue with service ratefed
by flow 2 with initial workload . The service rate
reflects the fact that flow 1 has shown normal behavior prior to
time .

Thus, the workload distribution is asymptotically equivalent
to that in an isolated system, multiplied with a certain pre-factor.
The isolated system consists of flow 1 served in isolation at con-
stant rate . The pre-factor represents the probability that flow
2 is backlogged long enough for flow 1 to reach overflow. The
combination of light-tailed and heavy-tailed large deviations is
similar to that in thereduced-peak equivalenceresult derived
in [10] as well as that for an M/G/2 queue with heterogeneous
servers studied in [11].

Note that the general decompositional form of (3) holds irre-
spective of the detailed traffic characteristics of the two flows.
(In fact, the above intuitive arguments suggest that (3) may be
true under somewhat milder assumptions than those made in
Sections II-A and B. This will be discussed in greater detail in

Remark 6.1.) However, the specific form of the two individual
terms in (3)doesdepend on the detailed properties of the traffic
processes. In particular, we need to distinguish whether flow 2
generates instantaneous or fluid input. In the latter case, it also
depends on whether the peak rateexceeds or not.

C. Main Results

We now state the main theorem of the paper.
Theorem 3.1:Defining

Case I (instantaneous input):

(4)

Case II-A (fluid input with ):

(5)

Case II-B (fluid input with ):

(6)
Noting that , we can observe that in
the limiting regime cases II-A and II-B coincide.
Also, case I can be seen as the limiting case of II-B if we use

and let so that . In [7], a qualita-
tively similar result as in case I is derived for a system with two
coupled queues, one having heavy-tailed input, the other one ex-
hibiting light-tailed properties.

To illustrate Theorem 3.1, we give an example. Assume
flow 1 to behave according to an on–off process with expo-
nentially distributed on and off periods with means and

, respectively. When the flow is in the on state, it generates
traffic at rate . We assume flow 2 to generate instantaneous
input with regularly varying burst sizes of index , i.e.,

, with some slowly varying
function. First, we determine the deviant traffic intensity
using [25]

Using [14], we obtain for flow 1

For flow 2, from (4)

This provides all the ingredients for as required in
Theorem 3.1.

The next sections are devoted to the formal proof of The-
orem 3.1. We start in Section IV by deriving lower and upper
bounds for the workload distribution of flow 1. We then pro-
ceed in Section V to prove some auxiliary results for flow 1
in isolation. Although the bounds derived in Section IV seem
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Fig. 3. Intuitive idea lower bound.

quite crude by themselves, we show in Section VI that they
asymptotically coincide, yielding the exact asymptotic behavior
of .

In order to determine the drain time distribution of flow 2 as
specified in Theorem 3.1, we first establish in Section VII some
preliminary results for flow 2 in isolation. Note that the specific
form of the drain time distribution depends on whether flow 2
generates instantaneous or fluid input. In the latter case, we also
need to distinguish whether the peak rateexceeds or
not. We calculate the drain time distribution for the case of an
instantaneous input process in Section VIII. In view of space
constraints, we omit the corresponding analysis for fluid input
processes (see [9] for details).

IV. BOUNDS

In this section, we derive lower and upper bounds for the
workload distribution of flow 1. Refer to [9] for detailed proofs
of the lemmas in this section.

A. Lower Bound

We start with a lower bound for the workload distribution of
flow 1. The main idea (see Fig. 3) is that the following scenario
is sufficient for the event to occur (in fact, it is the
only plausible one, as we will see later). Flow 1 starts to build up
at some time and, hence, is constantly backlogged throughout
the time interval . Flow 2 is also continuously backlogged
during . Thus, during that time period, flows 1 and 2 both
receive service at rates and , respectively. Flow 2 already
becomes backlogged at time and receives service ap-
proximately at rate during , while flow 1 then
shows roughly average behavior.

Lemma 4.1:Suppose and exist such that

Then .
Proof: Using (1), GPS implies that

Combining this in (1) with , which
holds by definition for all , gives

Using together with (1) implies

Substituting, we find that is bounded from below by

for all .
The next step is to translate the above sample-path re-

sult into a probabilistic lower bound. We first introduce
some additional notation. For any and , define

. Note that, for ,

as defined earlier. For any, , and , define

representing the drain time in a queue of capacityfed by
flow 2 with initial workload .
Define, for

and note that as defined earlier. Also, define

(note that the latter quantity does not depend on the value of)
and . Denote

The following corollary gives the probabilistic lower bound.
The proof uses the sample-path relation as given in Lemma 4.1
and can be found in Appendix A.

Corollary 4.1: For any and

B. Upper Bound

We proceed with the upper bound. The idea is that the lower-
bound scenario described above is basically also necessary for
the event to occur.

Lemma 4.2:Suppose . Then for all there exist
such that

(7)

and at least one of the three following events occurs:

(8)

or

(9)
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or

(10)

Proof: Because of the GPS discipline, (7) is implied by
, i.e.,

Hence, exists such that . Define
. Using

this definition, it can be shown that flow 1 must be continuously
backlogged during . We now show by contradiction that

implies either (9) or

(11)

Suppose

(12)

and

(13)

hold. Since flow 1 is continuously backlogged during

and . Because of GPS

Hence, using (12) and (13) gives

which is in contradiction with . Finally, we show that
(11) implies (8) or (10). By definition

Hence

In the next corollary, the above sample-path relation is translated
into a probabilistic upper bound. Denote

Corollary 4.2: For any

The proof can be found in Appendix A.

V. PRELIMINARY RESULTSLIGHT-TAILED FLOW

In this section, we prove some auxiliary results for flow 1
in isolation. The results will be crucial in obtaining the asymp-
totic behavior of in the GPS model as given in The-
orem 3.1.

The following result is proven in [10], for a more general class
of input processes than just Markov fluid sources.

Lemma 5.1:For any

(14)

where .
Lemma 5.2:For any , , ,

Proof: Recall that flow 1 is a Markov fluid source. We
condition on the state of the underlying Markov chain at time

. Let be the event that the state at timeis , and
, .

Then, the probability of interest equals

The stated then follows by observing that

for all , since .
Lemma 5.3:For any , , , ,

Proof: Again, condition on the state of the underlying
Markov chain at time . Under this condition, the event

does not provide any extra informa-
tion. The fact that there exist constants, (independent of )
such that [25, sec. 4]

proves the stated.
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Lemma 5.4:For any , ,

Proof: The proof follows immediately from the fact that
decays exponentially at rate, where is

the solution of [22].
Lemma 5.5:For any , ,

Proof: The proof consists of three steps. First, we give a
sufficient condition for the lemma to hold, explicitly using the
fact that the Markov fluid source has a bounded peak rate.
Then, we estimate the decay rate of the event that a queue of
capacity fed by a Markov fluid source reaches overflow at
time . Finally, we identify the most likely epoch of overflow
and show that this implies the required property.

1) Obviously

with . From

and , we find that

(15)

with . Notice that we can indeed
exclude all smaller than from the optimization, because in
that range no overflow is possible. Clearly, we have proven the
stated if we show that the latter decay rate is strictly smaller than

for all .

2) For large enough, and allbetween and , due
to Chebychev’s inequality, and Property 2.1

Now, replace in (15) by , then
the supremum is over . The infimum over is
calculated by differentiation. We get the first-order condition

It is easily verified that the right-hand side of the previous equa-
tion equals for large and small. Call the
solution . Recall that solves , and that

(see Property 2.1). Using

we immediately obtain , where
, due to the convexity of . Also

and

3) Recall that we have to perform the optimization over
. The supremum over is clearly attained at .

Now the stated follows from the fact that decays
at rate , as explained in step 1).

VI. A SYMPTOTIC ANALYSIS

We now use the results from the previous section to show that
the lower and upper bounds for of Section IV asymp-
totically coincide, resulting in the decompositional form of (3).
For the proof, we need to make certain assumptions on the be-
havior of the drain time distribution .
Later, we will determine the specific form of the drain time dis-
tribution, and find that flow 2 indeed satisfies these assumptions.
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For notational convenience, we frequently switch to a variable
, which should be thought of as playing the role of .
Lemma 6.1: If flow 2 satisfies Assumptions 6.1–6.3 listed

below with , then

Assumption 6.1:For any , , , either

(a)

with , or

(b)

with .
Assumption 6.2:For any , , ,

with .
Assumption 6.3:For some ,

Proof of Lemma 6.1:The proof consists of a lower bound
and an upper bound which asymptotically coincide. We start
with the lower bound. We distinguish between two cases, As-
sumptions 6.1(a) and (b).

(a) Using Corollary 4.1 with , ,
Lemmas 5.1 and 5.2

Letting , , completes the proof.
(b) Using Corollary 4.1 with , , and Lemma 5.1,

we obtain, observing that

Then let .
We now turn to the upper bound. Using Corollary 4.2 with

, , Lemmas 5.3–5.5, and As-
sumptions 6.2 and 6.3, for some

Letting , , completes the proof.
In order to complete the proof of Theorem 3.1, it remains

to be shown that flow 2 satisfies Assumptions 6.1–6.3, with

as in (4)–(6). This is done in the
following two sections. In view of space limitations, we focus
on the case of instantaneous input processes. Refer to [9] for the
corresponding analysis for fluid processes.

Remark 6.1:As the proof shows, Lemma 6.1 and, thus, The-
orem 3.1 remain true as long as flow 2 satisfies Assumptions
6.1–6.3 and Lemmas 5.1–5.5 hold for flow 1. Both seem to be
the case under somewhat milder assumptions than made in Sec-
tions II-A and B.

In particular, for the light-tailed flow, the results in [16] sug-
gest that Lemmas 5.1–5.5 hold for a more general class of arrival
processes than just Markov fluid. Upon inspection of the proofs
in the previous section, we see that two properties were explic-
itly exploited. In the first place, it was repeatedly used that the
source has a bounded peak rate. Second, it is required that the
dependence between and is rather mild. This
leads us to believe that the lemmas still hold if the exponential
sojourn times of the Markov fluid source are replaced by other
light-tailed random variables. Probably, an essential prerequi-
site is that the light-tailed arrival process allows application of
the Gärtner–Ellis large-deviations theorem. In particular, this re-
quires that the log moment generating function of the amount of
traffic generated in an interval of lengthgrows at most linearly

for some positive . This rules out input processes such as frac-
tional Brownian motion (with Hurst parameter ),
or M/G/ -type inputs with heavy-tailed job sizes.

For the heavy-tailed flow, the results may be extended to
semi-Markov fluid input or mixtures of fluid input and instan-
taneous input. It may also be possible to extend the results to a
larger class of subexponential distributions, although that would
require elaborate refinements in the proofs. In a somewhat re-
lated context, [8] and [19] provide a sharp demarcation of the
distributional conditions for a so-called reduced-load equiva-
lence to hold. We expect that in general there is a complicated
tradeoff between the assumptions on the light-tailed flow and
the conditions imposed on the heavy-tailed flow.

VII. PRELIMINARY RESULTSHEAVY-TAILED FLOW

To determine the behavior of as
, we will reduce the space of all relevant sample paths to

a single most likely scenario, which occurs with overwhelming
probability. In this section, we establish some preliminary re-
sults which we will use to neglect the contribution of all non-
dominant scenarios.

Large-deviations arguments for heavy-tailed distributions
suggest that a persistent backlog as associated with the event

, for large , is most likely due to
just a single large burst. To formalize this idea, we first
introduce some additional notation. A burst is called large
if the size exceeds , with some small constant,
independent of . Denote by the number of large
bursts of flow 2 arriving in the time interval . Define

as the total number of
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bursts of flow 2 arriving in the time interval [0,]. An upper
bound for this process is given by

with i.i.d. random variables representing interarrival times
of flow 2.

We now state a crucial lemma which will allow us to limit
the attention to large bursts and replace all remaining traffic ac-
tivity by its average rate. The lemma is a minor modification of
Lemma 3 in [31].

Lemma 7.1:Let be a random walk
with i.i.d. step sizes such that and for
some . Then, for any , there exists a and a
function such that for all ,

for all and .
Note that if is the difference of two nonnegative inde-

pendent random variables and , then the lemma remains
valid if the ’s are replaced by the ’s.

We now use the above lemma to show that the workload of
flow 2 cannot significantly deviate from the normal drift over
intervals of the order when there are no large bursts.

Lemma 7.2:For any , , there exists a
such that for all ,

as .
Proof: The event means that

which in particular implies that

or equivalently, , so that

Now, let be a random walk with step sizes
, with and i.i.d. random

variables representing the interarrival times and burst sizes of
flow 2, respectively. Note that represents the net increase in
the workload in a queue with service rate between two
consecutive bursts, and that . Because of the sawtooth
nature of the process , we have

Thus

The second term decays exponentially fast as . Ac-
cording to Lemma 7.1, there exists a and a function

, , such that for all , each of
the probabilities in the first term is upper bounded by . The
statement then follows.

We now prove that it is relatively unlikely for flow 2 to gen-
erate two large bursts in an interval of order.

Lemma 7.3:For any , ,

as .
Proof: By definition

Conditioning on , this is upper bounded by

Finally, observe that is quadratic in for
.

The following lemma shows that it is not likely for flow 2 to
have a workload of at least orderat time 0 and to generate at
the same time at least one large burst in an interval of order.

Lemma 7.4:For any , , ,

Proof: Because of independence, the probability equals
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By conditioning upon , we have

As before, the first term is linear infor . The statement
then follows from the fact that in combination
with Theorem 2.1.

VIII. B ACKLOG PERIOD HEAVY-TAILED FLOW

In this section, we consider the case where flow 2 generates
instantaneous traffic bursts of regularly varying size. The next
theorem shows that flow 2 then satisfies Assumptions 6.1–6.3
and that (4) holds.

Theorem 8.1:For any and , ,

(16)

(17)

and

(18)

Before giving the formal proof of the above theorem, we first
provide an intuitive argument. Consider a queue with service
rate fed by the arrival process of flow 2. In order for the event

to occur, the workload must remain positive throughout
the interval [0, ], given that the initial workload is . Note
that the normal drift in the workload is . Thus,
there is a “deficit” , which must be compensated
for by the initial workload plus possibly flow 2 showing
above-average activity during the interval [0,].

We claim that the most likely way for the gap to be filled is by
a large initial workload only, i.e., . This in
turn is most probably due to an extremely large burst of flow 2
at some point before time 0, which is consistent with the usual
situation for heavy-tailed distributions that a large deviation is
caused by just a single exceptional event. Using Theorem 2.1,
we see that the probability of this event is indeed exactly the
right-hand side of (18).

Note that it is unlikely for the gap to be filled by flow 2 pro-
ducing extra traffic during the interval [0,], because this would
require a large burst arriving almost immediately after time 0.
The probability of this event is negligibly small compared to
that of . A combination of both is even less
likely, since this would amount to two rare events occurring si-
multaneously.

The above arguments will be formalized in the proof below.
We first prove that the event indeed implies
that for large , thus obtaining a lower bound for the
probability of the latter event. Next, we show that for largethe
event is also necessary for to occur,
by proving that the probability of all other possible scenarios is
negligibly small.

Proof of Theorem 8.1:We start with the proof of (16). We
first prove that for any , , , , the event

(19)

is implied by the events

where is the last time before 0 that a burst arrived, and

The second event means that , for
all . Thus, for all ,

where the first equality is obtained using (2), and the first in-
equality using the fact that . Hence

which gives (19).
Using independence of and

Observe that implies , thus

where the last term is due to Theorem 2.1. Also, for all, ,
, as ,

since . Thus, for all , , , ,

Letting , , and using , (16) follows.



BORSTet al.: GENERALIZED PROCESSOR SHARING WITH LIGHT-TAILED AND HEAVY-TAILED INPUT 831

We now turn to the proof of (17). By partitioning, we obtain
for any , , , , , ,

which is obviously upper bounded by

(20)

(21)

(22)

(23)

(24)

Take , with . We
first concentrate on the event , which is
equivalent to .
Observe that the following two inequalities hold:

(25)

and

(26)

Consider term (20). Using Theorem 2.1, (20) equals

Next, consider term (21). Using (26)

so that (21) ,

Finally, consider term (22). Using (25),
, so that (22) is less than or equal to

Now, taking in Lemma 7.2 for (21), taking
in Lemma 7.2 for (22), using Lemma 7.4 for (23), and using
Lemma 7.3 for (24), we obtain

Letting , , and using , (17) follows.



832 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 5, OCTOBER 2003

Finally, note that (18) follows from (16) and (17) by letting
, , and using again .

IX. CONCLUSION

We analyzed a GPS queue with two flows, one having
light-tailed characteristics, and the other one exhibiting
heavy-tailed properties. We showed that the workload dis-
tribution of the light-tailed flow is asymptotically equivalent
to that when served in isolation at its minimum guaranteed
rate, multiplied with a certain pre-factor. The pre-factor may
be interpreted as the probability that the heavy-tailed flow
is backlogged long enough for the light-tailed flow to reach
overflow.

In this paper, we have focused on a scenario with two flows.
Observe, however, that the light-tailed flow may be thought
of as an aggregate flow, given that the class of Markov-modu-
lated fluid input is closed under superposition of independent
processes. In the case of instantaneous input, the heavy-tailed
flow also may actually represent an aggregate flow, since the
superposition of independent Poisson streams with regularly
varying bursts produces again a Poisson stream with regularly
varying bursts. Unfortunately, the class of on–off sources is
clearly not closed under superposition. In fact, the superposition
exhibits a fundamentally more complex structure than a single
on–off source, which drastically complicates the analysis of the
queueing behavior (see [35]).

Despite the above and earlier observations, it would still be
interesting to extend the analysis to general scenarios with sev-
eral light-tailed flows, say, and heavy-tailed
flows. In the case , , we expect that the workload
distribution of the light-tailed flow is equivalent to that when
served in isolation at its minimum guaranteed rate, multiplied
with a certain pre-factor, exactly as before. In the case ,

, we conjecture that the workload distribution of the
light-tailed flows is equivalent to that in an isolated GPS queue
consisting of the light-tailed flows only, multiplied again with
a pre-factor. Not surprisingly, the two above-described com-
plicating circumstances conspire in scenarios with ,

.

APPENDIX A
PROOFS

Proof of Corollary 4.1: Using Lemma 4.1, the fact that
and have stationary increments and the indepen-

dence of and , for all , , and

Taking completes the proof.
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Proof of Corollary 4.2: Using Lemma 4.2, the indepen-
dence of and , and the fact that and
have stationary increments, for all and (the numbers in-
dicate the events in the corresponding equations in Lemma 4.2)

Taking completes the proof.

REFERENCES

[1] V. Anantharam, “How large delays build up in a GI/G/1 queue,”
Queueing Syst., vol. 5, pp. 345–368, 1988.

[2] A. Arvidsson and P. Karlsson, “On traffic models for TCP/IP,” inTele-
traffic Engineering in a Competitive World, Proc. ITC-16, P. Key and D.
Smith, Eds. Amsterdam, The Netherlands: North-Holland, 1999, pp.
457–466.

[3] J. Beran, R. Sherman, M. S. Taqqu, and W. Willinger, “Long-range de-
pendence in variable-bit-rate video traffic,”IEEE Trans. Commun., vol.
43, pp. 1566–1579, Feb./Mar./Apr. 1995.

[4] N. H. Bingham, C. M. Goldie, and J. L. Teugels,Regular Varia-
tion. Cambridge, U.K.: Cambridge Univ. Press, 1987.

[5] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
architecture for differentiated services,” IETF, RFC 2475, 1998.

[6] S. C. Borst, O. J. Boxma, and P. R. Jelenkovic´, “Reduced-load equiv-
alence and induced burstiness in GPS queues with long-tailed traffic
flows,” Queueing Syst., vol. 43, pp. 273–306, 2003.

[7] S. C. Borst, O. J. Boxma, and M. J. G. van Uitert, “The asymptotic
workload behavior of two coupled queues,”Queueing Syst., vol. 43, pp.
81–102, 2003.

[8] S. C. Borst, K. De¸bicki, and A. P. Zwart, “Subexponential asymptotics
of hybrid fluid and ruin models,” Eindhoven Univ. Technol., Eindhoven,
The Netherlands, Tech. Rep., 2003.

[9] S. C. Borst, M. Mandjes, and M. J. G. van Uitert. (2001) Generalized
processor sharing queues with heterogeneous traffic classes. Ctr.
for Mathematics and Computer Science (CWI), Amsterdam, The
Netherlands. [Online]. Available: http://www.cwi.nl/static/publica-
tions/reports/abs/PNA-R0106.html

[10] S. C. Borst and A. P. Zwart, “A reduced-peak equivalence for queues
with a mixture of light-tailed and heavy-tailed input flows,”Adv. Appl.
Prob., vol. 35, pp. 793–805, 2003.



834 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 5, OCTOBER 2003

[11] O. J. Boxma, Q. Deng, and A. P. Zwart, “Waiting-time asymptotics for
the M/G/2 queue with heterogeneous servers,”Queueing Syst., vol. 40,
pp. 5–31, 2002.

[12] J. Cao and K. Ramanan, “A Poisson limit for buffer overflow probabil-
ities,” in Proc. IEEE INFOCOM, New York, 2002, pp. 994–1003.

[13] M. Crovella and A. Bestavros, “Self-similarity in World Wide Web
traffic: Evidence and possible causes,” inProc. ACM Sigmetrics, 1996,
pp. 160–169.

[14] A. I. Elwalid and D. Mitra, “Analysis and design of rate-based conges-
tion control of high speed networks, I: Stochastic fluid models, access
regulation,”Queueing Syst., vol. 9, pp. 29–64, 1991.

[15] , “Effective bandwidth of general Markovian traffic sources and ad-
mission control of high speed networks,”IEEE/ACM Trans. Networking,
vol. 1, pp. 329–343, June 1993.

[16] P. W. Glynn and W. Whitt, “Logarithmic asymptotics for steady-state
tail probabilities in a single-server queue,”J. Appl. Prob., vol. 31A, pp.
131–156, 1994.

[17] M. Grossglauser and J.-C. Bolot, “On the relevance of long-range de-
pendence in network traffic,”IEEE/ACM Trans. Networking, vol. 7, pp.
629–640, Oct. 1999.

[18] P. R. Jelenkovic´ and A. A. Lazar, “Asymptotic results for multiplexing
subexponential on-off processes,”Adv. Appl. Prob., vol. 31, pp.
394–421, 1999.
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