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Probabilistic Fault Localization in Communication
Systems Using Belief Networks

Małgorzata Steinder, Member, IEEE, and Adarshpal S. Sethi, Member, IEEE

Abstract—We apply Bayesian reasoning techniques to perform
fault localization in complex communication systems while using
dynamic, ambiguous, uncertain, or incorrect information about
the system structure and state. We introduce adaptations of
two Bayesian reasoning techniques for polytrees, iterative belief
updating, and iterative most probable explanation. We show
that these approximate schemes can be applied to belief net-
works of arbitrary shape and overcome the inherent exponential
complexity associated with exact Bayesian reasoning. We show
through simulation that our approximate schemes are almost
optimally accurate, can identify multiple simultaneous faults in an
event driven manner, and incorporate both positive and negative
information into the reasoning process. We show that fault local-
ization through iterative belief updating is resilient to noise in the
observed symptoms and prove that Bayesian reasoning can now
be used in practice to provide effective fault localization.

Index Terms—Fault localization, probabilistic inference, root
cause diagnosis.

I. INTRODUCTION

TO IMPROVE the reliability and performance of a commu-
nication system it is important to quickly and accurately

detect and diagnose its faults. Fault localization (also problem
determination or root cause diagnosis) [24], [28], [54] isolates
the most probable set of faults based on their external manifes-
tations called symptoms or alarms. Fault localization techniques
available today concentrate on detecting and isolating faults re-
lated to network connectivity [15], [28], [51], [54]. The diag-
nosis focuses on lower layers of the protocol stack (typically the
physical and data-link layers) [36], [54], and its major goal is
to isolate faults related to the availability of network resources,
such as a broken cable, an inactive interface, etc. These tech-
niques are usually deterministic, i.e., they assume that the de-
pendencies among the system components are known with cer-
tainty [24], [54] or that the information about the current system
state is always accurate and complete [19], [28]. Most fault
localization techniques reported in the literature are window
based [28], [29], [51], i.e., they analyze groups of symptoms
that are collected over a period of time, called time window.
Such techniques are inadequate for use in the management of
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modern enterprise services, which impose new challenges on
the fault localization task. In addition to resource availability
problems in lower layers of the protocol stack, high-level and
performance-related problems have to be diagnosed. The root
causes of higher layer problems may be located in a different
protocol layer or on a different network host, which is frequently
not visible to the higher layers. Moreover, information about the
system’s internal structure may be incomplete or out of date,
and it changes dynamically. It is also likely for the observation
of the system state to be ambiguous or inaccurate. In complex,
multilayer communication systems it is difficult to determine
symptom latencies in order to determine the length of an ap-
propriate correlation time window and it may be necessary to
intertwine fault localization with testing. Thus, window-based
fault localization is no longer sufficient.

Considering these difficulties, we argue that in complex mul-
tilayer communication systems, fault localization techniques
should aim at the following objectives. They should:

1) be able to isolate multiple simultaneous faults even if their
symptoms overlap.

2) be accurate and efficient.
3) be resilient to lost or spurious alarms.
4) be event-driven rather than window based. Event-driven

fault localization techniques maintain the system state
that is updated after every symptom observation. They
allow a symptom to be analyzed independently of other
symptoms, which may happen as soon as the symptom is
received by the fault localization process. Therefore, they
utilize time more efficiently. In addition, they allow fault
localization to be intertwined with testing procedures,
which, with event-driven techniques, may be designed
dynamically based on the analysis of the previously
observed symptoms.

5) facilitate other fault management tasks such as on-de-
mand testing and impact analysis.

A. Contributions of This Paper

This paper investigates an application of Bayesian reasoning
using belief networks [37] to nondeterministic fault diagnosis
in complex communication systems. The paper makes the fol-
lowing contributions to the field of fault management.

• It advances the state of the art in fault management by in-
troducing the requirements of: 1) applicability to various
fault-localization problems, 2) event-driven diagnosis, and
3) facilitating fault-management tasks other than fault lo-
calization. The paper also emphasizes and justifies the im-
portance of the technique’s ability: 1) to isolate multiple
simultaneous faults, 2) to deal with positive, lost, and spu-
rious symptoms, and 3) to be accurate even if the system
model is not.
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• It applies two Bayesian inference algorithms that calculate
belief-updating and most-probable-explanation queries in
singly connected belief networks [37] to perform fault
localization in belief networks with loops. It proposes a
heuristic that applies the belief-updating algorithm [37] to
perform event-driven diagnosis in nonpolytree belief net-
works representing noisy-OR probability distribution and,
based on the results of belief updating, calculates the ex-
planation hypothesis. To apply the most-probable-expla-
nation algorithm [37] the paper uses an approximation that
reduces the algorithm’s complexity to polynomial.

• It extends the system model to incorporate uncertainty in-
volved in observations of system state resulting from lost
and spurious symptoms. It shows that the proposed algo-
rithms may be effectively used to perform fault localiza-
tion in the presence of observation noise.

• It evaluates and compares the proposed algorithms using
the problem of end-to-end service failure diagnosis as a
case study. It also analyzes the impact of including lost
and spurious symptoms into the analysis.

• It proposes an application of other canonical belief net-
work models to solve fault management problems for
which the noisy-OR model is inadequate.

B. Paper Organization

In Section II, we define belief network concepts used in this
paper. We also motivate the application of belief networks to
modeling fault propagation patterns in communication systems.

In Section III, we discuss the application of known algo-
rithms for performing Bayesian reasoning in belief networks to
fault localization. They include the bucket elimination frame-
work [12] and two algorithms for calculating queries in singly
connected belief networks (polytrees): 1) belief updating and
2) most-probable explanation [37]. Then, we design and present
the approximate polynomial fault localization techniques which
utilize these algorithms.

Section IV extends the fault propagation model to incorporate
uncertainty involved in observations of system state resulting
from lost and spurious symptoms.

In Section V, the algorithms proposed in Section III are evalu-
ated through simulation using the problem of end-to-end service
failure diagnosis as a case study. We compare the performance
and accuracy of algorithms proposed in Section III and investi-
gate whether through increasing the system instrumentation and
taking observation noise into account the robustness of nonde-
terministic techniques may indeed be improved.

In Section VI, we discuss the examples of fault management
problems for which the noisy-OR model is inadequate and pro-
pose the application of other canonical belief network models.

Section VII compares the approach proposed in this paper
against the related work.

II. BELIEF NETWORK AS FAULT PROPAGATION MODEL

Most fault localization techniques [7], [17], [19], [27], [28],
[41], [54], including the technique introduced in this paper, rely
on a fault propagation model, which represents information
about the impact of system entity failures on other system en-
tities. Fault propagation models expose information about the
system structure that is useful to fault localization while hiding
information that is irrelevant to this process. By providing this

abstract view of the system, fault propagation models facili-
tate the development of fault localization techniques that are
applicable to a wide range of fault localization problems, i.e.,
related to failures occurring in various protocol layers, both in
hardware and software, and on various levels of abstraction.

Fault management systems model fault propagation by
representing either causal relationships among events [7],
[19], [54] or dependencies among (both abstract and physical)
communication system entities [17], [27], [28], [41]. A de-
pendency-graph representation is more natural as it encodes
perceivable relationships among system components. This
representation is also easier to obtain as the relationships
among system entities are frequently explicitly decided at the
system design stage. However, the representation of causal
relationships among events presents fault localization task
with more precise information on fault propagation patterns.
It is also easier to use because it allows the fault localization
technique to deal with a simple notion of an event rather than
with possibly multitype and multistate system entities.

The fault-propagation modeling approach adopted in our re-
search uses a layered nondeterministic dependency graph as a
system model, which is mapped into a probabilistic causality
graph [49], [50]. The dependency graph is a layered template
that associates multiple failure modes with every physical or ab-
stract system component which is conceptualized as a function
or a service. The template may be refined by developing micro-
models of functions and services to provide a higher degree of
detail. Our previous work on this subject discusses the depen-
dency-graph model in detail and shows a general technique of
mapping this model into a causality graph [49], [50].

It should be pointed out that obtaining dependency-graph
representations of complex multilayer systems is a challenging
problem as many dependencies are hidden or dynamic. From
the research performed so far, it is fairly obvious that the precise
methodology of obtaining dependency information depends
on the type of system and its various characteristics. Thus, the
discussion of techniques that could be used to build a fault
propagation model is beyond the scope of this paper. However,
there are a number of publications that focus on this issue
while investigating its various aspects [4], [26], [35], [39]. In
Section V-A, we cite some of the techniques that can be used
to build a model for end-to-end service failure diagnosis, which
is the subject of our experimental study.

Building upon our previous work [49], which maps a depen-
dency graph into a causality graph, this paper uses a causality
graph as a fault propagation model. A causality graph may be
easily interpreted as a belief network with binary-valued nodes.
Belief networks are attractive to use as a fault propagation model
because they provide a powerful yet intuitive representation of
causality—a concept at the core of fault propagation. As a fault
propagation model they are general enough to represent various
types of relationships that may exist between both abstract and
physical components of a communication system and provide
the right degree of abstraction by exposing only the information
that is critical to the fault localization process while hiding the
specifics of the managed resources. In addition, they are well
understood as a formalism and are accompanied by extensively
investigated algorithmic techniques.

A belief network [12], [37] is a directed acyclic graph
(DAG) in which each node represents a random variable
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over a multivalued domain. We will use terms “node” and
“random variable” interchangeably and denote them by .
The set of all nodes is denoted by . The domain of random
variable will be represented by symbol . The set of
directed edges denotes an existence of causal relationships
between the variables and the strengths of these influences
are specified by conditional probabilities. Formally, a belief
network is a pair , where is a DAG, ,
and is the conditional probability matrix associated with
a random variable . Let be
the set of all parents of . is a -dimen-
sional matrix of size , where

.
We will denote by an assignment
of values to variables in set where each . We will use

to denote the value of variable in assignment .
Given a subset of random variables ,
we will denote by an
assignment of values to variables in set that is consistent
with assignment . An evidence set is an assignment ,
where is a set of variables whose values are known,
and for each , is its known value.

Belief networks are used to make four basic queries given
evidence set : belief assessment, most probable explanation,
maximum a posteriori hypothesis, and maximum expected
utility [12]. The first two queries are of particular interest in the
presented research. The belief assessment task is to compute

for one or more variables .
The most probable explanation (MPE) task is to find an as-
signment that best explains the observed evidence , i.e.,

[12]. It is
known that these tasks are NP-hard in general belief networks
[8]. A belief updating algorithm, polynomial with respect to

, is available for polytrees, i.e., directed graphs without
undirected cycles [37]. However, in unconstrained polytrees,
the propagation algorithm still has an exponential bound with
respect to the number of a node’s neighbors.

Since exact inference in belief networks is NP-hard, approx-
imation techniques have been investigated [13], [37], [40]. To
the best of our knowledge, no approximation has been proposed
that works well for all types of networks. Moreover, some ap-
proximation schemes have been proven to be NP-hard [10].

In this paper, we focus on a class of belief networks rep-
resenting a simplified model of conditional probabilities
called noisy-OR gates [37]. The simplified model contains bi-
nary-valued random variables. It associates an inhibitory factor
with every cause of a single effect. The effect is absent only if
all inhibitors corresponding to the present causes are activated.
Thus, instead of conditional probability matrices associated
with belief network nodes, the noisy-OR belief network assigns
conditional probability values to the belief network edges. The
model assumes that all inhibitory mechanisms are independent
[20], [37]. This assumption of independence is ubiquitous in
probabilistic fault localization approaches reported in the litera-
ture [28], [29]. It indicates that all alternative causes of the same
effect are independent, which is consistent with system model
refinements discussed in [49]. These refinements help avoid
exponential time and memory otherwise needed to process and
store conditional probability matrices associated with random
variables in a belief network. Furthermore, belief assessment in

polytrees with the noisy-OR model has polynomial complexity,
which makes it attractive as an approximation scheme to solve
the fault localization problem.

This paper uses a belief network whose nodes are
-valued random variables. A variable represents a

failure of a particular system entity. An assignment of one or
zero indicates that the system entity experiences or does not
experience the represented failure, respectively. Several distinct
variables may be associated with the same entity to represent
its various failures [49]. The fact that a failure of one entity
may cause a failure of another entity is represented by a causal
edge between the corresponding belief network nodes, which
is weighted with the probability of the causal implication.

A symptom is defined as an observation that an entity experi-
ences a particular failure (negative symptom) or that it does not
experience this failure (positive symptom). We will denote by
the set of all possible symptoms. If is a belief network node
corresponding to a failure of a system entity, then the negative
symptom is interpreted as an instantiation of with value one,
and the positive symptom is interpreted as an instantiation of
with value zero. The set of all observed negative symptoms and
the set of all observed positive symptoms will be denoted by
and , respectively. The set of all observed symptoms, which
will be denoted by , becomes the evidence
set . Note that in general, , as some symptoms
may be unobservable. If a symptom is unobservable, e.g., as a
result of the current management system configuration, the lack
of a negative observation may not be interpreted as a positive
observation. The ratio will be called an observability
ratio (OR). The belief network in which represents the set
of all observable symptoms will be denoted by .

A fault is a failure of a system entity that may not be further
explained given the fault propagation model. It is represented
by the assignment of one to the corresponding belief network
node. The set of all possible faults is denoted by . The fault
localization problem is to find the set of faults that best
explains the set of observed symptoms , which may be solved
by computing the MPE query in belief network based
on the evidence set .

III. FAULT LOCALIZATION TECHNIQUES

In this section, we address the problem of finding the set of
root problems that best explains the set of observed symptoms
using a belief network as a fault propagation model. In general,
the problem is known to be NP-hard [8]; the exact calculation of
the best explanatory hypothesis requires a number of steps that
is exponential with respect to the number of graph nodes. One of
the most popular exact algorithms is bucket elimination [12]. We
use this algorithm as a reference algorithm against which algo-
rithms introduced in this paper are compared. In Sections III-B
and III-C, we present two algorithms derived from Pearl’s iter-
ative propagation in polytrees [37], which we adapt to solving
the fault localization problem in arbitrary belief networks. These
algorithms were first introduced in [50]. The first algorithm,
which is presented in Section III-B, utilizes iterative belief up-
dating to calculate the marginal posterior probability distribu-
tion given the observed evidence. From this probability distri-
bution, we derive an approximation of the most probable ex-
planation of the evidence. The second algorithm (Section III-C)
applies iterative calculation of the MPE query for polytrees [37]
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to arbitrary networks. Since the original algorithm [37] has ex-
ponential complexity with respect to the maximum node degree,
we introduce an approximation that allows the calculations to be
performed in polynomial time [49].

A. Bucket Elimination Algorithm

Bucket elimination proposed in [12, Algorithm 1] is one of
the most popular algorithmic frameworks for computing queries
in belief networks. The bucket elimination algorithm for com-
puting MPE is exact and always outputs a solution. We con-
sider it the optimal algorithm for computing the explanation of
the observed symptoms. The computational complexity of the
algorithm is bound by , where is the
width of the graph induced by ordering [12].

B. Iterative Belief Updating

Recall from Section II that in singly connected networks
(polytrees) representing the noisy-OR-gate model of conditional
probability distribution, Bayesian inference (belief updating)
may be computed in polynomial time using the algorithm
presented in [37]. Belief networks used as fault propagation
models typically are not polytrees because they contain undi-
rected loops [49].

Networks with loops violate certain independence assump-
tions based on which the local computation equations were
derived for polytrees. Nevertheless, successful applications
of the iterative algorithm have been reported. The most fa-
mous of them are turbo-codes [2] that offer near Shannon
limit-correcting coding and decoding. The turbo-codes de-
coding algorithm was shown to be an instance of iterative
belief propagation in polytrees applied to loopy networks [34].
Previous applications of a deterministic decoding schema to
deterministic fault localization [54] inspire the application of
probabilistic decoding to fault localization with nondetermin-
istic fault models.

Recall from Section II that the problem of fault localization
may be translated into the most probable explanation (MPE)
query in belief networks. The iterative algorithms for polytrees
proposed in [37] include the algorithm for calculating MPE.
Nevertheless, we start presenting iterative algorithms from the
description of belief updating, which is conceptually simpler.
We also present an adaptation of belief updating to estimating
the MPE.

1) Iterative Belief Propagation Concepts: Iterative belief
propagation utilizes a message passing schema in which the
belief network nodes exchange and messages (Fig. 1).
Message that node sends to its parent for every
valid ’s value denotes a posterior probability of the entire
body of evidence in the subgraph obtained by removing link

that contains , given that . Message
that node sends to its child for every valid value of ,

denotes a probability that given the entire body of
evidence in the subgraph containing created by removing
edge . In this section, we present a summary of the
iterative algorithm for polytrees. The complete description of
the iterative algorithm for polytrees along with some illustrative
examples may be found in [37].

Fig. 1. Message passing in Pearl’s belief propagation.

Based on the messages received from its parents and children,
node computes , , and as follows [37]:

(1)

if

if
(2)

(3)

In the above equations, for , is a nor-
malizing constant, and is any constant. In a noisy-OR polytree,
let us denote by the probability of activating the inhibitor
controlling link . The probability that occurs given

occurs is . The messages and
are computed using the following [37]:

(4)

(5)

In the initialization phase, for all observed nodes , is set
to one if is the observed value of . For other values of ,

is set to zero. For all unobserved nodes is set to one
for all values of . Parentless nodes have their set to the
prior probabilities. The belief propagation algorithm in poly-
trees starts from the evidence node and propagates the changed
belief along the graph edges by computing , , and

in every visited node. In loopy graphs, several iterations
are performed in which the entire graph is searched according
to some pre-defined ordering.

2) Application of Belief Propagation to Fault Localiza-
tion: For the purpose of event-driven fault localization this
paper adapts the iterative belief updating as follows. The
fault localization algorithm starts with a belief network all
of which have evidence nodes corresponding to observable
symptoms assigned to zero, and all other nodes are unassigned,
i.e., their . Then, the algorithm proceeds
in an event-driven manner, after every symptom observation
applying one iteration of belief updating traversing the graph
according to some order. For every symptom, we define a
different ordering that is equivalent to the breadth-first order
started from the node representing the observed symptom. The
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initialization phase considers all observable symptoms positive
and calculates fault probability distribution in the presence
of no negative observations. When a negative symptom is
observed, the propagation of evidence reverses the results of
the corresponding positive symptom analysis performed in the
initialization phase.

Results of negative symptom analysis may also be reversed
when the symptom is canceled or a corresponding positive
symptom is observed. The set of observable alarms may be
easily modified during the fault localization process by re-
defining values of nodes whose observability status has
changed.

It may be noticed that in the unobserved symptom nodes,
because their for any value of , re-
gardless of the values of other messages used in the expression.
Since symptom nodes have no children, there is no need to com-
pute messages. Because of these properties, calculations per-
formed in an unobserved symptom node do not change any of
the messages published by the node. As a result, an unobserved
symptom node acts as a barrier through which belief does not
propagate. Therefore, the fault localization algorithm does not
visit unobserved symptom nodes, nor does it explore subgraphs
accessible only through unobserved symptom nodes.

For a positive symptom node , and for any parent node of
, , observe that

Since is any constant, assignment
leads to the following:

if

if .

Since does not depend on the received values of func-
tions , node does not propagate evidence among its
parents. As a result, the iterative belief updating need not con-
tinue past a positive symptom node.

The iterative belief propagation described above allows us to
obtain the marginal posterior distribution resulting from the ob-
servation of the evidence (symptoms). We use this distribution
to estimate the set of faults that are the most probable causes
of the observed symptoms. For this purpose, we introduce the
following heuristic: 1) choose a fault node with the highest pos-
terior probability, 2) place the corresponding fault in the MPE
hypothesis, 3) mark the node as observed with value one, and
4) perform one iteration of belief propagation starting from the
chosen node. Steps 1)– 4) are repeated until: 1) the posterior dis-
tribution contains fault nodes whose probability is greater than
0.5 and 2) unexplained negative symptoms remain.

Observe that an inherent property of Algorithm 2 is the capa-
bility to isolate multiple simultaneous faults even if their symp-
toms overlap. Observe also that the algorithm does not neces-
sarily provide an explanation to all observed symptoms. When
none of the available alternative hypotheses is associated with
sufficient belief (i.e., 0.5), the risk of giving an incorrect an-
swer by proposing one of the hypotheses is high. We favor not
explaining some symptoms over proposing a hypothesis that is
likely to contain nonexistent faults. Formally, the fault localiza-
tion algorithm is defined as follows.

Algorithm 2: Fault localization using
iterative belief updating
Inference iteration starting from node Yi:
let o be the breadth-first order starting
from Yi

for all nodes X along ordering o do
if X is not an unobserved or positive
symptom node then
compute �X(vj) for all X’s parents , Vj,
and for all vj 2 f0; 1g

compute �U (x) for all X’s children, Ui,
and for all x 2 f0; 1g

Initialization phase:
for every symptom Si 2 SO do
mark Si as observed to have value of zero
run inference iteration starting from Si

Symptom analysis phase:
for every symptom Si 2 SN do
mark Si as observed to have value of one
run inference iteration starting from Si

compute bel(vi) for every node Vi, vi 2 f0; 1g

Fault selection phase:
while 9 fault node Vj for which bel(1) > 0:5 and
SN 6= ; do
take Vj with the greatest bel(1) and
place it in the set of detected faults FD
mark Vj as observed to have value of one
remove all symptoms explained by Vj from SN
run inference iteration starting from Vj

compute bel(vi) for every node Vi, vi 2 f0; 1g:

Note that, contrary to other approaches to fault localization
[28], [29] which delay symptom analysis until all symptoms are
collected, Algorithm 2 does not require all symptoms to be ob-
served before their analysis may be started. On the contrary, it
analyzes a symptom independently of other symptom observa-
tions. The knowledge resulting from analyzing a symptom is
stored for the next iterations in the belief network nodes in the
form of and messages, allowing Algorithm 2 to utilize time
more efficiently. Moreover, for every fault the algorithm con-
tinuously provides the probability of its occurrence given the
symptoms observed so far.

Local computations in nodes require operations, where
is the maximum node degree. A single iteration visits every

node at most once; therefore, its computational complexity is
. During the entire computation, at most

iterations are performed, where usually .
Thus, the complexity of the entire algorithm is .

C. Iterative Most Probable Explanation

In this section, we present an application of the iterative MPE
algorithm for polytrees [37] to networks with undirected loops.
The MPE algorithm in every iteration produces the most prob-
able value assignment to the belief network nodes. Thus, in
every iteration the algorithm produces a complete explanation
of the observed symptoms and no selection phase is necessary.

1) Iterative MPE Concepts: Similar to belief updating, the
MPE computation algorithm proceeds from the evidence nodes
by passing messages and along the belief network edges.
Message sent by node to its parent represents the
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conditional probability of the most probable prognosis for the
values of nodes located in the subgraph containing resulting
from the removal of the link , given the proposition

. Message sent by node to its child rep-
resents the probability of the most probable values of nodes in
the subgraph resulting from the removal of link , which
include the proposition . Belief metric stands for
the probability of the most probable explanation of evidence
that is consistent with the proposition . Messages
and and belief metric are computed using the
following equations [37]:

(6)

(7)

(8)

Using notation from Section III-B, in noisy-OR belief networks,
the maximization may be expressed as in (9), shown at the
bottom of the page.

if

if

(9)

2) Application of Iterative MPE to Fault Localization
in Belief Networks With Loops: The calculation of ,

, and is the primary difficulty in using iterative
MPE in practical applications. While for expression

may be simplified to
, the exact compu-

tation of the maximization for requires enumerating all
possible combinations of value assignments to the parents of

and choosing a combination that maximizes the value of the
expression. Clearly, listing all combinations is computationally
infeasible. In this paper, we use an approximation that allows
us to compute the maximization expression in polynomial time.

The algorithm for computing MPE calculates and for
every network node traversing the graph starting from the ob-
served symptom in a breadth-first order. A single traversal is
repeated for every observed symptom. At the end, values
are computed for all network nodes. The MPE contains all fault
nodes with .

Algorithm 3: Fault localization through
iterative MPE
Inference iteration starting from node Yi:

let o be the breadth-first ordering starting
from Yi

for all nodes X along ordering o do
compute ��X(vj) for all X’s parents, Vj,
and for all vj 2 f0; 1g

compute ��U (x) for all X’s children, Ui,
and for all x 2 f0; 1g

Initialization phase:
for every symptom Si 2 SO do
mark Si as observed to have value of zero
run inference iteration starting from Si

Symptom analysis phase:
for every symptom Si 2 SN do
mark Si as observed to have value of one
run inference iteration starting from Si

compute bel�(vi) for every node Vi, vi 2 f0; 1g

Fault selection phase:
choose all fault nodes with bel�(X = 1) >

bel�(X = 0)

and place them in FD:

Local computations in nodes require operations,
where is the maximum node degree. There are iterations
visiting every belief network node at most once. This leads
to the computational complexity of the entire algorithm of

.

IV. DEALING WITH NOISY OBSERVATIONS

In real-life communication systems, an observation of net-
work state is frequently disturbed by the presence of lost and/or
spurious symptoms (usually referred to as observation noise).

In a management system, alarms may be lost as a result
of using an unreliable communication mechanism to transfer
alarms from their origin to the management node. For example,
since the SNMP protocol [6] exploits an unreliable transport
layer protocol (UDP), SNMP traps [6] issued by an SNMP
agent are not guaranteed to be delivered to the destination. Too
liberal threshold values may also prevent an existing problem
from being reported, thereby causing alarm loss. When the fault
localization algorithm relies on positive information to create
the most likely fault hypothesis, alarm loss, if ignored by the
algorithm, could lead to an incorrect solution.

Another frequent disturbance in an observation of network
state is due to spurious alarms, which are caused by intermittent
network faults or by overly restrictive threshold values. The
method proposed in this section assumes that spurious symp-
toms occur independently of one another. This assumption is
justified since interdependencies among spurious symptoms,
even if they exist, usually are very difficult to learn.

We address the problem of lost and spurious alarms by
augmenting the belief network model presented in Sec-
tion II using the technique we introduced in [48]. Let

, where , be the set
of all belief network nodes which correspond to symptoms

. We introduce a set of belief network nodes
which represent unobservable failures. Then,

for every node and for every such
that we: 1) remove from and 2)
add to . Then, we add directed edges ,
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Fig. 2. Belief network modeling lost and spurious symptoms
(BN (S ; p ; p )).

. With every directed edge we associate
the probability of causal relationship between and
equal to , where is the probability that
alarm is lost. The values of may be obtained, for
example, by analyzing packet loss rate in the network used to
transport symptom .

To model spurious symptoms, we introduce nodes ,
. Then, we add directed edges . With every

we associate prior belief that represents the cu-
mulative probability of events (other than persistent faults) that
trigger alarm . The value of may be learned by
analyzing historical alarm log files. Every directed edge

is labeled with .
The resultant belief network, is pre-

sented in Fig. 2. When , edges (for
) are redundant, and nodes and may be

considered identical . Also, when
, nodes are redundant and may be reduced .

Thus, is equivalent to . Belief network
is equivalent to which is the fault prop-

agation model that does not take either positive, lost, or spurious
symptoms into account. When the existence of either lost or spu-
rious (but not both) alarms may be neglected, one should use

or , respectively.
To perform fault localization that includes lost and spurious

symptoms in the analysis using as a
fault propagation model, algorithms proposed in Section III may
be applied with no modification.

V. END-TO-END SERVICE FAILURE DIAGNOSIS—

A SIMULATION STUDY

In this section, we describe the application of fault localiza-
tion techniques proposed in Sections III-C and IV to the di-
agnosis of end-to-end service failures. Network connectivity
in a given protocol layer is frequently achieved through a se-
quence of intermediate nodes invisible to the layers above. A
failure of an intermediate node may cause availability or perfor-
mance problems on one or more end-to-end paths established
using the malfunctioning node. End-to-end service failure di-
agnosis deals with isolating causes of failures associated with
end-to-end paths. Diagnosing end-to-end service failures, both
availability- and performance=related ones, is a crucial step to-
ward multilayer fault localization. In this paper, end-to-end ser-
vice failure diagnosis is used as a case study through which

the performance and accuracy of algorithms introduced in Sec-
tion III are evaluated.

A. End-to-End Service Model

When connectivity between nodes and in network layer
is achieved through a sequence of intermediate nodes, we say

that the end-to-end service offered by layer between hosts
and is implemented in terms of multiple host-to-host services
offered by layer between subsequent hops on the path of the
layer packet from node to node . A failure of a host-to-host
service such as a broken link, a buffer overflow, or a transmis-
sion link noise may cause a failure of a dependent end-to-end
service such as a loss of connectivity, excessive delay, or exces-
sive packet loss rate. How a specific failure of a host-to-host ser-
vice affects a dependent end-to-end service depends on a com-
munication protocol used in the given layer.

A fault propagation model for end-to-end service failure di-
agnosis is a bipartite belief network in which parentless nodes
(called link nodes) represent host-to-host service failures and
childless nodes (called path nodes) represent end-to-end service
failures. To build this model, a knowledge of the logical network
topology is required. When the logical topology is isomorphic
to the physical one, the relationships between end-to-end and
host-to-host services may be obtained by analyzing the phys-
ical network connectivity. An automatic means of discovering
this information is built in many commercially available net-
work management systems. Also, IETF proposes a standardized
means of representing the physical network topology, the phys-
ical topology MIB, [3], which may be used to obtain connec-
tivity information, if it is implemented in the managed domain.
When the logical topology is not isomorphic to the physical one,
other techniques have to be used to obtain the fault propagation
model, which differ depending on the system layer and routing
protocol. Very useful information is available through network
management protocols such as SNMP [5]. For example, the log-
ical topology established in the data-link layer by the spanning
tree protocol [38] may be collected using the Group
of bridge MIB [14]. Run-time updates of the spanning tree may
be triggered by newRoot and topology change traps [14]. In the
network layer of the Internet, current routes may be calculated
from ipRoutingTable of TCP/IP MIB-II [33]. Besides, a plethora
of other, more advanced techniques has been proposed by the re-
search community for different types of networks, e.g., [4], [18],
[32], [35], and [43].

When the fault management system does not distinguish
among multiple failure types, each system component may
be in one of two possible states: malfunctioning or working
properly. In this case, the fault propagation model is completely
determined by the logical network topology and consists of one
path or link node for every end-to-end path or host-to-host link,
respectively. An example of such fault propagation models is
presented in Fig. 3, which shows a bipartite belief network for
end-to-end service failure diagnosis in the data-link layer of a
simple network composed of four learning bridges [38].

When the fault management system distinguishes among
multiple failure types, each path or link may experience mul-
tiple types of problems (e.g., delay, excessive packet loss,
erroneous transmission, total loss of connectivity, etc.). This
situation is represented in the fault propagation model by
creating multiple path or link nodes for each end-to-end path
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Fig. 3. (a) Example bridge topology with the current spanning tree marked in bold. (b) Belief network built based on the spanning tree in (a).

or host-to-host link, each corresponding to a different failure
type. A complete fault propagation model contains multiple,
possibly overlapping, graphs as the one presented in Fig. 3, each
focusing on a different failure type. The connectivity between
the graphs is determined by the communication protocol used
in a given layer. For example, if the protocol implements an
error-detection mechanism, a belief network node representing
erroneous transmission in one of the host-to-host links is
connected to belief network nodes representing excessive data
loss in dependent end-to-end paths. Otherwise, it is connected
to belief network nodes representing erroneous transmission in
the dependent end-to-end paths.

End-to-end service diagnosis aims at correlating symptoms
related to path failures in order to isolate one or more respon-
sible link failures. Thus, an observed path failure is mapped into
the corresponding belief network node. Then, the node is as-
signed to 1 and an event-driven iteration of an algorithm (either
Algorithm 2 or Algorithm 3) is executed starting from this node.
After symptoms are processed in this manner, the algorithm pro-
duces the most probable value assignment to link nodes. While
using Algorithm 1, the algorithm (which is not event driven) is
executed once, when all symptoms have been observed and their
corresponding nodes appropriately assigned. At the end, failure
conditions corresponding to link nodes that are assigned to one
in the most probable assignment are reported as the root causes
of the observed disorder.

B. Application of Belief Networks

The application of algorithms introduced in Section III for di-
agnosing end-to-end services using a bipartite model is straight-
forward. In this section, we analyze the algorithms’ complexity
in this fault localization problem.

1) Bucket elimination
Recall from Section III-A that the computational com-

plexity of bucket elimination in arbitrary belief networks is
, where is the width of the graph

induced by ordering , defined in Section II. One can show
that the minimum width of the bipartite graph for end-to-end
service failure diagnosis is bound by the maximum path length
in the original network graph [i.e., spanning tree in Fig. 3(a)].
Therefore, the complexity of bucket elimination in application
to end-to-end service diagnosis is .

2) Iterative belief propagation
In Section III-B, we determined the complexity of fault local-

ization iterative belief propagation in arbitrary belief networks
to be . In a bipartite belief network representing
end-to-end service model of an -node network, there are at
most paths (i.e., possible symptoms) and every path may be

composed of at most links. Thus, the graph contains at most
edges leading to the complexity of the entire algorithm of

.
3) Iterative MPE
In Section III-C, we wrote that local computations in nodes

require operations resulting in the complexity of the
entire algorithm of . Indeed, the calculation of

messages, which is performed only by path nodes, requires
steps. However, messages , which are calcu-

lated only by fault nodes, may be obtained in
steps. Thus, the calculation of or messages in a single
iteration requires or steps, respectively. As a
result, the complexity of the entire algorithm in the application
to end-to-end service diagnosis is .

C. Simulation Model

The simulation study presented in this paper uses tree-shaped
network topologies, which result, for example, from the usage
of the spanning tree protocol [38]. The usage of tree-shaped
topologies greatly simplifies their random generation, while not
having any significant impact on the accuracy of the results pre-
sented in this section.

We evaluated the algorithms presented in Section III using
the following simulation model. Let represent the alarm ob-
servability ratio, i.e., . Let represent alarm
loss rate, i.e., the ratio of the number of generated alarms that
were lost to the number of all generated alarms. Let rep-
resent the spurious alarm rate, i.e., the probability that an alarm
is generated spontaneously. The three ratios , , and
are parameters of the simulation model.

Given the simulation model with parameters , , and
, for a given network topology size , where represents

the number of intermediate network nodes, such as bridges or
switches, we design simulation cases as follows.

• We create a random tree-shaped -node network
. We denote the set of faults, the set of unob-

servable end-to-end failures, and the set of symptoms for
network as , , and , respectively. For every link
in , we create one . Note that in an -node
tree-shaped network there are links, i.e., .
For every end-to-end path in , we create one and
one . (Recall that .)

• We randomly generate prior fault probability distribution
: ; s are uniformly distributed

over the range [0.001, 0.01]. We randomly generate condi-
tional probability distribution : , de-
fined as the probability that occurs given occurs. For
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Fig. 4. Comparison of accuracies achievable with Algorithms 1–3 for different network sizes.

all and such that the path corresponding
to includes the link corresponding to , s
are uniformly distributed over the range ; otherwise,

.
• We randomly generate the set of observable alarms

such that on average .
• Given network , we build its belief network

model . We choose
to perform fault localization that

includes alarm loss (spurious alarms) in the analysis. We
use to perform fault localization
that disregards lost (spurious) symptoms.

For the th simulation case , we create
simulation scenarios as follows.

1) Using , we randomly generate the set of faulty links
in network , and create prob-
ability distribution : , where

.
2) Using , we randomly generate the set of events

resulting from faults in and build , the set
of alarms corresponding to events in . We set

.
3) Using SSR, we randomly generate the set of spurious

alarms . We set .
4) We create , the set of generated alarms that

are not lost by the communication system, by ran-
domly removing alarms from so that on average

.
5) We set ; constitutes the set of negative

symptoms observed in the simulation scenario .
6) Using one of the fault localization algorithms, we com-

pute , the most likely explanation of symptoms

in . We calculate detection rate and false pos-

itive rate defined using

For the th simulation case, we calculate the mean detec-
tion rate and mean false positive
rate . Then, we calculate the ex-
pected values of detection rate and false positive rate denoted
by and , respectively. In our study, we used

and or , depending on the variability
of . We varied from 5 to 50.

In Sections V-D and V-E, we apply this simulation model
to evaluate the performance and accuracy of fault localization
algorithms described in Section III. We used JavaBayes [1] im-
plementation of bucket elimination (Algorithm 1). We imple-
mented Algorithms 2 and 3 in Java.

D. Comparison of Algorithms

The first simulation study was conducted to compare the per-
formance and accuracy of the fault localization algorithms de-
scribed in Section III. We intentionally ignore positive, lost, and
spurious symptoms. Formally, we set , ,
and and use belief network as a fault prop-
agation model. The link failure probabilities are uniformly dis-
tributed random values of the order of 10 , and the conditional
probabilities on causal links are uniformly distributed random
values in the range . Because of excessive simulation
time, we had to limit the tested network size range for Algo-
rithms 1 and 3 to 10 and 25, respectively.

Fig. 4(a) presents the relationship between detection rate and
network size. The detection rate is shown within statistically
computed confidence intervals. We observe that Algorithms 1
and 3 outperform Algorithm 2 by 1%–3%. The shape of the
graphs in Fig. 4(a) indicates a strong dependency of the de-
tection rate on the network size. This relationship may be ex-
plained as follows. For small (five-node) networks, the number
of symptoms observed is typically small (less than ten), which in
some cases is not sufficient to precisely pinpoint the actual fault.
Since in small networks the size of is also small, any mistake
in fault detection significantly reduces the detection rate. The
fault-localization accuracy in networks of small size can be im-
proved by increasing the system instrumentation degree (i.e., in-
creasing the observability ratio ) or by using positive symp-
toms (i.e., the lack of negative observations) in addition to the
negative ones. Our previous work on this subject has shown that
the accuracy fault localization in poorly instrumented networks
can be substantially improved by including positive symptoms
in the reasoning process [48].

When the network gets larger, the number of observed symp-
toms increases, thereby increasing the ability to precisely detect
the faults. On the other hand, as the network size grows, the
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Fig. 5. Comparison of fault localization time for Algorithms 1– 3 versus network size.

TABLE I
COMPARISON OF ALGORITHMS 1–3

multifault scenarios become more and more frequent. In a mul-
tifault experiment, it is rather difficult to detect all actual faults,
which leads to partially correct solutions and, in consequence,
the lower accuracy of Algorithm 2.

As depicted in Fig. 4(b), the false positive rate of Algorithm
1 is 1%–2% lower than that of Algorithm 2. For small networks,
Algorithm 3 has false positive rate comparable to Algorithm 1.
However, as networks get bigger, the false positive rate of Al-
gorithm 3 grows sharply, suggesting that Algorithm 3 has a ten-
dency to propose too big a set of faults as a final hypothesis than
is actually needed to explain all symptoms. A number of addi-
tional tests performed on Algorithm 3 for bigger network sizes
[which are not shown in Fig. 4(b)] revealed that its false positive
rate further increases as the network size grows, but it saturates
with the value of approximately 20% for networks composed of
50 nodes. These experiments also revealed that, when the net-
work size increases, the detection rate of Algorithm 3 decreases
faster than that of Algorithm 2. As a result, we conclude that
Algorithm 2 is more reliable in offering high accuracy than Al-
gorithm 3.

Fig. 5(a) and (b) presents the dependency of the execution
time on the network size in the presence of one and four network
faults, respectively. Although in the tested network size range,
Algorithm 1 exhibited the best accuracy, the difference between
its accuracy and that of other algorithms is too small to justify
the substantially worsened performance. Algorithm 2 proved to
be the most efficient one while preserving very good accuracy.
The execution of the order of several seconds, even for large
networks and multifault scenarios, is encouraging.

Table I summarizes the results of the described simulation
study. To make the comparison of the algorithms complete, we

also evaluate them according to the criteria introduced in Sec-
tion I. Clearly, all three algorithms are able to detect multiple si-
multaneous faults and are robust against the information noise,
given they are provided with an appropriate fault propagation
model. Algorithms 2 and 3 are event driven; Algorithm 1 is not,
because running the inference after every symptom observation
would repeat calculations performed in the previous iterations.
In addition to fault localization, Algorithms 1 and 3 make a bi-
nary prediction of network service failures; Algorithm 2 offers
an estimation of confidence that a service is affected.

The results presented in this section show that Algorithm 2
is the most promising one in the application to fault localiza-
tion. In [48], we show that its accuracy may be further improved
by including positive symptoms in the analysis and that it is
insensitive to the inaccuracies of the probabilistic model, of-
fering almost the same accuracy when a small number of con-
fidence levels (e.g., 3), rather than their real values, is used to
specify conditional probabilities. This implies that instead of
exact probability values, meaningful probability assignments
can be used, e.g., unlikely, likely, and very likely, with almost no
effect on the effectiveness of the algorithm. This result confirms
the practicality of Algorithm 2 in real-life applications, because
it shows that the algorithm does not require a precise knowledge
of probability distributions, which are usually difficult to char-
acterize. In Section V-E, we continue evaluating Algorithm 2
looking into its robustness against observation noise.

E. Impact of Lost and Spurious Symptoms

To isolate the impact of symptom loss on the accuracy of the
fault localization process, we set in the simulation
model. Loss rate is either 0.05 or 0.1. We compare the accuracy



STEINDER AND SETHI: PROBABILISTIC FAULT LOCALIZATION IN COMMUNICATION SYSTEMS 819

Fig. 6. Comparison of accuracies obtained with Algorithm 2 using fault propagation models BN (S ; LR; 0) and BN (S ; 0; 0).

Fig. 7. Comparison of accuracies obtained with Algorithm 2 using fault propagation models BN (S ; 0; SSR) and BN (S ; 0; 0).

of Algorithm 2 using belief networks (taking
symptom loss into account) and (disregarding the
possibility of symptom loss), varying between 0.2 and 0.5.
Fig. 6(a) and (b) shows that by including loss rate in the analysis,
the detection (false positive) rate may be increased (decreased)
by up to 10%. Moreover, given constant , this gain is insen-
sitive to the value of .

The impact of including spurious symptoms in the fault lo-
calization process is evaluated by applying Algorithm 2 to fault
propagation models and using

and . We vary between 0.01 and 0.1.
As shown in Fig. 7(a), the inclusion of spurious symptoms in
the fault localization process in small networks decreases de-
tection rate. This is explained by the fact that in small networks
(in particular, with small observability ratios), only a few symp-
toms are available to the fault localization process. When the
possibility of spurious symptoms is taken into account, and the
number of symptoms is very small, the algorithm concludes
that there is no sufficient evidential support for the existence
of faults and considers most of these symptoms spurious. When

, for small networks, the probability that all observed
symptoms are spurious is frequently higher than the probability
of fault occurrence. Therefore, the algorithm refuses to identify
a fault thereby achieving very low detection rate. One can con-
clude that small networks need to be better instrumented (i.e.,
have higher ) to allow fault localization to benefit from the

analysis of spurious symptoms. In larger networks, the inclusion
of spurious symptoms does not cause a decrease in the detection
rate; in fact, as shown in Fig. 7(a), it allows the detection rate to
be improved. Fig. 7(b) presents the impact of including spurious
symptoms on the false positive rate. It shows that regardless of
the network size, by taking spurious symptoms into account, the
false positive rate of the fault localization process may be sig-
nificantly decreased.

VI. OTHER CANONICAL MODELS

Thus far in this paper, we have focused on fault propagation
models represented by noisy-OR-gate belief networks, which
allow fault localization to be performed in polynomial time
using Algorithm 2. In noisy-OR-gate networks, a variable
value is obtained by combining its predecessors’ values using
logical OR. This is, clearly, the most useful and wide-spread
representation in the area of fault management [28], [29].

Unfortunately, for some fault management problems, the
noisy-OR-gate model is inadequate. In this section, we explore
the application of other canonical belief network models to
solving these problems.

A. AND Model

Let us consider a popular high-availability scenario in which
two alternative physical network connections are provided be-
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tween two neighboring hosts. To model this situation using a be-
lief network, we create node to represent connectivity failure
between the two hosts and nodes and to represent failures
of the two physical connections, respectively, where is caused
by and . When one of the physical connections fails, i.e.,

or occurs, the entire traffic between the two hosts is trans-
ferred to the second, still operating connection. Thus, the con-
nectivity failure between the hosts may be observed only if both
physical connections fail. Clearly, and do not indepen-
dently contribute to , and therefore this scenario may not be
represented using the noisy-OR model.

A possible solution to the problem is to detect hard failures
of physical connections using configuration-change monitoring
tools available in many management systems and, accordingly,
modify the model. However, in many situations, a prefer-
able approach would rather embed the information about the
high-availability configuration into the fault propagation model
so that the monitoring of the configuration changes may be
avoided. The relationship between and and should be
modeled by combining ’s predecessors’ values using logical
AND. To perform belief updating using Algorithm 2, the (2) and
(4) in Section III-B used to calculate and in an AND-node

should be modified as follows:

if

if
(10)

(11)

B. NOT Model

In the NOT model, a variable value is calculated as a logical
negation of its single predecessor’s value. Intuitively, for a vari-
able to be true, its predecessor must not be activated, or if its pre-
decessor is activated, the inhibitor on the corresponding causal
link is activated as well. The replacement for (10) and (11) in
the NOT model is obtained in a straightforward manner by set-
ting and exchanging with and

with , respectively.

C. Hybrid Model

In real-life scenarios, a hybrid model is useful, in which a
node may apply different logical operators to different subsets of
its predecessors. In the extreme case, a hybrid model associated
with variable could involve an arbitrary logical expression
over ’s predecessors. In this case, calculating and would
correspond to performing inference in a belief network identical
with the syntax-decomposition tree of the logical expression,
which is rooted at . In practice, much simpler hybrid models
are needed, in which and may be calculated using compact
and easy-to-obtain formulas.

VII. RELATED WORK

In the past, various event correlation techniques were pro-
posed including rule-based systems [31], [53], model-based

reasoning systems [24], [36], model traversing techniques [25],
[27], case-based systems [30], graph-theoretic approaches
[19], [28], and the code-book approach [54]. Most of these
approaches are deterministic, while this paper focuses on
nondeterministic fault diagnosis techniques.

So far, the most comprehensive approach to nondeterministic
fault localization has been proposed by Katzela et al. [28]. The
fault propagation algorithm in [28] uses a dependency graph as
a fault model and exploits the maximum mutual dependency
heuristics to isolate multiple simultaneous faults. This heuristic
relies on the assumption that of two sets of faults which explain
all the observed symptoms, the better solution is the one that
exhibits the higher mutual dependency among its members. We
believe that in communication systems in which most faults are
independent of one another, this assumption does not hold. In
addition to this problem, the approach presented in [28] does
not allow lost or spurious symptoms. Other limitations are that
correlation is window based, and only one failure mode per ob-
ject is allowed.

Kliger et al. [29] propose a probabilistic model to be used
with the codebook approach [54], which creates a symptom-
fault dictionary (called a codebook) by reducing the fault prop-
agation model to a bipartite graph using serial and parallel re-
duction operators. In a nondeterministic case, this reduction is
an NP-hard problem on its own. In addition, the reduction to
a bipartite graph loses some dependency information that may
be useful in fault localization. More importantly, no nondeter-
ministic decoding schema is proposed in [29]. The algorithms
proposed in this paper (Algorithms 2 and 3) can be used for
this purpose. These algorithms do not require graph reduction
and therefore take advantage of all the available dependency in-
formation. In addition, multiple simultaneous faults may be de-
tected in an event-driven manner.

The literature on event correlation contains reports of
applying belief networks to fault diagnosis. However, the ap-
proaches are limited to rather specific fault diagnosis problems,
which use simplified belief network models. In fault diagnosis
in linear light-wave networks [15] and in diagnosing connec-
tivity problems in communication systems [52] conditional
probabilities are 0-, 1-valued. Bayesian reasoning used by
Smyth [45] to monitor and diagnose the state of an antenna is
applicable to the management of a system with a small number
of possible states. As a result, it cannot be used in a system
with a big number of (possibly multistate) components. To
trouble shoot printing services a tree-shaped belief network is
used [20]. Hood et al. [23] reported an application of Bayesian
network theory to proactive fault detection. The belief network
used there is also tree-shaped based on the structure of SNMP
[6] MIBs [33]. A bipartite belief network is used in [7] to pin-
point LAN segments suspected of having a particular fault. The
reasoning mechanism used in [7] is not able to precisely identify
the fault (e.g., the malfunctioning node). Moreover, it is based
on observations that are particular to the LAN environment
and are not applicable in general. The techniques proposed
in [7], [15], [20], and [52] derive heuristics that approximate
Bayesian reasoning in the particular fault localization problems
they attempt to solve. The solutions proposed in [7], [15], [20],
and [52] do not allow lost or spurious symptoms, and some of
them are window based [7], [15], [52]. In contrast, this paper
adapts techniques of Bayesian reasoning in belief networks of



STEINDER AND SETHI: PROBABILISTIC FAULT LOCALIZATION IN COMMUNICATION SYSTEMS 821

arbitrary shape to provide a single event-driven solution to a
wide range of problems.

Other approaches to dealing with uncertainty in network fault
diagnosis include an application of Dempster–Shafer theory to
detect break faults in communications networks [11]. Similarly
to [52], this technique is tailored specifically to diagnosing con-
nectivity problems in networks with known and static topolo-
gies. This solution would not be sufficient for the purpose of di-
agnosing performance problems or when the knowledge of the
network topology is uncertain or incomplete.

Statistical data analysis methods were used for nondetermin-
istic fault diagnosis in bipartite-graphs in [16]. The solution is
proposed to detect link failures in wireless and/or battlefield net-
works based on the observed set of broken end-to-end connec-
tions focusing on unknown and constantly changing network
topologies. This technique [16] is not able to deal with lost or
spurious symptoms and it is window based.

The hierarchical modeling of uncertainty with belief net-
works presented in this paper is consistent with other work on
constructing diagnostic models [46]. Contrary to the approach
in [46], in our model, each component may have more than one
output, which allows representation of different types of influ-
ences caused by one component on its dependent components.

VIII. CONCLUSION AND FUTURE WORK

This paper investigates an application of Bayesian reasoning
using belief networks [37] to nondeterministic fault diagnosis in
complex communication systems. We propose a belief network
as a representation of causal relationships among system events
and show that the fault localization problem may be solved by
calculating the MPE query in belief networks. Then, we in-
vestigate an application of known algorithms for performing
Bayesian reasoning in belief networks to fault localization. We
directly apply the bucket elimination framework [12] and adapt
two algorithms for calculating queries in singly connected be-
lief networks (polytrees): 1) belief updating and 2) MPE [37].

We conclude that, due to its exponential computational com-
plexity, the exact Bayesian inference is not feasible in the appli-
cation to fault localization. However, as revealed by the simula-
tion study on end-to-end service failure diagnosis, the approx-
imate techniques offer much better (polynomial) performance
while retaining almost optimal accuracy. The approximate tech-
niques proposed in this paper meet all or most of the objectives
of our research. We, therefore, conclude that belief networks are
a promising model for nondeterministic fault localization.

The performance of fault localization using belief networks
could be improved by applying hierarchical reasoning, in which
the fault localization is performed first using a high-level model
to pinpoint the location of the problem, and then a more de-
tailed model would be used to identify the precise location of
the fault within the previously pinpointed location. The theoret-
ical foundation for such an approach has been laid in [46]. Since
the high-level model of the entire system and a detailed model
of the pinpointed location are both smaller in size than a single
detailed system model, the hierarchical reasoning reduces the
complexity of the fault localization task. This paper implicitly
advocates the usage of hierarchical reasoning by presenting a
case study on the analysis of end-to-end service failures, which
is an example of a high-level fault localization problem. The

services identified as faulty during end-to-end service diagnosis
need to be analyzed on the detailed level to precisely determine
the root causes.

In the area of end-to-end fault diagnosis, the future research
will investigate distributed fault localization techniques in
which multiple fault localization applications cooperate to
isolate the causes of end-to-end service failures. Such a dis-
tributed solution should explore domain semantics of typical
communication networks [47]. We will also address end-to-end
service failure diagnosis in situations where the diagnostic
model is difficult to build and investigate fault localization with
incomplete and ambiguous dependency information.1
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