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ABSTRACT

We considerunicastequation-basedate control, wherea source
estimateghe losseventratio p, and, primarily at loss events,ad-
justsits sendrateto f(p). Functionf is assumedo representhe
loss-throughputelationthat TCPwould experience Whenno loss
occurstheratemayalsobeincreasedccordingo someadditional
mechanism. We assumethat the loss event internval estimatoris

non-biasedlIf thelossprocesss deterministicthe controlis TCP-
friendly in the long-run,i.e, the averagethroughputdoesnot ex-

ceedthatof TCP If, in contrastjossesarerandomiit is a priori not

clearwhetherthis holds,dueto the non-linearityof f, anda phe-
nomenorsimilarto Feller’s paradox.Ourgoalis to identify the key

factorsthatdrive whetherandhow far, the controlis TCPfriendly

(in thelong run). As TCP andour sourcemay experiencedifferent
losseventintenals, we distinguishbetweenT CP-friendlinessand
conserativeness(throughputdoesnot exceed f(p)). We give a

representatioof the long termthroughputandderive thatconser

vativenesss primarily influencedby variouscorvexity properties
of f, thevariability of lossevents,andthe correlationstructureof

the loss process. In mary casesthesefactorsleadto consera-

tivenessput we shav reasonablexperimentswvherethe controlis

clearly non-conserative. However, our analysisalsosuggestshat

our sourceshouldexperiencea higherloss event ratio than TCR,

which would make non-TCPfriendlinesslesslikely. Our findings
provide guidelineghathelpunderstandvhenanequatiorbasecon-

trol is indeedTCP-friendlyin thelong-run,andin somecasesgx-

cessvely so. The effectsof roundtrip time andits variationsare
notincludedin this study
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1. INTRODUCTION

We consideran adaptie sourcethat employs unicastequation-
basedatecontrol: the sourceestimateghe losseventratio p, and,
primarily atlossevents,adjuststs sendrateto f(p). Functionf is
assumedo representhe loss-throughputelationthat TCP would
experience Whennolossoccurstheratemayalsobeincreaseéc-
cordingto someadditionalmechanismaswe definebelov. An ex-
ampleof suchanequation-baserthtecontrolis TFRC[10], which
we usemostof thetime in this paperasa recurringexample. Be-
causef is assumedo represenT CP’s lossthroughputequation jt
is expectedhatsucharatecontrolis TCPfriendly, i.e.,ouradaptive
sourceshareghenetwork fairly with competingTCP sourceg11].
More preciselythisis requiredto happerontwo time scalesin the
short-run,responsédo congestiorshouldbe commensuratéo that
of TCP;in thelong-run,averagethroughpushouldnot exceedthat
of TCR In this paper we focuson the latter (we call it “long-run
TCP-friendly”); we referto [11, 7, 8] for somedefinitionsregard-
ing the conceptof TCP-friendliness. Our goal is to identify the
key factorsthatdrive whetherandhow far, theequation-baserhte
controlis long-runTCP friendly.

We first point out that TCP and our sourcemay experiencedif-
ferentlosseventratios,andthusdistinguishbetweenT CP-friendly
andconserative control. We saythatthe equation-basethtecon-
trol is conservative or undeshoots whenz4 < f(pa), where
T 4 is thelong-runtime averageof the sendrate ( = throughput)of
our adaptve sourceandp 4 its averagelosseventratio. Note that
we requirea carefuldefinition of lossrate,to avoid bias. Follow-
ing [10] we assumehatour sourceemplo/s anunbiasedestimator
of the losseventinterval, which is the amountof datasentin the
interval betweertwo successie lossevents(seeassumptior(E) in
Section2). If thereis corvergencethenatthelimit we would have
Za = f(pa). In practice though,the controlis requiredto bere-
sponsie, andthusthe non-linearityof function f leaveslittle hope
thatza = f(pa). In fact, we do shav in Section3.4 thatthere
arecasesvherethe controlundershootsandotherswhereit over-
shoots.Undershootingnay appeaito be a non-problemhowever,
we shaw in this paperthattherearestructuralelementghatleadto
systematicand sometimesxcessve undershoot.In contrast,we
find that overshootingmay occur but that thereare fundamental
reasonghatlimit itsimpact. Further our analysisalsoshows thatit
is notonly the non-linearityof f thatplaysarole, but alsoanother
phenomenonelatedto Feller's paradox.

Our findings are appliedto the following choicesof functions
f (seealso Section2.4): the squareroot formula [12] (we call it
SQRY); the loss-throughpuformula (we call it PFTK-standard),

'Feller's paradox6] is thatthe averageinterval seenby arandom
obsereris largerthanthe averageinternval sampledby anobserer
atinterval boundaries.



anda slight variant(we call it PFTK-simplified). Otherformulae
existthatdiffer by aconstan{3, 18]; ouranalysisappliesdirectlyto
thoseaswell. Yetotherformulaearefor short-lved TCPflows[5];
we did notincludethemin ouranalysis sincewe focusonlong-run
behaior. Note however thatmostof our findingsareindependent
of thespecificfunction f beingused.

We further distinguishbetweenbasiccontrol, which consistsin
updatingthe sendrateat every lossevent,andcomprehensie con-
trol, which addsa rateincreasemechanisnduringintenals where
no lossoccurs. The comprehensie control reflectswhatis imple-
mentedn TFRC.We performadetailedexactanalysisof thebasic
control. We find an approximaterepresentationf comprehensie
controlanduseit togethemwith simulations.We find, numerically
andby simulation thatthecomprehensie controladdsonly amod-
estincreasan long-runthroughputo the basiccontrol (remember
thatwe focushereonlong-runanalysisclearly thecomprehensie
controlmayhave alargerimpactin the short-run).

For thebasiccontrol,wefind fairly exhaustve results.First,con-
senativenesss stronglyinfluencedby the corvex or concae na-
tureof two functionalsof f, andthejoint statisticsof thelossevent
interval 0,,. If (C1) thestatisticsaresuchthat6,, andthelossevent
interval estimatord,, arelightly or negatively correlatedthereare
indications[20] thatlosseventintenals maybelightly correlated),
thenthe control is conserative. Further the higherthe variabil-
ity of the loss event estimatoy the more conserative the control
is; similarly, the higherthe losseventratio, the moreconserative
the control. Both of theseeffectsaremorepronouncedvith PFTK
thanwith SQRT; with PFTK, this causeghe controlto be exces-
sively conserative in regionsof heary loss. SQRT doesnot have
this problem (but is also a lessaccuraterepresentatiorof TCP’s
behaior). This conserative natureof TFRC controlhasbeenem-
pirically obseredin [9, 19, 2]. Second|f the correlationcondi-
tion (C1) doesnothold, thenresultsmayberadicallydifferent,and
strongly dependon the natureof function f. We identified one
usefulcasewherewe canconcludeaboutnon-conserativenessIf
(C2c) the correlationof the durationbetweenloss eventsandthe
sendrateis non-n@ative, thenfor PFTK andheavy loss,the con-
trol systematicallyvershootsFor PFTK with low to mediumloss,
or for SQRT in all casesthis doesnot occur This is dueto con-
vexity propertiesof somefunctionalsof f, which holdsdifferently
in thesecasesAn exampleof protocolto whichtheseassumptions
may apply is an audio sourcewith a constantpaclet rate, which
adaptsts datarate by varying the paclet size[4]. Thesefindings
areexactfor the basiccontrol; for the comprehensi control, we
posethemas claimsandverify themby numericaland ns experi-
ments.

To completeheanalysiswe addresswo additionalpoints. First,
we compare,analytically and by simulation, the loss event ratio
experiencedby our adaptve source(pa) andby TCP (pr). We
find that pr < pa shouldbe expectedin mostcasesithis drives
our sourceto have a smallerlong-run throughputthan TCR, be-
yond and above the effects mentionedabore. Second,t remains
to be seenwhetherthe TCP equationusedin a systemis anaccu-
raterepresentationf TCP;we do not have anin-depthevaluation
of this point; instead,we point to [3] for a discussionof this is-
sue.However, we do find indicationsthattheremay be significant
differences.This shavs that designersof TCP-friendly protocols
shouldclearly separatein their evaluation,the threeelementsof
conserativeness,TCP loss event ratio versusthis protocol’s loss
ratio, and TCP’s obedienceo its formula. Failing to do soblurs
thesettingof parameterandmayleadto undesireccorrectionsin
contrastknawing the expecteddeviationsgivenin this papereads
to a saferunderstandingndtuning. Our resultsare basedon an-

alytical findings(baclked up by simulations)andshouldthusapply
to awide classof situationsjncludingdynamicervironments.

Limitations. We have identified somefundamentafactorsof
equation-basedate control, by a mathematicabhnalysisand ex-
periments. Oncethe factorsare identified, it remainsto be seen
whattheir valuesarein thereal Internet. While existing measure-
mentsalreadyprovide someindication[20], thisremaindor further
work. Also, throughoutthe paper we assumethat the roundtrip
time (RTT) experiencecdy our sourceis constantandknown. It is
outsidethe scopeof this paperto addressheimpacton the control
of variationsof the RTT (the samemethodcanbe used).Last,we
focuson therelationshipbetweenosseventratio andthroughput,
taking both as obsered quantities;stability and corvergenceare
notaddresseth this paper

The paperis organizedasfollows. Section2 describesur as-
sumptionsand notations. Section3 givesour analyticalfindings.
They are derived for the basiccontrol, then verified numerically
andby simulationof the control. We summarizeour mainfindings
in theform of two claims,givenin Section3.3. In Sectiord we val-
idateour findingswith nssimulations.In Section5 we addresghe
two additionalpointsof TCPlosseventratio versusthis protocol’s
losseventratio,andTCP’s obedienceo its formula. All proofsare
givenin theappendix.

2. ADDITION AL ASSUMPTIONS AND NO-
TATIONS

2.1 Notation

We consideranadaptve sourcewith thesendrateattime ¢ equal
to X (t). We assumethat X (t) can be describedby an ergodic
process,and thus equatethe long-run averagewith the expected
value: = E[X(0)]. Index n refersto the n-th lossevent. We
usethe following additionalnotation. T, , is thetime at which the
n-th losseventis detecteddy the source.S,, = T +1 — 1 isthe
elapsedime betweertwo successie lossevents. X,, = X (75,) is
theratesetat the n-th lossevent. (6, ), is the numberof paclets
sentbetweertwo successie lossevents(d,, pacletsin [15,, Ty+1)).
Following TFRC,we call 6,, thelosseventinterval.

With ES we denoteexpectatiorwith respecto the Palm proba-
bility P2, whichis, roughlyspeakingthe probabilitygiventhereis
alosseventattime 0 (seefor instance1] for aformal definition).
Let

covT[X (0), Y (0)] := ET[X (0)Y (0)] — ET[X(0)]ET[Y (0)],
becovarianceof X andY” with respecto P%. Likewise, let
vart[X(0)] := EZ[X(0)*] — EZ[X(0)]*,

bevarianceof X with respecto P%..
Thelong-runlosseventratio asobseredby the sourceis

B 1
p= EO (0] (N

Let 6,, be the loss event interval estimatoy computedat 7,,. We
assume

(B) 6,, is anunbiasedestimatof of 1/p.

Moreover, we assumehat®,, is definedasa moving-averageof the

2Notethat, by JenserﬂinequalityE%[%] > p, andthus1/6, isa
biasedestimatorof p.
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Figure 1: Some functionals of interest for our functions f:
SQRT, PFTK-standard, and PFTK-simplified (resp.labeledas
PFTK and PFTK’); » = 100 ms, ¢ = 4r. Valuesof z close
to 0 correspondto heavy losses. The top figure tends to in-
dicate that the corvexity condition (F1) in Theorem 1 would
be satisfiedin all threecasesbut this is strictly true only for
SQRT and PFTK-simplified; it alsoillustrates that corvexity is
much more pronouncedfor PFTK-simplified than for SQRT.
The bottom figure illustrates that the concavity condition (F2)
of Theorem2istrue for SQRT; for PFTK-standard and PFTK-
simplified it holdsonly for smalllosseventratios; for heavy loss
(z small), the curvesare corvexand thus the oppositecondition
(F2c) holds.

losseventintervals:
L
On = Z WiOn—1, (2)
=1

for somepositive valuedweights (w;){~, ; noteby (E) we require
Zle w; = 1. TFRCuseghistypeof losseventintenal estimatoy
for a particularsettingof the weightssuchthat w; are equalfor
1 <1< L/2,andotherwisew, linearly decreasevith [.

2.2 BasicControl
Thebasiccontrolis definedasfollows. Fort € [15,, Th+1),

X@:f(T). ©)

Functionf is the loss-throughputormulaassumedo be positive-
valuedandnon-increasing.

2.3 Comprehensve Control

Herewe addanadditionalmechanisnto the basiccontrolin (3),
andcall theresultingsystenthecomprehensi control. Themech-
anismreflectsa responseo positive feedbackasfoundin TFRC
[10].

Let 0(t) bethenumberof pacletssentsincethemostrecentoss
eventthatwasobseredbeforet. Thenwe definethe comprehen-
sive controlasfollows, for t € [15, Tr41),

_ 1
X0 =1 (55)
é(t) = (w16(t) + ZZL:zl Wi+10n—-1)1a, + énlgt.
Where

(4)

L—-1
1 A
Ay = {e(t) > w—l[en — Z fwz+19nz]} s
=1

andls, = 1if A;istrue,elsels, = 0.

In otherwords,attime ¢, thelosseventinterval estimatord () is
updatedvith 6(¢), if thatincreaseshevalueof theestimator If this
is notthecasethend(t) is keptto ,,. Notethatoncethe condition
Ay is true (0(t) suficiently large), the control (4) responddo the
positive feedbackby increasinghe sendrate.

Notice thatthe sendrate dynamicsis suchthat, if fn4+1 < 6y,
thenX (t) = f(1/0,) forall t € [Ty, Tyt1). Else,for 0ny1 > 0y,
the sendrateis X (t) = f(1/6,), for t € [T, U,], andthenthe
rateincreasesiccordingto (4) for t € (Un, Tn+1). Here,from the
definitionof A,

1 R L—-1
U= ——0n — On—1].
wlf (i) [ IZ:; Wi+1 l]

2.4 Functions f Usedin This Paper

We usethefollowing lossthroughpuformulae.Wefirst consider
perhapghe simplestone, “the square-root”which we call SQRT
[12]:

o) = — (5)
D)= o
wherec; is someconstantandr the averageround-triptime.

We referto anothemwell-known function f (Eq. (30) in [13]) as

PFTK-standard:

1
= N 3 6
1) c1ry/p + qmin[l, ca\/p](p + 32p3) ©
for someconstant,; hereq is TCPretransmittimeout. A variant
of theabove formulais referredto in TFRCspecificatior{10]). We
call it PFTK-simplified.

f(p) =

1
c1ry/p + qea(p?/? + 32p7/2)
Note that (7) is equalto (6) for p < c% andotherwiseit is less.
2

Herec; = /2b/3 andc; = 3/24/3b/2, whereb is thenumberof
pacletsacknavledgedby a singleack;typically b = 1 [10].

Also notethatmostof our findingsapplyto otherfunctionsf as
well.

@)

3. WHAT MAKES THE CONTROL CON-
SERVATIVE OR NOT

We first give the core mathematicaéxpressionghatare usedto
compute,in theoryandin numericalexperiments the throughput
of our control.

3.1 Representationof Throughput

PropPosITION 1. Thethroughputof thebasiccontol (3) is

ET[00]

0[r_6o0 1°
ET[f(éLﬂ
0

E[X(0)] = ®)




For the comprehensi control, we do not have a closedform
expressionHowever, for bothPFTK-simplifiedandSQRT we have
thefollowing approximationwhichis anupperbound.

ProPosITION 2. For PFTK-simplifiedand SQRTthethrough-
putof thecompehensiveontol (4) is approximatedby thefollow-
ing upperbound

E2.[6
EIX(0)] < 5 T[g] ' ©)
ET[f(%)]_ET[VOlél>éo]
wheie
; 5 g3 it — bt
Vo = wy =2c17(07 41 — 0% ) + 2c2q(0, 7 — 6n ®)—

A_D A_D ~ ~
+2e3q(0, 72 —0n?) + (Ont1 — en)m ;
andcsz := 32¢2 (for SQRTlet ¢z = ¢z = 0).

Notethat,in view of (2), thethroughputof bothbasicandcom-
prehensie controlis expressedn termsof the expectedvaluesof
somefunctionsof the lossinterval intenvals 6., 6,—1,...,0n_L.
Thusknowing thejoint probabilitylaw of 6,,, 61, . . ., 0 — 1, would,
at leastin theory enableoneto computethe throughput,and ex-
plain how the correlationstructureof thelossprocesgplaysarole.

3.2 Conditionsfor the BasicControlto beCon-
servative

We temporarilyfocuson the basiccontrol. We give exact suffi-
cientconditionsfor conserativenesspr non-conserativenessThe
resultshave interestof their own, andthey alsosuggesthekey fac-
torsthatdrive conserativeness.

3.2.1 A SuficientConditionfor the BasicContmol to
beConservative

THEOREM 1. Assumehat

(F1) theloss-thoughputformula f is sud that ﬁ is convex
with z,

(C1) cov$[bo, bo] < 0.
Thenthebasiccontrol (3) is conservative

Inter pretation. The corvexity condition (F1) is satisfiedby the
SQRT lossthroughputformula, andby PFTK-simplified;it is not
satisfiedby PFTK-standardbut almost(we will comebackto this
in a few lines). This is straightforvard to demonstrateand can
alsobe seenon Figure 1. The figure alsoshaws that corvexity is
muchmore pronouncedor PFTK formulae,andthus, we should
expectmoreconserativenessvith PFTK thanwith thesquareoot
formula(thisis confirmednumericallyin Sectionl).

Condition (C1) is true in particularwhen the covarianceis 0,
which happensvhen successie loss eventintervals are (stochas-
tically) independentThereareindicationsin [20] thatthis my be
true,andthetheorensaysthatthis would leadto aconserative be-
havior. We shaw in appendixhefollowing moreexplicit statement,
which givesa boundon long-runthroughput:

1

1+ %COV%[QQ, éo} -

This shaws that, in most cases,if the covarianceis positive but
small, therecannotbe ary significantnon-conserativenesof the
basicprotocol.

E[X(0)] < f(p) (10)

9(0/g”(x)
=
o
b=
(2]
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Figure 2: The top figure shows g(x) := 1/f(1/z) when f()
is PFTK-standard and its corvex closure (dotted line). On the
interval shown in the top figure, ¢** is equalto the tangentcom-
mon to both endsof the graph. Outside the interval it is equal
to g. g() isnot strictly speakingcorvex,but almost. The bottom
figure shavsthe ratio g/¢g**, which is boundedby r = 1.0026.

The theoremsaysmore. Remembethat 6, is an incremental
estimatorof the loss eventinterval 1/p, built on the information
availableup to thelosseventn — 1, while 6,, is thetrue next loss
eventintenal. Both have the sameexpectationaswe assumedhat
6,, is unbiased. However, this doesnot meanthat é,, is a good
predictor of 6,,. This depend®n the joint statistics,in particular
the autocwariance of thelossprocess.The covarianceof 6,, and
6,, reflectshow gooda predictord,, is. Condition(C1) meanshat
6,, is abadpredictor and,maybesurprisingly thetheoremsuggests
thatthisleadsto aconserative behaior. Corversely considemow
a hypotheticalcasewherethe loss processgoesinto phaseswith
slow transitions.Thenthe losseventinterval becomeshighly pre-
dictable; the theoremdoesnot say that this alonewill malke the
controlnon-conserative. However, this mayreally happenaswe
find in Section3.4. We give anothey perhapanorerealisticexam-
plein Section3.2.2

Notethat,, is themoving-averageestimatorin (2), andthus

L
cov[fo, fo] = _ wicovi [, 0], (11)
=1
in otherwords, it depend®nly onthespectrapropertiesf theloss
eventinterval.
Thefollowing corollarywasshawn in thediscussiorabove.

COROLLARY 1. If the corvexity condition (F1) holdsand the
loss eventintervals are independenthen the basic control (3) is
conservative

When Convexity is Almost True.  The corvexity condition
(F1)is nottrue for PFTK-standarqbecausef the min term), but
almost,aswe seenow. For afunctiong(z), we quantifyits devia-
tion from corvexity by theratioto its cornvex closure

9(z) ]
g ()"

r = sup|
x



Thecorvex closureg™* () is thelargestcornvex functionthatlower
boundsg(z); it is obtainedby applyingcorvex conjugation twice
[16]. Fig. 2 shaws g(z) = 1/f(1/z) for PFTK-standardandits
corvex closure;here,we haver = 1.0026.

PrROPOSITION 3. Assumehattheloss-thoughputformula f is
sudh that m deviatesfromcorvexity by aratio r, andthat (C1)
holds. Thenthebasiccontrol (3) cannotovershootby more thana
factorequalto r.

Thus,consideringhata fraction of a percentis morethanreason-
ableaccuray, we canconcludethatfor practicalpurposesye can
actasif PFTK-standardvould satisfythe convexity conditionF1.

3.2.2 Whenthesuficientconditionsdo not hold

We give a differentsetof conditions,which provide additional
insights. Thefirst of thesesetswasfound, in arestrictedform, in
our previouswork [17]. The secondsetappliesto the casesvhere
Theoreml doesnot apply

THEOREM 2. Assumehat

(F2) theloss-thoughputformula f is sudithat f(1/z) is concave
with x,

(C2) covi[Xo,So] <O0.

Thenthebasiccontrol (3) is conservative
Corversely if

(F2c) theloss-thpughputformula f is sud that f(1/x) is strictly
convex with z,

(C2c) COV9|— [Xo, So] >0,
(V) thelosseventestimatord,, hasnon-zeo variance
Thenthebasiccontrol (3) is non-conservative

Inter pretation. Theconcaity condition(F2)is truefor thesquare
rootformula. In contrastPFTK-standaréndPFTK-simplifiedare
suchthatconcaity (F2)is truefor rarelossesput corvexity (F2c)
is truefor frequentlossegseeFigurel, lower graph). The covari-
ancecondition(C2) is betweenX,, the ratesetat the occurrence
of the n-th lossevent,andSS,,, thetime until the next lossevent. If
the loss procesds memorylessandindependenof the activity of
our sourcethenthe duration.S,, of thelossinterval is negatively
correlatedwith the sendrate X, in the givenintenal (sinceS,, is
countedn realtime, not perpaclet); in suchcasescondition(C2)
is true, andthe basiccontrol is conserative aslong aslossesare
rareto moderate(or if the SQRT formulais used). This part of
Theorem2 complement§heoreml.

Considemnow thesecondartof Theoren2. Assumehat(.Sy, )»,
the sequencef losseventintenvals countedin realtime, is inde-
pendenbf the sendrate. This may happerfor examplefor anau-
dio sourcethat modulatests sendrate by varying the paclet size
ratherthanthe paclet sendrate, andif the paclet droppingprob-
ability in RED routersis independenof paclet size. Then (C2c)
holds,with equality Now assumelsothatPFTK-standards used,
andthe network settinghappengo be suchthatthe losseventin-
tenal 6,, is mostly in the region where PFTK-standards corvex
(i.e. heavy losses).Thetheoremsaysthatthe basiccontrolis non-
conserative, exceptin the degeneratecasewherethereis no ran-
domnessn the system,i.e. the loss estimatorhascorverged to
a constantvalue. We shov simulationsthatillustrate this casein
Sectior4.

Anotherexampleis for amoretraditionalsourcesuchasTFRC,
but whenthe loss processgoesthroughphasegfor example, the
network pathsusedby the flow oscillatebetweencongestiorand
nocongestion)andthesendingateroughlyfollow thephasegi.e.,
is responsie at the time scaleof the loss process). Thenwhen
the network is in the congestionphase,X,, is mostoften small,
andbecausef congestionS,, is small. In sucha case,condition
(C2c) may be true andthe basiccontrol may not be conserative.
In Section3.4we shav suchcases.

Comments. From a methodologyviewpoint, the first part of
Theorem?2 illustrateswell the importanceof the Feller paradox-
type of the agumentsusedin this paper The sendrate X (t) is
updatedonly atthelosseventstimes(7’,),. Consideranobsenrer
who picks up a pointin time at random;sheis morelikely to fall
in alarge losseventtime S,,. GiventhatS,, is negatively corre-
latedwith X, it is thusmorelikely thaton averageshewill ob-
sene a smallerrate than anotherobserer that would samplethe
rateat (1;,).. Fromthis we concludeE[X (0)] < E%[Xo] (The
concaity assumption(F2), by Jensers inequality shavs in turn
thatES-[Xo] < f(p), thusfinally E[X (0)] < f(p) andthe control
is conserative).

The mainresultin our previouswork [17] is similar to the first
partof Theoren2, but with thecorrelationcondition(C2) replaced
by the conditionthat the expectedduration.S,,, conditionalto the
rateX,,, decreasewith X, :

(C3) E%[So| X0 = z] is non-increasingvith .

It is a direct consequencef Harris’ inequality’ (seefor example
[1], p. 225)that (C3) implies the negative correlationcondition
(C2); thusour previous resultis a specialcaseof the first part of
Theorem2.

Of course we shouldexpectthatthe combinationof (C2c) and
(V) impliesthat(C1)doesnothold. Thisindeedholdsandis shavn
in theappendix.

It is legitimate to wonderwhetherTheorem1 is derived from
Theorenm? orviceversa.lt doesnotseento bethecasgwediscuss
thisin the appendix).Note however thatif the concaity condition
(F2) holds,thenthe corvexity condition(F1) necessarilyglsoholds
(but the corverseis nottrue).

3.3 What This TellsUs

The analyticalresultsin the previous sectionare for the basic
control. We expectthe comprehensie control to give a slightly
higherthroughputsinceit differsby anadditionalincreaseduring
long losseventintervals. This motivatesusto poseasassumptions
thefollowing analysiswhich we will confirmlaterin the paperby
numericalexperimentsandnssimulations.

CLAIM 1. Assumdha}the losseventinterval 6,, and the loss
eventinterval estimator,, are lightly or negatively correlated.
Considertheregionwhelethelosseventinterval estimator,, takes

1

its values.Themore cornvex a5 is in this region, the more con-

servativethe contiol is. Themore variable §,, is, the more conser
vativethecontol is.

Application. For protocolslike TFRC, we expectthe condition
to hold in mary practicalcaseq20]. For the threefunctionswe
considerin this paper ﬁ is morecorvex for small z, thatis,
for largelosseventratiosp. Thus,the controlshouldbe morecon-
senative with heary lossthanlow loss. This effect is more pro-
nouncedfor PFTK-standard6) and PFTK-simplified (7), which

3Harris’ inequalitysaysthatif f(z) andg(z) arenon-decreasing
functions,and X is one randomvariable,thenthe covarianceof
f(X) andg(X) is non-neative.




arecorvex andvery steepfor largep, thanfor SQRT. This explains
the obsered drop in throughputfor the control, with PFTK and
heary losses.

The variability of 6,, dependson the variability of (6.,)», and
canbecontrolledby thelengthof themoving-averageestimatord,,
(2). With somepropersettingof theweights(w; )~ ;, thelargerthe
lengthof theestimatorL, thesmallerthevariability of theestimator
6», (for instance,for finite-variance(» ), and uniform weights
w; =1/L,1=1,2,..., L,varianceof 6,, scalesasO(1/L)). We
shouldfind thatfor larger L the controlbecomedessconserative.

Thesecondtlaim concernsa casewherethe conditionsin Claim
1 donothold.

CLAalM 2.

e Assumehat duration in real time of the losseventinterval
Sy, andthe sendrate X,, are nggativelyor non correlated.
If f(1/2) is concavein the region wheee the loss eventin-
terval estimatord,, takesits values,the contol tendsto be
conservative

e Corversely if S, and X,, are positivelyor non correlated,
andif f(1/z) is strictly corvexin theregion where theloss
eventinterval estimatord,, takesits values,and (6., )., is not
fixedto someconstantthecontmol is non-conserative.

In both cases,the more variable én is, the more pronouncedhe
effectis.

Application. We expectto have a closeto zero correlationfor
adaptve audioapplicationssuchas[4] whenpacletlossesin RED
routersareindependenof paclet size. Thus,dependingon which
corvexity conditionholds,we will find oneor the otheroutcome.
For SQRIY, the control shouldalways be conserative. The same
holdsfor PFTK with light to moderatdosses.The oppositeholds
for eitherPFTK formulaewith heary losseqlosseventratio larger
than0.1).

3.4 Numerical Examples

We now supportsomeof the obsenationswe madefrom our
analyticalstudy by numericalexamples. Sucha numericalstudy
enableaisto isolateindividual factorsthatwe expectto contritute
to eitherconserative or non-conserative behaior. We shaw later
in Section4 theresultsof nssimulations.

All resultsin this sectionare basedon numericalinvestigations
of the basiccontrolandthe comprehensie control, with functions
SQRT or PFTK-simplified.For PFTK-standardwe rely on nssim-
ulationsshown in Section4; in view of the claims, the resultsdo
notdiffer significantly

3.5 Validation of Claim 1

We consideiindependenandidenticallydistributed(i.i.d) (6,)»
with mamginal densityfunction pu(z) = Xexp(—A(z — z¢)), for
T > xo, and A, xzo > 0; p is known as generalizedexponential
distribution.

We explain why we choosethe densityfunction . 1 hassome
nice propertiesET(6o] = zo + A, cvi[fo] = =, SF[0o] = 2,
andK$[fo] = 6. Here

0
0 2 var-r[ﬁo]
0 =
CVT[ 0] E%[OO]Q ;

is the coeficient of variation;and

ET[(f0 — EZ[60])°]
vard [6p]3/2

ET[(6o — E7[60])"]
vard [6o]?

Sgr[eo] = ’ KQF[GO] =
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Figure 3: Normalized throughput E[X (0)]/f(p) versusp for
the basiccontrol; cv$[f] = 1 — 10~ 3; SQRT (Top) and PFTK-
simplified with ¢ = 4r (Bottom). The estimator weightsare as
with TFRC of length L.

arethe skewnessandkurtosisparametersrespectiely.* We note
thaty givesusafreedomto vary eitherE%-[0o] or cv$[o], while the
otherof thesetwo parameters keptfixed. At thesametime, skew-

nessandkurtosisparametersemainunchangedThusy enablesus
to separat¢heeffectsdueto convexity of 1/ f(1/x) andvariability

of 6,,. With someotherdistributions, for instancethe geometrical
distribution P(§y = k) = (1 — p)*~*, k > 1, we would have

ov$[6o] = T =p. In this case the variability of (6,,), would

decreasa@swe increasep. For someotherdiscrete-alueddistri-

butionswe may be ableto fix cv? 6], but not at the sametime the
kurtosisparametethat reflectsthe pealednesf the distribution,

andthusthe variability of (6,,),..

We computethe throughputE[X (0)] numericallyfor the basic
andcomprehensi controlfrom Equation(8) and(9), respectiely.
Theresultsareobtainedby Monte Carlosimulation;out of 5 inde-
pendensimulationsrunseachwith 10000samplesand0.95con-
fidenceintervals.

Ouir first objective is to evaluatethe impactof corvexity of the
function1/f(1/x). To thatend,we fix cv§[fo] = 1 — 107>, In
Fig. 3 we shav thenormalizedthroughputz = E[X (0)]/ f(p) ver
susp for the basiccontrolwith SQRT and PFTK-simplifiedfunc-
tions f. Thevaluesz < 1 correspondo the conserative behaior
(resp. = > 1 to non-conserative behaior). Ideally, we would
have z = 1. For SQRT fungtion,we obsene, for eachfixed value
of lengthL of theestimatoid,,, z is aroundthesamevalueirrespec-
tive of p. This constang of z with respecto p is to be expected.
For exponentiallydistributed #,, anduniform weightsw; = 1/L,

4Skawnessandkurtosisparametersjuantify skewnessand sharp-
nessof a probability distribution.
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Figure 4: Normalized throughput E[X (0)]/f(p) versusp for
the comprehensve control; cv$[fy] = 1 — 10~3; SQRT (Top)
and PFTK-simplified with ¢ = 4r (Bottom). The estimator
weightsare aswith TFRC of length L.

l=1,2,...,L,asimplecalculationreveals
. (L -1
VIT(L - 3)’

whichdoesnotdependnp; herel is thegammafunction. We also
cometo the sameconclusionby computingz for TFRC weights,
whichis lengthy, andthusnotshavn here.

On the other hand, for PFTK-simplified function, we obsere
that z decreasesowardsO as we increasep. This explainsthe
known throughputdropfor heary losses.

In Fig. 4 we shav the correspondingesultsfor the comprehen-

sive control. Theresultsarequalitatively the sameastherespectie
resultsfor the basiccontrol shavn in Fig. 3. For SQRT function,
the normalizedthroughputsare less, but fairly close,to the ideal
valuel. For PFTK-simplifiedfunction, the resultsare somavhat
lessconserative thanfor the basiccontrol. .

Next we investigatethe impactof the variability of 6,,. To that
end,we considerthe normalizedthroughputz aswe vary the co-
efficient of variation of 6,,, while we keepthe equilibrium point
fixedatp = 0.01 and0.1; seeFig. 5. We shov humericalresults
only for the basiccontrol with PFTK-simplifiedformula. We ob-
senethatthelargerthevariability of én, themoreconsenrative the
controlis. Thisis indeedmorepronouncedor larger dueto the
larger convexity andsteepnessf 1/f(1/x) for small z (large p)
with PFTK-simplifiedfunction.

Also obsene how thethroughputdepend®n L, thewindow size
usedfor the estimatord,,, in Fig. 3, Fig. 4 andFig. 5. A large L
reduceshe variability of §,, andthusincreaseshe throughput,as
predictedn Claim 1.

Lastly, we briefly mentionthe resultsobtainedfor 8,, geometri-
cally distributedwith parametep (notshawn in the paper).In this
case,the samequalitatve statementsalso hold, but with a slight
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Figure 5: Normalized throughput E[ X (0)]/ f(p) versusthe co-
efficient of variation of (6,),, for the basic control; 5 = 0.01
(Top)and p = 0.1 (Bottom). The function f is PFTK-simplified
with ¢ = 4r. The estimator weightssetas TFRC weights.

trend to non-conserative direction for large p dueto the reason
explainedearlier

3.6 Validation of Claim 2

We do additionalexperimentsto verify Claim 2, which, inci-
dentally also provide someexamplesof non-conserative behar-
ior. Consider(6,), thatwe defineasfollows. We supposehere
exists a hiddenMarkov chain(HMC) thatgovernsthelossevents.
We definethis HMC (Z.,.)» to bediscretetime clocked at the loss
events. Assume(Z,, ), takesvalueson a finite statespaceF; call
P = [p;;] thematrix of transitionprobabilities and its stationary
probability Take asamodelingassumption:

P(On =m|Z, =i, Zy, 0k, k <n) =P8, =m|Z, =1).

In otherwords, given that, at the n-th loss event, the HMC is in

the statei, 0, is independenof arything, but Z,,. Let g;(m) :=

P(0,, = m|Z, = i). Notice,(Z,)» isasemi-Marlov processvith
For thebasiccontrol,from (8),

ZieE e(io)m;

[ ( )] Zl‘eELJrl 6(20)9(217 ceey ZL)pio'il “tPip_q1ip Tig,
where
1
g(ir,... i) =EY[——=—|Z 1 =ir,..., 21 =i1],
f(1/60)

ande(i) = E%[00|Z» = i]. Likewise,oneobtainsthe throughput
expressiorfor the comprehensie control.

We next considerasimple,but instructive case:the 2-stateHMC
with L = 1. Withoutlossof generalitywe call onestategood and
otherbad we labelthe statespaceas E = {g,b}. Moreover, we
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Figure 6: The graph shows contour plot of cov$[ Xy, So] versus
pgb and pyg; ng = 200 and n, = 50. The function f is PFTK-
simplified with » = 100 msand ¢ = 4r.

assumeherearetwo fixedny > n; suchthatg,(n.) = 1, and

gv(ns) = 1. In otherwords, whenthe HMC is in the goodstate

(resp.bad),thenthelosseventinterval is fixedto ng (resp.ns).
Underthe abore assumptionsye obtain:

PbgTg + DgbTp

E[X(0)] = D
Pbg f(ln/gng) + Pgb f(l/l;mb) + pgbpbgh(ng7 nb) '

where,for the basiccontrol,

1 1
W) ~ f(1/ng)> (g = mo),

and,for thecomprehensk control,

h(ng, ) = (

h(ng.ms) = 2e1r(ng —nj) = 2eaq(ng * —m, 2)—
2 — 35 - ng—n
—5e3q(ng ® —m, ) — Fimy
We next discusghecovariancecov? [ X, So] of our2-stateHMC.
NoticethatX,, andS,, beingnegatively correlatedrnon-correlated
is equivalentto cov? [ X, So] < 0. Weshav aplotof covd [ X, So]
versusthe transitionprobabilitiesp,y, andpyg in Fig. 6. Obsere
thatthecovariances positive for smallvaluesof pg, andps,, which
correspondso the slow dynamicsof our 2-stateHMC. It is simple
to shaw, and perhapsinstructive to note, that for the slov HMC
limit, andf beingSQRT function,we would have cov? [Xo, So] —
var$[v/0o]; thusa positive value, increasingin the variability of
(6n)n- In view of our Claim 2, we expectto find non-conserative
behaior when the dynamicsof the HMC is slow, which we do
confirmnext.
We first considerthe basic control with PFTK-simplified for-
mula. In Fig. 7, we shav thenormalizedhroughpuE[X (0)]/ f ()
versugthetransitionprobabilitiesp,, andps, of our HMC. ny and
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Figure7: Normalized thr oughput E[X (0)]/ f (p) versuspg, and
g for the basiccontrol; n, = 200 and n, = 50. The function
f is PFTK-simplified with » = 100 msand q = 4r.

nyp aresetto 200 and 50, which correspondo the loss eventra-
tios 0.005and 0.02, while in a good and bad state,respectiely.

In Fig. 8 we shav numericalresultsfor the comprehensie con-
trol obtainedunderthe samesetting. Note that we do find some
slight overshootin the lower left cornerof the figures(normalized
throughputgreaterthanunity).

Notethatfor the givenvaluesof n, andn; thefunction f(1/x)
is concae with z in the region where x takes its values. Fur
ther, obsenre from Fig. 6 andFig. 7 (resp. Fig. 8) that whene&er
covd [Xo, So] is not positive, the controlis conserative. The last
two obsenationstogetherconfirm the first statemenbf Claim 2.
Thesecondtatemenof Claim 2 we donotverify herenumerically
but by nssimulationin Sectiomd. Furthemumericalkexampleswith
anothemodel,thatsupportClaim 2 canbefoundin [17].

We give somefurther obsenations. By Corollary 1 we should
find the conserative behaior for pg, + ppg = 1 (notethatthisis
adegenerateasesuchthat (6, ), isi.i.d.), whichwe confirmto be
the case We notethatvery conserative behaior occursfor pgp, +
Phg > 1, wherecov$ [ X, So] is negative, but alsocov$ [, o] may
be negative; thisis to be expectedrom the boundon throughputn
Equation(10). Anotherobsenation is that the non-conserative
behaior happendor positively correlated 6., )n (pgs + pPog < 1),
in particulay for smallvaluesof pg, andpy (slow dynamicsof the
HMC). In the remainderof this section,we discusshis limit case
in somemoredetail.

We shaw that for the slow dynamicsof the HMC the control
mayhave asubstantiabvershootasopposedo amodesbvershoot
obseredin Fig. 7 andFig. 8. We definethe slov HMC limit as
Dgby Pbg — 0, andpgy = upeg, for somefixedu > 0. Then,for
boththe basicandcomprehensie controlwe obtain:
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EZ[6o]
_ ol .
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PbgTg + PgbTp

E[X(0)] —

Poo 701 /gy T Pob 701 o)
Thus,E[X (0)]/ f(p) for our slow HMC limit is:

1 UNg + Np

7°(u) = (12)

+1 n n
FGanginy) UFti/ngy + 70 /)
For a given function f, onemay computeu™® at which the global
maximumof z° (u) is attained.For SQRT function,thecalculation
is tractableandwe obtainu® = /ny/ng. Thatis

Pog _ [T
DPgb Ng

Noticethat,thelargerthediscrepang of thegoodandbadstates
(largerng /ny), the smallerthe relative numberof transitionsfrom
thebadto goodstate.Thelastimpliesthatthe HMC is mostof the
time in the badstate, with occasionakhortexcursionsto the good
state. It is for this dynamicsof our HMC, whenwe may expect
significantnon-conserative behaior (overshoot).

For SQRT function f, themaximumvalueof z° is

=1 2+,/@+ L (13)
2 np /g
ny

which we noteis monotonicallyincreasingwith ng /ns.

We shaw in Fig. 9 numericalvaluesof z* (13) versusthe ratio
ng/ny, Which we recallis for SQRT function. We alsoshow the
resultsfor PFTK-simplifiedfunction by numericalcomputatiorof
the maximumof (12). We obsene thatfor suficiently largevalues
of ng/n, we mayhave a substantiahon-conserative behaior.

for the slow HMC limit

Maximum E[X(0))/f(p)

L
0 10 20 30 40 50 60 70 80 90 100
ng/nb

1 I I I I

Figure 9: Maximum normalized thr oughput E[X (0)]/f(p) at-
tained in the slow HMC limit versusng/ns; thick line is for
SQRT; thin lines are for PFTK-simplified (» = 100 ms, ¢ =
4r); np is setasindicated in the graph.

4. VALID ATION BY SIMULATION

We conductns simulation experimentsto validate the claims
madein Section3.3. Unlessotherwiseindicated,we considera
link sharedby TFRC and TCP Sacklconnections.The link im-
plementsRED queuemanagementf the rate of 15 Mb/s; we set
the buffer length,min_thresh,andmaxthreshto 2.5,0.25and1.25
times the bandwidthdelay product, respectiely. The round-trip
timeis about50 ms. We mimic this settingfrom [2].

4.1 Validation of Claim 1

In Fig. 9 we shav thenormalizedhroughpufor PFTK-standard
formula. We verify, thelargerthelosseventratio is, themorecon-
senative the controlis. We alsonotethatthe largerthe smoothing
of thelosseventinterval estimator(larger L) is, thelessconsera-
tive thecontrolis. Next, for PFTK-simplified(Fig. 10) we obsere
the resultsarevery closeto thosewith PFTK-standardWe verify
in Fig. 11, the conserativenesswith SQRT formulais lesspro-
nouncedandlessdependenbn L. In all the casescovarianceof
theinstantaneousalueandthe estimatorof thelosseventinterval
is small;indicatinglow autocorrelatiorof thelosseventintervals.

4.2 Validation of Claim 2

We considera sourcethatsendgacletsat regulartime intervals
(20 ms), but controlspaclet sizes. The sourcehasa connection
establishedhroughalossmodulethatallows usto tunethe paclet
droprate. For sucha source,we have the covarianceof the send
rateandthe interval betweentwo losseventsequalto zero. Thus,
by Claim 2 we expectour sourceto be conserative for f(1/x)
concae with z; corversely non-conserative for f(1/x) corvex
with z. We show the resultsfor two lengthsof the losseventin-
terval estimatorL. = 4 and8 (resp. Fig. 12 and13). We verify,
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the controlwith SQRT is alwaysconserative. For PFTK-standard
and PFTK-simplifiedthe sameholdsfor a low lossrate,however,
for high loss rate the functionsare convex, and thusthe control
exhibits non-conserative behaior in this region. Obsene from
Fig. 12 and Fig. 13, asthe loss event ratio increasesthe coefi-
cientof variationof é,, getssmaller Smallervariability of theloss
eventestimatomrmakesthe controlto be eitherlessconserative or
lessnon-conserative, dependingon which behaior is in action.
Contrary largervariability of . exaggerategitherconserative or
non-conserative behaior.

5. CONSERVATIVE DOESNOT MEAN TCP-
FRIENDLY

We have focusedso far on conserativeness,i.e., whetheran
adaptve sourcedoesindeedsatisfy its equationin the long-run.
In this section,we point out that this is not the sameas TCP-
friendlinessfor two reasons.

e The loss event ratio experiencedoy TCP and our adaptve
sourcemaydiffer.

e TCPmaynotsatisfyits own equation.

We addressthe former point with somedetail (within the space
limitation of this article),andillustratethelatteron anexample.

Normalized throughput E[X(0)}/f(p)
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Figure1l: Samesettingaswith Fig. 10,but function f is PFTK-
simplified.

5.1 LossEventRatio seenby Various Sources

We first performa simpleanalysis,asfollows. Assumethatthe
sourcesn thenetwork aredrivenby the hiddencongestiomprocess
Z(t) thatevolvesin realtime, t € R, andtakesvalueson a count-
ablestatespaceE. The statetransitionsare clocked by the point
process(T})r; assumedo be stationarywith finite intensity \’.
This is anapproximationwhich fits with the caseof a sourcewith
negligible influenceon the globalnetwork [15].

Let ; := P(Z(0) = ¢) denotethe steady-stat@robability that
thecongestiorprocesss in thestatei € E. Define

1
T B30 Z(0) = 1]
Define,also,z; = E[X(0)|Z(0) = i]. Notethatp; andz; are
thelosseventratio andthe averagesendratewhile the congestion
processs in the statei. We shaw in theappendix

Pi

D icp biDiTimi

14
ZieEbi‘iﬂri ' (14

D=

where

b = EOT' [ZnEZ 0n1Tne[o,S())‘Z(0) = Z}
- S . '
E2., [fo 0 X (s)ds|Z(0) = i]
Wewould have,b; — 1, asi—f — 0, fori € E (here by definition,
Xi = 1/E%[So|Z(0) = i]). Thelimit correspondgo the sepa-
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Figure 12: Samesettingaswith Fig. 10, but function f is SQRT.

ration of timescalesargument;we assumehe congestiorprocess
evolvesmoreslowly thanthe timescaleof the control (remember
thatthe controlis clocked by the lossevents).We baseour further
discussioron this limit losseventratio,i.e.
P Yicr 172'_@'7” .
Yiep Timi
If our sourceis non-adaptie (call it “Poisson”)thenz; = 7 is
independenof i. Theresultinglosseventratio pp = 3, TP
canbethoughtof asthetime-averageof the network losseventra-
tio; exceptfor possiblealiasingeffects,it shouldbe closeto whata
constanbit rate(CBR) sourcewould experience Now if, like TCR,
our sourceis very responsie, i.e., follows the hiddencongestion
processretty closely thenz; dependon in thefollowing way:
Z; is largefor “good” stateqp; small)andsmallfor badstateqp;
large). Thuswe shouldhave asmallerp. For TCR, thisis confirmed
by measurementm [14]. The moreresponsie the sourceis, the
morepronouncedhis shouldbe; now TCPis expectedoe morere-
sponsve thanour adaptve source whoseresponsienesslepends
on the averagingwindowv L. We summarizethis asfollows (see
Fig. 15for anillustration).

(15)

CLAIM 3. The loss eventratios for TCP (pr), our adaptive
equationbasedrate contmolled source (pz), and a non-adaptive
source (Poisson)(pp) shouldbein therelation

pr < pe < pp.
Themore responsivesource E is, thecloserpg shouldbeto pr.
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Figure 13: Upper graph shows normalized thr oughput versus
the losseventratio asattained by a sourcewith constantpacket
rate, but controlled packet sizes.The connectiongoesthr ough
a lossmodule where packet lossoccurs. The length of the loss
event interval estimator is . = 4. The lower graph shows
squared coefficientof variation of (65, ).
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Figure 14: Samesettingasin Fig. 13,but with the length of the
lossevent interval estimator L = 8.

5.2 Putting Things Together

Claim 3 tells usthatour adaptve sourceseesa higherlossevent
ratio than TCR, which drivesit in the TCP-friendly direction, on
top andabove the factorsmentionecdearlier Assuming(asis most
common)thatthe conditionsfor conserativenessn Section3 ap-
ply, wewouldhavez4 < f(pr) < f(pr), (thelatteris becausef
is decreasing)This makesour adaptve sourceT CP-friendlyunder
the assumptiorthat TCP doessatisfyits equation. Unfortunately
thisis only approximatelytrue. Fig. 16 shovs anexperimentwhere
TCPis belav the formulaPFTK-standardor light load andabove
for high loads. Fig. 17 shaws that, asa result, TFRC flows have
higherthroughputfor mediumload than TCP. This is in spite of
TFRCbeingconsenrative (Fig. 9) andexperiencinghigherlossthan
TCP (Fig. 15), aspredictedby our theory Thisillustratesthe im-
portanceof separatinghe 3 factorsidentifiedin this paper
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Figure 15: Losseventratio asexperiencedby TFRC, TCP, and
Poissonconnectionsversus N (number of TFRC and number
TCP connectionsin one bottleneck). We have pr < pr < pp
asexpected.Also, the smootherthe TFRC flows (larger L), the
higher the lossevent ratio.

6. CONCLUSION

Our studyshouldhelpdesignersf TCP-friendlyequation-based
rate control betterunderstandhe trade-ofs that have to be taken.
First, it is importantto separatelyverify the threeelements: (1)
conserativeness,(2) TCP loss event ratio versusthis protocols
losseventratio, and(3) TCP’s obediencdo its own formula. Fail-
ing to do soblursthe settingof parametersSecondpneshouldbe
awareof the strongdependengonthe natureof function f; SQRT
behaesdifferentlythanPFTK. If PFTK is used,andundersome
conditionsonthelossprocesglefinedin Claim 1, very pronounced
conserativenessshouldbe expectedfor heary loss. Undersome
otherconditions(Claim 2), theoppositemayhold. In ary casethe
more variablethe estimatoris, the more pronouncedhe effect is.
This might leada protocoldesignetto changesomeparametersf
her protocol,in orderto correcteithereffect. Understandingvhy
andwhenthe effectsoccuris essentiato avoid undesiredcorrec-
tions. By theirgenerahature andbecausehey arebasedn anal-
ysis,ourresultsshouldapplyto alarge classof situationsncluding
dynamicallyvaryingervironments.

Therearethreedirectionsfor further work. First, our findings
shouldbe confrontedwith measurementsn particular theautoco-
variancepropertyof losseventintervalswill beof interest.Second,
theimpactof the variationof roundtrip time needsto beincorpo-
rated;this canbe doneusingthe sameapproactaswe usedfor the
otherfactors. Third, we focusedin this paperon the relationbe-
tweenlosseventratio andthroughputjeaving asideary prediction
of which valuesthesevariablesmaytake, in a givensetting;it will
beinterestingo studythisin moredetail,in particulartheexistence
of stablepoints.
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APPENDIX
A. APPENDIX

Proof of Proposition 1

PrROOF. Thestartingpointis Palminversionformula[1], which
relatestime averageto event averagewith respectto somepoint
processln our settingit readsas:

EF[f," X (s)ds]

EXO) = gy g,

(16)

We canthink of (16) astheratio of theexpectedhumberof paclets
sentin-betweentwo successie loss eventsandthe expectedloss
eventinter-arrival time. However, it is importantto remembethe
expectedvaluesarewith respecto the Palm probability thatis as
seenatthelosseventinstants.

For thebasiccontrolthis gives

_ EF[X0S0]
By (3), 0n = XnSn, Xn = f(1/6,), andS,, = 7 Oz, ;- Com-

(1/0n
bining thelastthreeidentitiesinto (17) we obtain(8). [

Proof of Proposition 2

ProOF. Notethatif 6,41 < 6, thenthe comprehensie con-
trol in Equation(9) beharesthe sameway asthe basiccontrol (3).

In this casef,, = X,,S,, andthusS,, = # Next, we con-

sidertheothercasej.e. 6,11 > 6.,.
Supposd/,, < Sp. Then,for U, <t < Sy,

t
X (s — 7s)ds,
Un
wherer; is thefeedbacldelay Usingthedefinitionof thecom-
prehensie control (Equation(4)), we obtainthe following delayed
differentialequation(DDE):

dil(tt) =/ (wle(t—lrt)+wn> ’

whereW,, = 25:711 Wi4160n_1.
Shift the time origin to 75, andsolve 6(S,) = 6, for S,. For
this we needfirst to solve theabore DDE for a givenfunction f.
We ngglect the feedbackdelay and thus considerthe ordinary
differentialequation(ODE):

ao(t) 1
dt / (wlﬁ(t)—l—Wn)' (18)

By doing so, notethatwe approximateS,, with a smallervalue
(thisis dueto f(1/x) non-decreasingith z). GiventhatsS,, acts
in thedenominatowof thethroughputexpressionwe in factobtain
anupperboundon thethroughput.

Finally, solving (18) for PFTK-simplifiedformula, we cometo
the expressiongiven in Equation(9). By the sameargumentas
above we claim Equation(9) is an upperboundon the throughput
for ary function f thatis lessthanor equalto PFTK-simplified(or
SQRT by settingcs = ¢3 = 0). [

Proof of Theorem 1
PROOF. Defineg(z) := @ Alsocallm = £, thusET[6o] =
E%. [éo] = m. FromEquation(8), conserativenesss equivalentto
ET[00g(f0)] > mg(m) (19)
Functiong is corvex, thusis above its tangents:
g9(z) > (x — m)g'(m) + g(m).

Apply theaboreto z = 6o, multiply by 6, andtake theexpectation.
After somecalculus this shavs Equation(10).

Now f is decreasing.Sincecov%[@o,éo] < 0, it follows from
Equation(10) thatthe controlis conserative. []



Proof of Proposition 3

PrROOF. Usethesamenotationasin the proofof Theoreml. By
Equation(8) theratio of throughputo f(p) is equalto

= mm (20)
EQ. [909(90)]
Now we have
97 (x) < g(z) <rg™(2).
The sameargumentasin the proof of Theoreml, appliedto g**
insteadof g, shavsthatandthusp <r. [

Proof of Theorem 2
PrROOF. Usethesamenotationasin the proof of Theoreml.
Part1. By (C2)

E7[00g(60)] > n

o[ 1 1’
Er {Q(OAO)}

now (F2) meanghat % is concave, thusby Jensers inequality:

(21)

E%{{}s L (22)
9(6o) | — g(EF[60])

which combinedwith the previous equationshaws thatthe control
is conserative.

Part 2. By (C2c) and (F2c) we have the reverseinequalities
in Equation(21) and Equation(22), but the inequalityis strict in
Equation(22) becauseonvexity is strictandd,, is notadegenerate
randomvariable. [

Derivation of Equation (14)

PrROOF. We startfrom Equation(1). By Neveu’s exchangefor-
mula([1], Sec.3.3.4)andsimpleconditioning

0
1 Eq/ [Znelene[o,S{))]

P = E0790]

EY DX nez oanne[o,Sé)]
- ZieE ngl [Znez lTne[o,S(’)) |Z(0):i]P8~/ (2(0)=1)
T e n B ez O, cpo,50) | 2O =P, (ZO)=)

(23)

We show thattheabove is equivalentto Equation(14).
As anapplicationof Palminversionformulato X (0)1(g)—;, we
obtain

0,150 s)ds =1
7 = E[X(0)2(0) = ] = =" UéoT, [);6(\;([0;2 :(OZ)} !

wherewe alsouse(obtainedby anotherapplicationof Palm inver-

sionformulato 1z 9)—;)

EZ[S51Z(0) = 1]
EZ [S0]

By a similar algument,from Neveu's exchangeformulaappliedto
6o 12(0):2-, we have

T = P(Z(0) = i) = P32 (Z(0) =4).

_l _ E%[90|Z(0) — i = E%, [Znez aanne[o,Sé)|Z(0) :. Z]
bi ES D nez Lz, ef0,54)12(0) = 4]
wherewe usethe identity obtainedby Neveu's exchangeformula
appliedto 1z(g)—;,
E(I]“’ [Znez 1Tne[0,s(’,) IZ(O)
EZ [ nez 1m,ei0,50)]

Finally, by pluggingtheabove expressiondor z;, 7;, andp; into
Equation(14) we recorer Equation(23). [

PY.(2(0) = i) =

=i P2/ (Z(0) =1).

A.1 Comparison of conditions in Theorem 1
and Theorem 2
Usethe samenotationasin the proof of Theoreml. Noticethat
by theassumptiorthat f is non-increasingSection2.2), g is non-
increasingaswell. For technicalcornvenience supposey is strictly
decreasingitm, thatis ¢’(m) < 0.

ProPOSITION 4. AssumgF2c), (C2c),and (V) hold, i.e., the
secondpart of Theoem2 applies. Then,in Theoem1, if (F2) is
true, it mustbethat (C1) doesnothold.

PrROOF. Notetheequialence
m

ES/(1/60)]
Under(F2), by the sameargumentasin Theoreml,

cov[Xo, So] > 0 < EZ[00g(fo)] <

E[60g(60)] > g’ (m)covi (o, fo] + mg(m).

Supposé€C2c)and(F2) aretrue,thenfrom thelasttwo inequalities,
we concludethatthefollowing is implied:

0 A m 1 1
covt[fo, Oo] > 7 (m) <E‘%[f(1/§0)] — f(l/m)) .

Finally, if f(1/x) is strictly corvex with z, thatis (F2c)holds,and
(V) holds,thentheright-handsidein theabore inequalityis strictly
positive, andthus(C1) doesnothold. [

An Intermediate Property betweenTheorem 1
and Theorem 2

The following theoremis intermediatebetweenTheorem1 and
Theorem2.

THEOREM 3. If (F1)and
(C3) cov%[XOSg, XLO} > 0,
thebasiccontml is conservative

The proof is similar to that of Theorem2 andis not given here.
If the corvexity condition(F1) is almosttrue, thenthe sameasin
Proposition3 holds.

Thistheorenis intermediatdetweerTheoreml andTheoren?.
Indeed(F2) = (F1) and(C3) = (C2). Theformeris straight-
forward;aproofof thelatterimplicationusesheconvexity of 1/x.
ThusTheorem3 is with awealer conditionon thefunction f than
Theorem2, but this comesatthe expenseof having a strongercon-
dition onthestatisticsof (6, ).. A naturalquestionis whethemoth
Theorem3 andthefirst partof Theorem2 derive from amoregen-
eraltheoremwhich would statethat underthe combinationof the
lessrestrictive conditions(F1) and(C2), the controlwould be con-
senative. But this is not true; a counterexampleis the casepre-
sentedn the secondparagraplof theinterpretatiorof Theorenm?.



