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Abstract

We show that determining the minimum number of resolve filters that need to be added

to a set of 2-dimensional prefix filters so that the filter set can implement a given policy

using the first-matching-rule-in-table tie breaker is NP-hard. Additionally, we develop a fast

O(n log n + s) time, where n is the number of filters and s is the number of conflicts, plane-

sweep algorithm to detect and report all pairs of conflicting 2-dimensional prefix filters. The

space complexity of our algorithm is O(n). On our test set of 15 2-dimensional filter sets, our

algorithm runs between 4 and 17 times as fast as the 2-dimensional trie algorithm of Hari et

al. [9] and uses between 1/4th and 1/8th the memory used by the algorithm of [9]. On the

same test set, our algorithm is between 4 and 27 times as fast as the bit-vector algorithm of

Baboescu and Varghese [2] and uses between 1/205 and 1/6 as much memory. We introduce

the notion of an essential resolve filter and develop an efficient algorithm to determine the

essential resolve filters of a prefix filter set.

Keywords: Packet classification, 2-dimensional prefix filters, filter conflict.

1 Introduction

An Internet router classifies incoming packets into flows1 utilizing information contained in packet

headers and a table of (classification) rules. This table is called the router table (equivalently,

rule table). Each router table rule is a pair of the form (f, a), where f is a filter and a is an action.

1A flow is a set of packets that are to be treated similarly for routing purposes.
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The action component of a rule specifies what is to be done when a packet that satisfies the rule

filter is received. Sample actions are drop the packet, forward the packet along a certain output

link, and reserve a specified amount of bandwidth. The filter component of a rule is a k-tuple

the fields of which may represent, for example, the source address of the packet, the destination

address, protocol, and port number. Each field of a k-tuple may be specified as a single value,

a range or a prefix. A destination address field that is specified as a range [u, v] matches the

destination address d iff u ≤ d ≤ v, while a destination address field specified by the prefix r

matches all destination addresses that begin with r2. A filter f matches a packet p iff every field

of f matches the corresponding value of p (i.e., the destination field (if any) of f matches the

destination address of p, the source address field (if any) of f matches the source address of p,

the port number field (if any) of f matches the port number of p, etc.). We may assume that no

two rules of the router table have the same filter.

Since an Internet router table may contain several rules that match a given packet p, a tie

breaker is used to select a rule from the set of rules that match p. Some commonly used tie

breakers are (a) select the first rule in the table that matches p, (b) select the highest-priority

rule that matches p, and (c) select the most-specific rule that matches p3.

In the packet classification problem, we wish to determine which rule of the router table is

to be applied to a given packet4 Data structures to represent one-dimensional router tables (i.e.,

tables in which every filter has a single field, which is typically the destination address of the

packet being classified), have been extensively studied. These structures are reviewed in [13] and

2For example, the prefix 10* matches all destination addresses that begin with the bit sequence 10; the length

of this prefix is 2.
3Let f and g be two filters. f is more specific than g iff every packet matched by f also is matched by g and

there is at least one packet matched by g that is not matched by f .
4In some packet classification applications it is desirable to report all rules that match a given packet. In this

paper, however, our focus is applications in which only one matching rule is to be reported. A tie-breaker is

provided to uniquely determine which of a set of matching rules is to be reported.
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[14], for example. Although 1-dimensional prefix filters are adequate for destination based packet

forwarding, higher dimensional filters are required for firewall, quality of service, and virtual

private network applications, for example. Two-dimensional prefix filters, for example, may be

used “to represent host to host or network to network or IP multicast flows” [9] and higher

dimensional filters are required if these flows are to be represented “with greater granularity.”

Eppstein and Muthukrishnan [6] state that “Some proposals are underway to specify many fields

... while others are underway which seem to preclude using more than just the source and

destination IP addresses ... (in IPsec for example, the source or destination port numbers may not

be revealed).” Kaufman et al. [18] also point out that in IPsec, for security reasons, fields other

than the source and destination address may not be available to a classifier. Thus two-dimensional

prefix filters represent an important special case of multi-dimensional packet classification. Data

structures for multi-dimensional (i.e., k > 1) packet classification are developed in [1, 2, 3, 5, 6,

7, 8, 9, 11, 12, 15, 16], for example. In the sequel we use the terms rule and filter interchangeably

because the filters in a rule-table are distinct and, in this paper, we are not concerned with the

action associated with a rule.

Hari et al. [9] introduced the notion of filter conflict. Two filters f and g are in conflict iff

the following three conditions hold:

1. There is at least one packet that is matched by both f and g.

2. There is at least one packet that is matched by f but not by g.

3. There is at least one packet that is matched by g but not by f .

Note that when our filters are one-dimensional prefix filters, it isn’t possible to have filter conflict.

Figure 1(a) shows an example router-table with 4 2-dimensional prefix filters A, B, C, and D.

These filters are shown as rectangles in Figure 1(b). Each rectangle represents the set of filters
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Filter Source Prefix Destination Prefix

A 001* *

B * 001*

C 110* *

D * 110*

(a) 4 Filters

(b) Rectan-

gular repre-

sentation

Figure 1: Conflicting filters

it matches. Conflicts exist between the pairs (A, D), (D, C), (C, B) and (B, A), and the conflicts

are represented by the overlap region between pairs of rectangles. The overlap between rectangles

A and D, for example, represents packets matched by both A and D. The example of Figure 1

is essentially the same as that given in [9]. Since neither A nor B is more specific than the other,

the most-specific-rule tie breaker cannot be used to decide how to classify packets that lie in

the overlap region of A and D. Now suppose that the desired classification policy is that filter

A is to be selected for packets in the overlap region between A and D, D is selected between

D and C, C is selected between C and B, and B is selected between B and A. If we use the

first-matching-rule-in-table tie breaker, then A must precede D in the table, D must precede C,

C must precede B, and B must precede A. This set of precedence requirements is cyclic and so

is impossible to accomplish. The same cyclic requirement arises if we attempt to use the highest-

priority tie breaker. So none of the stated tie breaker schemes may be used to achieve the desired

classification policy.

To get around this difficulty, Hari et al. [9] propose the introduction of resolve filters. A resolve

filter is a filter that matches the packets in the overlap region of two conflicting filters. Let E be

the resolve filter for A and D, and let the action associated with E be the same as that associated
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with A. We can get the classification policy stated above by ordering the filters as E, D, C, B,

A and using the fist-matching-rule tie breaker.By introducing resolve filters to break all cyclic

requirements imposed by the desired classification policy, we can order any set of rules so that

the first-matching-rule tie breaker implements the desired classification policy. Hari et al. [9]

“show” that determining the minimum number of resolve filters required to implement a desired

classification policy using the first-matching-rule tie breaker is NP-hard. Although this result is

correct, the proof provided in [9] is not. In Section 2 we provide a correct proof of this result.

In light of the preceding NP-hard result, Hari et al. [9] propose the addition of a resolve filter

for every pair of conflicting filters. When this is done, every packet has a unique most-specific rule

that matches it (we assume that the router table is such that every packet is matched by at least

one rule in the table) and so any classification policy can be realized. Toward this end of adding

a resolve filter for every pair of conflicting filters, Hari et al. [9] propose the use of 2-dimensional

1-bit tries to detect all conflicts when the filters are 2-dimensional prefix filters. Two modes of

operation are possible for conflict detection:

1. Static · · · Given a set of n filters, report all pairs of conflicting filters. The static mode

is useful “to analyze existing filter databases in firewalls and QoS aware routers to detect

conflicts” [9].

2. Dynamic · · · Given a set of n filters and a new filter f , report all conflicts between f and

the initial set of n filters. Additionally, add or remove a filter from the given filter set. The

dynamic mode is useful “in next generation signaling programs which will carry filters and

related packet handling information” [9]. In this application, “as the signalling information

propagates through the network, network routers can use the algorithm to report conflicts

back to the originators of the signalling requests” [9]. When there are no conflicts, the

packet’s filters and associated signalling information can be added to the router table.
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Using 1-bit 2-dimensional tries augmented with switch pointers, all pairs of conflicting 2-

dimensional prefix-filters may be reported in O(nW + s) time, where W is the length of the

longest prefix (W ≤ 32 in IPv4 and W ≤ 128 in IPv6) and s is the number of pairs of conflicting

filters [9]. This time doesn’t include the O(nW 2) time need to construct the 2-dimensional trie

with switch pointers. For the dynamic version, Hari et al. [9] propose the use of 1-bit 2-dimensional

tries without switch pointers. Now, all conflicts between a filter f and a given set of n filters may

be reported in O(W 2 + k) time, where k is the number of conflicts between f and the given set

of n filters. This time doesn’t include the one-time cost of O(nW ) to create the 2-dimensional

trie structure for the n filters. Also, a filter may be added or removed from the filter set in O(W )

time.

Baboescu and Varghese [1, 2] propose a number of bit-vector schemes for conflict detection

among prefix filters. However, they use a different notion of conflict than used in [9] and in this

paper. They include the cases f ⊂ g and g ⊂ f as a conflict between f and g. We refer to

this type of conflict as containment conflict. The algorithms of Baboescu and Varghese [1, 2] are

adapated easily to the conflict model used in this paper. The best of the Baboescu and Varghese

algorithms for static conflict detection [2] runs in O(n2) time and requires O(n2) space. This

algorithm employs compressed binary tries (one for each dimension of a filter) and n-bit vectors,

where n is the number of filters. This algorithm may be used for dynamic conflict detection as

well. In this case, it takes O(nW ) time to report all conflicts between a new filter and an existing

set of n filters. A filter may be deleted in O(W ) time. A new filter may be inserted in O(W ) time

if the bit vectors employed by the scheme of [2] are long enough to accommodate an additional

filter; otherwise it would take O(n2) time to resize all the bit vectors to accommodate the new

filter. It is important to note that the bit-vector scheme of [2] works for d-dimensional filters,

d > 1 (and not just for the case d = 2). For general d, the complexities stated in this paragraph
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need to be multiplied by d.

Eppstein and Muthukrishnan [6] develop an O(n3/2) algorithm to determine whether or not a

set of n range filters has a conflict. They do not explicitly consider reporting all pairwise conflicts

in a given filter database.

After providing, in Section 2, a correct proof for Hari et al.’s [9] assertion that determining

the minimum number of resolve filters required to implement a desired classification policy using

the first-matching-rule tie breaker is NP-hard, we develop a plane-sweep method for the static

version of the conflict reporting problem for 2-dimensional prefix filters (Section 3). Our plane-

sweep method reports all pairs of conflicting filters in O(n log n + s) time and uses O(n) space.

In Section 5 we introduce the notion of an essential resolve filter and develop an algorithm to

determine the essential resolve filters for a given set of 2-dimensional prefix filters. Experimental

results are presented in Section 7.

2 NP-hard Proof

Let F be a filter set and let P be a desired policy. Let MRF (F, P ) be a minimum set of resolve

filters required to implement P using the first-matching-rule tie breaker and let |MRF (F, P )| be

the number of filters in MRF (F, P ). Let MRFP be the problem of determining |MRF (F, P )|.

Hari et al. [9] show how to construct a directed graph H(F, P ) in which each vertex represents

a filter of F and each directed edge (f, g) denotes the requirement that filter f precede filter g in

the router table. Clearly edge (f, g) need be introduced into H(F, P ) only when filters f and g

conflict and the policy P requires that filter f be selected over filter g for packets that fall in the

overlap region of f and g. We shall refer to H(F, P ) as the conflict resolution graph for (F, P ).

Hari et al. [9] correctly observe that |MRF (F, P )| equals the size of the smallest feedback arc set5

5A subset A of the edges of a directed graph G is a feedback arc set of G iff the removal from G of the edges

in A leaves behind an acyclic graph. The size of the feedback arc set is the number of edges in the feedback arc
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of H(F, P ) and that adding resolve filters corresponding6 to the edges in a minimum feedback

arc set of H(F, P ) is sufficient to realize P using the first-matching-rule tie breaker. From this

observation and the fact that determining the size of a minimum feedback arc set is NP-hard [10],

Hari et al. [9] conclude that MRFP is NP-hard. This reasoning is incomplete because the only

conclusion one can draw from the observation made in [9] is that MRFP is no harder than

MFBASP (the problem of determining the size of the smallest feedback arc set of a directed

graph). A correct proof that MRFP is NP-hard must show how to solve, in polynomial time,

some known NP-hard problem using a polynomial-time algorithm for MRFP ; not how to solve

MRFP in polynomial time using a polynomial time algorithm for a known NP-hard problem.

Theorem 1 MRFP is NP-hard.

Proof We show how a polynomial time algorithm for MRFP enables the solution of MFBASP

in polynomial time. From this demonstration and the fact that MFBASP is NP-hard it follows

that MRFP is NP-hard. The following proof explicitly considers only 2-dimensional prefix filters

and therefore only shows that MRFP is NP-hard for 2-dimensional prefix filters. The NP-

hardness of MRFP for 2-dimensional range filters as well as for higher dimensional filters in

which at least 2 fields are specified as ranges (or prefixes) is an immediate consequence of NP-

hardness for 2-dimensional prefix filters.

Let G be a directed graph that represents an arbitrary instance of MFBASP . We show

how to construct, in polynomial time, an instance (F, P ) of MRFP such that |MRF (F, P )| =

|MFBAS(G)| (MFBAS(G) is a minimum feedback arc set of G). Hence using a polynomial-time

algorithm for MRFP and our construction, we can determine |MFBAS(G)| in polynomial time.

The filter set F is obtained in the following way:

set.
6For the edge (f, g) the corresponding resolve filter is the resolve filter for f and g.
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1. Let n be the number of vertices in the MFBASP instance G and let e be the number of

edges in G. F has the n+e 2-dimensional prefix filters (i, ∗), 1 ≤ i ≤ n and (∗, q), 1 ≤ q ≤ e.

The filter (i, ∗) matches all packets whose source address is i; the second field of the filter

is the destination address field and has been wildcarded. The filter (i, ∗) represents vertex

i of the graph G and the filter (∗, q) represents edge q. Notice that the vertex filters are

pairwise disjoint (i.e., have no overlap) and that the edge filters also are pairwise disjoint.

The conflicting filter pairs of F are ((i, ∗), (∗, q)), 1 ≤ i ≤ n, 1 ≤ q ≤ e.

2. Let edge q be (uq, vq) (i.e., edge q starts at vertex uq and terminates at vertex vq). For each

edge (uq, vq), 1 ≤ q ≤ e, the policy P requires that in the overlap region between (∗, q)

and (uq, ∗) filter (uq, ∗) be selected and that filter (∗, q) be selected in the overlap region

between (vq, ∗) and (∗, q). For the remaining overlap regions, the conflict may be resolved

by selecting either of the overlapping filters7.

It is easy to see that the (F, P ) constructed above is a valid instance of MRFP . For every

edge (uq, vq) of G, the policy P together with the first-matching-rule tie breaker imply that

((uq, ∗), (∗, q)) and ((∗, q), (vq, ∗)) are edges in the conflict resolution graph H(F, P ) for (F, P ).

Hence H(F, P ) may be obtained from G by the following transformation:

1. Into edge (uq, vq) of G introduce the vertex (∗, q) (this essentially splits the edge (uq, vq) into

two edges (uq, (∗, q)) and ((∗, q), vq)), 1 ≤ q ≤ e.

2. Replace vertex label i with the label (i, ∗), 1 ≤ i ≤ n.

So |MFBAS(G)| = |MRF (F, P )|.

7In case don’t cares are not permitted in the policy P , we can augment the filter list F with resolve filters for

the remaining overlap regions.
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3 Reporting All Conflicts For 2-D Filters

3.1 Resolve Filters and Conflict-Free Filter Sets

Let p be a packet and let M(p, F ) be the subset of filters of F that match p. The filter set F

is conflict free under the most-specific-matching-rule tie breaker iff for every packet p either

|M(p, F )| = 0 or M(p, F ) contains a filter that is more specific than any other filter in M(p, F ).

Since MFRP is NP-hard, Hari et al. [9] propose adding to F a resolve filter for every pair

of conflicting filters and then using the most-specific-matching-rule tie breaker to implement the

desired policy. For this strategy to work, F ∪ resolve(F ), where resolve(F ) is the set of resolve

filters for the conflicting pairs of F , must be conflict free. In Theorem 2 we show that F ∪

resolve(F ) is conflict free for 2-dimensional prefix filters and that it may not be conflict free for

2-dimensional range filters. Hence the strategy proposed in [9] to make F conflict free works for

prefix filters but not for range filters. First we introduce some notation.

Let f be a 2-dimensional filter. X(f) and Y (f) are, respectively, the projections of f onto

the x and y axes. For example, when f = (10∗, 1101∗) then X(f) = 10∗ and Y (f) = 1101∗

and when f = ([3, 7], [1, 9]) then X(f) = [3, 7] and Y (f) = [1, 9]. Since a filter defines a set

of matching packets (or packet headers), we may use set notation when dealing with filters and

their projections. So, for example, f ∩ g denotes the set of packets matched by both f and g;

alternatively f ∩ g denotes the overlap region of f and g; and filters f and g conflict iff f ∩ g 6= ∅,

f ∩ g 6= f , and f ∩ g 6= g.

Lemma 1 For every pair of conflicting 2-dimensional filters f and g, X(f ∩ g) = X(f) ∩ X(g)

and Y (f ∩ g) = Y (f) ∩ Y (g).

Proof Straightforward.

From Lemma 1, it follows that the resolve filter for f and g is (X(f) ∩ X(g), Y (f) ∩ Y (g)).
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Lemma 2 [Hari et al. [9]] Two prefix filters f and g conflict iff one of the following is true

1. X(f) ⊂ X(g) and Y (f) ⊃ Y (g).

2. X(f) ⊃ X(g) and Y (f) ⊂ Y (g).

Theorem 2 Let F be a set of 2-dimensional filters.

1. When the filters in F are prefix filters, F ∪ resolve(F ) is conflict free.

2. When the filters in F are range filters, F ∪ resolve(F ) may not be conflict free.

Proof First consider the case of prefix filters. We prove that in F ∪ resolve(F ) there is a resolve

filter for every pair of conflicting filters. From this and the observation that a resolve filter is more

specific than each of the conflicting filters it is the resolve filter for, it follows that F ∪ resolve(F )

is conflict free. Let f and g be two filters of F ∪ resolve(F ) that conflict. There are three cases

to consider.

Case 1 f ∈ F and g ∈ F . By definition, the resolve filter f ∩ g is in F ∪ resolve(F ).

Case 2 (a) f ∈ F and g ∈ resolve(F ) or (b) g ∈ F and f ∈ resolve(F ). Since (a) and (b)

are symmetric, we explicitly consider (a) only. Let g be the resolve filter for g1 and g2, where

g1 ∈ F and g2 ∈ F . Since f and g conflict, it follows from Lemma 2 that either X(f) ⊂ X(g) or

X(g) ⊂ X(f). Suppose the former is the case; the latter possibility is symmetric. Also since g1 and

g2 conflict, Lemma 2 implies that either X(g1) ⊂ X(g2) or X(g2) ⊂ X(g1). Again we consider

the former case; the latter case is symmetric. So g = (X(g1), Y (g2)). Since X(g) = X(g1),

X(f) ⊂ X(g2). Also, Y (g2) = Y (g) ⊂ Y (f). From Lemma 2 it follows that f and g2 are in

conflict. So the resolve filter f ∩ g2 is in resolve(F ). Since f ∩ g2 = (X(f), Y (g2)) = (X(f), Y (g))

= f ∩ g, f ∩ g2 is also a resolve filter for f and g.

Case 3 f ∈ resolve(F ) and g ∈ resolve(F ). From Lemma 2, either X(g) ⊂ X(f) or X(f) ⊂

X(g). We consider the former case; the latter is symmetric. Let f be the resolve filter for f1
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and f2, where f1 ∈ F and f2 ∈ F and let g be the resolve filter for g1 and g2, where g1 ∈ F

and g2 ∈ F . From Lemma 2 it follows that either X(f1) ⊂ X(f2) or X(f2) ⊂ X(f1) and either

X(g1) ⊂ X(g2) or X(g2) ⊂ X(g1). Suppose that the former of each of these possibilities is the

case. The remaining cases are symmetric. So Y (f2) = Y (f) ⊂ Y (g) ⊂ Y (g1), and X(f2) ⊃ X(f1)

= X(f) ⊃ X(g) = X(g1). Therefore f2 and g1 conflict and the resolve filter f2∩g1 is in resolve(F ).

Since f2 ∩ g1 = (X(g1), Y (f2)) = (X(g), Y (f)) = f ∩ g, f2 ∩ g1 is also the resolve filter for f and

g.

The preceding three cases establish the theorem for prefix filters. Next consider the case of

range filters. Figure 2 shows three pairwise conflicting range filters, f , g, and h. The resolve filters

are f∩g, g∩h, and f∩h. As can be seen, the filter set F ∪resolve(F ) = {f, g, h, f∩g, g∩h, f∩h}

isn’t conflict free.

f

g


h


Figure 2: Three pairwise conflicting range filters

3.2 Computing resolve(F )

Hari et al. [9] use Lemma 2 to compute resolve(F ). Two 2-dimensional 1-bit tries are used. In

the first, a 1-bit trie (called the top-level trie) is constructed using the first field X() (say, source

field) of the filters of F . Each node x of this 1-bit trie contains a (possibly empty) 1-bit trie

constructed from the second field Y () (say, destination field) of those filters of F whose first field
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corresponds to node x. The tries within each node of the top-level trie are called bottom-level

tries. In the second 2-dimensional 1-bit trie, the top-level trie is constructed using the destination

field of the filters and the bottom-level tries employ the source field. For any given filter f , we can

search the first 2-dimensional trie and report all filters g ∈ F that satisfy condition 1 of Lemma 2.

When the 2-dimensional trie is augmented with switch pointers, the time required for this search

is O(W + k1), where k1 is the number of filters that satisfy condition 1 of Lemma 2. All filters

g ∈ F that satisfy condition 2 of Lemma 2 can be found in O(W + k2) time, where k2 is the

number of filters that satisfy condition 2 of Lemma 2, by searching the second trie augmented with

switch pointers. We may compute resolve(F ) by repeating the just described searches for every

f ∈ F . The time required, exclusive of the time required to construct the two 2-dimensional tries

with switch pointers is O(nW + s), where n is the number of filters in F and s = |resolve(F )|.

The switch pointers needed for conflict detection may be constructed in O(nW 2) time.

In this section, we develop a plane-sweep algorithm to compute resolve(F ) in O(n log n + s)

time, where s = |resolve(F )|. Our plane-sweep algorithm doesn’t employ Lemma 2. Rather, it

works by detecting orthogonal line crossings.

Two line segments cross iff they are orthogonal and share a common point. Two line segments

perfectly cross iff they cross and the crossing point is not an endpoint of either line segment. If

two line segments cross but do not cross perfectly, the crossing is called an imperfect crossing.

Figure 3 shows all the cases for an imperfect crossing.

The 2-dimensional filter f is a nontrivial filter iff it is not a rectilinear line segment (a 2-

dimensional point is a special case of a line segment). Otherwise, f is a trivial filter. For example,

(11∗, 1001) is a trivial filter, but (11∗, 100∗) is a nontrivial filter.

Figure 4 shows two examples in which two nontrivial prefix filters conflict.

Theorem 3 Two nontrivial prefix filters f and g conflict iff an edge of f perfectly crosses an
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Figure 3: Imperfect crossings

Figure 4: Examples of conflicting nontrivial prefix filters

edge of g.

Proof It is easy to see that f ∩ g 6= ∅ and neither f nor g is more specific than the other if an

edge of f perfectly crosses an edge of g.

Now we show that an edge of f must perfectly cross some edge of g whenever f and g conflict.

Since f and g conflict, either condition 1 or condition 2 of Lemma 2 is true. Assume condition 1

is true (the case when condition 2 is true is symmetric). Since Y (f) ⊃ Y (g), the bottom edge of

f is either below the bottom edge of g or has the same y value as does the bottom edge of g. In

either case, there must be a perfect crossing since X(f) ⊂ X(g).
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Since F may contain trivial filters, we define an operation, mag (magnify) that converts all

filters (trivial and nontrivial) into nontrivial filters. This operation preserves filter conflicts. Let

filter f = ([x1, x2], [y1, y2]), then mag(f) = ([x10, x21], [y10, y21]), where x10 is x1 concatenated

with bit 0.

Notice that when x1 = x2, f is a vertical line segment. mag(f) transforms a line segment into

a nontrivial rectangle. For example, if f = ([8, 8], [8, 11]), then mag(f) = ([16, 17], [16, 23]) and

if g = ([8, 11], [8, 9]), then mag(g) = ([16, 23], [16, 19]). Figure 5 shows these two filters and the

corresponding filters after applying the mag operator. We not only convert a trivial filter to a

nontrivial filter by applying the mag operator, but also get a perfect crossing, which can be used

to detect the conflict between these two filters.

Figure 5: Filters ([8, 8], [8, 11]) and ([8, 11], [8, 9]) and the corresponding filters after applying mag.

Lemma 3 The following are true.

1. [a, b] ∩ [c, d] 6= ∅ iff [a0, b1] ∩ [c0, d1] 6= ∅.

2. [a, b] ⊂ [c, d] iff [a0, b1] ⊂ [c0, d1].

Proof It is easy to see that a0 < c0 iff a < c, and a1 < c0 iff a < c. For the first claim of the

lemma, suppose that [a, b] ∩ [c, d] 6= ∅. If [a0, b1] ∩ [c0, d1] = ∅, then either b1 < c0 or d1 < a0.
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So either b < c or d < a. In either case, we have [a, b] ∩ [c, d] = ∅, a contradiction. Next suppose

that [a0, b1] ∩ [c0, d1] 6= ∅. If [a, b] ∩ [c, d] = ∅, then either b < c or d < a. So either b1 < c0 or

d1 < a0. In either case, we have [a0, b1] ∩ [c0, d1] = ∅, a contradiction.

It is easy to see that the second claim of the lemma is true because c ≤ a ≤ b ≤ d iff

c0 ≤ a0 < b1 ≤ d1.

Theorem 4 Prefix filters f and g conflict iff mag(f) and mag(g) conflict.

Proof Follows from Lemmas 2 and 3.

From Theorems 3 and 4, it follows that we can identify all pairs of filters in F that are in conflict

by first applying the mag operator on each filter of F to obtain mag(F ) and then determining all

perfect crossings of the rectilnear line segments of mag(F ). The latter can be done in O(n logn+s),

where s is the number of conflicts or the number of perfect crossings, time and O(n) space using

Bentley and Ottmann’s [4] plane-sweep method.

4 Online Conflict Detection and Reporting

From Theorems 3 and 4, it follows that we can identify all filters in F that are in conflict with a

new filter f by first applying the mag operator on f and each filter of F to obtain mag(f) and

mag(F ) and then determining all perfect crossings between vertical (horizontal) line segments

of mag(f) and horizontal (vertical) line segments of mag(F ). The latter problem can be solved

using orthogonal line segment intersection reporting algorithms, i.e., to report all the segments

in a finite set of horizontal line segments that intersect any vertical line segment. Both static

and dynamic versions of orthogonal line segment intersection reporting have been extensively

studied. Mortensen [17] gives a fully-dynamic solution that supports update in O(log n) time

and intersection reporting in O(log n + s), where s is the number of intersections. The solution
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of Mortenson [17] requires O(n log n/ log log n) space. It immediately follows that all conflicts

between f and F can be reported in O(log n + s) time, where s is the number of conflicts, using

O(n log n/ log log n) space and that we can update the data structure (i.e., add a new filter or

remove an old filter) in O(log n) time. By comparison, the 1-bit 2-dimensional tries scheme of

[9] reports all conflicts between f and F in O(W 2 + s) time and takes O(W ) time to do an

update. The space required by the scheme of [9] is O(nW ). The bit-vector scheme of Baboescu

and Varghese [2], takes O(nW ) time to report all conflicts between a new filter and an existing

set of n filters. A filter may be deleted in O(W ) time. A new filter may be inserted in O(W ) time

if the bit vectors employed by the scheme of [2] are long enough to accommodate an additional

filter; otherwise it would take O(n2) time to resize all the bit vectors to accommodate the new

filter.

5 Essential Resolve Filters

The rationale for adding the filters in resolve(F ) to F is to arrive at a set of filters that is free

of conflict (i.e., for every packet being classified, there is either no matching filter or there is a

unique most-specific matching-filter). This objective, however, can often be met by adding to F

only a subset of the filters in resolve(F ). For example, suppose that f and g are conflicting filters

of F . If the resolve filter f ∩ g already is in F or if F contains a set of filters whose union equals

f ∩ g, then we can avoid adding f ∩ g to F .

A filter f ∈ resolve(F ) is an essential resolve filter iff F ∪ resolve(F ) − {f} has no subset

whose union equals f . Let essential(F ) be the set of essential resolve filters of F .

Theorem 5 For every set F of prefix filters, F ∪ essential(F ) is conflict free.

Proof Follows from Theorem 2 and the observation that the removal of non-essential filters of

resolve(F ) from F ∪ resolve(F ) doesn’t affect the conflict-free property.
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Our algorithm to determine whether or not a resolve filter is essential employs the following

lemma.

Lemma 4 Let a, b and c be prefix filters and let c = [s1s2...si∗, d1d2...dj∗]. a ∪ b = c iff one of

the following is true.

1. a = c ∧ b ⊆ c.

2. a ⊆ c ∧ b = c.

3. {a, b} = {[s1s2...si0∗, d1d2...dj∗], [s1s2...si1∗, d1d2...dj∗]}.

4. {a, b} = {[s1s2...si∗, d1d2...dj0∗], [s1s2...si∗, d1d2...dj1∗]}.

Proof Straightforward.

We first construct a 2-dimensional trie T for F ∪resolve(F ). The top-level trie of T is based on

X(f) and the bottom-level trie is based on Y (f). Then, we invoke TopTrieTraversal(root(T ))

(Figure 6) to transform T into a 2-dimensional trie for the filter set C = combine(F ∪resolve(F )),

which comprises all 2-dimensional prefix filters that are the union of some subset of the filters of

F ∪ resolve(F ). Function TopTrieTraversal is a recursive function that first does this transfor-

mation recursively on the left and right top-level subtries of root(T ) and then applies Lemma 5

to complete the transformation at root(T ). Function trie(z) returns the bottom-level trie that is

in node z of the top-level trie if z is not null, and returns null otherwise. Function hasF ilter(x)

returns true if there is a filter (either an original filter of T or one added during the transfor-

mation into the trie for C) associated with node x of the bottom-level trie, and returns false

otherwise. The function setHasF ilter(x, truthV alue), sets the hasF ilter value of node x to

truthV alue. So, the function hasF ilter(x) returns true when executed following an invocation

of setHasF ilter(x, true). Function TopTrieTraversal performs a postorder traversal on the
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top-level trie. Function BottomTrieTraveral performs a postorder traversal on a bottom-level

trie. Function BottomTriesTraveral(xNode, yNode, zTrie) performs a synchronized postorder

traversal on two bottom-level tries that are in the two children of the top-level trie node z, and

zTrie = trie(z) is the bottom-level trie pointed at by node z. We use the abbreviations TTT ,

BTT , and BTST for the three functions of Figure 6.

Table 1 gives a set of six prefix filters. Figure 7(a) shows the 2-dimensional trie for F ∪

resolve(F ). After invoking TopTrieTraversal(root(topLevelT rie)), the 2-dimensional trie of

Figure 7(a) is transformed into the trie of Figure 7(b). The dark shaded nodes represent nodes

into which a new filter was added during the transformation process. The numbers next to

these dark shaded nodes give the order by which these node are generated by the transformation

traversal.

Filter Source Prefix Destination Prefix

a 000* 00*

b 001* 00*

c 00* 01*

d 01* 0*

e 0* 1*

f 1* *

Table 1: A set of prefix filters

Lemma 5 Let T be the 2-dimensional trie for the prefix filter set G. The invocation TTT (root(T ))

transforms T into the 2-dimensional trie for combine(G).

Proof We prove this by induction on the number of levels in T . When T has 0 levels (i.e., T

is empty), G = combine(G) = ∅ and TTT (null) leaves T as an empty trie, which is the trie for

combine(G). Assume that the lemma is true for all T that have up to l levels. For the induction

step consider a T with l + 1 levels. Let G be the filters in T , GL the filters in the left subtrie
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Algorithm TopTrieTraversal(node){

if (node){

TopTrieTraversal(node.left);

TopTrieTraversal(node.right);

BottomTriesTraveral(root(trie(node.left)), root(trie(node.right)), trie(node));

// Case 3 of Lemma 4

BottomTrieTraveral(root(trie(node)));

// Case 4 of Lemma 4

}

}

Algorithm BottomTrieTraveral(node){

if (node){

BottomTrieTraveral(node.left);

BottomTrieTraveral(node.right);

if (hasF ilter(node.left) ∧ hasF ilter(node.right))

setHasF ilter(node, true);

}

}

Algorithm BottomTriesTraveral(xNode, yNode, zTrie){

if(xNode ∧ yNode){

BottomTriesTraveral(xNode.left, yNode.left, zTrie);

BottomTriesTraveral(xNode.right, yNode.right, zTrie);

if(hasF ilter(xNode) ∧ hasF ilter(yNode))

Insert filter filter(xNode) ∪ filter(yNode) into zTrie;

}

}

Figure 6: Combine Filters

of root(T ) and GR the filters in the right subtrie of root(T ). From the induction hypothesis it

follows that the invocations TTT (root(T ).left) and TTT (root(T ).right), transform the left and

right subtries of root(T ) into the tries for combine(GL) and combine(GR). We observe that the
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Figure 7: The 2D trie for F ∪ resolve(F ) and combine(F ∪ resolve(F )

only additional filters in combine(G) are those that belong in trie(root(T )). From Lemma 4 these

additional filters are either already in root(trie(T )) (original filters of G that are in trie(root(T ))

as well as cases 1 and 2 of the lemma) or are obtainable by combining two filters as in cases 3 and

4 of the lemma. The invocation of BTST adds to trie(root(T )) all filters constructable as in case

3 of the lemma; the ensuing invocation of BTT (trie(root(T )) handles case 4 of the lemma.

Lemma 6 Let G be a set of 2-dimensional prefix filters and let m = |G|. |combine(G)| = O(mW ),

where W is the length of the longest prefix in any field of the filters of G.

Proof Let T be the 2-dimensional trie for G and let T ′ be that for combine(G). T ′ is the

2-dimensional trie computed by the invocation TTT (root(T )). The top-level trie of T has at most

W +1 levels. Let mi be the total number of filters of G that are stored in the level-i bottom-level

tries (i.e., the bottom-level tries that are in nodes at level i of the top-level trie). Note that

∑W
i=0

mi = m. Let m′

i be the total number of filters of combine(G) that are stored in the level-i

bottom-level tries of T ′. Note that
∑W

i=0
m′

i = |combine(G)|.

Suppose that node is a leaf of the top-level trie T and that the number of filters of G that are
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stored in the bottom-level trie trie(node) is r. The invocation TTT (node) makes the invocations

TTT (null), TTT (null), BTST (null, null, trie(node)) and BTT (root(trie(node))). The first three

of these invocations make no change in the number of filters stored in any node of T . The fourth

invocation may combine the filters stored in the children of a degree 2 node x of trie(node) and

store the combined filter into node x. This together with the observation that the number of

degree 2 nodes in trie(node) is less than r implies that the number of new filters in trie(node)

following the execution BTT (root(trie(node))) is less than r. Hence the total number of filters

in trie(node) of T ′ is less than 2r (new and original). Since all nodes at level W of the top level

trie are leaves (we assume without loss of generality that there is at least one node at level W ),

m′

W < 2mW .

Next consider the level i, i < W , nodes of the top-level trie. These nodes together have mi

filters to begin with. The invocations of BTST made from these level i nodes may add at most

m′

i+1/2 filters to the level i bottom-level tries (each filter added to trie(node) by BTST is the

combination of 2 filters that are in level i+1 bottom-level subtries; no filter in a level i+1 bottom-

level subtrie may contribute to more than 1 filter added to trie(node)). So, excluding the filters

added by the BTT invocations made at level i, the number of filters in the level i bottom-level

tries of T ′ is at most mi + m′

i+1/2. As was the case for leaf nodes, the number of filters added by

the BTT invocations is less than the number of filters in the level i bottom-level tries prior to the

BTT invocations. Hence,

m′

i < 2(mi + m′

i+1/2)

= 2mi + m′

i+1

< 2mi + 2mi+1 + m′

i+2

< 2

W∑

j=i

mj

≤ 2m
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Therefore, |combine(G)| =
∑W

i=0
m′

i <
∑W

i=0
2m = 2m(W + 1) = O(mW ).

The complexity of TopTrieTraversal is O(mW ), where m is the number of filters in the initial

filter set G. This follows from the observation that the total number of nodes in the top- and

bottom-level tries is O(mW ) and the traversals take time linear in the number of nodes in the

tries being traversed. Note that no bottom-level trie is traversed more than twice (once during

the execution of BTT and once for BTST ).

To determine essential(F ), we first compute resolve(F ) using the plane-sweep method as

in Section 3. Then we construct the 2-dimensional trie for G = F ∪ resolve(F ) and run

TopTrieTraversal. While TopTrieTraversal is computing combine(G) we can detect the non-

essential filters of resolve(F ) (when a filter g is added to trie(node) either by BTT or BTST ,

we check whether g is already in trie(node); if g is already present and is a resolve filter, g

is non-essential). It takes (n log n + s) time to determine resolve(F ) from F (n = |F | and

s = |resolve(F )|) and an additional O((n + s)W ) time to construct the 2-dimensional trie for

F ∪ resolve(F ) and execute TopTrieTraversal to identify essential(F ).

6 Adaptation of Conflict-Detection Algorithm of [2]

The bit-vector scheme of Baboescu and Varghese [2] employs a slightly different definition of filter

conflict than that used by Hari et al. [9] and us. Baboescu and Varghese report filter containment

as a conflict whereas Hari et al. do not. Hari et al. [9] state that containment conflicts may

be handled by rule ordering or by proper priority assignment. Resolve filters are needed only

for conflicts other than containment conflicts. So, Hari et al. [9] report only non-containment

conflicts.

To compare the bit-vector scheme of Baboescu and Varghese [2] with the scheme proposed in

this paper, we need to modify the bit-vector scheme slightly so as to conform to the conflict model
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used in this paper and in [9]. For this adaptation, we also optimize the scheme of Baboescu and

Varghese [2] so that the number of bit-vector unions done when detecting all conflicts between a

filter g and a set of n filters is O(1) rather than O(W ) as in the algorithm proposed in [2].

Let triex and triey, respectively, be the (uncompressed) extended8 one-bit tries for the x and

y fields of the filters in F . Let prefix(N) be the prefix represented by node N of an extended

one-bit trie. For example, prefix(root) = ∗, prefix(root.left) = 0∗, prefix(root.right) = 1∗ and

prefix(root.left.right) = 01∗. Each node, N , in triex (triey) has two bit vectors, bv1 and bv2.

Each bit vector has n bits, where n is the number of filters in F . Let fi be the ith filter of F .

When N ∈ triex (N ∈ triey), the i-th bit of N.bv1 is one iff X(fi) (Y (fi)) is a proper prefix of

prefix(N); the i-th bit of N.bv2 is one iff prefix(N) is a proper prefix of X(fi) (Y (fi)). Note that

our definitions for bv1 and bv2 are slightly different from those used by Bobescu and Varghese [2]

for the bit-vectors they store in each node.

With the preceding definition of bv1 and bv2, it is easy to implement Lemma 2 and find all

conflicts between a new filter g and a given filter set F . We search triex (triey) for the node Nx

(Ny) such that prefix(Nx) = X(g) (prefix(Ny) = Y (g)). From the definitions of bv1 and bv2,

it follows that Nx.bv1 ∩ Ny.bv2 gives all fs in F such that X(g) ⊂ X(f) and Y (g) ⊃ Y (f) and

Nx.bv2 ∩ Ny.bv1 gives all fs in F such that X(g) ⊃ X(f) and Y (g) ⊂ Y (f). By Lemma 2, the

algorithm finds all conflicts between g and F .

Figure 8 gives the corresponding algorithm.

Algorithm BitV ector (Figure 8) may be optimized as in [2] by applying path compression to

remove single-branch trie nodes N for which prefix(N) 6= X(f) (in case of triex and 6= Y (f)

in case of triey) for every f ∈ F and adding an aggregation bit-vector for each bv1 and bv2 to

avoid reading portions of bv1 or bv2 that contain only zeroes. When these optimizations are

8An extended one-bit trie is obtained from an ordinary one-bit trie by adding an external node wherever the

ordinary one-bit trie has an empty subtree.
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Algorithm BitV ector(g, triex, triey){

//triex and triey are extended one-bit tries.

Let Nx ∈ triex be the last node encountered in a search for X(g).

Let Ny ∈ triey be the last node encountered in a search for Y (g).

return (Nx.bv1 ∩ Ny.bv2) ∪ (Nx.bv2 ∩ Ny.bv1);

}

Figure 8: Bit-vector algorithm to detect conflicts between filter g and a set of filters.

performed, the total number of nodes in triex and triey are O(n); the time complexity of the

optimized version of algorithm BitV ector is O(n); and the space complexity is O(n2). Another

optimization, which reduces the space complexity by a constant factor is to eliminate the external

nodes. This optimization changes the definition of bv1 so that when N ∈ triex (N ∈ triey), the

i-th bit of N.bv1 is one iff X(fi) (Y (fi)) is a prefix (including equal to) of prefix(N).

To report conflicts between all pairs of filters in a filter set F , we first construct the tries (along

with the bv1 and bv2 bit vectors) for the x and y components of the filters of F and then run

algorithm BitV ector n times, with g being a different filter of F on each of the n runs. The total

time to construct the tries and report the conflicts is O(n2) and the space required also is O(n2).

7 Experimental Results

We implemented our plane-sweep conflict detection algorithm of Section 3, the conflict detection

algorithm FastDetect of Hari et al. [9] and an optimized version of our customization BitV ector

of the conflict detection algorithm of Baboescu and Varghese [2] in C++. The optimized version of

BitV ector incorporated path compression and aggregation as suggested by Baboescu and Vargh-

ese [2] and also eliminated external nodes by using the modified definition of bv1 given in Section 6.

The three algorithms were benchmarked on a 2.4GHz Pentium4 PC that has 1GB of memory.

To assess the performance of these three algorithms, we randomly generated 2-dimensional fil-
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ters using the algorithm of Figure 99. In this algorithm, max = 232 − 1 for IPv4 prefixes, the

function random(a, b) generates a random integer that is uniformly distributed between a and b,

the length of the source address prefix (i.e., first field of the filter) is required to be in the range

[srcLenLow, srcLenHigh], and the length of the destination address prefix is required to be in

the range [destLenLow, destLenHigh]. The expression src/srcLength creates a prefix whose bits

are the first srcLength bits of src.

src = random(0, max);

srcLength = random(srcLenLow, srcLenHigh);

dst = random(0, max);

destLength = random(destLenLow, destLenHigh);

prefixFilter = (src/srcLength, dst/dstLength)

Figure 9: Method to generate a random filter

By repeatedly applying the method of Figure 9 and discarding duplicate filters, we can generate

random filter sets F of any desired size (of course, the size is limited by the number of possible

distinct filters). When we permit the source and destination prefix lengths to be random numbers

in the permissible IPv4 range [0,32] (i.e., srcLenLow = destLenLow = 0 and srcLenHigh =

destLenHigh = 32), the random filter sets F that are generated have many pairs of conflicting

filters. For example, when |F | = 1,000 the number of conflicts is more than 10,000. When the

length of the source and destination prefixes is constrained to the range [16, 32] the generated

filter sets have no conflicts; and when the range for source prefix length is [0, 32] and that for

destination prefix length is [10, 32], the number of conflicts is non-zero and much smaller than

|F |. We believe that this last choice of length ranges most closely reflects the number of conflicts

to be found in real filter databases.

9We resorted to generation of random filters because despite significant effort we were unable to get either the

large real or synthetic data sets used by others in their research.
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For our experiments, we used the filter set sizes 1000, 5000, 10000, 20000 and 30000. For each

filter set size and prefix length constraint, ten random filter sets were generated. The memory

and time required to compute resolve(F ) for each of these 10 filter sets was determined. The

mean memory and time requirements are reported in Tables 2 through 4 and in Figures 10 and

11. The reported memory requirement does not include the memory required to store the original

filter set or that required to save and return the pairs of conflicting filters. However, the reported

times include the time required to dynamically allocate the memory needed to save and return

the pairs of conflicting filters.

|F | Detection Time (ms) Memory Requirement(kB) |resolve(F )|
PlaneSweep FastDetect BitVector PlaneSweep FastDetect BitVector

1000 mean 3 53 41 117 926 992 0
std 7 8 8 0 1 0 0

5000 mean 29 242 255 586 4,354 21,191 0
std 7 8 7 0 10 19 0

10000 mean 52 495 729 1,172 8,476 82,529 0
std 8 8 11 0 11 56 0

20000 mean 109 988 2,325 2,344 16,491 323,201 0
std 0 6 36 0 22 166 0

30000 mean 175 1,477 4,802 3,515 24,338 718,910 0
std 7 8 67 0 15 366 0

Table 2: Source prefix length range [16, 32], destination prefix length range [16, 32]

|F | Detection Time (ms) Memory Requirement(kB) |resolve(F )|
PlaneSweep FastDetect BitVector PlaneSweep FastDetect BitVector

1000 mean 3 36 29 121 688 834 6
std 7 8 7 0 13 4 3

5000 mean 25 189 205 602 3,174 16,561 116
std 8 5 9 1 20 84 11

10000 mean 52 373 587 1,203 6,149 62,401 467
std 8 5 15 1 30 249 29

20000 mean 125 774 1,829 2,403 11,900 236,319 1,858
std 0 8 21 2 28 420 78

30000 mean 197 1,193 3,749 3,605 17,497 516,050 4,280
std 8 7 19 3 73 1,872 165

Table 3: Source prefix length range [0, 32], destination prefix length range [10, 32]
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|F | Detection Time (ms) Memory Requirement(kB) |resolve(F )|
PlaneSweep FastDetect BitVector PlaneSweep FastDetect BitVector

1000 mean 8 31 28 116 597 737 2,704
std 8 0 7 0 5 6 221

5000 mean 45 237 219 579 2,755 14,429 67,850
std 5 7 7 2 11 38 3,051

10000 mean 154 699 673 1,157 5,347 54,200 255,150
std 5 15 5 2 17 184 9,144

20000 mean 536 2,300 2,197 2,316 10,377 206,115 958,701
std 7 35 20 2 22 394 24,225

30000 mean 1,169 4,661 4,573 3,474 15,304 452,216 2,052,087
std 30 87 18 3 55 1,646 56,502

Table 4: Source prefix length range [0, 32], destination prefix length range [0, 32]
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Figure 10: Time to detect all conflicts. (a) [16, 32] × [16, 32], (b) [0, 32] × [10, 32], (c) [0, 32] ×

[0, 32]

On all of our 15 test sets, our proposed plane-sweep conflict-detection algorithm was noticibly

faster than both FastDetect and BitV ector. Additionally, our algorithm took much less memory.

FastDetect takes between 4 and 17 times the time taken by the plane sweep method. It takes also

4 to 8 times the memory required by the plane sweep method. BitV ector takes between 4 and

27 times the time taken by the plane sweep method and between 6 and 205 times the memory.

Notice that on our 30,000 filter test sets, BitV ector requires between 452MB and 719MB of

memory, whereas our proposed plane sweep method requires only 3.5MB. On these same tests
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Figure 11: Memory requirement. (a) [16, 32] × [16, 32], (b) [0, 32] × [10, 32], (c) [0, 32] × [0, 32]

sets, FastDetect requires between 15MB and 24MB.

Table 5 gives the time and memory required to determine essential(F ) for the case in which

the source prefix length range is [0, 32] and the destination prefix length range is [10,32]. The

reported times include the time needed to construct the 2d trie for F ∪ resolve(F ). Although it

takes 3 to 6 times as much time and about 3 times as much memory to determine essential(F )

as taken by the plane sweep method to determine resolve(F ), the time and memory needed to

determine essential(F ) is about one-half that needed by FastDetect to compute resolve(F ). For

our test data, almost all the conflict pairs in resolve(F ) are essential.

8 Conclusion

We have provided a correct proof that MRFP is NP-hard. Additionally, we have developed a

fast plane-sweep algorithm to report all filter conflicts in a set of 2-dimensional prefix filters. Our

plane-sweep algorithm runs in O(n log n + s) time where n is the number of filters and s is the

number of conflicts. This represents an asymptotic improvement over previously proposed conflict

reporting algorithms. Experiments conducted by us reveal that our algorithm is considerably
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|F | Run Time (ms) Memory(kB) |resolve(F )| |essential(F )|

1000 mean 17.1 348.4 4.6 4.6

std 4.9 2.1 0.5 0.5

5000 mean 97.2 1646.9 110.2 109.8

std 6.7 5.4 15.8 15.5

10000 mean 175.0 3242.0 471.4 470.5

std 6.3 13.7 14.8 15.0

20000 mean 373.6 6507.5 1854.4 1849.9

std 8.7 11.7 50.9 51.6

30000 mean 592.4 9897.3 4178.6 4169.7

std 5.1 24.1 126.1 125.6

Table 5: Time and memory to determine essential(F ); [0, 32] × [10, 32]

faster, even on practical sized databases, than the conflict reporting algorithms of Hari et al. [9]

and Baboescu and Varghese [2]. Additionally, our algorithm requires much less space. Finally,

we have introduced the notion of an essential resolve filter and developed an efficient algorithm

to compute essential(F ), the set of essential resolve filters for the filter set F .
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