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Capacity Scaling of Wireless Networks With
Inhomogeneous Node Density: Lower Bounds

Giusi Alfano, Michele Garetto, Member, IEEE, Emilio Leonardi, Senior Member, IEEE, and Valentina Martina

Abstract—We consider static ad hoc wireless networks com-
prising significant inhomogeneities in the node spatial distribution
over the area and analyze the scaling laws of their transport
capacity as the number of nodes increases. In particular, we con-
sider nodes placed according to a shot-noise Cox process (SNCP),
which allows to model the clustering behavior usually recognized
in large-scale systems. For this class of networks, we propose
novel scheduling and routing schemes that approach previously
computed upper bounds to the per-flow throughput as the number
of nodes tends to infinity.

Index Terms—Ad hoc wireless networks, capacity, non-Poisson
models, scaling laws.

I. INTRODUCTION AND RELATED WORK

I NTHEIR seminal work, Gupta andKumar [1] evaluated the
capacity of a static ad hoc wireless network consisting of

nodes randomly placed over a finite bidimensional domain and
communicating among them (possibly in a multihop fashion)
over point-to-point wireless links subject to mutual interfer-
ence. They derived an upper bound1 to the per-node
throughput, valid for arbitrary network topologies. In the case
of nodes uniformly distributed over the network area, they pro-
posed a scheme achieving per-node throughput.
Later on, Franceschetti et al. [2] have applied percolation theory
results to show that transmission rate is achievable by
the nodes also under uniform node placement.
The goal of our work is to extend the capacity scaling anal-

ysis to networks characterized by large inhomogeneities in the
node density over the area. Indeed, almost all large-scale struc-
tures created by human or natural processes over geograph-
ical distances (such as urban or suburban settlements) exhibit
significant degrees of clustering due to spontaneous aggrega-
tion of the nodes around a few attraction points. For example,
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many growing processes result into highly clustered networks
due to preferential attachment phenomena. This fact motivated
us to consider a general class of clustered point processes re-
ferred to as shot-noise Cox processes (SNCPs) [3], which in-
cludes several special cases widely used in different fields, such
as Neyman–Scott process [4], Matérn cluster process [5], and
Thomas process [6].
In this paper, we introduce and analyze a class of scheduling

and routing schemes specifically tailored to clustered random
networks, deriving constructive lower bounds to the per-node
throughput as the number of nodes (and the number of clusters)
tends to infinity. The obtained results get close (up to a poly-log
factor) to the upper bounds derived in a separate paper [7] in all
scenarios in which the system throughput is limited by interfer-
ence among concurrent transmissions.
The main finding of this paper is that in order to approach the

existing upper bound to the per-node throughput, it is necessary
to employ scheduling and routing schemes that are significantly
more involved than the ones proposed for networks with homo-
geneous node density [2].
To the best of our knowledge, only a few works have ana-

lyzed the capacity of clustered networks, especially departing
from the assumption that nodes are uniformly placed over the
network area. In [8], Toumpis considers a set of nodes wishing
to communicate to cluster heads and points out that
the network throughput can be limited by the formation of bot-
tlenecks at the clusters heads. Both sources and cluster heads
are uniformly distributed, so the overall node density does not
exhibit inhomogeneities.
The deterministic approach proposed in [9] allows to derive

capacity results also for some nonuniform node distributions.
In particular, the authors consider nodes distributed over
lines, or clustered into neighborhoods. In both cases, a reg-
ular square tessellation of the network area can be built in such
a way that no squarelet is empty w.h.p. (with high probability),
while themaximum number of nodes in each squarelet increases
at most as a poly-log function of . Therefore, the network does
not contain significant inhomogeneities, and the resulting ca-
pacity is similar to that derived by Gupta and Kumar.
In [10], the authors consider a system that contains many cir-

cular clusters with uniform node density within them, whose
centers are distributed according to a Poisson process over the
network area (a Matérn cluster process). Moreover, clusters are
surrounded by a sea of nodes with much lower node density.
The only quantity that scales with is the network size: Below
a critical network size, the per-node throughput is limited by the
amount of data that a cluster can exchange with the sea of nodes,
whereas above the critical size, the per-node throughput is lim-
ited by the capacity of the sea of nodes. In contrast to [10], we
consider a more general SNCP, and we let the density of clusters

1063-6692/$26.00 © 2010 IEEE
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(and the number of nodes per cluster) to scale with as well.
Moreover, our scheduling and routing schemes are different. In
[11], the authors present a spatial framework to upper-bound
the number of simultaneous transmissions in a network with
general topology. However, their approach cannot be used to
devise constructive schemes achieving the available per-node
throughput for the class of networks considered here.
In [12], the authors consider a network in which nodes are

arbitrarily placed on a domain of surface under the con-
straint that the distance between any two nodes is larger than a
given constant . They derive both information theoretic upper
bounds and constructive lower bounds employing advanced
cooperative multiple-input–multiple-output (MIMO) trans-
mission schemes. Our work is complementary with respect
to [12] since our scheduling/routing strategies do not employ
cooperative MIMO schemes. Furthermore, our model does not
require any assumption on the minimum distance among nodes.

II. SYSTEM ASSUMPTIONS AND NOTATION

A. Network Topology

We consider networks composed of a random number of
nodes (being ) distributed over a square region
of edge length , where takes units of distance. The net-
work physical extension is allowed to scale with the average
number of nodes since this is expected to occur inmany growing
systems. Throughout this work, we will always assume that

, with . To avoid border effects, we consider
wraparound conditions at the network edges (i.e., the network
area is assumed to be the surface of a bidimensional Torus).
The clustering behavior of large-scale systems is taken into

account assuming that nodes are placed according to an SNCP.
An SNCP over an area can be conveniently described by the
following construction. We first specify a point process of
cluster centers, whose positions are denoted by ,
where is a random number with average .
In the literature, the center points are also called parent
or mother points. Each center point in turn independently
generates a point process of nodes whose intensity at is given
by , where and is a dispersion
density function, also called kernel, or shot. In the literature, the
nodes generated by each center are also referred to as offspring
or daughter points. The overall node process is then given
by the superposition of the individual processes generated by
the cluster centers. The local intensity at of the resulting
SNCP is

Notice that is a random field in the sense that condition-
ally over all , the node process is an (inhomogeneous)
Poisson point process with intensity function . We denote by

the collection of nodes positions in a given real-
ization of the SNCP.
In this work, we restrict ourselves to kernels that are

invariant under both translation and rotation, i.e.,
depends only on the euclidean distance

of point from the cluster center . Moreover, we assume

that is a nonnegative, nonincreasing, bounded, and
continuous function whose integral over the en-
tire network area is finite and equal to 1. In practice, the ker-
nels considered in our work can be specified by first defining a
nonnegative, nonincreasing continuous function such that

and then normalizing it over the network
area

Notice that in our asymptotic analysis we can neglect the nor-
malizing factor . Indeed,

. Notice that in order to have finite integral over
increasing network areas, functions must be , i.e.,
they must have a tail that decays with the distance faster than
quadratically.
In the following, we will be especially interested in functions
whose tail decays as a power-law

for (1)

although our results apply to more general shapes as well.
Under the above assumptions on the kernel shape, quantity

equals the average number of nodes generated by cluster center
.Wewill assume for simplicity that all cluster centers generate

on average the same number of nodes, hence for all
, although this restriction could be relaxed.

In our work, we let scale with as well (clusters are ex-
pected to grow in size as the number of nodes increases). This
is achieved assuming that the average number of cluster centers
scales as , with . Consequently, the number
of nodes per cluster scales as .
At last, we need to specify the point process of cluster cen-

ters. We consider two different models.
—Cluster Grid Model. Clusters centers are deterministi-
cally placed over the vertices of a square grid.

—Cluster Random Model. Cluster centers are randomly
placed according to a homogeneous Poisson process
(HPP) of intensity .

The Cluster Grid Model is simpler to analyze because the
overall node process turns out to be a standard inhomogeneous
Poisson point process whose intensity over the area can easily
be evaluated since the locations of clusters centers are
assigned. This model serves as an intermediate step toward the
analysis of the more complex Cluster Random Model.
For both models, we define

(2)

This quantity represents, in the case of the Cluster Grid
Model, the distance between two neighboring cluster centers
on the grid; in the case of the Cluster Random Model, it is
the edge of the square where the expected number of cluster
centers falling in it equals 1. We call:
— cluster-dense regime the case , in which tends
to zero an increases;

— cluster-sparse regime the case , in which tends
to infinity an increases.

We leave for future studies the analysis of the case .
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Fig. 1. Examples of topologies comprising nodes distributed over
the square 10 10 . In all three cases, . (a) Cluster
Random Model with . This case belongs to the cluster-dense regime

. (b) Cluster Grid Model with . (c) Cluster Random Model
with . Cases (b) and (c) belong to the cluster-sparse regime .

Fig. 1 shows three examples of the kind of topologies consid-
ered in this paper, in the case of and . In
all three cases, we have assumed .

B. Communication Model

We assume that time is divided into slots of equal duration,
and that in each slot the scheduling policy enables a set of trans-
mitter–receiver pairs to communicate over point-to-point wire-
less links that are modeled as Gaussian channels of unit band-
width. We consider point-to-point coding and decoding, hence
signals received from nodes other than the (unique) transmitter
are regarded as noise.
We assume that interference among simultaneous transmis-

sions is described by the so called generalized physical model,
according to which the rate achievable by node transmitting to
node in a given time slot is limited to

where is the signal-to-interference-plus-noise ratio at
receiver given that node is transmitting to it.
We define as the set of nodes that are enabled to transmit

in a given slot, as the power emitted by node as the
power attenuation between and , and as the ambient noise
power. We have

In this paper, we assume that all nodes employ the same
power level while transmitting (i.e., . We re-
mark that this assumption does not penalize the achievable
throughput, as one can see by comparing our results to the
upper bounds in [7], which are derived for arbitrary power
assignment.
The power attenuation is assumed to be a deterministic func-

tion of the distance between and , according to ,
with . One drawback of this model is that the received
power (and the corresponding rate) are amplified to unrealistic
levels when tends to zero. Some authors have suggested to
account for near-field propagation effect by bounding the at-
tenuation function to . However, any
fixed bound leads to pathological throughput degradation in net-
work regions where the node density tends to infinity, as pointed
out in [14]. To avoid such problems, we simply assume that
the achievable rate on any link cannot grow arbitrarily large,

but is bounded by a constant due to the physical limita-
tions of transmitters/receivers (maximum data speed of I/O de-
vices, finite set of possible modulation schemes, etc.). There-
fore, we consider the following variant of the generalized phys-
ical model:

(3)

while keeping , for any .
The proposed interference model satisfies the following basic

property.
Lemma 1: Under the assumptions that, in a given time slot:

1) every transmission takes place between nodes whose relative
distance is not greater than ; 2) the set of transmitters is
chosen by the scheduling policy in such a way that the distance

between any two transmitters in is
greater than or equal to ; 3) nodes employ a common power
level ; then the achievable rate by all concurrent transmissions
according to (3) during the considered slot is

(4)

being a positive constant.
Proof: We focus on a node receiving data from a node

in the considered time slot, and we upper-bound the amount of
interference received by due to concurrent transmissions
all over the network.
By definition

(5)

where is the power attenuation function at dis-
tance , and represents the number of transmitters (ex-
cluding ) within a distance from .
Now applying the triangular inequality, we can say that

(6)

where denotes the number of interfering transmitters at a
distance not greater than from .
Since the distance between any pair of transmitters is not

smaller than can be easily bounded above by ex-
ploiting elementary geometric considerations. In particular,

is maximized when the transmitters are placed according
to a regular triangular tessellation. In this case

for any (7)

while

if

if
(8)

Observe that from (6) and (7) it immediately follows that
for , while from (6) and (8) it follows
. Hence, integrating (5) by parts, we obtain the

following alternate expression for :

(9)
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TABLE I
SYSTEM PARAMETERS

where, according to previous arguments,
.

Hence, being

(10)

(11)

with .
As a consequence, being the distance between node

and node , for the SINR at the receiver , we obtain

Applying (3), we get the assertion.
Furthermore, note that

and considering that for small values of , we
can claim that , where the product

scales with as result of the particular parameters and
architectural choices.
On this regard, note that for some combinations of param-

eters, the node density vanishes in the least populated regions
of the network area; here, the typical distance between nodes
tends to infinite, and transmissions between neighboring nodes
are forced to cover increasingly large distances. As a conse-
quence, the signal strength at the receiver, as well as the associ-
ated signal-to-noise ratio (SNR), vanishes unless nodes are able
to increase their transmission power, so as to compensate for
the signal power attenuation. Furthermore, observe that scaling
so as to overcompensate the link power attenuation (and thus

produce an increasingly large SNR at the receiver) is not useful
since, in our model, the rate of individual transmissions (3) is
bounded by .
In our analysis, we allow nodes to scale up their transmission

power so as to achieve nonvanishing transmission rates. Actu-
ally, we do not make any specific assumption on how nodes se-
lect the transmission power , thus obtaining results that are
expressed parametrically as function of the particular choice of
transmitted power , which can depend arbitrarily on as well.
Table I summarizes the parameters of our system. For the

quantities that are allowed to scale with , we have reported, in
the third column, the restrictions on the scaling exponent in ,
i.e., the assumptions on . Note that and
are not native parameters since they are derived from other

parameters; however, we have included them in the table for
convenience.

C. Traffic Model
Similarly to previous works [1], [2], we focus on permutation

traffic patterns, i.e., traffic patterns according to which every
node is source and destination of a single data flow at rate .
Sources and destinations of data flows are randomly matched,
establishing end-to-end flows in the network. Note that a per-
mutation traffic pattern is represented by a traffic matrix of the
form , with being a permutation matrix (i.e., a bi-
nary-valued doubly stochastic matrix). Let be the network
backlog, that is, the number of data units already generated by
sources that have not yet been delivered to destinations at time .
We say that traffic is sustainable if there exists a sched-
uling-routing policy such that almost
surely.

D. Asymptotic Analysis of Network Capacity
We are essentially interested in establishing how the net-

work capacity scales with under the assumptions we have
introduced on network topology, communication model, and
traffic pattern. To summarize, the quantities that depend on
are: 1) the network physical extension ; 2) the number
of cluster centers , and consequently the average
number of nodes belonging to the same cluster.
As the number of nodes increases, we generate a sequence of
systems indexed by . The per-node throughput (or equiva-
lently per-flow throughput) is if, given a sequence
of random permutation traffic patterns with rate ,
there exist two constants such that and both the
following properties hold:

is sustainable
is sustainable

Equivalently, we say in this case that the network capacity (or
maximum network throughput) is . To simplify the
notation, unless strictly necessary, we will omit the dependence
of the variables on in the following.

III. SUMMARY OF RESULTS
Table II summarizes the maximum achievable per-flow

throughput (in order sense) under the cluster dense
and cluster sparse regimes, for both Cluster Grid
and Cluster Randommodels. The table reports the lower bounds
(LB) obtained in this paper, together with the corresponding
upper bounds (UB) derived in [7]. We observe that the lower
bound coincides with the upper bound in the cluster dense
regime, where the same per-node throughput as if
nodes were uniformly placed over the domain can be achieved.
In the cluster sparse regime, instead the per-node throughput
drops below , for effect of inhomogeneities in the node
spatial distribution, becoming tightly related to the minimum
node density in the network.
To ease the comparison to the upper bounds, which are de-

rived under the assumption that system performance is limited
by the mutual interference among simultaneous transmissions
(not by the transmission power), in Table III we have special-
ized the results of Table II for the cluster-sparse regime, when
the transmission power is selected by nodes in such a way to
compensate the link power attenuation. This means that nodes
select a transmission power , where is
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TABLE II
PER-FLOW THROUGHPUT ACHIEVABLE IN DIFFERENT CASES. LB (UB) STANDS

FOR LOWER BOUND (UPPER BOUND)

TABLE III
PER-FLOW THROUGHPUT ACHIEVABLE IN THE CLUSTER-SPARSE REGIME,

WHEN AND

the typical distance between transmitters and receivers in the
least populated regions of the network area, so as to achieve a
nonvanishing transmission rate on any link. Moreover, we have
considered the most interesting case in which the node density
function decays as a power law with the distance from the
cluster center, i.e., for . It can be easily
seen in Table III that upper and lower bounds differ at most by
a poly-log factor of .
Results are graphically illustrated in Fig. 2, where we have

reported, using a vertical scale, the per-node capacity for
fixed , letting both and vary. Here, we have assumed
that nodes adapt the transmission power to compensate the link
power attenuation, leading to the results in Table III. Notice that
on this scale, we can neglect poly-log factors in , hence the rep-
resented surface corresponds to both upper and lower bounds.
The cluster-dense regime (i.e., ), in which

, produces the plateau at , for
any . In the cluster-sparse regime, the per-node capacity
decreases for increasing values of and decreasing values of
. The contour line at splits the surface in two parts. The
part below the contour line corresponds to the set of points

for which power adaptation is indeed necessary to have
, so that lower and upper bounds match

(except for poly-log terms). For these values of , the node
density within the least populated regions of the network tends
to zero; thus, links established in these low-density regions
have to cover increasingly large distances and require power
adaptation to get a nonvanishing link rate. The part above the
contour line, instead, does not require power adaptation, hence
lower and upper bounds are tight even employing a constant
power.
At last, in the lower part of the plot we can see that the surface

becomes less steep. These portion of the surface corresponds
to the set of points for which the functions in Table III
return the second term, hence the per-node capacity is ,
with scaling exponent (independently of ). In this case,
as tends to 0, the per-node capacity approaches the lowest
possible value , with scaling exponent .

IV. PRELIMINARIES
Lemma 2: Consider a set of points distributed over a bidi-

mensional domain of area according to a HPP of rate .
Let be a regular tessellation of (or any subregion of
), whose tiles have a surface not smaller than .

Fig. 2. Per-node capacity (in scale) as a function of and , in the case
, assuming that power adaptation is applied.

Let be the number of points of falling within . Then,
uniformly over the tessellation, is comprised between

and , i.e.,
with probability .

The proof of this statement follows directly from the Chernoff
bound and can be found in [2] and [15].
The previous result can be immediately generalized to the

case of inhomogeneous Poisson processes (IPP).
Lemma 3: Consider a set of points distributed over
according to an IPP having local intensity , such

that . Let be any tessella-
tion of (or any subregion of ), whose tiles satisfy:

. Then, uniformly over the tessellations
,

with probability .
The following is a classical result on doubly stochastic ma-

trices, known as the Birkhoff-von-Neumann (BvN) Theorem.
Lemma 4: (BvN Theorem). Any doubly stochastic matrix

can be decomposed into a convex combination of permutation
matrices.
From the BvN Theorem, it descends that every nonneg-
ative, integer-valued matrix can be decom-
posed into the sum of at most subpermutation matrices
(i.e., binary-valued doubly substochastic matrices), being

the maximum column/row sum
[13].
At last, we report the main result of [2], together with a brief

overview of their solution, which allows us to make a trivial
generalization of the same result.
Lemma 5: Consider a set of nodes placed according to

a HPP with intensity over domain of area ;
then, a scheduling/routing scheme exists such that the per-node
throughput is under random permutation traffic with
probability .
The scheduling/routing policy proposed in [2] exploits the
formation of several horizontal and vertical paths across the
network in the transition region of an underlying percolation
model. Nodes along these paths form a highway system that can
carry information using multiple hops of length (recall
that ). The rest of the nodes access the highway system
using single hops of length . The communication
strategy is divided into four consecutive phases: In a first phase,
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nodes drain their information to the highway; in a second phase,
information is carried horizontally across the network through
the highway; in a third phase, it is carried vertically; and in a
last phase, information is delivered from the highway to the
destination nodes. The system bottleneck turns out to be due to
the phases in which information is carried over the highway,
hence the per-node throughput is .
The previous scheduling/routing strategy can be extended to

the more general case in which nodes are placed over a do-
main of area according to a HPP of rate .
Employing the same communication strategy as in [2], all dis-
tances covered by transmissions are scaled by a factor .
When , the length of the hops along the highway
system becomes (the distance between transmitters and re-
ceivers on the highway is ); the achievable rate on
each hop along the highway remains (see Lemma 1), hence
the per-node throughput is still .
When instead, the distances covered by transmis-

sions along the highway become , and the corresponding
rate over each hop degrades to for effect
of the noise power at the receiver (see again Lemma 1), unless
power levels are scaled up with to perfectly compensate the
link power attenuation. As a result, the per-node throughput be-
comes .
Thus, we obtain the following corollary.
Corollary 1: Consider a set of nodes placed over domain

according to a HPP with intensity . Then, a sched-
uling/routing scheme exists such that the per-node throughput is

under random permutation traffic with
probability .
Lemmas 2, 3, and 5 and Corollary 1 constitute the elemen-

tary building blocks to obtain our results. Thus, the majority of
properties we are proving are verified with a probability

when . In the following, we adopt the termi-
nology “with high probability” (w.h.p.) to indicate events/prop-
erties that occur with a probability ; otherwise, we
explicitly indicate the law according to which probability tends
to 1, whenever necessary.

A. Asymptotic Analysis of the Local Intensity

Recall that under both the Cluster Grid and the Cluster
Random models, the local intensity of nodes at point can
be written as . For both models, we
define the following two quantities: and

.
The following theorem characterizes the asymptotic behavior

of and in the Cluster Random Model.
Theorem 1: Consider nodes distributed according to a Cluster

Random Model. Let . If (or
equivalently ), then it is possible to find two
positive constants with such that

w.h.p. (12)

which means that . More in general, when
, it is possible to find two positive constants , such

that, w.h.p., and .
Proof: The proof of this theorem, taken from [7], is re-

ported in Appendix B for completeness.

Under the Cluster Grid Model, cluster centers are regularly
placed in a deterministic fashion, hence and are two deter-
ministic values depending only on system parameters.
Theorem 2: Consider nodes distributed according to

a Cluster Grid Model. When , we have
. If , we have ,

being and .
The proof of this theorem is a simplified version of the proof of
Theorem 1 since, in the Cluster Grid Model, we do not have to
deal with the randomness in the cluster centers positions. The
proof can be obtained along the lines of Appendix B.
Recalling that the mean distance between cluster centers is

from (2), the above results show that, for both
Cluster Grid and Cluster Random models, in the
cluster-dense regime, i.e., when (this condition im-
plies ), whereas in the cluster-
sparse regime, i.e., when (this condition implies

). In Section V, we analyze the case under both
Cluster Grid and Cluster Random models. In Section VI, we
study the case , separately considering the Cluster
Grid and the Cluster Random models.

B. Thinning and Completing IPP and SNCP

Here, we introduce some useful techniques that can be
applied to the point processes generated by our network
model, which are essential for the construction of our sched-
uling-routing schemes.
We start with a couple of basic properties of Poisson point

processes.
Lemma 6: Consider a set of points distributed

over a compact domain according to an inhomogeneous
Poisson process of intensity . Let be . Then,
for any , it is possible to extract from a subset of
points distributed over according to a homogeneous
Poisson process of rate .

Proof: The proof is based on a standard thinning technique
that is reported for completeness in Appendix A.
Lemma 7: Consider a set of points distributed

over a compact domain according to an inhomogeneous
Poisson process of intensity . Let be .
Then, it is possible to complete (adding some extra points)
to a superset of points distributed according to a
homogeneous Poisson process of rate .

Proof: The proof is reported for completeness in
Appendix A.
The above two results can be immediately applied to the

Cluster Grid Model since the overall point process generated by
this model is a standard IPP. Therefore, we have the following.
Corollary 2: Consider nodes with ,

placed according to a Cluster Grid Model. Let
and be the extreme values

of the node intensity over the network domain , as computed
in Theorem 2. Then, a subset of nodes can be found
with probability 1 such that forms a HPP with intensity ;
moreover, can be completed with probability 1 to a superset
of points forming a HPP with intensity .
Similar properties can be extended also to theCluster Random

Model, with the only difference that they hold w.h.p. (see
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the last paragraph of Section IV), instead of with probability
1. This is stated more precisely in the following lemma.
Lemma 8: Consider nodes , with ,

placed according to a Cluster Random Model. Then, a subset
of nodes can be found w.h.p. such that forms a
HPP with intensity , where in the cluster-dense
regime and in the cluster-sparse
regime. Here, and are the constants defined in Theorem 1.
Moreover, can be completed w.h.p. to a superset
that forms a HPP with intensity , where in
the cluster-dense regime and in the cluster-
sparse regime. Again, and are the constants defined in
Theorem 1.

Proof: We focus on the first property stated in the lemma
(the thinning). The second property (the completion) follows
exactly the same reasoning and is omitted for brevity. Recall
that the Cluster Random Model is a doubly stochastic point
process (a SNCP) with intensity , with

being the (random) collection of cluster centers’
positions. By Theorem 1, (both
for the cluster-dense and cluster-sparse case). This means that,
with probability , the SNCP generates a topology in which

. Let be the set of cluster centers con-
figurations for which . By construction, the probability
associated to is . For any cluster configuration ,
let be the conditional minimum den-
sity of the point process. Conditionally over , the
intensity is a deterministic function (i.e., conditionally
over the SNCP can be regarded as a standard IPP), hence
we can apply Lemma 6 and extract a subset of nodes from

forming a HPP of rate . Since this can be done for
any , deconditioning over we obtain that the thin-
ning property holds with probability , i.e., the probability of
generating a cluster center configuration belonging to set .
Since , the property holds w.h.p. for the Cluster
Random Model.
At last we report the following result that will come in handy

in the next section.
Lemma 9: Consider nodes , with ,

placed either according to a Cluster Grid or according to
a Cluster Random Model in the cluster-dense regime (i.e.,

). Given a tessellation of with tiles
of area , let be the number of points
of falling in tile . Then, uniformly over the tessellation

satisfies w.h.p. .
Proof: Applying Corollary 2 for the Cluster Grid Model

(Lemma 8 for the Cluster Random Model), we can extract from
w.p.1 (w.h.p.) a subset of points forming a HPP with in-

tensity , and we can complete to forming
a HPP with intensity . Then, setting not
smaller than , the result immediately follows
from Lemma 2, since by construction .

V. ANALYSIS OF THE CLUSTER-DENSE REGIME

The scheduling/routing strategies we propose are based on
the idea of extracting a subset of nodes forming an infrastructure
through which data can be transported across the network. This

subset of nodes is distributed on the area according to an HPP.
The rest of nodes communicate with the infrastructure using
single-hop transmissions.
Theorem 3: In the cluster-dense regime, there exists a sched-

uling/routing scheme achieving w.h.p. per-node throughput
.

Proof: In the Cluster GridModel, we can apply Corollary 2
and extract with probability 1 a subset of nodes dis-
tributed according to a HPP with intensity ; the
same can be done, w.h.p., in the Cluster Random Model ap-
plying Lemma 8.
The proposed communication strategy is a generalization of

the scheme introduced in [2]. Nodes in form the infrastructure
carrying the traffic across the network area. Nodes in
send/receive data from the infrastructure by single-hop commu-
nications with a close-by node in .
Time is divided into regular frames, each one comprising

three phases of equal duration. The first phase is exploited by
nodes in to directly transmit to the nodes of . The second
phase is exploited to carry data through the infrastructure pro-
vided by nodes ; at last, the third phase is exploited to deliver
data to .
We start analyzing the first phase. First, we provide a con-

struction that allows every node in to select a node of that
acts as the first relay of its data stream. Then, we analyze the
throughput that can be sustained during this first phase.
We partition into squarelets of area

(the exact dimension of the squarelets is chosen
is such a way to exactly cover with an integer number of
squarelets). According to Lemma 2, in every squarelet there
are w.h.p. at least nodes belonging to , while due
to Lemma 9 the number of points of in each squarelet is
upper-bounded w.h.p. by . Since, by construction, ,
any upper bound on the number of points can be regarded as
an upper bound on the number of points .
Then, we uniformly partition the nodes of falling in each

squarelet into groups, assigning each group to a dif-
ferent node of belonging to the same squarelet. By construc-
tion, each group contains at most nodes. Now,
according to our scheme, only one transmission can take place
in each squarelet at each time slot. Since both the transmitter
and the receiver are placed in the same squarelet, their dis-
tance is upper-bounded by the diagonal of the squarelet:

, being . Furthermore, to
meet conditions of Lemma 1, transmissions occurring within the
same squarelet, as well as transmissions occurring in squarelets
containing points closer than , are to be orthogonalized
over time. To do this, the squarelets are partitioned into a finite
number of subsets, each subset comprising regularly spaced,
weakly interfering squarelets. At any time, only one subset of
squarelets is activated, and at most one transmission is enabled
in each activated squarelet (this approach to limit interference
among concurrent transmissions is pretty standard in related
work; see, for example, [2, Theorem 3]). Applying Lemma 1,
each enabled transmission can achieve a rate .
However, we have to consider the fact that in each squarelet
there are competing nodes belonging to . Since the
fraction of time in which each of them can transmit scales as
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, the achievable average data rate sustainable by
each node of during the first phase is

(13)

During the second phase, data are transported by the infra-
structure provided by nodes , either up to their final destina-
tion (if it belongs to ) or to the node assigned to the group
of the destination. For the analysis of the second phase, we just
apply the result of [2], adopting their scheduling/routing tech-
nique (notice that the scheme in [2] is itself divided into four
subphases; see Lemma 1).
The only difference with respect to the assumptions of [2] re-

lies on the fact in [2] a random permutation traffic pattern is as-
sumed, in which each node is origin and destination of a single
end-to-end flow established with a randomly selected destina-
tion. In our case instead, during the second phase, every node
of pushes/pulls into/from the network infrastructure data be-
longing to (at most) end-to-end flows. However,
thanks to the BvN Theorem (see Lemma 1), we can decompose
our traffic pattern into (at most) permutation traffic
patterns and devote to each of them a finite fraction of the system
bandwidth.
Since is a HPP of intensity over an area , the average

number of nodes composing the infrastructure equals
. Since w.h.p., we have . Ap-

plying Corollary 1, the average per-flow data rate sustainable in
the second phase is, w.h.p.,

(14)

In the third phase, data are delivered from nodes in to their
final destinations belonging to through single-hop transmis-
sions. The analysis of this phase is identical to that of the first
phase, exchanging the role of transmitters and receivers.
Since , the second phase acts as the system bot-

tleneck, and the per-node throughput is, w.h.p.,
. At last, we observe that in the cluster-dense

regime , we always have . This is
because, being necessarily (since ), the typical
distance between transmitters and receivers during the second
phase is . We conclude that the per-node throughput
is, w.h.p., .

VI. ANALYSIS OF THE CLUSTER-SPARSE REGIME

Recall from Section IV-A that in the cluster-sparse regime
we have .

We distinguish two subcases, the moderately sparse regime
when and the highly sparse regime when

, which are treated separately in Sections VI-A and B,
respectively.

A. Moderately Sparse Regime

Our approach is still based on the idea of extracting a subset
of nodes distributed according to a HPP of intensity , forming
the infrastructure carrying data across the network.
The per-node throughput guaranteed by such infrastructure is

still given by Lemma 1. However, since ,

Fig. 3. Range of values of for which it is not convenient to employ direct
transmissions to access the main transport infrastructure.

we expect a throughput degradation with respect to the case
, in which .

In principle, the rest of nodes could still access the above in-
frastructure through direct transmission, employing the same
strategy adopted in the cluster-dense regime. However, it
turns out that this strategy is not always convenient and can ac-
tually result in severe throughput degradation. This is because,
in highly populated areas, the density of nodes is negligible
as compared to the density of nodes . Hence, the number of
nodes that would compete for transmission to the
same node of can be very large (the number of competing
nodes is ), shifting the system bottleneck to the access
phase (phase 1).
This happens when , the per-flow average data rate

achievable in phase 1, which would be given now by
, becomes negligible with respect

to the per-flow average data rate achievable in phase 2, given
by .
This condition, together with the assumption that

occurs when

(15)

where we recall that is the decay exponent of the node intensity
around a cluster center; see (1). Fig. 3 shows the range of values
of as specified by (15), as a function of , for different values
of . Shaded areas correspond to those combinations of system
parameters for which the system bottleneck would shift to the
access phase if policy were adopted.
Therefore, before accessing the infrastructure provided by ,

data originated by densely populated area needs to be spread
out evenly on the network area. This is accomplished gradually
by covering highly dense areas of with a hierarchy of inter-
mediate, local transport infrastructures. Moving toward regions
with higher and higher density, the area of such local infrastruc-
tures is reduced while keeping their transport capacity approx-
imately the same. Intermediate infrastructures allow to reduce
the distance covered by transmissions in highly populated re-
gions while, at the same time, to efficiently balance the traffic
toward the nodes of the main infrastructure.
We start describing our solution for the Cluster Grid Model,

which is simpler to analyze, and later generalize our approach
to the Cluster Random Model. For the sake of simplicity and
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Fig. 4. Example of construction of nested domains for the topology of the
Cluster Grid Model depicted in Fig. 1(b).

TABLE IV
SUMMARY OF NOTATION

brevity, we assume that , instead of
. However, we remark that our results can be extended

to the case by slightly modifying the adopted
scheduling policy.
1) Cluster Grid Model: We build a sequence of nested do-

mains (for ) according to
the following definition:

(16)

i.e., is the set of points in which the local intensity exceeds
threshold .
Note that, by construction, , and . More-

over, while is connected by hypothesis, domains
for are in general disconnected, being composed of
congruent isolated domains , hereinafter called
isles, of area , surrounding each cluster center :2

. We call pyramid the set of isles surrounding the
same cluster center (see Table IV). Fig. 4 shows an example
of this construction for the topology in Fig. 1(b), characterized
by . Notice that isles
have approximately a circular shape. We define by the re-
striction of on ; i.e., comprises all points of lying
in . Our sequence of nested transport infrastructure can be
obtained by virtue of the following result.
Proposition 1: For each , a set of nodes can

be found such that: 1) is a HPP of intensity on ; 2)
2We can formally define domain , for any and , as the set of points

of whose closest cluster center is ; i.e.,
. According to this formal definition, .

any node belonging to and to also belongs to , for
.
Proof: We start from the top layer and apply

the thinning strategy of Lemma 6 within domain , ex-
tracting a set of nodes distributed according to a HPP
of intensity . Next, we apply again the thinning proce-
dure to set , extracting a set of nodes forming
a HPP of intensity within . We also indepen-
dently extract a set of nodes forming a HPP of inten-
sity within . The nodes forming the
infrastructure of layer are then obtained considering
set . The above construction
is repeated iteratively for each layer until we obtain the main
infrastructure .
Let , i.e., comprises those points

of lying in that do not belong to . Table IV
summarizes the notation.
Consider the following scheduling/routing scheme according

to which time is partitioned into frames, each frame comprising
descending phases followed

by ascending phases . Each phase is
in turn partitioned into two periods.
Within descending phase (here, index runs from

down to 0), during the first period all nodes in are allowed
to transmit their own data to a close node in within the same
pyramid, equally distributing the traffic among the candidate
receivers.
During the second period of the descending phase, every node

in sends the data of which it is responsible to: 1) a randomly
selected node lying within the same pyramid, and belonging to

, when ; 2) a randomly selected nodes belonging
to , when . Again in this phase, source and destination
nodes are matched in such a way to evenly distribute the traffic
among the feasible destinations.
The data that are sent during the second period by every node

of are those gathered in the previous phase (if ),
plus those gathered during the first period of the current phase,
plus their own data. The data transport is achieved exploiting
the scheme described in [2] on the infrastructure provided by
.
In ascending phase , within the first period data directed to

destinations in , for (i.e., destinations
lying in but not in ), or to destinations in , for

, are transmitted exploiting the scheme in [2] on the
infrastructure provided by , either directly to their destination
(whenever the destination belongs to ) or to a close node in
, while at the same time, data directed to nodes lying within
(only for ) are routed to nodes of

lying within the same pyramid of the destination. During the
second period of ascending phases , data directed
to nodes in are delivered to their final destination through
single-hop transmissions.
Fig. 5 illustrates an example of scheduling and routing of a

flow established between two nodes belonging to different clus-
ters (let these clusters be cluster 1 and cluster 2). More specifi-
cally, source node S belongs to set of cluster 1, whereas des-
tination node D belongs to set of cluster 2. The figure shows
one possible route for flow S–D, represented as a (logical) path
connecting the source to the destination through a sequence of
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Fig. 5. Example of scheduling/routing of a flow established between node
belonging to cluster 1 and node belonging to cluster 2. Nodes filled in white
belong to sets , whereas nodes filled in black belong to one or more of sets
. Different marks have been used to denote the nodes belonging to so as

to illustrate one important property of our construction, namely the fact that if
a node belongs to both and , it also belongs to , for .

significant relay nodes. Each edge of the path can either be a
single-hop transmission (solid line) or a multihop communica-
tion between the vertices (dashed line). Edges are also labeled
with the phase and period in which the corresponding com-
munication can be scheduled. The following notation has been
used: stands for the th period of descending phase
stands for the th period of ascending phase . We observe that
the chosen route is significantly more tortuous than other mul-
tihop routes between S and D that one could follow. This is
due to the randomness introduced in our scheme in the selec-
tion of the next-hop relay belonging to a given set of nodes
distributed around the cluster center. Nevertheless, the analysis
below shows that such randomness does not penalize perfor-
mance in order sense.
Theorem 4: Under the assumption that ,

with and defined in (16), for some , the above
described scheduling/routing scheme for the Cluster Grid
Model sustains a per-node throughput ,
being with a probability .

Proof: Consider descending phase , with .
We fix the duration of this phase to for some , and
suppose that the two periods within the same phase are of equal
duration. Notice that, being , the total duration of all of the
descending phases is bounded, although their number tends to
infinity. Fig. 6 illustrates the whole structure of the scheduling
frame of our scheme, which is repeated indefinitely over time.
We have also indicated in the figure the set of nodes that are
allowed to transmit in each period of generic phase (either
descending or ascending).3
We start looking at the first period of this phase, in which

nodes in are allowed to transmit to nodes in lying in the
same pyramid. We apply Lemma 3 to the network region
3Notice that there is a slight asymmetry between descending and ascending

phases since communications between the set of nodes and the set of nodes
have been assigned (for simplicity) to ascending phases

only.

Fig. 6. Structure of the scheduling frame. In the bottom part of the figure, we
have indicated the sets of nodes exchanging information in the two periods of
generic phase (either descending or ascending).

[recalling that is defined in (16)] if ,
and to otherwise, partitioning it into tiles having
surface4 . Uniformly over the tiles, the
number of points of falling in each tile is , whereas
the number of points of in each tile is (actually,
there are nodes of either sets in each tile). Hence,
we can apply the same approach already employed in the case

, assigning nodes to nodes residing within the
same tile in such a way that the number of nodes associated
to the same node is uniformly bounded by a constant. Also
in this case, highly interfering transmissions are orthogonalized
over time to meet conditions of Lemma 1: We adopt the same
scheme used in the case , partitioning tiles into a
finite number of subsets, each comprising mutually weakly in-
terfering tiles. Since the number of conflicting transmitters per
tile is , the fraction of time devoted to each transmitter
is , and consequently the average data rate
achievable by every node in is

(17)

In the second period, for , data are transported within
isles by nodes , adopting again the scheme of [2]. We
observe that, by construction, in each isle the amount of
data to be transferred is that generated by nodes lying within
the same isle. The number of nodes belonging to the infrastruc-
ture covering is (note that we are assuming
that being ). The total
number of nodes lying within can be upper-bounded by

(note that , being ).
Since the capacity of the infrastructure covering is

, being (see Corollary 1), and
considering that such infrastructure is used only for a frac-
tion of time equal to , the aggregate data rate that
can be sustained by the level- infrastructure covering is

. Thus, every node of
is allowed to exchange within level- infrastructure a data rate
that is . Considering that, by construction,
every node of is pushing/pulling into level- infrastructure
the aggregate data of end-to-end flows, the per-flow
average data rate sustainable by level- infrastructure is

(18)

4We shape the tiles in such a way that the maximum distance between two
points in the same tile is for any .
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(to formally prove this result, we can resort to the trick of
decomposing the traffic pattern into (sub)permutation traffic
patterns).
In the case of the last descending phase , using similar

arguments, it turns out that the per-flow average data rate sus-
tainable by the ground infrastructure (level-0) is

Turning our attention to ascending phase , we fix again the
duration of this phase to and further assume that
the two periods within the same phase are of equal duration.
Then, ascending phase can be mapped to the corresponding
descending phase by reversing the time; i.e., by observing
the data transmission process backward. As a consequence, the
maximum throughput sustainable in ascending phase equals
the throughput sustainable in descending phase .
We conclude that the maximum per-flow throughput sustain-

able by the whole system is given by the minimum among the
per-flow throughput sustainable in every period of the frame. It
turns out that the system bottleneck is due to the capacity of the
ground infrastructure, i.e., .
Observe that the assumption for some

is not restrictive. This property, indeed, can easily be
verified to be equivalent to the condition that decreases
asymptotically to zero faster than , for some .
As final remark, note that to obtain our result we need to

jointly apply Lemmas 3 and 1 at every layer of our construc-
tion. Since both results in Lemmas 3 and 1 hold with a proba-
bility , the whole construction will hold with a prob-
ability .
2) Cluster Random Model: Recall that (Theorem 1), in the

cluster-sparse regime of the Cluster Random Model, we have
w.h.p. and .
Moreover, using exactly the same arguments of Theorem 1, we
can strengthen the upper bound on the local density at point ,
provided that we know the distance between point and the
closest cluster center, . Then,

, w.h.p.
We employ a scheduling/routing scheme similar to the one

devised for the Cluster Grid Model. The main difference lies in
the fact that, in the Cluster RandomModel, we have to deal with
the irregular geometry induced by the random locations of the
cluster centers.
We define domains , for , as follows:

, with , being
a small positive constant (again, conventionally, ). Note
that the definition of slightly differs from that introduced for
the Cluster Grid Model.
Domains are, in general, composed of many disjoint re-

gions that are no longer associated through a one-to-one map-
ping to cluster centers . Indeed, several cluster centers can
now fall within the same connected region (see Fig. 7). Nev-
ertheless, we will still denote by the th region to which
cluster center belongs to. Since domain comprises all
points whose distance from the closest cluster center is smaller
than threshold , regions are associated to the connected
components of the standard Gilbert’s model of continuum per-
colation [16] with ball radius .

Fig. 7. Example of construction of nested domains for the topology of the
Cluster Random Model depicted in Fig. 1(c).

The largest is . Choosing sufficiently small in
such a way that the associated Gilbert’s model is below the per-
colation threshold (we need , where , [17]), we
have the property that the maximum number of clusters centers
belonging to the same region is w.h.p. [18]. Since
by construction , the same property holds for all

. It follows that, in terms of physical extension, the area of
region lies w.h.p. in the interval

.
In addition, by construction the density of nodes within

is lower-bounded by , for . Hence, it
is possible to define for every (with

) a set of points forming with probability 1 a
HPP with intensity on (in the case of
and ).
Then, we can apply the same scheme defined for the Clustered

Grid Model. The restriction of to each corresponds to
a level- regional infrastructure covering , whose aggregate
capacity is ; such capacity is exploited
during descending (ascending) phase to transport the data
originated from (destined to) nodes lying in .
Using the same arguments employed for the Cluster Grid

Model, we can prove the following.
Theorem 5: Whenever decreases faster than , for

some , the above-described scheduling/routing scheme
for the Cluster Random Model sustains a per-node throughput

, with with probability
.

B. Highly Sparse Regime

When the minimum node density drops below (in
order sense), the approach of Section VI-A becomes suboptimal
because the ground-level infrastructure provided by nodes
(which determines the final network capacity) is too sparse (this
especially occurs when has a fast-decaying tail).
In this case, considering first the Cluster Random Model, a

more dense set of nodes acting as ground-level infrastructure
can be obtained by selecting one node per cluster—for example,
according to an algorithm that selects for each cluster the closest
node to the cluster center. It is of immediate verification that the
obtained set of nodes forms a HPP, in light of the fact that:
1) their number is distributed as a Poisson random variable with
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average ; 2) the positions of points are independent (since
they belong to different clusters having independently located
centers); 3) the marginal distribution of every point in is
uniform over since cluster centers are uniformly distributed
over . Note that, by construction, the density of is:

.
Then, defining domains for according to

, a simple variant of the
scheme proposed in Section VI-A2 permits to achieve higher
throughput. We obtain the following result.
Theorem 6: When , a scheduling/routing

scheme can be defined that sustains a per-node throughput
.

Turning our attention to the Cluster Grid Model, by selecting
one node per cluster according to the same algorithm proposed
for the Cluster Random Model, it is still possible to obtain a set
of nodes providing a better ground-level infrastructure. In

this case, the set does not form a HPP. This fact, however,
does not penalize the system performance since nodes in are
almost regularly spaced (indeed, using standard concentration
results, it can be easily shown that, w.h.p., uniformly over the
clusters, the distance between the selected node belonging to
cluster and the cluster center is ). As a consequence,
standard results [1], [9] can be invoked to conclude that pro-
vides an infrastructure of capacity . Hence, we obtain
the same per-node throughput as in Theorem 6.

VII. CONCLUSION
In this paper, we have derived constructive lower bounds

to the asymptotic capacity of static ad hoc networks in which
nodes are placed according to a shot-noise Cox process (SNCP).
Such processes provide a fairly general model to capture the
clustering behavior usually found in realistic large-scale sys-
tems. The presented lower bounds differ at most by a poly-log
factor from existing upper bounds, under the assumption that
the system throughput is limited by interference among concur-
rent transmissions. Our study has revealed the emergence of two
regimes: the cluster dense regime, where an optimal
per-node throughput is achieved, and the cluster sparse regime,
where the per-node throughput degrades due to large inhomo-
geneities in the node spatial distribution. In the latter regime, we
have shown that the system throughput is intrinsically related to
the minimum node density within the network area.

APPENDIX A
THINNING AND COMPLETION OF IPP

The thinning procedure works as follows: For any realization
of the IPP, consider each node and mark it with

probability , where is the position of the node.
The set of marked points form a Homogeneous Poisson Process
with intensity .
To show this fact, it is convenient to exploit a general result

of the theory of point processes, stating that the distribution of
a point process is completely specified by its void probabili-
ties (see [19, Theorem 3.3]). Consider a domain . Let

be the random variable denoting the number of points
of falling within , and let be the random variable

denoting the number of points of falling within . Since,
given the event , the points of falling in
are independently distributed over according to the distribu-
tion , it turns out that

Hence, unconditioning over

The completion procedure is simply performed by adding to the
existing points some extra points independently
distributed according to a IPP with intensity , ob-
taining superset .
Indeed, consider a domain . Let , and

be the number of points falling in and belonging, re-
spectively, to . It results

APPENDIX B
PROOF OF LEMMA 2

Proof: The main steps of the proof are: 1) the domain is
divided into squarelets; 2) the local intensity at is expressed
as sum of contributions, each due to cluster centers located in
the same squarelet; 3) applying Lemma 2, every contribution is
bounded w.h.p. (both from below and from above); 4) the upper
(lower) bound is shown to converge w.h.p. to some value for

.
In more detail, consider a generic point . By definition

Now, let denote a regular square tessellation of such that
each squarelet has area , being

. Let and be, respectively, the inferior and the
superior of the distances between points and , i.e.,

and ; at last,
let and be, respectively, a lower bound and an
upper bound to the number of cluster centers falling in . It
results

being .
Applying Lemma 2, we have that, w.h.p., uniformly over

and . Moreover,
we observe that: 1) and can
be interpreted, respectively, as lower Riemann sum and upper
Riemann sum of ; 2) since , the
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mesh size of the partitions associated to Riemann sums vanishes
to 0 as . As a consequence

(19)

and we conclude that

Thus, (12) is verified for any and .
More in general, when

and provide, respectively, an upper
bound and a lower bound to the local intensity. It turns out:

and
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