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Layered Media Multicast Control (LMMC): Rate
Allocation and Partitioning

Homayoun Yousefi’zadeh, Member, IEEE, Hamid Jafarkhani, Senior Member, IEEE, and Amir Habibi

Abstract—The objective of layering techniques of distributing
multimedia traffic over multicast IP networks is to effectively cope
with the challenges in continuous media applications. The chal-
lenges include heterogeneity, fairness, real-time constraints, and
quality of service. We study the problem of rate allocation and re-
ceiver partitioning in layered and replicated media systems. We
formulate an optimization problem aimed at maximizing a close
approximation of the so-called max-min fairness metric subject to
loss and bandwidth constraints. Our optimal Layered Media Mul-
ticast Control (LMMC) solution to the problem analytically deter-
mines the layer rates and the corresponding partitioning of the re-
ceivers. Our simulation results show the effectiveness of our pro-
posed solution in realistic scenarios.

Index Terms—Fairness extrapolation, heterogeneity, layered
media, multicast IP networks, optimality, rate allocation, repli-
cated media, receiver partitioning.

I. INTRODUCTION AND RELATED WORK

TRANSMITTING real-time compressed digital media over
multicast IP networks has been the subject of heavy re-

search in the recent years as surveyed by Li et al. in [17] and the
references cited therein. In a typical multicasting transmission
scenario, a source generates real-time media traffic following a
periodic pattern. The periodic pattern of real-time media traffic
generated at a source consists of many frames in a unit of time
at a variable bit rate, i.e., the number of bits per frame varies
for individual frames. The receivers rely on a preserved frame
periodicity at the time of play back. Data not available at the
play back time is considered lost. In addition, the delay jitter or
the difference in the delay of packets arrived at the receivers has
to be small. In order to accommodate the latter need, buffering
techniques at the receiver can be employed. A review of the liter-
ature reveals three different adaptive bit-rate media multicasting
schemes for the transmission of digital media. The schemes are
described below.

1) Single stream adaptive approach was first presented by
Bolot et al. [4] and Ammar [2] in which a single encoded
video stream is transmitted by the source with feedback
returned from the receivers to the source. The source uses
the feedback information to adapt its data rate. One of the
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potential problems with this approach is the problem of
feedback implosion for a large number of receivers at-
tempting to return feedback to the source. Practical video
multicast protocols targeting a large number of receivers
are required to address this issue. While it is straightfor-
ward to implement, the single stream adaptive approach
is unable to properly address the problem of receiver het-
erogeneity.

2) Replicated media streams approach was first presented by
Cheung et al. [5] within the context of DSG protocol as an
extension to the single stream approach that is capable of
addressing the heterogeneity issue. In this approach, the
source sends multiple streams carrying the same video
with different qualities and bit rates. Each stream is ob-
tained by encoding the video with different compression
parameters and is sent to a different multicast group. Each
individual receiver is able to join and change its group ac-
cording to its capacity. While the simplicity of this scheme
in addressing the heterogeneity issue is attractive, it has
the drawback of requiring the network to carry redundant
information of replicated media streams.

3) Layered media streams approach was first proposed by
Deering et al. [6] in the context of multicast routing and
further enhanced by McCanne et al. [20] in the context of
RLM protocol, Amir et al. [1] in the context of SCUBA
protocol, and Li et al. [18] in the context of rate control
aspect of LVMR protocol. The approach relies on the
ability of many video compression schemes to divide
their output bit stream into layers; a base layer and one
or more enhancement layers. The base layer can be
independently decoded providing a basic level of video
quality. The enhancement layers can only be decoded
together with the base layer providing improvements to
video quality. This approach is also known as successive
refinability approach in the context of source coding
literature and was discussed by Jafarkhani et al. in [12]
and references therein. Using this capability, a video
multicast source could send each layer to a different
multicast group. Receivers would then join at least the
base layer group and join as many enhancement layer
groups as their capacities allow. Layered media approach
provides an elegant and efficient way to deal with the
heterogeneity issue at the expense of protocol complexity.

As a real-world example of the subject material of this
study, one can consider the transmission of a digital video
stream to the members of a pay-per-view entertainment club.
Club members are typically connected through dial-up, ISDN,
Cable/DSL, 10baseT Ethernet, 100baseT Ethernet, and gigabit
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Ethernet lines and consequently belong to different bandwidth
groups. The differences among processing power, topology,
and protocol implementation at the receiving ends typically
cause deviations from the nominal bandwidth capabilities of
the members in each bandwidth group. Assuming either the
replicated or the layered media system approach is used for
the transmission of the video stream, an important practical
question is that what is the optimal number of groups for
transmitting the stream? The answer is typically specified by
considering the trade off between receiving ends’ bandwidth
heterogeneity and the incurring overhead in source encoding,
receiver decoding, and multicast addressing. Without consid-
ering coding and multicasting overhead, the number of groups
is directly mapped to the number of bandwidth categories.
However, it is often required to select a smaller number of
groups than the number of bandwidth categories in order to
reduce the overhead. In such cases, a number of high bandwidth
groups may be combined into one group in order to address the
tradeoff between heterogeneity and overhead.

The material proposed in this paper is most closely related to
the following articles. In [14] and the follow-on work of [15],
Jiang et al. explore the issue of improving inter-receiver fairness
in multicast ATM sessions with an Available Bit Rate (ABR).
In order to determine the optimal partitioning and allocation of
the group rates, the authors formulate a max-min fairness opti-
mization problem subject to the maximum loss tolerance of a set
of receivers. The authors apply their formulation to replicated
media systems in the context of DSG protocol. They also pro-
vide a set of heuristic rules for solving the formulated problem.
Their three proposed heuristic rules are consistent with our prac-
tical discussion of the previous paragraph and are intended for
ensuring (1) dissimilar receivers are not grouped together, i.e., a
set of receivers are increasingly ordered and partitioned in terms
of their isolated rates, (2) receivers of similar performance levels
are grouped together, i.e., the normalized standard deviations
of the isolated rates of the receivers in each partition are rela-
tively small, and (3) a group of receivers can only be split into
two groups if the difference between the resulting group rates
is larger than the smaller group rate. In [16], the same group of
authors apply their work to Internet-driven applications with the
considerations of TCP-friendliness. In [29], Yang et al. provide
a dynamic programming algorithm to simultaneously solve the
problems of optimal partitioning and rate allocation for layered
media systems.

The main objective of the current research work is to provide
an analytical framework for the partitioning strategy and rate
allocation of both layered and replicated media systems over
multicast IP networks in the context of Layered Media Multi-
cast Control (LMMC) protocol. In this study, we assume the ex-
istence of congestion and flow control mechanisms capable of
dynamically addressing inter-session fairness issue, i.e., a fair
distribution of available bandwidth among multiple media and
other sessions such as TCP sessions. Typical examples of such
mechanisms are given in [26], [19], [28], [22], and [27]. In addi-
tion, our work of [30] proposes a framework of flow control for
layered and replicated media streams. The main contributions
of this paper are in three areas. First, the paper introduces an
analytical approach in which a noncontinuously differentiable

max-min fairness function is extrapolated by a class of math-
ematically well-behaved continuously differentiable functions.
The extrapolated functions satisfy the conditions required for
applicability of traditional optimization techniques. Second, the
paper provides an analytical solution to a formulation of the op-
timal rate allocation problem of the replicated and layered media
systems. Third, the paper offers a near optimal receiver parti-
tioning strategy maximizing the enhanced fairness utility metric
for any set of allocated layer rates.

Specifically, we formulate a two-phase optimization problem
of partitioning and rate allocation after extrapolating the
so-called max-min fairness metric with a mathematically
well-behaved function. In the first phase, we analytically solve
the optimal rate allocation problem for individual layers of the
media session assuming the number of layers is given. The
solution to this first problem considers receiver heterogeneity,
i.e., the variation of the bandwidth among different receivers
of the target session by means of maximizing the extrapo-
lated inter-receiver fairness metric. In the second phase, we
provide an optimal partitioning strategy for the layered media
session based on the allocation rates of the first phase. The
solution to the second problem maximizes the overall fairness
utility function of the media session. Considering the phasing
approach of our solution, we introduce an iterative approach
that can reach a near-optimal solution by iteratively applying
the partitioning result of the second phase to the first phase
and solving the optimal rate allocation problem with the new
partitioning strategy. This is equivalent to employing steepest
descent optimization strategy and is guaranteed to reach an
-neighborhood of a local optimal point if such a point exists.

In summary given the overall available bandwidth to a media
session, the LMMC solution to the formulation of the problem
identifies the optimum rates for each individual layer and
the corresponding receiver partitioning such that the fairness
utility function of the session is maximized while satisfying
the problem constraints. To the best of our knowledge, this is
a unique approach providing an analytical solution to the rate
allocation problem of layered media in multicast networks.

An outline of the paper follows. In Section II, we formu-
late the two-phase receiver partitioning and rate allocation
problem considering individual receivers max-min fairness. In
Section III, we analytically solve the optimal rate allocation
problem of the first phase assuming a given partitioning. In
Section IV, we use the allocated rates of Section III to obtain a
near-optimal partitioning strategy. In Section V, we introduce
an iterative approach relying on the solutions of Sections III
and IV to reach a near-optimal solution. Section VI focuses
on performance evaluation and includes the simulation results
along with practical considerations. Finally, Section VII con-
tains a discussion of the future work and concluding remarks.

II. FORMULATION OF THE PROBLEM BY MEANS OF

FAIRNESS EXTRAPOLATION

In this section, we focus on the general rate allocation and par-
titioning problem of the layered and replicated media sessions.
The problem aims at transmitting a stream of digital media to a
set of receivers with different bandwidth capabilities such that
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each receiver can create a reconstruction of the stream with a
quality proportional to its own bandwidth capability. We for-
mulate the problem in a manner similar to that of [16], [15], and
[29] with an extra constraint on the overall available bandwidth
to the session. The previous problems can hence be considered
as a specific case of our problem.

Consider a multicast media session with a partitioning of the
receivers into groups. Recall that for a media session with

receivers and groups, a set is called a
partitioning of the receiver set if is a decom-
position of the set into a family of disjoint sets. Make note of
the fact that we are formulating the problem for a given number
of groups. The impact of the changes in the number of groups

is investigated in Section VI. The term group rate is used to
denote the aggregate receiving rate of a receiver in the group
while the term layer rate is used to denote the transmission rate
to a specific layer. For an ordered partitioning of the receivers
into groups with ordered group rates of such
that , the layer rates of a layered media
session are calculated in the form of

(1)

A receiver in group subscribes to layers 1 through receiving
an aggregate rate of .

Interpretation of our formulation in the case of replicated
media streams is also straight forward. For an ordered parti-
tioning of the receivers into groups with or-
dered group rates of such that

, the layer rates are the same as the group rates. A receiver
in group only subscribes to layer receiving a rate of . The
interpretation difference has a minor impact on the formulation
and consequently the solution of the problem in some special
cases which will be discussed in Section III.

The optimization problem is formulated by means of defining
a per receiver max-min fairness utility with the objective of max-
imizing the session utility defined as the sum of receiver utili-
ties over the layered media session. Each receiver is assumed to
have an isolated multirate max-min fair rate of as described
in both [14] and [23]. This is the reception rate of the receiver
and is typically determined by a network bottleneck link from
the source to the receiver or the receiver itself. For the clarity of
representation, we also assume that the receivers are numbered
such that their isolated rates are in a nondecreasing order, i.e.,

. In addition, each receiver is assumed to
have a loss tolerance identified as its largest acceptable loss
rate. Therefore, the group rates should satisfy the following
inequality for individual receivers of groups :

(2)

In [14], a class of fairness utilities are defined for re-
ceiver of group by means of satisfying the following con-
ditions:

• .
• .
• if .
• is nondecreasing in the range .
• is nonincreasing in the range .

In this paper, we work with the most widely accepted example
of such utility functions, the so-called max-min fairness utility
function defined as

(3)

The group utility for the group with a group rate is defined
as

(4)

In order to assign priorities to the different receivers of a group,
the fairness utilities of the receivers can be multiplied by a pa-
rameter with the following characteristics:

for

for (5)

The choice of parameters is a design decision allowing for
unequal contribution of the receivers to a group utility according
to their importance. The parameters may be statically assigned
or dynamically vary over time. Generally speaking, the choice
of parameters does not have any significant impact in our
study. The session utility of the partitioning
is defined as

(6)

The objective of both heuristics given in [15] and the dynamic
programming algorithm given in [29] is to determine the optimal
partitioning and the optimal layer rate allocations such that the
function defined in (6) is maximized considering receivers loss
constraints. The rate allocation optimization problem is, then,
formulated as

(7)

subject to:

(8)

for the optimal partitioning leading
to the calculation of the optimal rates .

In Theorem (1) of [29] the existence of an ordered receiver
partitioning that maximizes the function defined in (6) is proven
assuming the receiver utility function satisfies a Re-
ceiver Utility Property (RUP). The RUP holds for a receiver with
an isolated rate in a group with a group rate if

• is nondecreasing in the interval and nonin-
creasing in the interval for a fixed ;
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Fig. 1. Plots of F (r; g) and E(r; g) versus g for a fixed r.

• is nondecreasing in the interval and nonin-
creasing in the interval for a fixed .

We now introduce an extrapolation technique to replace the
noncontinuously differentiable max-min fairness utility for the
receiver of group defined in (3) with a mathematically
well-behaved function over the real numbers axis while satis-
fying RUP. Such an extrapolation technique provides us with
the opportunity to introduce a more effective solution to the
problem of rate allocation and partitioning in terms of time and
space complexity. By mathematically well-behaved, we mean
that our so-called extrapolated function is continu-
ously differentiable and has no poles over the real numbers axis.
We select a rational function in the form of

(9)

and note that not only is well behaved for parameter
satisfying the boundary condition , but it satisfies

the boundary and maximum conditions of function .
The matter is best explained by a graphical illustration. Fig. 1
shows generic sample plots of and versus for a
fixed . It is important to note that since both and
functions can transparently interchange the variables and , we
could consider the plots and versus for a fixed

, instead. Next, we employ least square error estimation tech-
nique to find the optimum value of the parameter within the
interval of interest considering the constraint
function of (8) and as shown below:

(10)

Solving (10) for different values of and in the intervals of
interest reveals the range for the optimal
value of parameter . In our calculations, we perform a table
look up operation to extract the optimal value of parameter .
Appendix I describes the details of the extrapolation technique.

We now formulate the new rate allocation problem with an
extra constraint on the available bandwidth to individual groups
of the session as

(11)

subject to: (12)

(13)

where in the constraint of (12) is defined as
, the same as that of (8), and the con-

straint of (13) indicates the available group bandwidth as the
result of enforcing a per group inter-session fairness algorithm.
Further, the function is the group fairness utility defined
as

(14)

By defining , we convert the
rate allocation problem to

(15)

subject to: (16)

We note the difference between the loss tolerance constraints
and the group bandwidth upper bounds . While

the former reflects the receivers bandwidth processing capa-
bilities, the latter is the result of employing a flow control
mechanism with the objective of enforcing inter-session fair-
ness among different flows.

III. PHASE 1: LMMC OPTIMAL SOLUTION TO THE RATE

ALLOCATION PROBLEM

In this section, we provide an analytical solution to the op-
timal rate allocation problem formulated by (15) and Constraint
(16) that can be applied to both layered media and replicated
media sessions. Appendix II includes the solution for another
case in which an overall available bandwidth for the session is
given instead of the available bandwidth to individual groups of
the session. The general problem of (15) and Constraint (16) can
be converted to an optimization problem without constraints by
defining a Lagrangian function in the form of

(17)
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where the parameters for are the Lagrange
multipliers in the Lagrangian Equation (17). The solution to
the unconstrained problem can then be obtained by solving

. However considering the specific form of
the function and the constraint set of (16), the most
straight forward way of solving for the optimal solution is to
decompose the system of equations and unknowns
obtained from and the constraints (16)
into pairs of independent equations. This is in essence
equivalent to solving the set of individual unconstrained
problems of and then investigating the
impact of applying the corresponding inequality constraint

on individual results. Equation (18) shows the
simplified formulation applied to the set of independent
problems.

subject to: (18)

where . The set of optimization problems of (18)
can be solved by finding the roots of the following equations:

(19)

and extracting the global maximum from among the set of local
optimal points satisfying Constraint (16) and

(20)
Prior to proceeding with the solution to individual optimiza-
tion problems, we review the mathematical characteristics of
the function . We first note that the function is
nondecreasing in the interval and nonincreasing in
the interval where indicates the minimum iso-
lated rate and indicates the maximum isolated rate of
the receivers belonging to group . This is true because the
function consists of a sum of a number of the receiver
utility functions which are all nondecreasing in the
interval and nonincreasing in the interval .
Consequently, (19) has no roots in the intervals and

. We also remind that any acceptable optimal point
has to satisfy Constraint (16). Combining the above conditions,
we can argue that for the optimal solution
equals to and for any accept-
able maximum point falls into the interval

(21)

For , Constraint (16) has no impact on the op-
timal solution.

Generally speaking, the function can have up to
maximum points and minimum points with indicating
the number of the receivers in group . Finding the global
maximum of the function is hence equivalent to ap-
plying a root finding algorithm on (19) and extracting the global
maximum from the set of optimal points satisfying Inequality
(20) and Constraint (16).

Fig. 2. A sample plot of the group utility IRFA versus g for a group
including 200 receivers with isolated rates in the range of [32 Kb/s, 128 Kb/s]
and every two consecutive isolated rates r and r satisfying r � 2r .

In our extensive set of simulations, we have consistently ob-
served that the function includes a single global max-
imum point if the individual receiver utilities are distributed in
such a way that every two consecutive isolated rates and
satisfy the relationship . The latter is a practical as-
sumption for a set of receivers with similar bandwidth capabili-
ties. Fig. 2 shows a typical function. Finding the global
maximum of the function in such a case is hence equiva-
lent to applying a single root finding algorithm such as bisection
or Newton algorithms to (19). These algorithms can identify the
single root of (19) with a time complexity of . We
argue that if a media session can choose the number of groups
such that our heuristic rule of is satisfied, all of the
corresponding functions will only have one maximum
point. We also argue that having a limited number of groups
can only impact the number of optimum points for the func-
tion of the last group. To explain the latter claim, con-
sider a scenario in which the receivers are distributed around
major categories of bandwidth while there are only groups

are available to accommodate the receivers. A real
example of this situation is when you have receivers belonging
to the bandwidth range of dial-up, cable, 10 Mb/s LAN, and
100 Mb/s LAN while there are only 3 groups available due
to multicasting constraints. In such a scenario, the bandwidth
and loss characteristics of the receivers in the lower bandwidth
ranges map the first bandwidth categories to the first

groups while combining the rest of band-
width categories in the last group. This creates a situation in
which only the last group consists of a mix of receivers with
significantly different bandwidth characteristics resulting in an

function with multiple optimum points. Additionally,
even in the case of observing multiple maximum points for the
function , our numerical results have only shown one
maximum for any subset of receivers with isolated rates satis-
fying . Fig. 3 shows an example of such an
function. In order to prevent a significant quality degradation at a
receiver, we assume that the maximum acceptable loss tolerance
of a receiver does not exceed 50%. This implicitly means that

defined as with defined as
will typically not exceed where

indicates the minimum isolated rate of the receivers be-
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Fig. 3. A sample plot of the group utility IRFA versus g for a group
including 200 receivers with isolated rates in the range of [64 Kb/s, 128 Kb/s]
and [640 Kb/s, 1280 Kb/s]. In each interval, every two consecutive isolated
rates r and r satisfy r � 2r .

longing to group . Combining these observations, we come
to the conclusion that in practical cases applying Constraint (16)
limits the search to find the first optimum point of the function

. Applying the interval of (21), Newton, bisection or a
similar numerical technique can be employed to find the first
positive real maximum of function.

As an important special case and by substituting with
, the general formulation of our problem reduces to the

no flow constraint problem formulated in [29] and [15]. The
problem can then be solved using the same technique as the
one used to solve the general problem. It is now relevant to
compare the time complexity of our algorithm with that of [29].
In practice, the time complexity of solving for the optimum
point of equation set (19) over all of the existing groups is

. The search for the root of (19) determines the
overall time complexity of the solution considering the fact that
the rest of calculations are in the complexity order of .
The time complexity of the algorithm is by far better than

the complexity of the dynamic programming algorithm
offered by [29]. This is aside from the fact that a dynamic pro-
gramming approach in general does not provide an analytical
solution to an optimization problem and the algorithm of [29]
needs minor modifications to be able to solve the formulation of
the general problem of (15) considering the impact of enforcing
a flow control algorithm.

Before we proceed to phase 2 of our solution, it is also rele-
vant to investigate the impacts of facing some of the source and
receiver limitation scenarios when solving LMMC optimization
problem. First, we consider a source limitation scenario that ap-
pears in the form of discrete sending rates. Up until now, we
have assumed that there is no limitation on the source sending
rates, i.e., the source can control the group rates with fine gran-
ularity. In practice, layered encoding techniques may limit the
source to some pre-determined quantized discrete group rates.1

1Examples of standard layered encoding techniques with pre-determined
quantized discrete rates include MPEG-2 [8], H.263 [10], and new-generation
MPEG-4 [9], AVC/H.264/ISO 14 496-10 [11]. We note that the family of
MPEG standards originally supported successively refinable video in the range
of several Mb/s and eventually covered lower rates. The H.263 standard and the
follow-on standards were originally designed to support successively refinable
video at a wider range of rates starting at tens of Kb/s.

There are two ways to cope with this issue in our rate allocation
problem. The first approach is to change the formulation of our
optimization problem from a NonLinear Programming (NLP)
to a Mixed Integer NonLinear Programming (MINLP) in which
the group rates can only take on discrete values. The solution to
the new problem will then satisfy the discrete constraints. The
second approach is to rely on the continuous optimal solution of
the existing formulation and approximate it with the closest dis-
crete rate. Although the approximated solution is sub-optimal in
this case, it reduces the complexity of the problem to a great ex-
tent and yields acceptable results so long as the discrete achiev-
able rates of the underlying encoder are not very far from each
other. The latter is a reasonable assumption for many of the cur-
rently available encoders. Considering distribution of the dis-
crete group rates, we choose the second approach as the prac-
tical way of coping with this issue in our optimization problem.
This method is also of special interest, considering the iterative
nature of our two-phase solution as described in Section V.

Next, we consider a scenario in which the receivers introduce
a zero loss tolerance. The only impact of facing a zero loss tol-
erance scenario with for in our opti-
mization algorithm is to change the definition of from

to for
. Since the previous constraint qualifications hold

for with , we do not foresee any
changes on the method of obtaining our optimal solution. How-
ever, we make note that this scenario greatly simplifies the re-
sults considering the fact that the function of (15) would have
no zero slope point satisfying Constraint (16) for . In-
tuitively, we anticipate that the optimal rate of each group is al-
ways less than or equal to the lowest isolated rate of the group.

IV. PHASE 2: LMMC NEAR-OPTIMAL PARTITIONING

STRATEGY

In Section I, we briefly described the heuristic partitioning
rules of [15]. We note that the heuristic rules are well catego-
rized under probabilistic classification and clustering methods
for nonconvex optimization problems. In [31], we provide a
formal classification method that is closely related to the par-
titioning heuristic rules. However, it is worth mentioning that
the general short coming of probabilistic classification methods
lies in the fact that they are typically appropriate for deduc-
tion techniques on the properties of mathematical concepts and
closely related computational algorithms concepts rather than
being useful for approximate or exact solutions to the optimiza-
tion problems. Nevertheless, these techniques come handy in
the case of solving optimization problems and in the absence of
a formal solution.

In addition, the dynamic programming algorithm of [29] pro-
vides an optimal receiver partitioning strategy for a media ses-
sion while computing the optimal layer rates. The main disad-
vantages of utilizing a dynamic programming approach to solve
an optimization problem are (1) the lack of providing an ana-
lytical answer, and (2) a relatively high degree of complexity.
However, we make note of the fact that dynamic programming
is one of the best tools and in many cases the only available tool
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Fig. 4. Sample plots of E(r ; g ) versus r for three given values of g .

for solving an optimization problem. Fortunately, this is not the
case for a typical rate allocation problem.

Rather than relying on a dynamic programming approach, we
introduce a near optimal partitioning strategy with time com-
plexity of for a layered media or a replicated media ses-
sion and show that our partitioning strategy maximizes the ses-
sion utility for a set of given group rates.

The fact that the extrapolated receiver fairness function
satisfies RUP defined in Section II keeps the order of

the resulting partitioning of this section.
Considering the general objective of maximizing the session

utility of (15) and for a set of given group rates ,
it is imperative that a receiver with isolated rate is assigned
to the group with rate if the receiver utility defined in (9)
is maximized for the choice of . As the result, we make the
observation that the optimal receiver partitioning strategy has to
assign the receiver with the isolated rate to the group with rate

such that

(22)

We now translate the latter observation to a simple group assign-
ment mechanism. Let us first consider the fairness function of
(9) with parameter and variable . We note that in Sections II
and III, the function of (9) with parameter and variable was
considered instead. Given the group rates , we first
plot the family of functions versus for different pa-
rameter values of where . Fig. 4 shows the
sample plots for . Next, we find the intersection points of
every two functions with consecutive group rates and .
The values of at the intersection points are obtained by finding
the roots of the following set of equations for variables and
parameters and where :

(23)

Solving (23) yields

(24)

Although in the general form of (24) the parameter is a func-
tion of the variable , the solution to the equation can neverthe-
less be expressed in the following form after a bit of algebraic
manipulation as

(25)

We now pay attention to the key characteristic of the intersection
points of the curves to which we refer as partitioning thresholds.

Theorem 4.1: The value of the receiver utility as defined in
(9) is maximized for the choice of the group rate for
and over the set of given group rates if

. The receiver utility is maximized
for the choice of the group rate if and for the
choice of the group rate if .

Proof: As graphically observed in Fig. 4, among the three
functions the value of the func-
tion is the maximum if , the value of the
function is the maximum if ,
and finally the value of the function is the maximum
if . The above observation graphically proves our
claim for the partitioning of the receivers in the case of three
groups. The graphical proof remains the same by expanding par-
titioning thresholds from to for any number
of given groups .

We now realize that Theorem (4.1) provides the best overall
repartitioning strategy for an unconstrained problem. There is
also another issue that needs to be addressed in the case of
solving the constrained problem of (16). Considering the def-
initions of (16) and (12), the issue has to do with the fact that
moving a receiver from group to group can potentially
introduce a new constraint for group . If the new constraint is
far from the existing optimal group rate , it can cause a reduc-
tion in the utility sum of groups and after repartitioning.
There are two ways to resolve this issue. First, we can rely on
statistical bounds to control the move of a receiver from group

to group . In this case a receiver is allowed to move from
group to group if one of the following conditions holds:

and (26)

where and are the mean and standard deviation of the re-
ceivers in group . In practice, we have observed that setting

yields good results for different values of re-
ceivers’ loss tolerance. Second, we can allow for moving a re-
ceiver from group to group only if the newly introduced
constraint is satisfying a deviation from the existing group op-
timal rate. In the second case, a receiver is allowed to move from
group to group if one of the following conditions holds:

(27)

In practice, we have observed that setting yields
good results for different values of receivers’ loss tolerance.
Note that, although it is unlikely for the same issue to reveal
when moving a receiver from group to , a similar ap-
proach can be used to avoid the problem.

The LMMC near-optimal partitioning algorithm then re-
orders the receivers such that each receiver is moved to a group
maximizing its individual utility according to Theorem 4.1 and
one of the conditions (26) or (27). Such an algorithm intro-
duces a time complexity order of . As an alternative
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and to achieve a more rapid convergence, we can also obtain
the new optimal rate of the corresponding group of receivers
while repartitioning. This is due to the fact that changing the
partitioning thresholds yields a different optimal group rate for
the group of receivers affected by the change in the sequence.
Considering the added complexity for solving yet another op-
timization problem, this version of the algorithm introduces a
time complexity order of . The trade off between
the two versions of the algorithm is the speed of convergence
versus increased complexity. In practice, one selects the latter
over the former if the higher speed of convergence justifies
the increased complexity of the latter version. Otherwise, the
former version is preferred. The second version of the optimal
partitioning algorithm is summarized below. The first version
is simply obtained by eliminating the last step of the loop.

LMMC Near-Optimal Partitioning Algorithm:
For every group of a media session and assuming the group

rates are given
for

• Calculate the partitioning threshold .
• Repartition groups and . For every receiver be-

longing to groups or and isolated rate , assign the
receiver to group if and one of the con-
ditions (26) or (27) hold. Otherwise, assign the receiver to
group .

• Calculate the new optimal sending rate of group ac-
cording to the new partitioning.

for

The other interesting characteristic of the intersection points
of (23) is that they remain the same for both the approximate and
original fairness functions of (9) and (3). The latter is verified
by observing that the partitioning thresholds of (23) are also the
intersection points of the fairness functions of (3) for different
values of from the following equation:

(28)

We conclude that the general algorithm of this section can be
used in conjunction with any rate allocation algorithm by prop-
erly identifying partitioning thresholds. In specific, the algo-
rithm of this section can also be used with a rate allocation al-
gorithm relying on the fairness function of (4) in order to reach
the optimal partitioning assuming a given set of group rates.

V. LMMC NEAR-OPTIMAL ITERATIVE SOLUTION

In this section, we introduce an iterative approach that can
reach a near-optimal solution considering the fact that the solu-
tion to our two-phase optimal problem is sub-optimal due to the
impact of our phasing approach. A near-optimal solution can be
achieved by iteratively applying the results of each phase as an
existing condition to obtain the solution of the other phase. This
is equivalent to applying the partitioning results of the second
phase to the first phase and solving the optimal rate allocation
problem again with the alternative partitioning strategy. The op-
timal layer rates of the first phase can then be applied to the
near-optimal partitioning strategy of the second phase to par-

tition the receivers according to the new set of rates. In what
follows, we propose the formal iterative algorithm of LMMC
and prove that it yields a near-optimal solution considering the
necessary condition for optimality defined below holds.

Recall that for a media session with receivers,
groups, and the group rate set , a set

is called a partitioning of the receiver set
if is a decomposition of the set into a

family of disjoint sets. The necessary and sufficient condition
for optimality is now defined over the partitioning and the
group rate set such that

(29)

for every and . Considering the impact of
LMMC phasing approach, the necessary condition for opti-
mality is defined for the combination of two individual phases.
In the first phase, we consider a fixed partitioning and
define the group rate set such that

(30)

for every . In the second phase, we consider a fixed group
rate set and define the partitioning such that

(31)

for every .
LMMC Iterative Rate Allocation-Partitioning Algorithm:

• Step 1: Start from an initial ordered partitioning of the
receivers by uniformly distributing the receivers among
the existing groups. In addition, set the initial iteration
number and the maximum number of iterations

.
• Step 2: Calculate the optimal group rates

and the resulting session utility
by numerically solving the system of (19) while sat-
isfying conditions (20) and (16). Save the previously
calculated in variable and the currently
calculated in variable .

• Step 3: If or STOP.
• Step 4: for

— Calculate the partitioning threshold .
— Repartition groups and . For every receiver be-

longing to groups or and isolated rate , assign the
receiver to group if and one of the conditions
(26) or (27) hold. Otherwise, assign the receiver to group .

— Calculate the new optimal sending rate of group ac-
cording to the new partitioning.

for
• Step 5: Go back to Step 2.
In the algorithm above, the initial conditions are chosen in the

first step. While the second step solves the optimal rate alloca-
tion problem of the first phase in our two-phase approach, the
third step merely checks to terminate the algorithm according
to the specified conditions. The fourth step includes the so-
lution to the second phase near-optimal partitioning approach
while adjusting the optimal rate of the corresponding group ac-
cording to the new partitioning. We note that the time com-
plexity of our iterative algorithm is where
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indicates the number of iterations. Comparing the overall com-
plexity of LMMC algorithm with that of the dynamic program-
ming algorithm of [29] , LMMC algorithm achieves a
much lower complexity.

Theorem 5.1: The convergence of “LMMC Iterative Rate Al-
location-Partitioning Algorithm” mentioned in this section is
guaranteed.

Proof: Let us make note of the fact that the session utility
of (15) consists of a finite number of fairness functions, one
for each receiver. These functions are all positive, minimized
at the value of zero, and maximized at the value of one. Con-
sequently, the positive session utility function of (15) has both
a lower bound and an upper bound. Next, we observe that the
session utility function of (15) can only increase in each step
considering the operating mechanism of the individual phases
of our optimization algorithm. Therefore, the sequence of utility
function values at each step of the algorithm is a nondecreasing
sequence with an upper bound equal to the number of fairness
functions. We also note that any nondecreasing sequence with
an upper bound would converge to a finite number also known
as a fixed point. We, hence, conclude that LMMC iterative ap-
proach converges to a fixed point.

Intuitively, LMMC algorithm is employing steepest descent
optimization strategy and is guaranteed to reach a near-optimal
point if such a point exists. It is important, however, to note the
followings.

First, we note that the “LMMC Iterative Rate Allocation-Par-
titioning Algorithm” mentioned in this section converges to a
local optimum in the case of solving the unconstrained problem.
The claim is accurate considering the fact that the sequence of
session utility functions of (15) converges to a fixed point satis-
fying necessary conditions of (30) and (31) for optimality. We
remind that we only claim reaching a near-optimal solution in
the case of solving the constrained problem because of applying
one of the conditions of (26) or (27). However, we conjecture
that the proper choice of the parameters in (26) and/or (27) leads
to reaching a local optimal solution as shown by our numerical
results.

In practice, the use of the iterative method is a factor of time
complexity and the speed of convergence. The iterative method
can be effectively deployed in environments with moderate vari-
ations of the available per flow bandwidth. As an example, the
scenarios encountered in admission control problems can be
mentioned in which the assignment of per flow bandwidth is
relatively stable. In environments with rapidly varying avail-
able bandwidth, the sub-optimal solution with few or no iter-
ation may be deployed.

It is obvious that the initial choice of the partitioning strategy
plays a crucial role in the convergence speed of the algorithm.
As a practical alternative, the classification method of [31] may
be deployed as the partitioning strategy. The use of our proposed
algorithms yields fast converging results in most cases as shown
by our simulation results.

VI. NUMERICAL PERFORMANCE ANALYSIS

In this section, we present the numerical results of applying
LMMC partitioning and rate allocation algorithms to a number

Fig. 5. Session Utility (SU) and Time (T ) comparison of LMMC and DP
versus number of receivers (N ) forK = 3 and loss tolerance of 10%.

of layered media scenarios and compare them with those of the
dynamic programming algorithm of [29].2 We review the per-
formance of both approaches from the stand point of tracking
the maximum value of the utility function, time complexity in-
dicated by experiment runtime, and space complexity indicated
by memory allocation. Additionally, we review the scalability of
the techniques by covering a relatively broad range of multicast
group sizes ranging from hundreds to thousands of receivers.
In our simulations, we rely on generalizations of normal distri-
bution namely tri-, quad-, and pent-modal distributions to gen-
erate receiver isolated rates. We select the means of distributions
from the set of 128 Kb/s, 1 Mb/s, 10 Mb/s, 100 Mb/s, 1 Gb/s .
We note that the choice of modal distributions represents the
distribution of bandwidths associated with ISDN, Cable/DSL,
low-speed LAN, high-speed LAN, and Gigabit LAN users. For
each distribution, we also set the standard deviation of the dis-
tribution at 20% of the mean value. Considering the location of
the means, the choice of standard deviations yields successive
distributions remain disjoint with a certainty better than 99.7%.
In our experiments, we make use of a host server with a 1.8 GHz
Pentium 4 CPU, 512 MB of physical memory and 1 GB of vir-
tual memory. Further, we rely on the Gnu Scientific Language
(GSL) optimization toolbox to provide a balance between the
speed and robustness of program execution.

We recall that the time complexity of the iterative optimized
LMMC algorithm is where indicates the
number of iterations and the time complexity of the Dynamic
Programming (DP) algorithm of [29] is . In addition,
the space complexity of the LMMC algorithm in our imple-
mentation is where as the space complexity of DP
algorithm proposed in [29] is . In our simulations, we
ran in excess of 5000 experiments with different number of
groups , different group sizes , and different receiver loss
tolerance values.

Figs. 5–10 compare the sample results of LMMC algorithm
with those of DP algorithm of [29]. In each experiment, we
have considered the same loss tolerance for all of the receivers
of the session. Different figures have been obtained for different
choices of loss tolerance set at 10%, 20%; and the number of
groups set at 3, 4, and 5. The x axis of each curve is always
in logarithmic scale and includes values of from the set

. Each figure
consists of two pairs of curves. The first pair of curves compare

2In our simulations, we relax the flow control constraint and assume
BWA = BWL . The impact of applying the flow control constraint is to
only change the value of the constraint BWA .
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Fig. 6. Session Utility (SU) and Time (T ) comparison of LMMC and DP
versus number of receivers (N ) forK = 3 and loss tolerance of 20%.

Fig. 7. Session Utility (SU) and Time (T ) comparison of LMMC and DP
versus number of receivers (N ) forK = 4 and loss tolerance of 10%.

Fig. 8. Session Utility (SU) and Time (T ) comparison of LMMC and DP
versus number of receivers (N ) forK = 4 and loss tolerance of 20%.

fairness results of the two techniques. In order to do a fair com-
parison, we have used the fairness function of (9) for LMMC
and the fairness function of (3) for DP. Since the maximum
of each individual receiver utility is the value 1, the number

indicates the corresponding upper bound on the fairness for
both techniques. A review of the sample results of the figures
shows a difference of less than 10% between the raw session
utility values of the LMMC and the DP algorithms. Considering
the fact that the fairness function of (9) is an approximation of
the fairness function of (3) in the interval of interest, it is in
order to mention that the session utility value is only a relative
metric of performance comparison. Our overall conclusion is
that both of the techniques are capable of tracking a maximum
satisfying the existing constraints.

The second pair of curves display the runtime of the exper-
iments as an indicator of the time complexity of the two tech-
niques. In this area, a review of the results reveals the great per-
formance advantage of LMMC over DP. We observe a nonlinear
increase in the runtime of the DP algorithm where as LMMC al-
gorithm curve indicates a linear increase. We also note that in
each figure, the pair of the DP algorithm curves end at the value
of 3000 receivers.

Fig. 9. Session Utility (SU) and Time (T ) comparison of LMMC and DP
versus number of receivers (N ) forK = 5 and loss tolerance of 10%.

Fig. 10. Session Utility (SU) and Time (T ) comparison of LMMC and DP
versus number of receivers (N ) forK = 5 and loss tolerance of 20%.

This is explained in terms of the time complexity and the
space complexity of the DP algorithm. We argue that an increase
in the value of increases the runtime of the algorithm propor-
tional with the third power of and consumes the memory pro-
portional with the second power of . In our experiments, the
impacts of coping with higher time complexity and space com-
plexity become significant for media sessions with more than
1000 receivers. The space complexity analysis also justifies the
fact that we have not been able to run any experiment deploying
DP algorithm for media sessions with 10000 or more receivers.
We argue that although the specific numbers of our experiments
are closely related to the capabilities of our host server, the same
qualitative behavior is observed in general. It is obvious from
our results that Bellman’s curse of dimensionality defined in
[3] shows its impact much more rapidly in the case of DP algo-
rithm than the case of LMMC algorithm.

Finally, we would like to review the impacts of using criteria
set (26) and criteria set (27) in controlling successive groups
repartitioning. Generally speaking, we have observed that the
proper choice of coefficients in criteria set (26) and in
criteria set (27) mostly depends on the loss tolerance. The co-
efficients have to be chosen such that they enforce a narrower
bound for smaller values of loss tolerance and a wider bound
for larger values of loss tolerance. In our experiments using cri-
teria set (27) has yielded better results than using criteria set
(26). We have experimentally observed that for a loss tolerance
of 10% a value of best controls the repartitioning
process while for a loss tolerance of 20% a value of
provides best repartitioning results. We have also observed that
smaller values of loss tolerance increase the number of itera-
tions required for the convergence of LMMC. This is explained
considering the fact that smaller values of loss tolerance typi-
cally yield narrower bounds in criteria set (26) and criteria set
(27) utilized to control the move of receivers from group
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to group in each iteration. In general, utilizing narrower con-
trol bounds results in a higher number of iterations required for
convergence. It is also worth mentioning that the distribution of
receivers isolated rates plays an important role in the speed of
convergence for both LMMC and DP algorithms.

In the rest of this section, we briefly discuss some of the prac-
tical issues. Although in this study we did not discuss many
of the practical aspects of implementing LMMC technique, we
have implicitly assumed the use of most of the known tech-
niques in the course of implementation. First, we need to apply
the comparison analysis of source centric and receiver centric
methods to LMMC algorithms. Considering the coordination
necessary to synchronize the operation between the sender and
receivers in LMMC algorithm, it is classified under hybrid al-
gorithms with the main focus on the sender. Next, we need to
consider the issue of feedback implosion in the process of col-
lecting the isolated rates and loss tolerance of the receivers of a
large multicast group. We can address feedback implosion issue
either as an end-to-end or as an intermediate issue. In the former
case, we can deploy a selective feedback mechanism from the
receivers to the source of the session. In the latter case, we can
force the receivers to report their isolated rates and loss tolerance
to their parent routers in the multicast tree. The routers can then
send aggregated feedback messages to the source in multiple in-
tervals. As an example, the feedback suppression technique pro-
posed in [7] can be used to suppress feedback implosion when
practically implementing our algorithms.

Finally, we need to discuss the impact of increasing the
number of layers in the extrapolated fairness utility of the
overall session. In general, we find consistent results in our
numerical analysis with what was reported in [29], i.e., in most
cases one can achieve the best combination of receiver hetero-
geneity accommodation and protocol complexity by choosing
3 to 5 layers. We would also like to add that the best fairness
results are typically obtained if the number of groups matches
the number of bandwidth ranges in which receiver isolated rates
are distributed. In the latter scenario, each of the ranges can cap-
ture the bandwidth characteristics of a group of receivers. For
example, receivers with isolated rates distributed in the range
of 64 Kb/s indicate dial-up users, receivers with isolated rates
distributed in the range of 1 Mb/s indicate Cable/DSL users,
and receivers with isolated rates distributed in the range of 100
Mb/s indicate fast LAN users. We make a practical observation
that currently the number of these ranges does not exceed
5 considering the available bandwidths from dial-up, ISDN,
Cable/DSL, Ethernet, and fast Ethernet. With the popularity
of faster switched network interfaces such as Gigabit Ethernet
and the obsoleteness of slower switched network interfaces the
number of the groups has to be proportionally adjusted in order
for algorithms such as ours to provide best fairness results.

VII. CONCLUSION

In this paper, we studied the problem of optimal partitioning
and rate allocation for layered and replicated media systems
over multicast IP networks. We formulated such a problem as
a two-phase optimization problem. By means of extrapolating
max-min fairness utilities of individual receivers, we proposed

our Layered Media Multicast Control (LMMC) solution to the
problem. In the first phase, we analytically calculated the op-
timal rates allocated to the individual layers of a media session.
In the second phase, we obtained the best partitioning strategy
of the receivers based on the optimal allocated rates of the first
phase. Considering the impact of LMMC phasing approach,
we introduced an iterative method in which a near-optimal so-
lution could be achieved by iteratively applying the results of
one phase to another. Finally, we evaluated the performance of
LMMC solution and illustrated its effectiveness and scalability
in realistic network topologies through the use of simulations.
We are currently working on integrating the rate allocation and
receiver partitioning aspect of LMMC with its end-to-end error
control aspect.

APPENDIX I
LEAST SQUARE ERROR EXTRAPOLATION OF THE MAX-MIN

FAIRNESS FUNCTION

In this Appendix, we introduce a least square error extrapo-
lation technique for the max-min fairness function of (3). The
objective of our extrapolation technique is to provide an esti-
mated function of function that minimizes
the surface between the two curves shown in Fig. 1. We select a
rational function of and in the form of

(32)

where and are polynomials of and
. Without loss of generality and to simplify the calcula-

tion, let us treat the variable as a parameter and obtain the
function assuming

and
with respect to and for the parameter . The simplest
rational function behaving close to is resulted
by considering in the
form of

(33)

In the above equation, the parameters, , and are
obviously functions of the parameter . The following condi-
tions assure that not only is well behaved
according to the description of Section II, but it satisfies the
boundary and maximum conditions of function .

(34)
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Without loss of generality, we assume that and
. Applying the conditions of (34) to the general form of (33)

introduces the specific form of

(35)

with the boundary condition for the function
. We note that the optimum choice of parameter

yields the best least square estimate for the original fairness
function defined in (3). Applying least square estima-
tion technique in the interval of interest while
considering the constraint function of (8) yields the optimum
value of parameter in terms of parameters and .

(36)

Equation (37) provides a closed-form for the function
. The solution to (36) can be obtained by

choosing the parameter resulting in the least value for the
function calculated from (37) over a uniform
partitioning of the interval . The granularity of the
partitioning depends on the desired precision in the numerical
algorithm.

(37)

Alternatively, a single nonparametric optimal value for param-
eter is the one minimizing the integral of (36) for a fixed value
of loss tolerance and calculated over a continuous range of
isolated rates from 0 to where indicates the maximum
feasible value of the receivers isolated rates. Considering the
available bandwidth ranges, a feasible value for is 1 Gb/s.

(38)

Fig. 11. Plot of optimal a versus loss tolerance L .

In solving the problem, we have observed that the optimal value
of parameter is only a function of parameter . In other
words, the optimal value of parameter remains the same for a
fixed value of parameter and different choices of parameter

in the interval of interest. Fig. 11 plots the optimal value of
parameter versus the loss tolerance percentage . Reviewing
the results of the figure in the interval of interest % %
reveals that the optimal value of parameter is in the range
of . In our calculations, we extract the op-
timum by performing a simple table look up operation.

We also note that with the proper choice of parameters in the
general form of (32) with , one can potentially model any
function belonging to the class of fairness utilities satisfying the
conditions defined in [14].

APPENDIX II
LMMC OPTIMAL SOLUTION TO THE RATE ALLOCATION

PROBLEM WITH AN OVERALL AVAILABLE SESSION

BANDWIDTH CONSTRAINT

In this Appendix, we provide an analytical solution to the
optimal rate allocation problem formulated by (11), Constraint
(12), and a new constraint replacing Constraint (13). We con-
sider a scenario in which the overall available session bandwidth
is given instead of the available bandwidths of the individual
groups. We investigate the solution to this problem for both lay-
ered media and replicated media sessions. The interpretation of
the problem for layered media sessions is fairly straight forward.
First, we note that the constraint set of (13) is reduced to a single
constraint in the form of

(39)

considering the fact that the group rate is the aggregate rate
of layers according to (1). The problem of (15) and
(16) can then be solved the same way as described in Section III
by simply substituting for .

In the case of replicated media sessions, the constraint set of
(13) is reduced to a single constraint in the form of

(40)

taking into consideration the fact that individual group rates do
not include the aggregated sum of the previous layers. First, we
convert the rate allocation optimization problem of (15) with
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inequality constraints to an optimization problem without con-
straints. We do so by defining the Lagrangian function of (15)
as

(41)

where the parameters and for are the La-
grange multipliers in the Lagrangian Equation (41). The uncon-
strained maximization problem is defined as

(42)

Conditions of Optimality: Constraint Qualifications
We now investigate the existence of necessary and sufficient

optimality conditions also known as constraint qualifications.
For our unconstrained maximization problem

(43)

where the constraint qualifications are ex-
pressed in terms of Lagrange multiplier theory revolving around
conditions under which Lagrange multiplier vectors satisfying
the following conditions are guaranteed to exist for a local max-
imum :

(44)

(45)

for and

(46)

for . The constraint qualifications
guarantee the existence of Lagrange multipliers for a given local
maximum if the inequality constraint func-
tion of (40) and the inequality constraint functions of (12) are
concave3.

Considering the fact that the Lagrangian function sat-
isfies all of the conditions mentioned above, finding the optimal
solution is equivalent to finding the solutions of (44) in the ap-
propriate group ranges. The solution to the nonlinear system of

equations and unknowns provides the optimal
rates for as well as the optimal Lagrange mul-
tipliers. The system of equations consists of the gra-
dient equations shown below plus constraint (12) and
(40):

(47)

where . The solution to the nonlinear system of
equations and unknowns can be obtained by

finding the positive real root of (47) such that
where and indicate the minimum and max-

imum isolated rates of the receivers belonging to group . One
can find the region in which the border line second condition of
(47) holds. The time complexity of solving for the root of this
equation over all of the existing groups is and
determines the overall complexity of the solution considering
the fact that the rest of calculations are in the time complexity
order of . Note that the system of equations and

unknowns in this case is more complicated than the case
of layered media described in Section III, because of the cou-
pling of the constraint (40) with individual gradient equations
of (44).
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