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Abstract—We develop an on-line wavelength assignment (WA)
algorithm for a wavelength-routed WDM tree network. The algo-
rithm dynamically supports all k-port traffic matrices among
end nodes, where k denotes an integer vector [ 1 . . . ] and end
node 1 , can transmit at most wavelengths and re-
ceive at most wavelengths. Our algorithm is rearrangeably non-
blocking, uses the minimum number of wavelengths, and requires
at most 1 lightpath rearrangements per new session request,
where is the degree of the most heavily used node. We observe
that the number of lightpath rearrangements per new session re-
quest does not increase as the amount of traffic k scales up by an
integer factor. In addition, wavelength converters cannot reduce
the number of wavelengths required to support k-port traffic in a
tree network. We show how to implement our WA algorithm using
a hybrid wavelength-routed/broadcast tree with only one switching
node connecting several passive broadcast subtrees. Finally, using
roughly twice the minimum number of wavelengths for a rear-
rangeably nonblocking WA algorithm, we can modify the WA al-
gorithm to be strict-sense nonblocking.

Index Terms—Graph theory, network reconfiguration, optical
networks, resource management, wavelength assignment.

I. INTRODUCTION

WAVELENGTH division multiplexing (WDM) technolo-
gies can provide the increase in network capacity to meet

the growing traffic demands in optical networks. In a WDM net-
work, the fiber bandwidth is divided into multiple frequency
bands often called wavelengths. Using reconfigurable optical
switches at the network nodes, some wavelengths can be se-
lected at each node for termination and electronic processing,
and others selected for optical bypass. In an all-optical network
architecture, each traffic session optically bypasses electronic
processing at each node on its path other than the source node
and the destination node. One important benefit of this architec-
ture is the cost saving resulting from using fewer and/or smaller
elctronic switches in the network. We focus our attention on
all-optical networks in this paper.

Without optical wavelength conversion, routing of traffic ses-
sions is subjected to the wavelength continuity constraint, which
dictates that the lightpath corresponding to a given session must
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travel on the same wavelength on all links from the source node
to the destination node. Using wavelength converters potentially
allows the network to support a larger set of traffic. However,
such converters are likely to be expensive. Hence, we focus
on the problem of routing and wavelength assignment (RWA)
without wavelength converters.

A. RWA in WDM Networks

The RWA problem is an important problem in resource man-
agement for WDM networks. Surveys on the subject are avail-
able in [1]–[3]. We can categorize known results into two groups
based on whether static or dynamic provisioning of routes and
wavelengths is performed. For static provisioning, the traffic to
be supported is assumed known and fixed over time. The goal
is often to minimize the number of wavelengths used in the net-
work [4], [5], or to maximize the number of supported traffic
sessions for a fixed number of wavelengths [6]–[9]. These prob-
lems are known to be NP-complete [6]. Consequently, bounds
on the optimal costs have been derived [7], [10], and several
RWA heuristics have been developed [4], [7]–[9], [11], [12].

Dynamic provisioning of routes and wavelengths gives us
flexibility in supporting traffic which may change over time
through session arrivals and session departures. Dynamic pro-
visioning is appropriate for bandwidth-on-demand services that
requires temporary instead of permanent connections. To model
dynamic traffic, one can assume that session arrivals form sto-
chastic processes [13], [14]. In addition, session lifetimes are
probabilistic. The goal is usually to develop an on-line RWA al-
gorithm which minimizes the average blocking probability for a
new session request given a fixed number of wavelengths in the
network. This type of problem formulation is typically refered to
as the blocking formulation. Due to the complexity in computing
blocking probabilities, approximations are made to simplify the
analysis. For example, session arrivals on different links are as-
sumed to be independent [13], [15], or correlated among ad-
jacent links in the same fashion throughout the network [14].
Based on such approximations, several dynamic RWA heuris-
tics have been developed [16], [17].

The above blocking formulation of the RWA problem is ap-
propriate for traffic whose frequency of changes is in the time
scale of seconds to minutes, e.g., file transfers among individual
users. For traffic whose frequency of changes is in the time scale
of several minutes to hours or days, e.g., corporate data transfers
and temporary lease lines, an alternative formulation is more
meaningful. In the nonblocking formulation, we assume prior
knowledge of the set of all the traffic matrices, or equivalently
the traffic demands, to be supported. In [18], the set of traffic
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matrices is characterized by the maximum link load in the net-
work. In [19]–[22], the set of traffic matrices is characterized by
the numbers of tunable transmitters and tunable receivers at each
end node, i.e., a node that sources and/or sinks traffic sessions.
We adopt the same traffic model in this paper. A new session
is said to be admissible if its arrival results in a traffic matrix
which is still in the set of supportable traffic, i.e., there is a free
transmitter at the source and a free receiver at the destination.
The goal is to develop an on-line RWA algorithm which does not
block any admissible session and uses the minimum number of
wavelengths.

If we allow some existing lightpaths to be rearranged in order
to support a new session, the corresponding RWA algorithm
is said to be rearrangeably nonblocking. If a new session can
be supported without lightpath rearrangement, the RWA algo-
rithm is said to be wide-sense nonblocking. If a new session
can always be supported on any available route and wavelength
without lightpath rearrangement, the RWA algorithm is said to
be strict-sense nonblocking. Note that if a RWA algorithm is
strict-sense nonblocking, it is also wide-sense nonblocking. If a
RWA algorithm is wide-sense nonblocking, it is also rearrange-
ably nonblocking. Thus, for the same set of traffic matrices, the
required number of wavelengths for a strict-sense nonblocking
algorithm is no smaller than that for a wide-sense nonblocking
algorithm which is no smaller than that for a rearrangeably non-
blocking algorithm.

B. Summary of Results

In this paper, we present an on-line RWA algorithm for tree
networks that is rearrangeably nonblocking and requires few
lightpath rearrangements for each traffic change. We adopt the
same problem formulation as in [19]–[22]. Our contribution is
to provide a complete analytical solution for tree networks. In
a related work, [23] provides a solution for oriented trees in
which each edge is directed in exactly one way. Since there is no
routing problem in a tree network, our RWA algorithm only has
to perform wavelength assignment (WA) and will be referred to
as the tree WA algorithm.

Tree topologies are interesting for two reasons. First, in the
distribution parts of optical access networks, tree topologies are
often chosen for their ease of implementation and low costs [24].
Second, since a tree topology can be embedded in any connected
topology, the analytical approaches developed in this paper may
be useful in the development of a RWA algorithm for mesh net-
works.

We assume that each session takes up a full wavelength, and
each traffic change results from either a session arrival or a ses-
sion departure. The set of supportable traffic matrices is defined
by the number of tunable transmitters and receivers at the end
nodes. The tree WA algorithm has the following key properties.

1) It uses the minimum number of wavelengths.
2) No reduction in the number of wavelengths can be ob-

tained from wavelength conversion.
3) The number of lightpath rearrangements for each virtual

topology reconfiguration is bounded by the degree of the
most heavily used node.

Fig. 1. Traffic matrices in and not in the k-port traffic set. (a) Traffic matrix in
the k-port traffic set. (b) Traffic matrix not in the k-port traffic set.

4) The number of lightpath rearrangements remains the same
as the traffic scales up by an integer factor.

5) With roughly twice the number of wavelengths, we
can make the algorithm wide-sense nonblocking, i.e.,
requiring no lightpath rearrangement.

6) It can be implemented on a hybrid wavelength-
routed/broadcast tree using only one switching node
to connect passive broadcast subtrees.

Property 4 is unique to our study, and is different from the
observation obtained in a previous study on reconfiguration [25]
that the number of rearrangements grows linearly with both the
number of users and the amount of traffic for a mesh topology.
Property 6 indicates that a hybrid tree can be constructed by
partially upgrading an existing passive broadcast tree.

In Section II, we define the set of -port traffic and formulate
the WA problem in a tree network. In Section III, we describe
our on-line WA algorithm and prove its correctness. Section IV
discusses a hybrid wavelength-routed/broadcast tree that uses
only one switching node. Finally, we summarize the paper in
Section V.

II. PROBLEM FORMULATION

Consider a WDM all-optical tree network with no wavelength
conversion. Adjacent nodes are connected by two unidirectional
fibers, one in each direction. In addition, all fibers contain the
same number of wavelengths. We assume there are end
nodes, which are the leaf nodes of the tree. (Later on, we shall
show how the restriction on each end node being a leaf node
can be relaxed in most networks.) Assume that each traffic
session takes up one wavelength. At a given time, only one
session can use a specific wavelength in a fiber, but multiple
sessions can use the same node. Leaf node , is
equipped with fully tunable transmitters and fully tunable
receivers. Consequently, at any time, node can transmit at
most wavelengths and receive at most wavelengths. Such
a traffic matrix is said to belong to a set of -port traffic, where

. Fig. 1 shows example traffic matrices in
and not in the -port traffic set. In this example, and

. Notice that the traffic matrix in Fig. 1(b) is not in
the -port traffic set because but leaf node 2 receives
more than one wavelength.

We make one assumption on -port traffic.
Assumption 1: Let . Assume that

.
Assumption 1 is reasonable since the node with

tunable transmitters (receivers) can transmit (receive) at most
wavelengths to (from) all the other nodes.
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Fig. 2. Example in which a greedy approach requires more than k

wavelengths.

Therefore, need be no greater than ,
yielding the condition in assumption 1.

We model dynamic traffic as a session-by-session arrival and
departure process in which sessions arrive and depart one at
a time. In other words, a transition from one traffic matrix to
another is a result of either a single session arrival or a single
session departure. A new session request is admissible if the
resultant traffic matrix is still in the set of -port traffic. The
definition implies that, for each new admissible session request,
there is a free transmitter at the source node and a free receiver at
the destination node. For convenience, throughout the paper, a
new session is assumed to be admissible unless explicitly stated
otherwise.

We want to design an on-line WA algorithm which supports
-port traffic in a rearrangeably nonblocking fashion, uses the

minimum number of wavelengths, and requires few rearrange-
ments of existing lightpaths in order to support each new session
request. Our algorithm will be centralized in nature. We assume
that the WA algorithm always has correct knowledge of the cur-
rent WA in the network. In addition, we focus on traffic that
changes in the time scale of several minutes to hours or days,
and assume there is sufficient time for lightpath rearrangements
between successive transitions of the traffic matrix.

III. ON-LINE WA ALGORITHM

In this section, we present our on-line WA algorithm for
-port traffic in a tree network. For clarity, we first present an

algorithm for star networks, and then extend the results to tree
networks.

A. Star Networks

Fig. 2 shows an example of a star network with three leaf
nodes connected through a central hub.

Let and denote the minimum number of wavelengths
which, if provided in each fiber, can support -port traffic with
full wavelength conversion at all nodes and without wavelength
conversion respectively. It is clear that . Notice that
and are the number of wavelengths required to support any
traffic matrix in the -port set. Thus, for a specific traffic matrix,
we may need fewer wavelengths than what we need in the worst
case. To derive , consider the fiber from the node with traffic
parameter to the hub node. This fiber must support up to

wavelengths, which is the maximum link load. It follows
that .

Fig. 3. Traffic bipartite graph and its matchings. (a) Traffic matrix and its traffic
bipartite graph. (b) Bipartite matchingsM andM , assigned to wavelengths �
and � .

We shall show that , which implies
. We do so by constructing an on-line WA algorithm. Fig. 2

illustrates an example scenario in which an on-line greedy WA
algorithm fails to support an instance of -port traffic using

wavelengths. In this example, , and
the traffic matrix to be supported is uniform all-to-all traffic, i.e.,
each node sends one wavelength to each of the other two nodes.
As shown in Fig. 2, the same wavelength is assigned to the op-
positely directed sessions between the same pair of nodes, e.g.,
sessions (1, 2) and (2, 1) on wavelength . Notice that, after as-
signing wavelengths and to sessions (1, 2), (2, 1), (1, 3),
and (3, 1), neither nor can be assigned to support ses-
sion (2, 3). It follows that more than wavelengths are
required. Therefore, this example scenario tells us that the WA
algorithm design is not trivial. Fig. 2 also demonstrates that, to
use the minimum number of wavelengths, we may need to sup-
port the oppositely directed sessions between the same pair of
nodes on different wavelengths.

Our algorithm is based on bipartite matchings. For a given
traffic matrix, we construct the traffic bipartite graph, denoted
by , as follows. We consider each leaf node as a dis-
tinct source node and destination node. The set of nodes con-
tains the source nodes. The set of nodes contains the
destination nodes. In the set of edges , an edge between node
in and node in exists for each traffic session from source

to destination . Fig. 3(a) shows an example of the traffic bipar-
tite graph and its traffic matrix. Note that there may be multiple
edges between the same pair of nodes. For example, since there
are two sessions from source 1 to destination 2, there are two
parallel edges between in and in in Fig. 3(a).

A matching in a bipartite graph, or in short a bipartite
matching, is a subset of such that no two edges in
are adjacent. Fig. 3(b) shows two disjoint bipartite matchings,
denoted by and , obtained from in Fig. 3(a).

Observe that the sessions in a bipartite matching can be sup-
ported on a single wavelength without wavelength collision. To
see this, note that, in a matching, at most one edge is incident
on each source (destination) node. Thus, in each fiber to (from)
the hub node, every wavelength is used at most once. Our algo-
rithm will assign a single bipartite matching to a single wave-
length. In what follows, we shall refer to the matching in the
traffic bipartite graph which is assigned to wavelength simply
as the bipartite matching of . Fig. 3(b) shows example bipar-
tite matchings of specific wavelengths. We next state a known
useful lemma related to bipartite graphs [26].
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Lemma 1: In a bipartite graph with maximum
node degree , we can color the edges in so that no two
adjacent edges have the same color using colors.

Consider coloring the edges in a bipartite graph
as suggested by Lemma 1. Since no two adjacent edges have
the same color, the edges with the same color form a bipartite
matching. Thus, we can restate Lemma 1 as follows.

Lemma 2: In a bipartite graph with maximum
node degree , the set can be partitioned into disjoint bi-
partite matchings.

Lemma 2 can be used to argue that wavelengths are suf-
ficient to support any traffic matrix in the -port set. Given a
traffic matrix, we can write down the corresponding traffic bi-
partite graph in which each node has degree at most . By
Lemma 2, the set of edges can be partitioned into disjoint
bipartite matchings. The sessions in each matching can be sup-
ported on a single wavelength. Thus, wavelengths are suf-
ficient to support any -port traffic matrix.

The main idea of our on-line WA algorithm involves keeping
disjoint bipartite matchings of wavelengths such

that each traffic session corresponds to an edge in one bipartite
matching. When a session departs, we simply remove its corre-
sponding lightpath from the network. When a new session, say

, arrives, we find one wavelength that is not used by source
, and one wavelength that is not used by destination . If the

two wavelengths are the same, we can support the new session
without any lightpath rearrangement. Otherwise, we rearrange
some existing lightpaths on the two wavelengths to support the
new session. The following lemma makes the above discussion
concrete and states an upper bound on the number of lightpath
rearrangements.

Lemma 3: In a bipartite graph with
, given a new edge , a

matching of wavelength which is not incident on ,
and a matching of wavelength which is not incident on

, there exist two disjoint bipartite matchings which cover all
the edges in and as well as the new edge .

In addition, these two disjoint bipartite matchings can be as-
signed to and so that the number of lightpath rearrange-
ments is at most .

Proof: Consider the bipartite graph whose set
of edges contains all of the edges in and as well as
the new edge . Observe that each node has degree at most
2. From Lemma 2 with , there exist two disjoint bipartite
matchings, denoted by and , which cover all the edges.

Without loss of generality, assume that belongs to
. Let set contain the edges in assigned to and

the edges in assigned to . Let set contain the edges
in assigned to and the edges in assigned to .
Notice that and cover all the edges in and . Since
there are at most edges in and , it follows that

.

If , assigning to and to yields
the desired result that the number of lightpath rearrangements,
which is equal to the sum of the number of edges in as-
signed to and the number of edges in assigned to ,
is at most . Otherwise, it is true that . In

this case, assigning to and to yields the desired
result.

Note that for a -node star. The best known algo-
rithm for finding a maximum bipartite matching in [27] has the
running time , where is the maximum node degree
and is the number of edges in the bipartite graph.1 For a bi-
partite graph in the proof of Lemma 3, and

, where . Thus, to find two disjoint
matchings for each WA update, the running time of the algo-
rithm in [27] is . In the Appendix, we provide an alter-
native and simpler procedure specialized for our task with the
same running time .

The following is our on-line WA algorithm for a star network
with -port traffic which uses wavelengths in each fiber, is
rearrangeably nonblocking, and requires at most lightpath
rearrangements per new session request. We shall refer to this
algorithm as the star WA algorithm.

Star WA algorithm: (Use wavelengths.)
Session termination: When a session terminates, simply

remove its associated lightpath from the network without any
futher lightpath rearrangement.

Session arrival: When a new session arrives and the resultant
traffic matrix is still -port, proceed as follows. Assume that the
new session is from source to destination .

Step 1: If there is a wavelength, denoted by , which is used
by neither source nor destination , then assign the new ses-
sion to . In this case, no lightpath rearrangement is required.
Otherwise, proceed to step 2.

Step 2: Find a wavelength, denoted by , which is not used
by source , i.e., its bipartite matching is not incident on , and
another wavelength, denoted by , which is not used by desti-
nation , i.e., its bipartite matching is not incident on . Since
the new session is admissible, there are at most ses-
sions from source . Since there are available wavelengths,
it follows that exists. By the same argument, always ex-
ists.

Modify the WA of only the sessions on and . Contruct
the traffic bipartite graph in which the set of edges

contains the bipartite matchings of and as well as the
new edge . From Lemma 3, we can partition the set
into two disjoint bipartite matchings. In addition, since

, Lemma 3 tells us that the two matchings can be
assigned to and such that at most existing lightpaths
need to be rearranged.

The construction of the star WA algorithm implies the fol-
lowing theorem.

Theorem 1: For the star network with nodes and -port
traffic, is given by

In addition, there exists, by construction, an on-line WA algo-
rithm which uses wavelengths in each fiber and requires at
most lightpath rearrangements per new session request.

1By running time O(g(n)), we mean the running time can be expressed as a
function f(n) of the problem size n such that there exist a positive real constant
c and a positive integer n satisfying 0 � f(n) � cg(n) for all n � n .
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Fig. 4. Example operations of the star WA algorithm. (a) Bipartite matchings
of � and � . (b) Updated bipartite matchings of � and � .

Fig. 5. Example case in which N � 1 lightpath rearrangements are made to
support a new session.

The following example illustrates the operations of the star
WA algorithm.

Example 1: Consider a 4-node star network with the traffic
matrix given in Fig. 3(a). Note that . Assume that the
WA is given by the two bipartite matchings of wavelengths
and as shown in Fig. 3(b). Now assume the following changes
in the traffic matrix.

1) Existing session (3, 4) on terminates.
2) Existing session (4, 1) on terminates.
3) A new session (3, 1) arrives.

After the second session termination, the bipartite matchings
of and are shown in Fig. 4(a). To support the new session,
the star WA algorithm performs step 2. In particular, it creates a
traffic bipartite graph whose edges are the bipartite matchings of

and as well as the new edge . The algorithm then
partitions the set of edges into two disjoint bipartite matchings
and assigns them to and , as shown in Fig. 4(b). In partic-
ular, session (3, 4) on is reassigned to , and the new session
is then assigned to . In this example, one rearrangement of an
existing lightpath is made to support the new session.

The following example demonstrates that the star WA algo-
rithm may perform up to lightpath rearrangements to
support a new session request.

Example 2: Consider the following WA scenario. Assume
that each wavelength supports one of the two bipartite match-
ings shown in Fig. 5(a). Suppose the new session is transmitted
from source 1 to destination 3. In this case, the star WA al-
gorithm needs to perform step 2. After choosing two bipartite

matchings of wavelengths and , as shown in Fig. 5(a), the
algorithm creates a traffic bipartite graph whose edges are all
the edges in the bipartite matchings of and as well as the
new edge . The algorithm then partitions the set of edges
into two disjoint bipartite matchings and assign them to and

, as shown in Fig. 5(b). In this example, the algorithm needs
to perform lightpath rearrangements to support the new
session.

B. Arbitrary Tree Networks

In this section, we extend the star WA algorithm to create
an on-line WA algorithm for tree networks. In a given tree
network, assume there are end nodes which are the
leaf nodes of the tree. We shall ignore all the nonleaf nodes
with degree 2 since their removal does not change the WA
problem. We describe a tree by a set of nodes and a set of
bidirectional links .

We first determine , the minimum number of wavelengths
which, if provided in each fiber, can support -port traffic
given full wavelength conversion at all nodes. Each link in
the tree corresponds to a cut which separates leaf nodes into
two sets, denoted by and . The maximum possible
traffic, in wavelength units, in a fiber across this link is equal to

. The overall maximum possible
traffic across any link, denoted by , is the value of given
below:

(1)

Let be the minimum number of wavelengths which, if
provided in each fiber, can support -port traffic with no wave-
length conversion. We shall show that , which implies

. We do so by constructing an on-line WA
algorithm. We shall refer to as the worst case number of
wavelengths since wavelengths are necessary and sufficient
to support any traffic matrix in the -port traffic set. Since a star
network is also a tree network, Fig. 2 illustrates that the WA al-
gorithm design is not trivial for a tree network.

We now derive a few useful properties related to the worst
case number of wavelengths . Let denote the link associ-
ated with . Note that there may be multiple choices for .
We shall refer to as the bottleneck link since it is the link with
the maximum load under the worst case traffic.

Link separates the leaf nodes into two sets and
. Without loss of generality, choose such that the

sum of ’s in this set is . We assume for now that
contains multiple leaf nodes, as illustrated in Fig. 6. Define the
bottleneck node to be the end point of opposite to ,
i.e., the subtree connected to by has the sum of ’s equal
to , as illustrated in Fig. 6.

We shall refer to each subtree connected to as a top-level
subtree. Note that a top-level subtree can be a single node. Let
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Fig. 6. Definition of the bottleneck node v .

Fig. 7. The bottleneck node v and the top-level subtrees. (a) Multiple leaf
nodes in N . (b) Single leaf node in N .

be the degree of .2 Since is a nonleaf node, . It
follows that there are top-level subtrees, as illustrated in
Fig. 7(a).

If the set contains a single node, we have the scenario
illustrated in Fig. 7(b). In this case, assumption 1 implies that the
value of for the leaf node in is equal to . We argue
that, with leaf nodes, this scenario can be transformed
to the scenario in Fig. 7(a) by exchanging the roles of and

. After the exchange, the set will contain multiple
nodes, and we have a scenario as illustrated in Fig. 7(a). There-
fore, we shall consider only the scenarios in which exists and

, as illustrated in Fig. 7(a).
Note that the location of the bottleneck node depends on

the specific tree network and the traffic vector , but not on
the current traffic matrix being supported. The following lemma
provides useful properties of the top-level subtrees connected
to as well as the bounds on the worst-case number of wave-
lengths .

Lemma 4: Under assumption 1, the following properties
hold.

1) Let , denote the sum of ’s in top-level
subtree . For all .

2) Let . The worst-case number of wave-
lengths is bounded by

Proof:

1) We shall prove statement 1 by contradiction. Number the
top-level subtrees from 1 to such that top-level sub-

tree 1 is connected to by link . By the definition of
, we know that . Suppose now that

for some with . Consider the link con-

2Since we assume that each link consists of two fibers, one in each direction,
the indegree and the outdegree of any given network node are the same. We
simply refer to their value as the node degree.

necting subtree to . Since there are at least three sub-
trees, subtree can send more than sessions on link
to , e.g., sessions to subtree 1 and one more session
to another subtree. It follows that link can carry more
than sessions, contradicting the fact that is the bot-
tleneck link.

2) From the definition of , it is clear that . To
prove the lower bound, we use statement 1 of the lemma,
i.e., for all , to show that

The above inequality yields the desired lower bound

As in the star WA algorithm, the algorithm for tree networks
is based on bipartite matchings. The main difference has to do
with what a node in a bipartite graph represents. In the star WA
algorithm, a node represents a single source or a single destina-
tion. In this section, a node represents a set of sources or a set
of destinations in a top-level subtree.

For a given traffic matrix, we construct the top-level subtree
bipartite graph, denoted by , as follows. We consider
each leaf node as one distinct source and one distinct destina-
tion. Number the top-level subtrees from 1 to . The set
contains abstract nodes, denoted by . Node

, represents the set of sources contained in
top-level subtree . Similarly, the set contains abstract
nodes, denoted by . Node ,
represents the set of destinations contained in top-level subtree
. In the set of edges , an edge from node in to node

in exists for each traffic session from a source in top-level
subtree to a destination in top-level subtree . Fig. 8 shows an
example of the top-level subtree bipartite graph and its traffic
matrix. Note that there may be multiple edges between the same
pair of nodes. For example, since there are two sessions from
top-level subtree 3 to top-level subtree 4, there are two parallel
edges between the set of sources and the set of destinations

in Fig. 8(d).
Define a local session to be a traffic session whose source

and destination are in the same top-level subtree. Accordingly,
a nonlocal session has its source and its destination in different
top-level subtrees. A nonlocal session has to travel through the
bottleneck node , whereas a local session does not have to
travel all the way to and back to its destination, i.e., each ses-
sion need not use the same link twice in the opposite directions.
A nonlocal session corresponds to an edge from some node
in and some node in , where . On the other hand,
a local session corresponds to an edge between some node
in and node in . For example, the top-level subtree bi-
partite graph in Fig. 8(d) contains seven nonlocal sessions and
one local session. The local session is from a source in top-level
subtree 2 to a destination in the same top-level subtree.

Observe that the sessions belonging to a matching in the top-
level subtree bipartite graph can be supported on a single wave-
length without wavelength collision. To see this, note that any
two sessions in a bipartite matching are transmitted from dif-
ferent top-level subtrees and to different top-level subtrees. Con-
sequently, if these two sessions travel in the same top-level sub-
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Fig. 8. Top-level subtree bipartite graph. (a) Tree topology with traffic
parameter k, (b) Traffic matrix for individual leaf nodes, (c) Traffic matrix for
top-level subtrees, (d) Top-level subtree bipartite graph.

Fig. 9. Bipartite matchings of specific wavelengths.

tree, i.e., each session uses some fiber in that subtree, one ses-
sion must be transmitted from that subtree while the other ses-
sion must be received in that subtree. It follows that these two
sessions always traverse links belonging to the same top-level
subtree in the opposite directions and do not collide.

Our algorithm will assign a single bipartite matching to a
single wavelength. We shall refer to the matching assigned to
wavelength as the bipartite matching of . Fig. 9 shows ex-
ample bipartite matchings of specific wavelengths.

We now argue that wavelengths are sufficient to support
any traffic matrix in the -port set. From statement 1 of Lemma
4, each top-level subtree can transmit at most wavelengths
and receive at most wavelengths. Thus, for a given a traffic
matrix, each node in the corresponding top-level subtree bipar-
tite graph has degree at most . By Lemma 2, the set of edges
can be partitioned into disjoint bipartite matchings. The ses-
sions in each matching can be supported on a single wavelength.
Thus, wavelengths are sufficient to support any -port traffic
matrix. Notice that, by finding disjoint bipartite matchings,

we provide the WA for both local and nonlocal sessions simul-
taneously.

The main idea of our on-line WA algorithm involves keeping
disjoint bipartite matchings of wavelengths such that

each traffic session corresponds to an edge in one bipartite
matching. When a session departs, we simply remove its cor-
responding lightpath from the network. When a new (local or
nonlocal) session arrives, we update the WA by finding up to
two wavelengths whose bipartite matchings can be reassigned
to include the new session.

The following is our on-line WA algorithm for a tree network
with -port traffic which uses wavelengths in each fiber, is
rearrangeably nonblocking, and requires at most light-
path rearrangements per new session request. We refer to this
algorithm as the tree WA algorithm.

Tree WA algorithm: (Use wavelengths.)
Session termination: When a session terminates, simply

remove its associated lightpath from the network without any
futher lightpath rearrangement.

Session arrival: When a new session arrives and the resultant
traffic matrix is still -port, proceed as follows. Assume that the
new session is from a source in top-level subtree to a destina-
tion in top-level subtree . When , the new session is local.
Otherwise, it is nonlocal. In either case, follow the same proce-
dures below.

Step 1: If there is a wavelength, denoted by , which is used
by neither a source in top-level subtree nor a destination in top-
level subtree , then assign the new session to . In this case,
no lightpath rearrangement is required. Otherwise, proceed to
step 2.

Step 2: Find a wavelength, denoted by , which is not used
by any source in top-level subtree , i.e., its bipartite matching
is not incident on , and another wavelength, denoted by ,
which is not used by any destination in top-level subtree ,
i.e., its bipartite matching is not incident on . Since the new
session is admissible, there are at most sessions from
top-level subtree . Since there are available wavelengths, it
follows that exists. By the same argument, always exists.

Modify the WA of only the sessions on and . Contruct
the top-level subtree bipartite graph in which the set
of edges contains the bipartite matchings of and as well
as the new edge . From Lemma 3, we can partition the
set into two disjoint bipartite matchings. In addition, since the
value of in Lemma 3 is equal to for the top-level subtree
bipartite graph, the two matchings can be assigned to and
such that at most existing lightpaths need to be rearranged.

The construction of the tree WA algorithm implies the fol-
lowing theorem.

Theorm 2: For an arbitrary tree network with -port traffic
among leaf nodes and the bottleneck node with degree

is given by

In addition, there exists, by construction, an on-line WA algo-
rithm which uses wavelengths in each fiber and requires at
most lightpath rearrangements per new session request.
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Fig. 10. Example operations of the tree WA algorithm.

Theorem 2 tells us that wavelength conversion cannot de-
crease the wavelength requirement for -port traffic in an ar-
bitrary tree topology. In addition, if we scale the traffic vector
by an integer factor, then the location of the bottleneck node
remains fixed, and the upper bound on the number of lightpath
rearrangements per new session request does not increase. Fi-
nally, from statement 2 of Lemma 4, among the tree topologies
with leaf nodes, the minimum value of the worst-case number
of wavelengths is at least . The tree topolo-
gies with close to this lower bound are the ones in which
each top-level subtree has the sum of ’s approximately equal
to . Roughly speaking, it is desirable to have
all the subtrees support an equal amount of traffic.

The following example illustrates the operations of the tree
WA algorithm.

Example 3: Consider the tree network with the traffic ma-
trix given in Fig. 8. Note that . Assume that the corre-
sponding WA is given by the two bipartite matchings of wave-
lengths and as shown in Fig. 9. Now assume the following
changes in the traffic matrix.

1) The existing session from source 3 in top-level subtree 2
to destination 2 in top-level subtree 1 on terminates.

2) The existing session from source 1 in top-level subtree 1
to destination 5 in top-level subtree 3 on terminates.

3) A new session from source 1 to destination 2 in top-level
subtree 1 arrives.

After the second session termination, the bipartite matchings
of and are shown in Fig. 10(a). To support the new session,
the tree WA algorithm performs step 2. In particular, it creates
a top-level subtree bipartite graph whose edges are the bipar-
tite matchings of and as well as the new edge .
The algorithm then partitions the set of edges into two disjoint
bipartite matchings and assign them to and , as shown in
Fig. 10(b). In particular, the session from top-level subtree 4 to
top-level subtree 3 on is reassigned to . In addition, the
session from top-level subtree 4 to top-level subtree 1 on is
reassigned to . The new session is then assigned to . In this
example, two rearrangements of existing lightpaths are made to
support the new session.

An example similar to the one based on Fig. 5 for a star net-
work can be constructed to show that the tree WA algorithm may
perform up to lightpath rearrangements to support a new
session request. We omit the details here.

C. Tree Networks With Non-Leaf End Nodes

In this section, we relax the assumption that only leaf nodes
in a given tree network are end nodes, i.e., nodes which source

Fig. 11. Example embedded tree in a mesh network.

and sink traffic sessions. This relaxation also allows us to embed
a tree network in an arbitrary mesh network. We emphasize that
the purpose of this section is to demonstrate a possibility of
using our tree WA algorithm for a tree with nonleaf end nodes.
In general, embedding a tree in a mesh network does not yield
an optimal solution to the RWA problem. In addition, note that
there are several possible embedded trees for a given mesh net-
work. We make no effort here in selecting an embedded tree with
the minimum wavelength requirement, i.e., minimum value of

.
As an example, Fig. 11(a) shows an arbitrary mesh network.

One possible embedded tree is shown in Fig. 11(b). Note that
nodes 2, 4, and 5 are nonleaf end nodes.

We now show that, for a tree with nonleaf end nodes, the
minimum required number of wavelengths is equal to as
given in (1). We define the bottleneck link and the bottleneck
node as before. Since is the maximum possible link load,
it is clear that . To show that , consider two
possible cases: 1) is not an end node, and 2) is an end
node.

In either case, we can repeat the proof of statement 1 in
Lemma 4 to show that each top-level subtree contains at most

transmitters and at most receivers. Consider case 1 in
which is not an end node. We can use the tree WA algorithm
developed so far without any modification as a proof that

. It remains to consider case 2 in which is an end
node.

With being an end node, we modify the top-level subtree
bipartite graph as follows. In the modified bipartite graph, there
are source nodes, where is the node degree of . There
are nodes, denoted by to , that correspond to the set of
sources in the subtrees connected to . In addition, there are

nodes, denoted by to , that represent as a source
transmitting to subtrees 1 to respectively. Fig. 12 shows an
example modified bipartite graph. Note that a session from
to a node in subtree 1 corresponds to an edge adjacent to source
node and destination node in the bipartite graph. Simi-
larly, there destination nodes.

It is clear that the sessions from each bipartite matching can
be supported on a single wavelength. Because the number of
transmitters/receivers in each subtree is at most , it follows
that the maximum node degree in the modified bipartite graph is
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Fig. 12. Modified top-level subtree bipartite graph.

at most . Consequently, the set of edges in the bipartite graph
can be partitioned into disjoint matchings. Thus, .

We can apply Lemma 3 and the fact that the number of
source/destination nodes in the modified bipartite graph is

to conclude that the number of lightpath rearrangements
required for each new session is bounded by . We
summarize the results in this section formally below.

Lemma 5: For an arbitrary tree with nonleaf end nodes and
-port traffic, , where is given in (1). In addition,

there exists an on-line WA algorithm that uses wavelengths
and requires no more than lightpath rearrangements per
new session request.

D. Strict-Sense Nonblocking WA Algorithm

We show in this section that, by using roughly twice the
number of wavelengths, we can modify the tree WA algorithm
to become strict-sense nonblocking. In particular, with
wavelengths where is given in (1), we can use a simple
first-fit WA scheme in which a new session is assigned to
any available wavelength. The following lemma provides a
justification.

Lemma 6: For a tree network with -port traffic, the number
of wavelengths for strict-sense nonblocking, denoted by , is
bounded by

Proof: The lower bound is justified by example 2 which
shows the need for lightpath rearrangement when wave-
lengths are used. To prove the upper bound, consider the first-fit
WA scheme. Suppose the new session is from subtree to sub-
tree . Then there are at most sessions transmitted from
subtree , and at most sessions received in subtree .
With wavelengths available, there must be at least one
free wavelength. We can use any free wavelength to support the
new session without lightpath rearrangement.

The following example shows that the above upper bound is
tight. Consider top-level subtrees 1 to 3 each of which contains

transmitters and receivers. Suppose there are
sessions from subtree 1 to subtree 3 supported on wavelengths
1 to . In addition, there are sessions from subtree
3 to subtree 2 supported on wavelengths to . At this
point, a new session from subtree 1 to subtree 2 requires a new
wavelength, for a total of wavelengths.

To our knowledge, the minimum number of wavelengths for
a wide-sense nonblocking WA algorithm is still unknown. From

Fig. 13. Hybrid wavelength-routed/broadcast tree that uses the same number
of wavelengths as a wavelength-routed tree but only one switching node.

the fact that the number of wavelengths for wide-sense non-
blocking is no more than , it follows that the bounds in
Lemma 6 also applies for wide-sense nonblocking.

IV. HYBRID WAVELENGTH-ROUTED/BROADCAST TREES

In this section, we point out that the tree WA algorithm can
be implemented on a tree with only one switching node con-
necting several passive broadcast subtrees. The key observation
is that, in the tree WA algorithm, routing each local session
from the source all the way to the bottleneck node and back
to its destination does not cause any wavelength collision and
allows the implementation of each subtree as a passive broad-
cast tree. Fig. 13 illustrates an example of such a hybrid wave-
length-routed/broadcast tree. Note that the hybrid tree is wave-
length efficient; it uses the same number of wavelengths as the
corresponding wavelength-routed tree. In particular, the hybrid
tree uses wavelengths as opposed to wavelengths
for the corresponding broadcast tree. In terms of hardware, the
hybrid tree differs from a passive broadcast tree only by one
switching node.

For a practical network such as a distribution tree in a
metropolitan optical network, it is desirable to locate this
only switch at the access node of the tree and keep the rest
of the tree passive. However, the bottleneck node and the
access node may not be the same. In that case, we could still
locate the only switch at the access node at the expense of
additional wavelengths. In particular, suppose that the access
node connects subtrees. Let be the maximum total number
of transmitters/receivers among all the subtrees. Then, using

wavelengths, we can construct a hybrid tree using the only
switch at the access node. The WA algorithm is exactly the
same as the tree WA algorithm but with the access node taking
a role of the bottleneck node. We omit the details here.

V. CONCLUSION

We developed an on-line WA algorithm for dynamic -port
traffic in a WDM all-optical tree network. Our algorithm is re-
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Fig. 14. Cycles in a bipartite graph with node degree 2.

arrangeably nonblocking, uses the minimum number of wave-
lengths, and requires at most lightpath rearrangements
per new session request, where is the degree of the bottle-
neck node. We observed that the number of lightpath rearrange-
ments per new session request does not increase as the amount
of traffic scales up by an integer factor. We also showed that,
using roughly twice the number of wavelengths, we can modify
the tree WA algorithm to become strict-sense nonblocking.

For an arbitrary tree topology, we found that the minimum
numbers of wavelengths required to support -port traffic with
full wavelength conversion at all nodes and without wave-
length conversion are the same. This implies that the use of
wavelength converters will not decrease the required number
of wavelengths.

Most of the complexity in our on-line WA algorithm involves
partitioning the edges in a bipartite graph with maximum node
degree 2 into two disjoint matchings. We pointed out that this
can be done in time for each WA update. matching exist,
we developed a specialized for our task.

Finally, we showed that the tree WA algorithm can be im-
plemented on a hybrid wavelengh-routed/broadcast tree using
only one optical switch at the bottleneck node. For a practical
network such as a distribution tree in a metropolitan optical net-
work, it is desirable to use the only switch at the access node so
that the rest of the tree is passive. In the case where the access
node is not the bottleneck node, we described how the tree WA
algorithm can be used at the expense of additional wavelengths.

Our future goal is to develop an on-line RWA algorithm for
other types of network topologies. Since a tree network can be
embedded in any connected network, we hope that our analyt-
ical approach in this paper can be extended to create an on-line
RWA algorithm for other types of network topologies.

APPENDIX

EFFICIENT BIPARTITE MATCHING WITH

MAXIMUM NODE DEGREE 2

We present below a simple and efficient algorithm for parti-
tioning the edges in a bipartite graph with

and maximum node degree 2 into two disjoint match-
ings. The algorithm has the running time . We omit the
proof details which can be found in [28].

Assume for now that each node has degree 2. The main idea of
our algorithm is as follows. In a bipartite graph with node degree
2, the edges in form a set of disjoint cycles each of which
contains an even number of edges. For example, Fig. 14 shows
three disjoint cycles in a bipartite graph with node degree 2.

Fig. 15. Assignment of edges to matchingsM andM .

For each cycle, we move along the edges of the cycle and
alternately assign them to two matchings, denoted by
and , such that no two adjacent edges belong to the same
matching. Note that this is possible since there are even number
of edges in each cycle. Finally, we collect the edges in all dis-
joint cycles to form two matchings and , as illustrated
in Fig. 15. We describe the algorithm formally below. We shall
refer to this algorithm as the degree-2 bipartite matching algo-
rithm.

Degree-2 Biparite Matching Algorithm: Given a bipartite
graph with and node degree 2,
form two matchings and as follows.

Step 1: Form a new cycle disjoint from all the previous cycles
starting from the lowest-index node in with an incident edge
not yet assigned to either or . Assign the edges in this
cycle alternately to and such that no two adjacent edges
in the cycle are assigned to the same matching.

Step 2: Look for the next lowest-index node in with an
incident edge not yet assigned to either or . If such a
node exists, proceed to step 1. If such a node does not exist,
terminate the algorithm.

The running time can be seen from the fact that the
above algorithm visits each node in the bipartite graph exactly
once.

We now relax the assumption that each node has degree 2.
If some node has degree less than 2, we can add extra edges to
the bipartite graphs to make all the nodes have degree 2. After
using the above algorithm to find two disjoint matchings, we can
remove the extra edges to obtain the two desired matchings.
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