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Multiuser Diversity Gain in Cognitive Networks

Ali Tajer Xiaodong Wang ∗

Abstract

Dynamic allocation of resources to the best link in large multiuser networks offers considerable

improvement in spectral efficiency. This gain, often referred to as multiuser diversity gain, can

be cast as double-logarithmic growth of the network throughput with the number of users. In

this paper we consider large cognitive networks granted concurrent spectrum access with license-

holding users. The primary network affords to share its under-utilized spectrum bands with the

secondary users. We assess the optimal multiuser diversity gain in the cognitive networks by

quantifying how the sum-rate throughput of the network scales with the number of secondary

users. For this purpose we look at the optimal pairing of spectrum bands and secondary users,

which is supervised by a central entity fully aware of the instantaneous channel conditions,

and show that the throughput of the cognitive network scales double-logarithmically with the

number of secondary users (N) and linearly with the number of available spectrum bands (M),

i.e., M log logN . We then propose a distributed spectrum allocation scheme, which does not

necessitate a central controller or any information exchange between different secondary users

and still obeys the optimal throughput scaling law. This scheme requires that some secondary

transmitter-receiver pairs exchange logM information bits among themselves. We also show that

the aggregate amount of information exchange between secondary transmitter-receiver pairs is

asymptotically equal to M logM . Finally, we show that our distributed scheme guarantees

fairness among the secondary users, meaning that they are equally likely to get access to an

available spectrum band.

kewords: Cognitive radio, distributed, fairness, multiuser diversity, spectrum allocation.

1 Introduction

Dense multiuser networks offer significant spectral efficiency improvement by dynamically identify-

ing and allocating the communication resources to the best link. The improvements thus attained
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are often referred to as multiuser diversity gain and rest on the basis of opportunistically allocating

all the resources to the most reliable link. The performance of such resource allocation scheme

relies on the peak, rather than average, channel conditions and improves as the number of users

increases, as it becomes more likely to have a user with an instantaneously strong link.

The notion of opportunistic communication and multiuser diversity was first introduced [1] for

uplink transmissions, and further developed in [2–4] for downlink transmissions. The analysis of

multiuser diversity gain in downlink multiple-input multiple-output (MIMO) channels is provided

in [5, 6]. In all these transmission schemes, the sum-rate capacity exhibits a double-logarithmic

growth with the number of users.

The recent advances in secondary spectrum leasing [7] and cognitive networks [8] suggest ac-

commodating unlicensed users (secondary users or cognitive radios), within the license-holding

networks and allowing them to access under-utilized spectrum bands. Among different spectrum

sharing schemes, underlaid spectrum access [9] has received significant attention. This scheme

allows for simultaneous spectrum access by the primary and secondary users, provided that the

power of secondary users is controlled such that they impose limited interference to the primary

users.

In this paper we consider opportunistic underlaid spectrum access by secondary users and

assess the multiuser diversity gain by analyzing the sum-rate throughput scaling of the cognitive

network. Such analysis for cognitive networks differs from those of primary networks studied

in [1–3, 5, 6] in two directions. First, the transmissions in the cognitive network are contaminated

by the interferences induced by the primary users. The existence of such interference does not

make opportunistic communication possible by merely finding the strongest secondary link, and

necessitates accounting for the effect of interference as well. Secondly, and more importantly, the

uplink/downlink transmissions in the networks referenced above, require feedback from the users to

the base station and it is the base station that dynamically decides which user(s) should receive the

resources. Cognitive networks, in contrary, are often assumed to lack any infrastructure or central

entity and spectrum allocation should be carried out in a distributed way.

To address these two issues, we first focus on only examining the for the effects of interference and

assume that the cognitive network has a central decision-making entity, fully aware of all cognitive

users’ instantaneous channel realizations. This result, providing the optimal scaling factor, presents

an upper bound on the throughput yielded by any distributed spectrum allocation scheme. In the

next step, we offer a distributed algorithm where the secondary users decide about accessing a

channel merely based on their own perception of instantaneous network conditions.

Our analyses reveal that, interestingly, in both centralized and distributed setups, the sum-rate
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throughput scales double-logarithmically with the number of users, which is the optimal growth and

is the same as that of centralized primary networks. Therefore, the interference from the primary

network incurs no loss on the multiuser diversity gain of the cognitive network.

We also examine how fairness is maintained in our distributed scheme. Generally, in opportunis-

tic communication schemes there exists a conflict between fairness and multiuser diversity gain, as

the network tends to reserve the resources for the most reliable links, which leads the network to

be dominated by the users with strong links. We show that, however, in our distributed scheme,

we can ensure fairness among the secondary users by providing them with the same opportunity

for accessing an available spectrum band.

The remaining part of the paper is organized as follows. In Section 2 we provide the system

model as well as the statement of the problem. Sections 3 and 4 discuss the sum-rate through-

put scaling laws in centralized and distributed cognitive networks, respectively. Our distributed

algorithm requires some information exchange between each cognitive transmitter and its desig-

nated receiver. The amount of such information is quantified in Section 5.1. As we are considering

opportunistic type of spectrum access, it is crucial to also look at the fairness among the users.

The discussion on the fairness is given in Section 5.2. Some remarks on the implementation of the

distributed spectrum access algorithm are provided in Section 6 and Section 7 concludes the paper.

In order to enhance the flow of the material, we have confined most of the proofs in the appendices.

2 System Descriptions

2.1 System Model

We consider a decentralized cognitive network comprising of N secondary transmitter-receiver pairs

coexisting with the primary transmitters via underlaid [9] spectrum access. Therefore, the primary

and secondary users can coexist simultaneously on the same spectrum band. The primary network

affords to accommodate 1 ≤ M ≪ N secondary users and allows them to access the non-overlapping

spectrum bands B1, . . . , BM such that each band is allocated to exactly one secondary transmitter-

receiver pair. We assume that the secondary transmitters and receivers are paired up a priori such

that each secondary transmitter knows its designated receiver and vice versa. We also assume

that each secondary transmitter and receiver is potentially capable of operating on each of the M

spectrum bands, a feature facilitated by having appropriate reconfigurable hardware.

We assume quasi-static flat fading channels and denote the channel from the jth primary trans-

mitter to the ith secondary receiver in the mth spectrum band (Bm) by hmi,j ∈ C and denote the

channel between the ith secondary transmitter-receiver pair in the mth spectrum band (Bm) by
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gmi ∈ C. Let xpi (t) and xsi (t) represent the transmitted signals by the ith primary transmitter and

the ith secondary transmitter, respectively. We assume that there might be a group of active pri-

mary users on each spectrum band Bm and define the set Bm such that it contains the indices of

such users. If the nth secondary pair transmits on Bm, then the received signal at the nth secondary

receiver is given by

ymn =
√
ηng

m
n xsn +

∑

j∈Bm

√
γn,jh

m
n,jx

p
j + zmn , (1)

where zmn ∈ CN (0, N0) is the additive white Gaussian noise at the nth receiver. In a non-

homogeneous network, the users experience different path-loss and shadowing effects, which we

account for by incorporating the terms {γi,j} and {ηi}. Also, we assume that the primary and

secondary transmitters satisfy average power constraints Pp and Ps, respectively, i.e., E[|xpi |2] ≤ Pp

and E[|xsi |2] ≤ Ps and the channel coefficients {hmi,j}i,j,m and {gmi }i,m are i.i.d. and distributed as

complex Gaussian CN (0, 1). Each secondary receiver treats all undesired signals (interference from

the primary users) as Gaussian interferers. Therefore, the signal-to-interference-plus-noise-ratio

(SINR) of the nth secondary pair on the spectrum band Bm is given by

SINRm,n =
ηnE[|gmn xsn|2]

N0 +
∑

j∈Bm
γn,jE[|xpjhmn,j|2]

=
Psηn|gmn |2

N0 + Pp
∑

j∈Bm
γn,j|hmn,j |2

. (2)

We define the transmission signal-to-noise ratio (SNR) by ρ
△
= Ps

N0
. Throughout the paper we say

that aN and bN are asymptotically equal, denoted by aN
.
= bN if limN→∞

aN
bN

= 1, and define
·
≤

and
·
≥, accordingly. We also define the set of secondary users indices by N = {1, . . . , N}. All the

rates in the paper are in bits/sec/Hz and log refers to the logarithm in base 2.

2.2 Problem Statement

Our goal is to assess the multiuser diversity gain of cognitive networks. For this purpose we identify

M secondary transmitter-receiver pairs out of N available ones and assign one spectrum band Bm

to each of them, such that the cognitive network throughput is maximized. We assume that all

spectrum bands Bm are of the same bandwidth. Therefore, the maximum throughput is given by

Rmax = E

[

max
A⊂N , |A|=M

M∑

m=1

log (1 + SINRm,Am)

]

, (3)

where Am denotes the mth element of set A, for m = 1, . . . ,M and the maximization is taken over

all ordered subsets of N .
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In order to find the optimal multiuser diversity gain in the cognitive network we first consider

a centralized setup. We assume that there exists a central decision-making entity in the cognitive

network, which is fully and instantaneously aware of the channel conditions of all secondary users.

The central node solves the problem cast in (3) by an exhaustive search for pairing up M secondary

users with theM available channels. For such secondary user-channel pairs we analyze how the sum-

rate of the cognitive network scales as the number of cognitive users (N) increases. Such centralized

setup imposes extensive information exchange1 which can be prohibitive in large network sizes.

Next, motivated by alleviating the amount of information exchange imposed by the centralized

setup and noting that our cognitive network is ad-hoc in nature and lacks a central-decision making

entity, we propose a decentralized spectrum allocation scheme. In the distributed scheme each

secondary user decides about taking over a channel solely based on its own perception of the

network realization. We prove that the proposed distributed scheme retains the same throughput

scaling law as in the centralized setup, i.e., is asymptotically optimal.

3 Centralized Spectrum Allocation

The central decision-making unit has access to all {SINRm,n} and performs an exhaustive search

over all possible user-channel (spectrum band) combinations in order to find the one that maximizes

the sum-rate throughput given in (3). In order to find the throughput scaling, we establish lower

and upper bounds on Rmax, denoted by Rl
max and Ru

max, respectively, and show that these bounds

are asymptotically equal, i.e., Rl
max

.
= Ru

max, which in turn provide the optimal throughput scaling

law of the cognitive network.

We define the most favorable user of the mth spectrum band as the user with the largest SINR

on this band, i.e.,

n∗
m

△
= arg max

1≤n≤N
SINRm,n. (4)

In general, it might so happen that one user is the most favorable user for two different spectrum

bands, i.e., n∗
m = n∗

m′ , while m 6= m′, and as a result, these two spectrum bands cannot be allocated

to their most favorable users simultaneously (we have assumed that each user may get access to only

one spectrum band). Let us define D as the event that different spectrum bands have distinct most

favorable users i.e., no single user is the most favorable user for two distinct spectrum bands. Note

that pairing the secondary users and the spectrum bands conditioned on the event D is equivalent

1
M real numbers per user.
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to allocating each channel to its most favorable user, i.e.,

E

[

max
A⊂N , |A|=M

M∑

m=1

log (1 + SINRm,Am)

∣
∣
∣
∣
D
]

= E

[
M∑

m=1

log
(
1 + SINRm,n∗

m

)

]

. (5)

On the other hand, under event D̄, at least one spectrum band will not be allocated its most

favorable user and therefore we have

E

[

max
A⊂N , |A|=M

M∑

m=1

log (1 + SINRm,Am)

∣
∣
∣
∣
D̄
]

≤ E

[
M∑

m=1

log
(
1 + SINRm,n∗

m

)

]

. (6)

Equations (5) and (6) give rise to

Rmax = E

[

max
A⊂N , |A|=M

M∑

m=1

log (1 + SINRm,Am)

∣
∣
∣
∣
D
]

P (D)

+ E

[

max
A⊂N , |A|=M

M∑

m=1

log (1 + SINRm,Am)

∣
∣
∣
∣
D̄
]

P (D̄)

≤ E

[
M∑

m=1

log
(
1 + SINRm,n∗

m

)

]

△
= Ru

max. (7)

Also it can be readily shown that

Rmax ≥ E

[

max
A⊂N , |A|=M

M∑

m=1

log (1 + SINRm,Am)

∣
∣
∣
∣
D
]

P (D)

= Ru
maxP (D)

△
= Rl

max. (8)

Lemma 1 Rl
max and Ru

max are asymptotically equal, i.e., Rl
max

.
= Ru

max.

Proof: See Appendix A.

Now, we find how Ru
max scales as N increases. Note that the SINRs are statistically independent

for all users and spectrum bands. The reason is that SINRm,n given in (2) inherits its randomness

from the randomness of gmn (fading coefficient of the channel between the nth secondary pair on

the mth band) and {hmn,j}j (the fading coefficient of the channels from the jth primary user to the

nth secondary receiver on the mth band). Since for any two different pairs of (m,n) 6= (m′, n′), the

fading coefficients gmn and gm
′

n′ refer to fading in different locations or in different spectrum bands,
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therefore they are statistically independent. Similarly it can be argued that hmn,j and hm
′

n′,j are also

statistically independent for (m,n) 6= (m′, n′). As a result, all the random ingredients of SINRm,n

and SINRm′,n′ for (m,n) 6= (m′, n′) are independent which in turn justifies the independence of the

SINRs. Nevertheless, SINRs are not identically distributed since different users experience different

path-losses and shadowing effects. Hence, for more mathematical tractability we build two other

sets whose elements provide lower and upper bounds on SINRm,n and are i.i.d. For this purpose we

define

γmax
△
= max

i,j

{
γi,j
ηi

}

, ηmax = max
i

ηi,

and γmin
△
= min

i,j

{
γi,j
ηi

}

, ηmin = min
i

ηi.

For m = 1, . . . ,M we also define the sets Sl(m) = {Sl(m,n)}Nn=1 and Su(m) = {Su(m,n)}Nn=1 such

that for n = 1, . . . , N

Sl(m,n)
△
=

|gmn |2
1

ρηmin
+

Pp

Ps
γmax

∑

j∈Bm
|hmn,j |2

, (9)

and Su(m,n)
△
=

|gmn |2
1

ρηmax
+

Pp

Ps
γmin

∑

j∈Bm
|hmn,j |2

. (10)

It can be readily verified that Sl(m,n) ≤ SINRm,n ≤ Su(m,n). We use the notations S(i)
l (m)

and S(i)
u (m) to refer to the ith largest elements of the sets Sl(m) and Su(m), respectively, and use

SINR
(i)
m to denote the ith largest element of {SINRm,n}Nn=1. In the following lemma we show how

these ordered elements are related.

Lemma 2 For any spectrum band Bm and any i = 1, . . . , N we have S(i)
l (m) ≤ SINR

(i)
m ≤ S(i)

u (m).

Proof: See Appendix B.

Now, by recalling the definition of Ru
max given in (7) and noting that SINRm,n∗

m
= SINR

(1)
m and

by invoking the result of Lemma 2 we get

Ru
max ≥ E

[
M∑

m=1

log
(

1 + S(1)
l (m)

)
]

, (11)

and Ru
max ≤ E

[
M∑

m=1

log
(

1 + S(1)
u (m)

)
]

. (12)

In order to further simplify the bounds on Ru
max given in (11)-(12), in the following lemma we

provide the cumulative density functions (CDF) of Sl(m,n) and Su(m,n) (9) and (10).
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Lemma 3 The elements of Sl(m) and Su(m) are i.i.d. and their CDFs are

Sl(m,n) ∼ Fl(x;m)
△
= 1− e−x/ρηmin

(
Pp

Ps
γmaxx+ 1

)Km
, (13)

and Su(m,n) ∼ Fu(x;m)
△
= 1− e−x/ρηmax

(
Pp

Ps
γminx+ 1

)Km
, (14)

where Km
△
= |Bm|.

Proof: See Appendix C.

We denote the ith order statistics of the statistical samples Sl(m) and Su(m) with parent

distributions given in (13)-(14) by S(i)
l (m) and S(i)

u (m), respectively. By denoting the CDF of

S(i)
l (m) by F

(i)
l (x;m) and that of S(i)

u (m) by F
(i)
u (x;m), for i = 1, . . . , N we have [?]

F
(i)
l (x;m) =

i−1∑

j=0

(
N

j

)(

Fl(x;m)
)N−j(

1− Fl(x;m)
)j

, (15)

F (i)
u (x;m) =

i−1∑

j=0

(
N

j

)(

Fu(x;m)
)N−j(

1− Fu(x;m)
)j

. (16)

By invoking the above definitions, (11) and (12) can be re-written as

Ru
max ≥

M∑

m=1

∫ ∞

0
log(1 + x) dF

(1)
l (x;m), (17)

and Ru
max ≤

M∑

m=1

∫ ∞

0
log(1 + x) dF (1)

u (x;m). (18)

We also define

G(x)
△
= 1− e−x, (19)

and let G(i)(x) denote the CDF of the ith order statistic of a statistical sample with N members

and with parent distribution G(x). By using this definition we offer the following lemma which is

a key step in finding how Ru
max scales with increasing N .

Lemma 4 For the distributions F
(1)
l (x;m), F

(1)
u (x;m) and G(1)(x) we have

∫ ∞

0
log(1 + x) dF (1)

u (x;m)

≤
∫ ∞

0
log(1 + ρηmaxx) dG

(1)(x), (20)

and

∫ ∞

0
log(1 + x) dF

(1)
l (x;m)

8



≥
∫ ∞

0
log(1 + ρηminx) dG

(1)(x)

− log

[

1 +
KmPp

Ps
γmaxρηmin

]

. (21)

Proof: By using the definitions of F
(1)
l (x;m) and F

(1)
u (x;m) given in (15)-(16) and using the result

of Lemma 3 we get

F
(1)
l (x;m) =

(

Fl(x;m)
)N

=

[

1− exp

[

− x

ρηmin
−Kmln

(
Pp

Ps
γmaxx+ 1

)

︸ ︷︷ ︸

≤
Pp

Ps
γmax(x+1)

]]N

≤
[

1− exp

[

− x

ρηmin
− KmPp

Ps
γmax(x+ 1)

]]N

=

[

G

(
x

ρηmin
+

KmPp

Ps
γmax(x+ 1)

)]N

= G(1)

(
x

ρηmin
+

KmPp

Ps
γmax(x+ 1)

)

. (22)

Now, by using (22) and by looking at the solutions x and x′ of the equations

u = F
(1)
l (x;m),

and u = G(1)

(
x

ρηmin
+

KmPp

Ps
γmax(x+ 1)

)

.

we find that x ≥ x′, or equivalently

(

F
(1)
l

)−1
(u;m) ≥

(

G(1)
)−1

(u)− KmPp

Ps
γmax

1
ρηmin

+
KmPp

Ps
γmax

,

which after some simple manipulations leads to

log

[(

F
(1)
l

)−1
(u;m) + 1

]

≥ log

[

ρηmin

(

G(1)
)−1

(u) + 1

]

− log

[

1 +
KmPp

Ps
γmaxρηmin

]

.

Therefore, for the lower bound on Ru
max given in (17) we have

∫ ∞

0
log(1 + x) dF

(1)
l (x;m)

=

∫ 1

0
log

[

1 +
(

F
(1)
l

)−1
(u;m)

]

du

9



≥
∫ 1

0
log

[

ρηmin

(

G(1)
)−1

(u) + 1

]

du

− log

[

1 +
KmPp

Ps
γmaxρηmin

]

,

which is the desired inequality in (21).

Now, note that Fu(x;m) ≥ G( x
ρηmax

) or equivalently,

(

F (1)
u

)−1
(u;m) ≤ ρηmax

(

G(1)
)−1

(u). (23)

Therefore,

∫ ∞

0
log(1 + x) dF (1)

u (x;m)

=

∫ 1

0
log

[

1 +
(

F (1)
u

)−1
(u;m)

]

du

≤
∫ 1

0
log

[

1 + ρηmax

(

G(1)
)−1

(u)

]

du

=

∫ ∞

0
log(1 + ρηmaxx) dG

(1)(x),

which establishes the inequality in (20) and completes the proof.

Next, by using the result of the following lemma, we establish the scaling law of Ru
max.

Lemma 5 For a family of exponentially distributed random variables of size N and parent distri-

bution G(x) (CDF) and for any positive real number a ∈ R+ we have

∫ ∞

0
log(1 + ax)dG(1)(x)

.
= log logN + log a.

Proof: See Appendix D.

Now, by recalling the bounds provided in (17) and (18) and taking into account the results of

Lemmas 1, 4 and 5 we find the optimal throughput scaling law of cognitive networks.

Theorem 1 In a centralized cognitive network with N secondary transmitter-receiver pairs and

M available spectrum bands, by optimal user-channel assignments, the sum-rate throughput of the

network scales as

Rmax
.
= M log logN.

Proof: By invoking the results of Lemmas 4 and 5 on the lower and upper bounds on Ru
max given

in (17) and (18) we find

Ru
max

·
≥M log logN −M log

[
1

ρηmin
+

KmPp

Ps
γmax

]

,

10



and Ru
max

·
≤M log logN +M log(ρηmax),

or equivalently,

lim
N→∞

Ru
max

M log logN
≥ 1− lim

N→∞

log

[

1 +
KmPp

Ps
γmaxρηmin

]

log logN

= 1,

and

lim
N→∞

Ru
max

M log logN
≤ 1 + lim

N→∞

log(ρηmax)

log logN
= 1,

which confirms that Ru
max

.
= M log logN . This result, along with what stated in Lemma 1 concludes

that Rl
max

.
= Ru

max
.
= M log logN , which establishes the proof of the theorem.

So far, we have assumed that there exists a decision-making center that has full knowledge of

all instantaneous channel realizations, i.e., {hmi,j}, {γi,j}, and {ηi}. Also there is no complexity

constraints in order to enable exhausting all the possible user-channel assignments and choosing

the one which maximizes the sum-throughput of the network.

The assumptions made in this section, while not being practical, are useful in shedding light on

the sum-throughput limit of such cognitive networks. The results provided in this section can be

exploited as the benchmark to quantify the efficiency of our distributed algorithm proposed in the

following section.

4 Distributed Spectrum Allocation

In this section we offer our distributed algorithm, where each user independently of others, makes

decision regarding taking over transmission on any specific spectrum band. We analyze the achiev-

able sum-throughput of the cognitive network when this distributed algorithm is utilized and show

that it is asymptotically optimal.

4.1 Distributed Algorithm

In order to refrain from exhaustively searching for the best user-channel matches, we consider

assigning the available spectrum bands to only secondary users with a pre-determined minimum

link strength. The distributed algorithm involves two major steps; normalizing the SINRs and

comparing it with a given threshold. The underlying motivation for normalizing the SINRs is to

balance fairness among the secondary users, in the sense that they get equal opportunities for
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accessing the spectrum. It so happens that some transmitter-receiver pairs have a very strong link

and some other pair a very weak link. This becomes even more likely when we have a large number

of secondary pairs. In such scenarios if spectrum allocation is carried out merely based on the links’

strengths, all the strong users will dominate the network and the weak users will hardly have an

opportunity for accessing it. So for maintaining fairness, instead of comparing the links’ strengths

(or SINRs), we compare normalized SINRs. However, it should be noted that the normalization

factors have to be designed carefully such that we do not sacrifice achieving the optimal scaling

in favor of achieving fairness. In other words, the objective is to achieve the optimal scaling and

fairness simultaneously.

In the next step, the normalized SINRs are compared against a pre-determined threshold level

and only the users with strong enough links that satisfy the threshold condition will take part in

the competition for accessing the spectrum.

Specifically, to each user n = 1, . . . , N and channel m = 1, . . . ,M , we assign a minimum

acceptable level of SINR, denoted by λ(m,n), which is defined as follows.

Let T (x;m,n) denote the CDF of SINRm,n given in (2). λ(m,n) is set such that we have

T
(

λ(m,n);m,n
)

= 1− 1

N
. (24)

Note that for any given m and n, T (x;m,n) is a non-decreasing function on [0,+∞)× [0, 1] which

ensures that there always exists a unique solution for λ(m,n). Also note that as SINRm,n depends

only on the incoming channels to the nth secondary receiver on the mth spectrum band, λ(m,n) can

be computed locally at the nth secondary receiver and does not impose any information exchange

between the secondary users. It is assumed that the secondary users are aware of the number of

secondary pairs N in the cognitive network.

Now, each user n computes SINR1,n, . . . ,SINRM,n, normalizes them via dividing them by λ(1, n)

, . . . , λ(M,n), respectively, and identifies the channel with the largest normalized SINR, and denotes

its index by m†
n, i.e.,

m†
n

△
= arg max

m∈{1,...,M}

{
SINRm,n

λ(m,n)

}

. (25)

In the next step, the nth user compares SINR
m†

n,n
against λ(m†

n, n) and if SINR
m†

n,n
≥ λ(m†

n, n),

then deems itself as a candidate for accessing the channel indexed by m†
n. Based on the definition in

(25) we define the mutually disjoint sets Hm for m = 1, . . . ,M , such that Hm contains the indices

of the users deemed as candidates for taking over the mth channel, i.e.,

Hm
△
=

{

n
∣
∣
∣ argmax

m′

SINRm′,n

λ(m′, n)
= m &

SINRm,n|
λ(m,n)

≥ 1

}

.
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Finally, a user with its index in Hm is randomly opted for utilizing the mth channel. This can be

facilitated in a distributed way via any contention based random media access method, e.g., Aloha,

carrier sense multiple access, etc. As soon as one user takes a channel, the other users will no longer

try to access that channel. In the following section, we analyze the sum-rate throughput scaling

factor of the proposed algorithm.

4.2 Sum-Rate Throughput Scaling

We denote the sum-rate throughput by Rsum and denote the throughput of the mth channel by Rm.

Note that the construction of Hm guarantees that no single user will be regarded as a candidate for

more than one channel and also we have Rsum =
∑M

m=1 Rm. By defining Rm | Hm
as the throughput

achieved for the mth conditioned on having users with indices in Hm be candidates for taking over

Bm we have

Rm =
∑

Hm⊆N , Hm 6=∅

Rm | Hm
P (Hm). (26)

On the other hand, by noting that one member of Hm will be randomly picked for accessing Bm

we get

Rm | Hm
=

1

|Hm|
∑

i∈Hm

E

[

log
(
1 + SINRm,i

) ∣
∣
∣ Hm

]

. (27)

From (26) and (27) for any Hm 6= ∅ we get

Rm =
∑

Hm⊆N

P (Hm)

|Hm|
∑

i∈Hm

E

[

log
(
1 + SINRm,i

) ∣
∣
∣ Hm

]

. (28)

As shown in Appendix E we have

∑

i∈Hm

E

[

log
(

1+SINRm,i

)
∣
∣
∣
∣
Hm

]

≥
|Hm|
∑

i=1

E

[

log
(

1 + SINR
(i)
m

) ]

. (29)

Therefore, (28) and (29) together give rise to the following lower bound on Rm

Rm ≥
∑

Hm⊆N , Hm 6=∅

P (Hm)

|Hm|

|Hm|
∑

i=1

E

[

log
(

1 + SINR
(i)
m

) ]

=

N∑

n=1

∑

|Hm|=n

P (Hm)

|Hm|

|Hm|
∑

i=1

E

[

log
(

1 + SINR
(i)
m

) ]

=

N∑

n=1

n∑

i=1

E

[

log
(

1 + SINR
(i)
m

) ] ∑

|Hm|=n

P (Hm)

n

13



=

N∑

n=1

n∑

i=1

E

[

log
(

1 + SINR
(i)
m

) ]P (|Hm| = n)

n

=
N∑

i=1

E

[

log
(

1 + SINR
(i)
m

) ] N∑

n=i

P (|Hm| = n)

n
. (30)

By further defining

Qm
i

△
=

N∑

n=i

1

n
P
(

|Hm| = n
)

, (31)

and

Rl
m

△
=

N∑

i=1

Qm
i E

[

log
(

1 + SINR
(i)
m

) ]

, (32)

we can re-write (30) as Rm ≥ Rl
m. If we also define Q0 = P

(

|Hm| = 0
)

we get

N∑

i=0

Qm
i = P

(

|Hm| = 0
)

+

N∑

i=1

N∑

n=i

1

n
P
(

|Hm| = n
)

=
N∑

n=0

P
(

|Hm| = n
)

= 1,

which suggests that {Qm
i }Ni=0 is a valid probability mass function (pmf). In the sequel, we con-

centrate on finding the scaling behavior of Rl
m. By using the definitions of Sl(m) and Su(m) and

exploiting Lemma 2, from (32) we have

Rl
m ≥

N∑

i=1

Qm
i E

[

log
(

1 + S(i)
l (m)

) ]

, (33)

and Rl
m ≤

N∑

i=1

Qm
i E

[

log
(

1 + S(i)
u (m)

) ]

. (34)

By recalling that the CDFs of S(i)
l (m) and S(i)

u (m) are F
(i)
l (x;m) and F

(i)
u (x;m) provided in (15)

and (16), respectively, (33) and (34) can be stated as

Rl
m ≥

N∑

i=1

Qm
i

∫ 1

0
log(1 + x) dF

(i)
l (x;m) (35)

and Rl
m ≤

N∑

i=1

Qm
i

∫ 1

0
log(1 + x) dF (i)

u (x;m), (36)

Next, for the given set of {Qm
i } we define

FN
l (x;m)

△
=

N∑

i=1

Qm
i F

(i)
l (x;m), (37)
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FN
u (x;m)

△
=

N∑

i=1

Qm
i F (i)

u (x;m), (38)

and GN (x)
△
=

N∑

i=1

Qm
i G(i)(x). (39)

Since {Qm
i } is a valid pmf, FN

l (x;m), FN
u (x;m), and GN (x) can be cast as valid CDFs. Therefore,

(35) and (36) give rise to

∫ 1

0
log(1 + x) dFN

l (x;m) ≤ Rl
m ≤

∫ 1

0
log(1 + x) dFN

u (x;m). (40)

The two subsequent lemmas are key in finding how Rl
m scales with increasing N .

Lemma 6 For a real variable x ∈ [0, 1] and integer variables N and i, 0 ≤ i ≤ N − 1, the function

f(x, i)
△
=

i∑

j=0

(
N

j

)

xN−j(1− x)j ,

is increasing in x.

Proof: See Appendix F.

Lemma 7 For the distributions FN
l (x), FN

u (x) and GN (x) we have

∫ ∞

0
log(1 + x) dFN

u (x;m) ≤
∫ ∞

0
log(1 + ρηmaxx) dG

N (x), (41)

and

∫ ∞

0
log(1 + x) dFN

l (x;m) ≥
∫ ∞

0
log(1 + ρηminx) dG

N (x)

− log

[

1 +
KmPp

Ps
γmaxρηmin

]

. (42)

Proof: By using the definition of f(x, j) provided in Lemma 6 and recalling (15)-(16) we have

F
(i)
l (x;m) = f

(

Fl(x;m), i − 1
)

,

F (i)
u (x;m) = f

(

Fu(x;m), i − 1
)

,

and G(i)(x) = f
(

G(x), i − 1
)

.

By following the same lines as in (22) we also have

Fl(x;m) ≤ G

(
x

ρηmin
+

KmPp

Ps
γmax(x+ 1)

)

,
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and consequently by applying Lemma 6 and using the definition in (37)-(39) we have

FN
l (x;m)

=

N∑

i=1

Qm
i F

(i)
l (x;m) =

N∑

i=1

Qm
i f
(

Fl(x;m), i− 1
)

≤
N∑

i=1

Qm
i f

(

G

(
x

ρηmin
+

KmPp

Ps
γmax(x+ 1)

)

, i− 1

)

=
N∑

i=1

Qm
i G(i)

(
x

ρηmin
+

KmPp

Ps
γmax(x+ 1)

)

= GN

(
x

ρηmin
+

KmPp

Ps
γmax(x+ 1)

)

By following a similar approach as in Lemma 4, and (22)-(23) the inequality in (42) can be estab-

lished. Proof of (41) follows a similar line of argument.

Lemma 8 For a family of exponentially distributed random variables of size N and parent distri-

bution G(x) (CDF) and for any set of {Qm
i }Ni=1 such that

∑N
i=0Q

m
i = 1, if the condition

lim
N→∞

∑N
i=1 iQ

m
i

N
= 0, (43)

is satisfied, then for any positive real number a ∈ R+ we have

∫ ∞

0
log(1 + ax)dGN (x)

.
= log logN + log a.

Proof: See Appendix G.

By using the results of the Lemmas 7 and 8 we offer the main result of the distributed algorithm

in the following theorem

Theorem 2 The sum-rate throughput of the cognitive network by exploiting the proposed distributed

algorithm scales as

Rsum
.
= M log logN.

Proof: We start by demonstrating that the set {Qm
i } as defined in (31) fulfils the condition (43)

of Lemma 8. From (31) we have

N∑

i=1

iQm
i =

N∑

i=1

i

N∑

n=i

1

n
P
(

|Hm| = n
)

=

N∑

n=1

1

n
P
(

|Hm| = n
) n∑

i=1

i
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=

N∑

n=1

n+ 1

2
P
(

|Hm| = n
)

=
1

2

N∑

n=1

nP
(

|Hm| = n
)

+
1

2

N∑

n=0

P
(

|Hm| = n
)

︸ ︷︷ ︸

=1

− 1

2
P
(

|Hm| = 0
)

. (44)

Note that |Hm| has compound binomial distribution with parameters {p(m,n)}Nn=1 [10], where

p(m,n) denotes the probability that the mth channel is allocated to the nth user. Therefore,

according to the properties of compound binomial distributions we have [10]

N∑

n=1

nP
(

|Hm| = n
)

= E [|Hm|] =
N∑

n=1

p(m,n). (45)

From (44) and (45) we get
N∑

i=1

iQm
i ≤ 1

2

(
N∑

n=1

p(m,n) + 1

)

.

On the other hand, the probability that any specific user n can be a candidate for taking over any

of the M channels is

ω(n)
△
= P

(

max
m

{
SINRm,n

λ(m,n)

}

≥ 1

)

= 1−
M∏

m=1

P
(

SINRm,n ≤ λ(m,n)
)

= 1−
M∏

m=1

T
(

λ(m,n);m,n
)

︸ ︷︷ ︸

=1−1/N

= 1−
(

1− 1

N

)M

.

Therefore, since
∑M

m=1 p(m,n) = ω(n), for all m,n we have p(m,n) ≤ ω(n). Hence,

N∑

i=1

iQm
i ≤ 1

2
(Nω(n) + 1) .

On the other hand,

lim
N→∞

Nω(n) = lim
N→∞

1−
(
1− 1

N

)M

1
N

= M.

Therefore,
∑N

i=1 iQ
m
i ≤ 1

2(M +1) and the set {Qm
i } satisfies the condition in Lemma 8. Therefore,

Lemmas 7 and 8 together establish the following

∫ ∞

0
log(1 + x) dFN

u (x;m)
·
≤ log logN + log(ρηmax),
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Figure 1: Sum-rate throughput versus the number of secondary users for M = 1, . . . , 4, ρ = 10 dB,

and the number of the primary users Km = 4.

and

∫ ∞

0
log(1 + x) dFN

l (x;m)
·
≥ log logN

− log

[
1

ρηmin
+

KmPp

Ps
γmax

]

.

The two inequalities above, in conjunction with (40) and noting that Rsum =
∑M

m=1 Rm provide

M log logN−M log

[
1

ρηmin
+

KmPp

Ps
γmax

]

·
≤ Rsum

·
≤ M log logN +M log(ρηmax),

which concludes the desired result.

4.3 Simulation Results

The simulation results in Fig. 1 demonstrates the sum-rate throughput achieved under the cen-

tralized setup given in (3) and the distributed setup given in Section 4.1. We consider a primary

network consisting of 4 users and look at the throughput scaling for the cases that there exist

M = 1, . . . , 4 available spectrum bands to be utilized by the secondary users. We set all path-loss

terms {ηi} and {γi,j} equal to 1 and find the sum-rate throughput as the number of secondary

users increases. As shown in Fig. 1, as the number of secondary users increases, the sum-rate

throughput achieved by the centralized and distributed schemes exhibit the same scaling factor.
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Figure 2: λ(m,n) versus the number of secondary users for M = 4 available spectrum bands and

Km = 4 primary users.

Note that what Theorems 1 and 2 convey is that the ratio of Rmax and Rsum in the centralized and

distributed setups, respectively, approaches to 1 as N → ∞, i.e.,

lim
N→∞

Rmax

Rsum
= 1

which does not necessarily mean that Rmax and Rsum have to coincide. As a matter of fact, as

observed in Fig. 1, there is a gap between Rmax and Rsum, that according to the results of Theorems

1 and 2 must be diminishing with respect to Rmax and Rsum such that we obtain the asymptotic

equality Rmax
.
= Rsum

.
= M log logN . This gap accounts for the cost incurred for enabling

distributed processing in the distributed spectrum access algorithm.

The throughput achieved under the distributed setup uniformly is less than that of the central-

ized setup. This is justified by recalling that the centralized scheme finds the best secondary user

for each available spectrum band, whereas the distributed network finds all the secondary users

whose quality of communication on a specific channel satisfies a constraint (λ(m,n)) and among all

such secondary user one is randomly selected to access the spectrum band. This, not necessarily

guarantees finding the best user for each available spectrum band and as a result leads to some

degradation in the sum-rate throughput.

Finding the metric λ(m,n) as defined in (24) is the heart of the distributed spectrum allocation

algorithm. As it is not mathematically tractable to formulate the CDF of SINRm,n (note that

Fl(x;m) and Fu(x;m) are only the CDFs of the lower and upper bounds on SINRm,n), we are not
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able to find a closed form expression for λ(m,n). However, by solving (24) numerically, we provide

the following two figures which are helpful in shedding light on how λ(m,n) varies with other

network parameter, i.e., primary and cognitive network sizes as well as the number of available

spectrum bands.

Figure 2 demonstrates the dependence of λ(m,n) on the transmission SNR denoted by ρ. It is

seen that λ(m,n) monotonically increases with ρ. Intuitively, as ρ increases, the users are expected

to have more reliable communication and as a result the algorithm will impose more stringent

conditions on the secondary users for considering themselves as a candidate for accessing any

specific spectrum band. More stringent conditions will translate to having higher values of λ(m,n)

such that the condition in (24) is satisfied.

The numerical evaluations provided in Fig. 3 show that λ(m,n) increases as the size of the

primary network decreases. Again as in Fig. 2, this is justified by noting that smaller number

of primary users leads to less interference from the primary network to the cognitive network and

thereof, more reliable secondary links. Thus, decreasing the primary network size again requires

more stringent conditions to be satisfied for a secondary user to be deemed as a candidate for

taking over a spectrum band, which in turn results in an increase in λ(m,n). It is noteworthy that

the choices of the thresholds given in (24) have been heuristic choices that satisfy all the desired

properties (optimal scaling as well as fairness and limited information exchange as discussed in

Section 5). Nevertheless, we cannot prove that these are the only choices of the thresholds and it

might be possible to find some other threshold settings that satisfy all these conditions and yet do

not depend on the size of the primary network. Hence, while the scaling of the sum-rate throughput

does not depend on the size of the primary network, the choices of the thresholds for achieving this

scaling in the distributed algorithm do depend on the size of the primary network.
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Figure 3: λ(m,n) versus the number of secondary users for different sizes for the primary network

Km = 1, . . . , 4 and ρ = 10 dB.

5 Information Exchange and Fairness

5.1 Information Exchange

In the distributed algorithm we assume that the nth secondary receiver measures {SINRm,n}Mm=1 cor-

responding to different spectrum bands, selects the largest one, whose index is denoted by m†
n, and

compares it against a pre-determined quality metric λ(m,n). If SINR
m†

n,n
≥ λ(m,n), this secondary

receiver should notify its designated secondary transmitter to participate in a contention-based com-

petition for taking over channel m†
n. Such notification requires transmitting logM information bits

from the secondary receiver to its respective secondary transmitter.

Although not all of the secondary pairs will be involved in such information exchange, it is

imperative to analyze the aggregate amount of such information for large networks (N → ∞). In

the following theorem we demonstrate that for the choice of λ(m,n) provided in (24), the asymptotic

average amount of information exchange is a constant independent of N and therefore does not

harm the sum-rate throughput of the cognitive network.

Theorem 3 In the cognitive network with distributed spectrum access, when λ(m,n) satisfies

T
(

λ(m,n);m,n
)

= 1− 1

N
,

the average aggregate amount of information exchange between secondary transmitter-receiver pairs

is asymptotically equal to M logM .
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Proof: As stated earlier, the probability that the a user satisfies the λ(m,n) constraint is ω(n) =

1 − (1 − 1/N)M . Therefore, the average aggregate amount of information exchange, denoted by

Rie, is

Rie = lim
N→∞

Nω(n) logM

= logM lim
N→∞

1− (1− 1
N )M

1
N

(46)

= logM lim
N→∞

− 1
N2M(1− 1

N )M−1

− 1
N2

= M logM, (47)

where for the transition from (46) to (47) we have used the L’Hopital’s rule.

5.2 Fairness

In general, opportunistic user selections might lead to the situation that the network be dominated

by the secondary pairs with their receiver far from the primary users so that see less amount of

interference from them, or by those pairs where the transmitter and the receiver are closely located

and enjoy a good communication channel.

In despite of these facts, we show that in our network, by appropriately choosing {λm,n} we can

provide equiprobable opportunity for all users to access the available spectrum bands. This can

be made possible by enforcing more stringent conditions (higher λ(m,n)) for the users benefitting

from smaller path-loss and shadowing effects. In the following theorem we show that by the choice

of λ(m,n) provided in (24) all the users have the equal opportunities for accessing a channel.

Theorem 4 In the cognitive network with distributed spectrum allocation, when λ(m,n) satisfies

T
(

λ(m,n);m,n
)

= 1− 1

N
,

all the users have the same probability for being a allocated a channel.

Proof: As shown earlier, the probability that user n satisfies the SINR constraint λ(m,n) is

ω(n) = 1− (1− 1/N)M , which is the same for all users.

6 Discussions

6.1 Impact on the Primary Network

In cognitive networks with underlaid spectrum access, the secondary and primary users may coexist

simultaneously. Therefore, in order to protect the primary users, the secondary users must adjust
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their transmission power such that they operate within the tolerable noise level of the primary

users and thereof do not harm the communication of the primary users. Hence, it is imperative

to investigate whether such power adjustments affect the achievable throughput scaling in the

centralized and distributed setups.

According to theorems 1 and 2, the sum-rate throughput of the cognitive network scales as

M log logN which does not depend on the SNR or the transmission power of the secondary users.

Therefore, irrespective of the transmission policy and power control mechanism (i.e., for any ar-

bitrary SNR or transmission power), the secondary users achieve the scaling law of M log logN .

Hence, deploying any power management mechanism of interest along with the proposed spectrum

access algorithms, does not harm the optimal scaling.

6.2 Distributed Algorithm

For implementing the distributed spectrum access protocol there are two major steps involved.

First the random selection of a user out of the candidates for taking over a specific spectrum band.

For randomly selecting a user out of the set of users in Hm to access the mth spectrum band, one

distributed approach is to equip all the users with a backoff timers. Then when a user learns that

it is a candidate for accessing the mth spectrum band with run the backoff timer with an initial

random value. The first cognitive pair whose backoff timer goes off will take over the channel and

with a beacon message can notify it to the rest of the network.

Secondly, the distributed algorithm requires some secondary receivers transmit logM informa-

tion bits to their respective transmitters. Transmitting logM information bits requires a very low

rate communication. An appropriate approach for such communication rate is to deploy ultra-wide

band (UWB) communication between a secondary transmitter and receiver pair. This will allow

the secondary users to communicate the low-rate information bits well below the noise level of the

primary users. It is noteworthy that the cognitive radios are often assumed to be equipped with

wideband filters which enable them to transmit and receive in a wide range of frequency spec-

trum. This feature of the cognitive radios provides an appropriate context for implementing UWB

communication.

6.3 Networks of Limited Size

Practical networks do not have large enough number of users to fully capture the multiuser di-

versity gain (double-logarithmic growth of capacity with the number of users). Therefore, due to

such degradation in multiuser diversity gain, the network cannot support the throughput expected
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in theory. Therefore, for practical networks we have only upper bounds on the actual sum-rate

throughputs. Knowing such upper bounds help to find in an insight about what to expect from

the cognitive networks at the design state.

Although the result hold analytically for only N → ∞, from the simulation results in Fig. 1 we

observe that as low as N = 50 (which is around the point that we start to observe steady increase

in the throughput) secondary users are enough to start observing the multiuser diversity gain. This

is not far from the size of practical networks.

7 Conclusions

In this paper we investigated the multiuser diversity gain in cognitive networks. We first obtained

the optimal gain achieved in a network with a central authority and show that the gain achieved

in such cognitive networks is similar to that of the interference-free networks, i.e., the network

throughput scales double-logarithmically with the number of users. Then we proposed a distributed

spectrum access scheme which is proven to achieve the optimal throughput scaling factor. This

scheme imposes the exchange of logM information bits per transmitter-receiver cognitive pair for

some pairs, and no information exchange for the others. The other specification of the distributed

algorithm are that the network-wide average aggregate amount of information bits it requires is

asymptotically equal to M logM , and it ensures fairness among the secondary users.

A Proof of Lemma 1

We equivalently show that limN→∞ P (D) = 1. An intuitive justification is that if we put the SINRs

in an M × N array, and locate the maximum element of each row, event D occurs when no two

such maximum are located in the same column. Therefore, as the number of the columns increases,

in the asymptote of very large values of N , the even D must occur with probability 1.

For set C ⊆ M △
= {1, . . . ,M} such that |C| ≥ 2 we define P (C) as the probability that the

spectrum bands with indices in C have the same most favorable user. Therefore, we get

P (C)
△
= P

{
∀ m,m′ ∈ C, n∗

m = n∗
m′

}

=
N∑

n=1

P
{

∀ m ∈ C, n∗
m = n

∣
∣
∣ n∗

m = n
}

×P (n∗
m = n)

=
N∑

n=1

∏

m∈C

P
(

SINRm,n ≥ SINRm,n′ , ∀n′ 6= n
)
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×P (n∗
m = n) (48)

=

N∑

n=1

∏

m∈C

∏

n 6=n′

P
(

SINRm,n ≥ SINRm,n′

)

︸ ︷︷ ︸

△
= q(m,n,n′)

×P (n∗
m = n)

≤ N(qmax)
|C|(N−1), (49)

where qmax = maxm,n,n′ q(m,n, n′) and (48) and (49) hold due to the statistical independence of

the elements in {SINRm,n}, and . Therefore we have

P (D) = 1−
∑

C⊆M,|C|≥2

P (C)

= 1−
M∑

m=2

∑

C⊆M, |C|=m

P (C)

≥ 1−
M∑

m=2

(
M

m

)

N(qmax)
m(N−1)

︸ ︷︷ ︸

→0 as N→∞
.
= 1,

which completes the proof. Note that qmax is a function of {ηi} and {λi,j} and does not depend on

N .

B Proof of Lemma 2

We first show that for any i = 1, . . . , N , S(i)
l (m) ≤ SINR

(i)
m . For i = 1 we have

SINR
(1)
m = max

n
SINRm,n ≥ max

n
Sl(m,n) = S(1)

l (m).

For any i = 2, . . . , N , from the definition of SINR
(i)
m and S(i)

m it can be deduced that each of

the (N − i + 1) terms SINR
(i)
m , . . . ,SINR

(N)
m is greater than one corresponding element in the set

Sl(m). Therefore, there cannot be more than (i− 1) elements in Sl(m) which are all greater than

SINR
(i)
m , . . . ,SINR

(N)
m .

Now, if S(i)
l (m) > SINR

(i)
m , then all the i terms S(1)

l (m), S(2)
l (m), . . . ,S(i)

l (m) should be greater

than all the (N − i+ 1) terms SINR
(i)
m , . . . ,SINR

(N)
m . Therefore, we have found i elements in Sl(m)

that are all greater than SINR
(i)
m , . . . ,SINR

(N)
m and this contradicts with what we found earlier.

Hence, we should have S(i)
l (m) ≤ SINR

(i)
m .

By following the same lines, we can show that also for i = 1, . . . , N , we always have SINR
(i)
m ≤

S(i)
u (m), which concludes the proof of the lemma.

25



C Proof of Lemma 3

Let Y
△
= |gmn |2, which has exponential distribution with unit variance. Also define Z

△
=
∑Km

j=1 |hmn,j|2

which is the the summation of Km independent exponentially distributed random variables each

with unit variance, and thereof has a Gamma(Km, 1) distribution. By denoting the probability

density functions (PDF) of Z and Y by

fY (y) = e−z,

and fZ(z) =
zKm−1 e−z

(Km − 1)!
,

the PDF of Sl(m,n) = Y
1/ρηmin+Pp/PsγmaxZ

, denoted by fS(x) is

fS(x) =

∫ ∞

0
fS | Z(x | z)fZ(z)dz

=

∫ ∞

0

(
1

ρηmin
+

Ppγmax

Ps
z

)

e

(

− x
ρηmin

−
Ppγmax

Ps
zx

)

dz

× zKm−1 e−z

(Km − 1)!
dz

=
e−x/ρηmin

(
Pp

Ps
γmaxx+ 1

)Km+1

×
[

Pp

Ps
γmaxx+ 1

ρηmin
+Km

Pp

Ps
γmax

]

,

where the last step holds as
∫∞
0 e−uuM = M !. Therefore The CDF is

Fl(x;m) = 1− e−x/ρηmin

(
Pp

Ps
γmaxx+ 1

)Km
.

Fu(x;m) can be found by following the same lines.

D Proof of Lemma 5

We start by citing the following theorem.

Theorem 5 [11, Theorem 4] Let {Xn}Nn=1 be a family of positive random variables with finite

mean µN and variance σ2
N , also µN → ∞ and σN

µN
→ 0 as N → ∞. Then, for all α > 0 we have

E

[

log(1 + αXN )
]

.
= log

(

1 + αE[XN ]
)

.
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Consider the set of random variables {Y1, . . . , YN} where Yi ∼ G(y) and define Xi
△
= Y (N−i+1),

where Y (i) is the ith order statistic of the set {Y1, . . . , YN}; hence, XN ∼ G(1)(x). Therefore, as

provided in [?, Sec. 4.6]

µN
△
= E[XN ] =

N∑

n=1

1

n

σ2
N

△
= E[|XN − µN |2] =

N∑

n=1

1

n2
,

which confirms that for finite N , µN is also finite. Also as shown in [4], µN
.
= logN and σ2

N
.
= π2

6 ,

from which it is concluded that σN

µN
→ 0 as N → ∞. Therefore the conditions of the above theorem

are satisfied and we have

∫ ∞

0
log(1 + αx)G(1)dx = E

[

log(1 + αXN )
]

.
= log

(

1 + αE[XN ]
)

= log(1 + α logN)

.
= log logN + log a,

which is the desired result.

E

By using the following lemma, we further find a lower bound on Rm which will be more mathe-

matically tractable.

Lemma 9 For a continuous random variable X, increasing function g(·) and real values b ≥ a

E

[

g(X) | X ≥ b
]

≥ E

[

g(X) | X ≥ a
]

.

Proof: See Appendix H.

By recalling the definition of SINR
(i)
m we have

∑

i∈Hm

E

[

log
(

1 + SINRm,i

)
∣
∣
∣
∣
Hm

]

=
∑

i∈Hm

E

[

log
(

1 + SINRm,i

)
∣
∣
∣
∣
SINRm,i ≥ λ(m, i)

;∀m′ 6= m :
SINRm,i

λ(m, i)
≥ SINRm′,i

λ(m′, i)

]

(50)

27



≥
∑

i∈Hm

E

[

log
(

1 + SINRm,i

)
∣
∣
∣
∣
SINRm,i ≥ λ(m, i)

]

(51)

≥
∑

i∈Hm

E

[

log
(

1 + SINRm,i

) ∣∣
∣
∣
SINRm,i ≥ min

j
λ(m, j)

]

(52)

=
∑

i∈Hm

E

[

log
(

1 + SINRm,i

) ∣∣
∣
∣
SINRm,i ≥ min

j
λ(m, j)

;∀l /∈ Hm : SINRl,m < min
j

λ(m, j)

]

(53)

=

|Hm|
∑

j=1

E

[

log
(

1 + SINR
(j)
m

)
∣
∣
∣
∣
SINR

(j)
m ≥ min

i
λ(m, i)

]

(54)

≥
|Hm|
∑

j=1

E

[

log
(

1 + SINR
(j)
m

) ]

, (55)

where (50) is obtained by replacing Hm by an equivalent representation. Transition from (50) to

(51) holds by applying Lemma 9 for b = SINRm′,i · λ(m,i)
λ(m,i′) and a = 0 for all m′ 6= m. Transition to

(52) is again justified by using Lemma 9. Due to the statistical independence of SINRm,i and SINRm,l

for m ∈ Hm and l /∈ Hm the additional constraints imposed in (53) do not result in any changes.

The conditions in (53) are equivalent to having the |Hm| largest components of {SINRm,n}Nn=1 be

greater than min1≤i≤N λ(i), which is mathematically stated in (54). Finally, (55) holds by applying

Lemma 9 one more time.

F Proof of Lemma 6

By the expansion of
(

x+ (1− x)
)N

we have

f(x, i) = 1−
N∑

j=i+1

(
N

j

)

xN−j(1− x)j

= 1−
N∑

j=i+1

(
N

N − j

)

xN−j(1− x)j

= 1−
N−(i+1)
∑

k=0

(
N

k

)

(1− x)N−kxk

= 1− f(1− x,N − i− 1),

where it can be concluded that f ′(u, i)
∣
∣
u=x

= f ′(u,N − i − 1)
∣
∣
u=1−x

. So it is sufficient to show

that f ′(x, i) ≥ 0 for x ≤ 1
2 and for all i = 1, . . . , N − 1. For this purpose we consider two cases of

i ≤ ⌊N2 ⌋ and i > ⌊N2 ⌋.
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Case 1: i ≤ ⌊N2 ⌋

f ′(x, i) =
i∑

j=0

(
N

j

)

(N − j)xN−j−1(1− x)j

−
(
N

j

)

jxN−j(1− x)j−1

=

i∑

j=0

(
N

j

)

xN−j−1(1− x)j−1
[

N(1− x)− j
]

,

where since 0 ≤ j ≤ i it can be shown that for x ≤ 1
2

N(1− x)− j ≥ N(1− x)− i

≥ N(1− x)− N

2

=
N

2
(1− 2x)

≥ 0. (56)

Case 2: i > ⌊N2 ⌋
Define aj = 1− 1

2δ(⌊N2 ⌋ − j), where δ(·) is the Dirac delta function. Therefore, we get

f(x, i) = f(x,N − i− 1)

+

⌊N
2
⌋

∑

j=N−i

aj

(
N

j

)[

xN−j(1− x)j + xj(1− x)N−j
]

.

For x ≤ 1
2 we get

f ′(x, i) = f ′(x,N − i− 1)

+

⌊N
2
⌋

∑

j=N−i

aj

(
N

j

){

xN−j−1(1− x)j−1
[

N − j −Nx
]

+ xj−1(1− x)N−j−1

︸ ︷︷ ︸

≥xN−j−1(1−x)j−1

[

j −Nx
]}

≥ f ′(x,N − i− 1
︸ ︷︷ ︸

≤⌊N
2
⌋

)

+

⌊N
2
⌋

∑

j=N−i

aj

(
N

j

)

xN−j−1(1− x)j−1
[

N − 2Nx
]

︸ ︷︷ ︸

≥0

≥ 0. (57)
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From (56) and (57) it is concluded that for x ≤ 1
2 , f(x, i) is an increasing function of x, which

completes the proof.

G Proof of Lemma 8

This proof follows the same spirit as the analysis provided in [4]. However, due to some differences

in our setting, we provided an independent treatment.

For any given number of users N , we define a random variable XN , distributed as XN ∼ GN (x)

and also for j = 1, . . . , N we define

µ(j)
△
=

∫ ∞

0
x dG(j)(x),

and σ2
(j)

△
=

∫ ∞

0

(

x− µ(i)

)2
dG(j)(x),

and µN
△
= E[XN ] =

∫ ∞

0
x dGN (x)

=

N∑

j=1

Qj

∫ ∞

0
x dG(j)(x) =

N∑

j=1

Qjµ(j).

As given in [?, Sec. 4.6] and discussed in details in [4], for ordered exponentially distributed random

variables XN we have

σ2
N < 2 + 2µ(1)

(

µ(1) − µN

)

, (58)

and logN + ζ +
1

2(N + 1)
≤ µ(1) ≤ logN + ζ +

1

2N
, (59)

and therefore,

µ(1)
.
= logN,

where ζ ≈ 0.577 is the Euler-Mascheroni constant. Also

µ(1) − log

( N∑

j=1

jQj

)

− ζ − 0.5 ≤ µN ≤ µ(1).

By taking into account the constraint in (43), as N → ∞

1−
log

(
∑N

j=1 jQj

)

− ζ − 0.5

logN
≤ µN ≤ 1. (60)

Equations (59) and (60) together show that

µ(1)
.
= µN

.
= logN, (61)
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which also implies that µN → ∞. Taking into account (58) and (61) we also conclude that

limN→∞
σN

µN
= 0 and therefore the conditions of Theorem 5 are met. Hence, from Theorem 5

∫ ∞

0
log(1 + ax) dGN (x) = E

[

log(1 + aXN )
]

.
= log

(

1 + aE[XN ]
)

= log
(

1 + aµN

)

.
= log logN + log(a).

H Proof of Lemma 9

E

[

g(X) | X ≥ b
]

=

∫ ∞

b
g(x)fX|X≥b(x) dx

=
1

Pr(X ≥ b)

∫ ∞

b
g(x)fX(x) dx

≥
[

1− Pr(X ≥ b)

Pr(X ≥ a)

]

g(b)

+
1

Pr(X ≥ a)

∫ ∞

b
g(x)fX(x)dx

=
g(b)

Pr(X ≥ a)
Pr(a ≤ X ≤ b)

+
1

Pr(X ≥ a)

∫ ∞

b
g(x)fX(x)dx

≥ 1

Pr(X ≥ a)

∫ b

a
g(x)fX(x) dx

+
1

Pr(X ≥ a)

∫ ∞

b
g(x)fX(x)dx

=

∫ ∞

a
g(x)fX|X≥a(x) dx

= E

[

g(X) | X ≥ a
]

.
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