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Stochastic Model and Connectivity Dynamics
for VANETS in Signalized Road Systems
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Abstract—The space and time dynamics of moving vehicles regu-
lated by traffic signals governs the node connectivity and communi-
cation capability of vehicular ad hoc networks (VANETS) in urban
environments. However, none of the previous studies on node con-
nectivity has considered such dynamics with the presence of traffic
lights and vehicle interactions. In fact, most of them assume that
vehicles are distributed homogeneously throughout the geographic
area, which is unrealistic. We introduce in this paper a stochastic
traffic model for VANET:s in signalized urban road systems. The
proposed model is a composite of the fluid model and stochastic
model. The former characterizes the general flow and evolution of
the traffic stream so that the average density of vehicles is readily
computable, while the latter takes into account the random be-
havior of individual vehicles. As the key contribution of this paper,
we attempt to approximate vehicle interactions and capture pla-
toon formations and dissipations at traffic signals through a den-
sity-dependent velocity profile. The stochastic traffic model with
approximation of vehicle interactions is evaluated with extensive
simulations, and the distributional result of the model is validated
against real-world empirical data in London. In general, we show
that the fluid model can adequately describe the mean behavior of
the traffic stream, while the stochastic model can approximate the
probability distribution well even when vehicles interact with each
other as their movement is controlled by traffic lights. With the
knowledge of the mean vehicular density dynamics and its proba-
bility distribution from the stochastic traffic model, we determine
the degree of connectivity in the communication network and illus-
trate that system engineering and planning for optimizing both the
transport (in terms of congestion) and communication networks (in
terms of connectivity) can be carried out with the proposed model.

Index Terms—Connectivity, signalized road system, stochastic
traffic model, vehicle interaction, vehicular ad hoc network
(VANET).

I. INTRODUCTION

N a vehicular ad hoc network (VANET), vehicles communi-
I cate with each other and possibly with roadside infrastruc-
ture nodes. Node connectivity and the amount of data that can be
exchanged are limited by the duration and quality of the commu-
nication links established among nodes, which are determined
by the space and time dynamics of moving vehicles.
There are a number of studies on node connectivity in mo-
bile ad hoc networks (MANETS). For instance, [1] shows that
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if the radio transmission range of n nodes that are placed uni-
formly and independently in a disc of unit area is set to 7y =
[(logn + c(n))/nx]'/2, the resulting wireless multihop net-
work is asymptotically connected with probability one if and
only if ¢(n) — oo. [2] investigates the radio range assignment
problem and obtains bounds for the probability that a node is
isolated and the network is connected on a one-dimensional
(1-D) line. On the other hand, [3] examines the node density
threshold for achieving full connectivity in both 1-D and two-di-
mensional (2-D) ad hoc network. [4] and [5] study the rela-
tion between the minimum node degree and k-connectivity in
a random graph and explore the minimum radio transmission
range r( for achieving a fully connected ad hoc network for a
given node density.

However, most of the existing studies assume that nodes are
uniformly random distributed in an area and they are either sta-
tionary or move according to the random waypoint model [5],
which are obviously inadequate to capture the spatial distribu-
tion of vehicles and their movements. In fact, vehicle move-
ments, particularly in urban environments, are restricted by the
road topologies, buildings, etc., and affected by traffic density,
which is determined by road capacity, traffic control, and driver
behaviors. There are also recent works that aim to model con-
nectivity of vehicles on a one-dimensional highway. [6] assumes
the space headway between vehicles is exponentially distributed
and introduces a robustness factor to capture the effect of distur-
bance on VANET connectivity. [7] assumes a continuous-time
mobility model where movement of each node is a function of
time consisting of a sequence of random intervals that is expo-
nential distributed, and during each interval, a node moves at a
constant speed that is independently chosen from a normal dis-
tribution. Based on this synthetic mobility model, the author de-
rived the mean cluster size and the probability that the nodes will
form a single cluster under the assumption that vehicles arrive
according to a Poisson process. These previous studies, how-
ever, lack a realistic traffic model to adequately capture node
density and its influence on vehicle speed, which are significant
in determining connectivity, especially in urban road systems
where strong interactions among neighboring vehicles exist.

In light of the inadequacy of existing studies, developing
mathematical models to adequately capture the spatial and
temporal details, vehicle movement, link condition, and node
connectivity is of paramount importance. To capture such
dynamics, we propose to investigate a stochastic traffic model
for VANETSs particularly in signalized urban road systems.
The stochastic traffic model is a composite of the deterministic
fluid dynamic model and the stochastic model. The densities
of the mean number of vehicles and the mean flow rate of the
traffic stream are described by or readily computable from the
conservation equations of fluid dynamics, which is in the form
of partial differential equations (PDEs), while the stochastic
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model captures the randomness of individual vehicle and
provides the probability distribution.

When we consider vehicle arrivals as a Poisson process,
the stochastic model becomes a special version of the Poisson
Arrival Location Model (PALM) introduced in [8]. The actual
number of vehicles in a given road section at a certain time
instance thus has Poisson distribution according to previous
PALM results in [8] and [9] given that the arrival of vehicles
follow a nonhomogeneous Poisson process. PALM provides a
useful framework for representing both the time-dependent be-
havior and node mobility in wireless communication networks.
However, the general PALM introduced in [8] is quite abstract.
In view of this, the Markovian highway PALM was presented
in [9] and [10] to model the call density and handoff rate of
communicating mobiles on a highway.

According to [8], and [9], the Poisson distributional conclu-
sion of PALM is established based on the assumption that dif-
ferent customers do not interact with each other, and the loca-
tions of all cars are thus mutually independent, conditional on
their arrival times. Therefore, the prior work [9], [10] does not
directly model the slowdown decision of a car based on the ac-
tions of other cars. Instead, they model it indirectly by having
all cars slow down in a specific region at a specific time through
a velocity profile. The velocity profile is considered and demon-
strated in the highway PALM [9], [10] as constant or deter-
ministic velocity fields, neglecting the fundamental interdepen-
dence between velocity and vehicular density, as this could ruin
the Poisson property of PALM when interactions among vehi-
cles are introduced.

In this paper, to study road conditions more closely, we at-
tempt to capture vehicle interactions directly through a density-
dependent velocity profile and bring the PALM from highway
to generic urban route by introducing an important transport
factor, traffic signals. By considering the velocity field as a func-
tion of preceding vehicular density, the velocity profile is no
longer deterministic; it is constructed iteratively in an automatic
manner together with the evoluting traffic stream. We evaluate
the stochastic traffic model with such approximation in terms of
the stochastic independence of the stochastic model as well as
the expected value computed from the fluid conservation equa-
tions through extensive simulations. The Poisson distributional
result of the model is also validated against empirical loop de-
tector data in Central London. In essence, we show that the de-
pendency inherited from vehicular interactions and traffic sig-
nals tends to be ignored by the system, and the Poisson property
of PALM still holds under such approximation of vehicle inter-
actions. In addition, the solutions from the fluid model provide
reasonable estimates for the mean number of vehicles in a given
region, and the formation and dissipation of vehicular platoons
at traffic signals or stops are well accommodated by the den-
sity-dependent velocity profile given the signaling inputs.

With the knowledge (in terms of expected value and distri-
bution) of the vehicular density as a function of space and time
from the proposed model, traffic signal management can be
carried out and communication connectivity of vehicles along
urban routes can be further deduced, which is crucial for a
number of network management and protocol design decisions.
For instance, we determine the probability that the entire com-
munication network in an urban route segment is connected in
a multihop manner, and the problem is further investigated for a
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Fig. 1. Road configuration considered in this paper.

general case of a k-connected network. To illustrate the model
applicability, we show how vehicular density can be affected
by the timing synchronization of traffic signals and how the
model can be used to identify the operating point for minimal
transport (vehicle) congestion. Furthermore, our model can be
applied to identify regions with poor connectivity at such an
operating point for the placement of roadside communication
nodes or adjustment of transmission ranges of vehicles to boost
the overall communication connectivity.

The introduction of vehicle interactions and traffic signals and
the model validations are regarded as the key contributions of
the paper since none of the previous work has addressed the
problem of modeling connectivity in a signalized urban road
network with practical vehicle distribution. Our work here pro-
vides the methodology and its validations so that node connec-
tivity in practical VANETSs can be evaluated in the future with
sufficient confidence. The proposed model can also serve as a
fundamental building block for constructing more elaborated
urban traffic models.

The rest of the paper is organized as follows. Section II
presents the set of conservation equations that establish the
fluid model. Section III introduces the stochastic model and the
distributional results that can be obtained if vehicles’ arrivals
appear to be a Poisson process. In Section IV, we present
an algorithm to approximate vehicle interactions and capture
platoon formations and dispersions at traffic signals with a
density-dependent velocity profile. We evaluate the stochastic
traffic model with approximation of vehicular interactions and
traffic signals through numerical results in Section V, and
validate the Poisson distributional result of the model against
empirical data in Section VI. Analysis of VANET connectivity
based on the vehicular density dynamics obtained from the
stochastic traffic model is discussed in Section VII. Finally,
Section VIII concludes the paper.

II. DETERMINISTIC FLUID DYNAMIC MODEL

In this paper, we consider traffic in a one-way, single-lane,
semi-infinite signalized urban road (or route) as shown in Fig. 1.
Although the road is fed with traffic from adjacent streets, the
one-way road under consideration is the one running from the
left to the right in the figure. More complicated road topology
can be represented by superposing multiple versions of urban
routes. Let our location space be the interval [0, oo), the
boundary point O is the spatial origin, and it marks the starting
point of the road. The arrival process {A(t)| — oo < t < o0}
counts the number of arrivals to the first segment of the route
up to time ¢, which we assume is finite with probability 1, and
is characterized by a nonnegative and integrable external arrival
rate function a(t).

Furthermore, the route consists of a number of road segments
indexed by + = 1,2,..., and traffic lights are located at the
junctions of road segments, where vehicles can leave and join
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the route. We let the location of the ¢th junction (or traffic light)
between road segments ¢ and ¢ + 1 be x;.

The fluid dynamic model is a kind of continuum traffic flow
model, which reduces laws of traffic to a PDE that may be
studied as elegantly and simply as other physical phenomena
that are also governed by PDEs. The reader is referred to [11]
for other common continuum models in transport studies, such
as the Lighthill-Whitham—Richards (LWR) model.

The major difference between our fluid dynamic model and
other continuum models is that we model vehicle motions with a
velocity profile, vehicles at location x and time ¢ move forward
the route according to a velocity field v(z, t), and it can be de-
terministic or density-dependent. Vehicles stop at road junctions
for a red signal, which can be reflected and modeled by the ve-
locity profile. However, the continuum model alone is unable to
capture traffic instability and the randomness of individual ve-
hicle. Therefore, we couple the fluid model with the stochastic
model in the next section as a remedy.

To begin, we will describe the fluid dynamic conservation
equations and corresponding notations that hold for the general
systems. Let N (z, t) be the number of vehicles in location (0, z]
at time ¢, and n(z, t) be the density of vehicles in location (0, x]
at time ¢. Thus

ON(x,t)
n(z,t) = P (H

Let Q(z, t) be the number of vehicles moving past position x
before time ¢. Then, the flow rate ¢(z,t) is defined by

0Q(z, 1)
q(z,t) = —5—- ()

Let C*(x,t) and C~ (z,t) be the number of vehicles arriving
to and departing from the route in location (0, z] during time
interval (—oo, t], respectively. Then, the associated rate densi-
ties are respectively

0?C™*(w,t)
=+ _ ’
) = =500
and
_ 0?C~(w,t)
¢ (35715)—W 3)

Assuming all traffic moves only from left to right down the
positive real line, then the four variables N, @, C*, C~ satisfy
the following conservation relation:

C*(x,t) = N(z,t) + Q(z,t) + C (,t). )

By applying the operator 92 /(9xdt) to (4), we have the partial
differential equation

on(xz,t)  Iq(z,t)
ot Oz

According to traffic flow theory [11], there is a fundamental re-
lationship that flow = density * velocity, i.e., the rate that ve-
hicles pass position z at time ¢ is equal to the density multiplied
by the velocity of vehicles in position x at time ¢.

=ct(x,t) — ¢ (z,1). 5)

q(z,t) = n(z, t)v(z,t). (6)
By substituting (6) into (5), we have

on(z,t)  On(z,t)v(z,t))

_ -
5 e =c"(z,t) — ¢ (x,t). (7)

The resulting partial differential (7) is a one-dimensional
version of the generalized conservation law for fluid motion
[12]. This equation governs the mean behavior of any stochastic
traffic model. For the ease of solving (7), we introduce an addi-
tional assumption to convert the PDE to an ordinary differential
equation (ODE). Let the location = as a time function z(t) be
given by

o = vla(), ). ®)

dn(z(t),t) — on(z,t)  dx(t)

By chain rule, =2 Br @ T ot
substituting (7) and (8) into this equation, we have

dn(z(t),t) - Dol t)
T = c+($(t),t) —c (l(t)7t) _ T

on(z,t)

, and by

n(z(t),t).
©)

Due to the partial derivative of v(z,t) w.r.t. z in (9), it is
ODE if and only if v(z,t) is not a function of n(x,t). Note
that though we introduce the use of a density-dependent velocity
profile later on, we still solve the ODEs for the mean number of
vehicles as an approximation in Section V.

Throughout this paper, we consider that vehicles arrive at the
first route segment according to an external arrival rate function
a(t) and keep moving along the route without vehicles joining
or leaving at junctions (e.g., buses move along a bus route).
In this case, ¢ (z,t) = «(t)é(x) and ¢~ (z,t) = 0, where
lim._o 777 8(y)dy = 1if 2 = 0, and 0 otherwise.

III. STOCHASTIC MODEL

In contrast to the deterministic fluid dynamic model, the sto-
chastic model captures the stochastic fluctuations of the quan-
tities of interest. When the two models are coupled with each
other to form the stochastic traffic model, the solutions from the
PDEs or ODEs describe the expected number of vehicles, and
the actual number of vehicles is captured by the additional dis-
tribution information from the stochastic model.

From now on, the densities n(x,t) and q(z,t) are defined as
the partial derivatives of expected values, that is,

() = 8E[];ix,t)]
and
oy = 2190,

Similarly, the rate densities ¢ (x, t) and ¢~ (x, t) are the second
partial derivatives of expected values, that is,

2 +(g
d o) = E[aiasf =
an
o QB[O (x,0)]
=55

The general stochastic model can be of any distributions de-
pending on the arrival process of vehicles, and the equations in
the fluid model continue to hold regardless the distribution of the
stochastic model. In this paper, we specifically consider PALM.
Again, the fluid dynamic model is not dependent on the Poisson
assumption; it holds as long as the arrival process A is an arbi-
trary point process with time-dependent arrival-rate function .
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With PALM, the arrival process {A(t)| — oo < ¢t < oo} for
vehicles to arrive at the first road segment of the route is a non-
homogeneous Poisson process with nonnegative and integrable
external arrival rate function «(t). That is, the number of arrivals
in the interval (1, t] is Poisson with mean Jttf a(s)ds.

According to [8], [9], we can construct N (z,t), the random
number of vehicles within the range (0, x] at time ¢, via sto-
chastic integration starting with the Poisson process A, where
A(t) counts the number of vehicles arriving to the road segment
up to time ¢.

N(:L”t) = 1{L5(t)e(0,x]}dA(3)
o(x,t)
A(t)

n=A(o(z,t))

L, we©a} (10)

where A, is the nth jump time of A, counting backward from
time ¢. 15 is an indicator function such that it returns 1 if B
is true, and O otherwise. Ls(t) is the location process, which
specifies the position of the vehicle on the road segment at time
t that arrived at time s. Let o (z, t) denote the route entrance time
for a vehicle to be in region (0, z] at time ¢. For vehicles that
arrive to the route before o(x,t), it will be past position x by
time ¢. On the other hand, for vehicles that arrive after o(x, 1),
it will be still in the region (0, «] at time ¢. In simpler terms, (10)
counts the number of vehicles that is located in region (0, z] at
time ¢. The condition {L(t) belongs to (0, z]} is the location
constraint while the integration from time o (z, t) to ¢ gives the
time constraint.

Similarly, we can express Q(z,t), the number of vehicles
passed through position z at time ¢, in terms of Poisson inte-
gration as

o(x,t)

1dA(s

(,t))
> 1= A(o(x,1)).

a
n=1

A(
):

Qz,t) = (1)

— 00

Note that the stochastic integral in (10) and (11) can be treated
as a countable sum.

The highway PALM in [9] and [10] did not consider the stop-
and-go motions of vehicles in urban routes. We are now on the
way to prove that the introduction of traffic signals and stops
will not affect the Poisson property of the stochastic model as
long as we model vehicle’s stop-and-go motions through a de-
terministic velocity profile as a function of space and time, i.e.,
we model the stop-and-go behaviors of cars at traffic lights by
having all cars slow down, stop, and then go in a specific region
(e.g., at road junctions where traffic lights are located) at a spe-
cific time (e.g., during the red signal periods).

Proposition 1: For a nonhomogeneous Poisson arrival
process with integrable external arrival rate function «(¢), if we
consider traffic signals via modeling a deterministic velocity
profile v(x, t) that is independent of other parameters such as
vehicular density, the following results hold.

a) Forallreal ¢, {N(x,t)|z > 0} is a Poisson process with

t

mN@¢n=/' a(s)ds. (12)

Jo(z,t)

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 1, FEBRUARY 2011

b) For all nonnegative z, {Q(x,t)] — co < t < oo} is a
Poisson process with

o(at)
E@@¢ﬂ:/ﬁ a(s)ds. (13)

J —oco

Proof: When we capture traffic signals via a deterministic
velocity profile function v(z, t), we model vehicle stopping by
setting v(z;,t;) = 0, forall x; € J,and t; € T,., where .J is the
set of locations of traffic lights, and T'. is the set of red signal
periods. In this case, there are still no interactions between ve-
hicles, and the locations of all of the cars are still mutually in-
dependent, conditional to their arrival time.

Therefore, the proof is regarded as a consequence of
[8, Theorem 2.1]. Given the properties of Poisson integration,
it is clear that each N(x,t) has a Poisson distribution and, as
a function of z, these random variables have the independent
increment property. By the same token, we can see in (11) that
Q(z,t) = A(o), which is a Poisson process as a function of ¢.

Both integrations use o(x, t) because by definition any arrival
after this time must still be in the region (0, z] at time ¢, and any
arrival before this time must be past position z by time ¢ given
the deterministic velocity profile. Taking expectations of these
Poisson integrals gives us the formulas for the expectations of
N(z,t) and Q(z,t) as in (12) and (13), respectively. O

As a result, as long as we model traffic signals through a de-
terministic velocity field as a function of space and time, and
all vehicles do not interact with each other, the Poisson distri-
butional conclusion in [8] and [9] remains valid. Furthermore,
It is significant that the mean formulas in Proposition 1 do not
depend on the arrival process A being a Poisson process. Of
course, the Poisson process conclusions do depend on A being
Poisson.

In addition, as a property of the stochastic model, the number
of vehicles in two nonoverlapping road regions are independent.
Its proof is as follows.

Lemma 1: For a Poisson arrival process, the number of ar-
rivals M (¢1, to) and M (t3, t4) in two nonoverlapping time in-
tervals (t1, to] and (t3, t4], where t; < to < t3 < #y4, are
independent.

Proof: 1t is proved by the definition of Poisson process. [

Proposition 2: For a nonhomogeneous Poisson arrival
process A(t), the number of vehicles in two nonoverlap-
ping road regions N(z1,z2,t) and N(zs,x4,t) (where
1 < 29 < z3 < x4) at time ¢ are independent if we model
vehicle motions through a deterministic velocity profile as a
function of space and time that is independent of other parame-
ters such as vehicle density.

Proof: According to the definition of the PALM, we have

N($17$27t) :N(ZL’27t) — N(itlf)

(Ilvt)
:/ 1{Ls(t)€(m],mg]}dA(s)' (14)
o(xa,t)
Therefore, vehicles that arrive in time interval

(o(z2,t), o(z1,t)] will be in region (z1, x2] at time ¢
li.e., N(z1,x0,t) = M(o(x2,t),0(x1,t)]. Similarly, vehicles
that arrive in time interval (o(z4,t), o(z3,t)] will be in
region (x3, x4] at time ¢. Since 1 < 3 < z3 < 24
and we assume there are no vehicles overtaking, we

have o(z4,t) < o(xs,t) < o(we,t) < o(wx1,t), where
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(o(z4,t), o(xs3,t)] and (o(x2,t), o(x1,t)] are two nonover-
lapping time intervals. Thus, it is proved by Lemma 1 that
N(z1,x9,t) and N(x3,x4,t) are independent. O

In the next section, we approximate vehicular interactions
through a density-dependent velocity profile. In that case,
Propositions 1 and 2 in principle are invalid, and the Poisson
property no longer holds as we cannot determine if a car
arrives at time s will have passed location x at time ¢ with the
density-dependent velocity profile. Although we expect that
the distribution of the number of vehicles in a given region is
no longer ideal Poisson distribution, we are still interested in
knowing the deviations incurred in order to quantify the good-
ness of the stochastic traffic model with the vehicle interactions
approximation. Numerical results are provided in Section V for
such purpose.

IV. TRAFFIC SIGNALS MODELING AND APPROXIMATION
OF VEHICLE INTERACTIONS

A practical way to represent the stop-and-go motion of vehi-
cles at traffic signals is to introduce the concept of shock wave to
model the platoon formation (compression of vehicles) and dis-
sipation (release of vehicles) at traffic signals. Based on a basic
traffic flow model that relates vehicular density to velocity, we
present an automatic approach to capture shockwave propaga-
tion by approximating vehicle interactions with a density-de-
pendent velocity profile.

The general model connecting speed, flow, and density is pro-
posed by Greenshield [13], in which velocity depends on vehic-
ular density, with velocity decreasing as the density increases as
shown in (15). We assume the Greenshield’s model here for its
simplicity and explicit relationship between velocity and vehic-
ular density, which are respectively the input and output of our

system.
v(z,t) = vy (1 - M)
kj

where vy represents the mean free speed and k; denotes the
jamming density. If we define /. as the average space occupied
by a car at stationary, then k; = 1/I..

We can actually capture the propagation of shockwave
through the fundamental relationship between vehicular density
and velocity. In the following, we propose the front-density-de-
pendent velocity field based on the Greenshield’s model [13]
for such purpose:

5)

n(a:—}—Aa;t)) (16)

v(z,t) = vy (1 - 3

Equation (16) illustrates our front-density-dependent velocity
profile: Instead of having the velocity at certain location z as a
function of density at location x, we have it as a function of
density Ax in front, and the velocity decreases as the density in
front increases. It is analogous to the car-following mechanism
[14] in transport studies: When the vehicular density in front be-
comes high (i.e., cars in front decelerate), we should decelerate
as well. Such general traffic flow model is applicable to most of
the urban route scenarios, no matter if there are vehicles slowing
down, stopping, or starting to move or not.

With the front-density-dependent velocity profile, we can ap-
proximate the interactions between vehicles in the fluid dynamic
model iteratively. The pseudocode is shown in Algorithm 1. The

Algorithm 1: Iterative Approximation of Vehicle Interactions with the
front density-dependent velocity profile

1: for (#; = 0; ; < tona; t; = t; + d){

2 if (1;==0)

3 / initialize the vehicular density profile along the route

4 n(x, t;) = 0 for all x belongs to X;

5: / obtain inputs for solving the differential equations in the fluid model

6: obtain the partial derivative of n w.r.t. x from n(x, t,);

7 obtain the font-density-dependent velocity field v(x, #;) from n(x, t;)
according to Eq. (16);

8 solve the differential equations

9 by solving the differential equations, we obtain n(x, t;+dt) for all x
belong to X;

10: }

general idea is, initially, we assume there are no vehicles on the
road, i.e., n(x,0) = 0 for all z belongs to X, where X is the
location space. Therefore, the initial velocity will be the mean
free speed vy according to (16). Based on these initial condi-
tions, we solve the differential equations in the fluid dynamic
model for the vehicular density along the route. We can then
compute the new velocity profile for the next time slot from the
vehicular density profile according to (16), and so on. We per-
form this algorithm iteratively until we reach some defined end
time of the system.

Strictly speaking, by introducing vehicle interactions through
the front-density-dependent velocity profile, the stochastic in-
dependence or Poisson property of the stochastic traffic model
should no longer be valid, but the fluid dynamic model still holds
as there is no such interaction restriction in the conservation
equations. It will be interesting to explore how good or how
poor our model is by incorporating such approximation of ve-
hicle interactions in terms of the independence property. In the
following section, we conduct extensive simulations to evaluate
the stochastic traffic model.

V. NUMERICAL ANALYSIS

In this section, we present numerical results to illustrate the
space and time dynamics captured by the fluid dynamic model
and the Poisson property captured by the stochastic model in
a signalized urban route. Specifically, we evaluate the quality
of the stochastic traffic model with the iterative approximation
algorithm in terms of two metrics: 1) the mean values computed
from the fluid dynamic model; and 2) the distributional property
from the stochastic model.

A. Evaluation of the Stochastic Traffic Model With
Approximation of Vehicle Interactions

First of all, let us consider a simple stop-and-go motion ex-
ample to evaluate 1) and 2) above. In this example, we assume
there are no cars joining and leaving the urban route at junctions,
and cars only arrive at location 0 at a constant rate (denoted by
a) of 30 cars/min, with the mean free speed vy = 1 km/min,
using the front-density-dependent velocity profile with Az =
0.02 km as described in (16) unless otherwise specified. This
complies with the “3-second rule” [15] of safe following dis-
tance when vehicle speed is about 20 mi/h, which is the av-
erage uncongested speed of vehicles in London [16]. Assume
the space occupied by a stationary car as 4 m, so the jamming
density k; = 250 cars/km.

Consider that there is a traffic signal at location 2 km on the
route, which stops vehicles from time 4 to 4.5 min for 30 s. We
allow a further 0.012 km distance behind the traffic signal as
the length of the junction. Thus, when 4 < t < 4.5, v = 0 if
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Fig. 2. Platoon formation and dissipation at time instances 4, 4.5, and 5 min as described by the fluid dynamic model.

2 < x < 2.012 as shown in (17). In addition, we also include
extra 0.02 km in front and behind the zero-velocity region so as
to ensure that the partial derivative of v w.r.t. z in (9) is finite.
For other regions during the stopping period, the front-density-
dependent velocity field v applies.

ifz <1.98

if1.98 <z <2

if 2 <z <2012

if 2.012 <z < 2.032
if z > 2.032.

17)/0.02) x (2 —1x),

?

v/0.02) % (x — 2.012)

v(x,t) =

?

&

a7

When ¢ > 4.5, we instantaneously set the velocity in the
junction (2, 2.012] to be the mean free speed v (for 3 s). This is
a realistic assumption in a noncongested network since the first
car in the queue does not need to follow any cars when the signal
turns green, it moves down to the next road segment with the
mean free speed until it catches up with preceding vehicles. The
following cars move according to the front-density-dependent
velocity field.

To model the stopping motion of vehicles more rigorously,
we introduce an amber signal period for 3.95 < t < 4, such
that the velocity within the junction region (2, 2.012] uniformly
decreases to zero during the 3-s amber signal period. Thus, for
t < 3.95, the system is in equilibrium state.

Fig. 2 depicts the evolution of vehicular density along the sig-
nalized route as represented by the fluid dynamic model through
solving the ODE:s in (8) and (9). We can see that the density
pulse starts growing at 4 min due to the amber signal, and the
jamming density pulse established and propagated backwards at
4.5 min due to the red signal. Lastly at 5 min, the density pulse
was dissipated by the green signal. Our results verify that the
modeling of traffic signals and the platoon formation and dis-
sipation process are achievable in the fluid model through the
front-density-dependent velocity field plus additional signaling
information.

To evaluate the expected values computed from the fluid dy-
namic model, we compare the solutions of the ODEs in (8) and
(9) to the results from simulation. In the simulation, we have the
same set of parameters described including the vehicle arrival
rate, velocity profile, and signaling inputs. We run the simula-
tion for 5000 times with different random seeds and record the
number of vehicles in a given region at a given time. Thus, we
have 5000 samples from the simulation for the mean and distri-
bution evaluation. Specifically, we compare the mean number
of vehicles in the road region (1.5, 2] at time instances 3.9, 4,
4.2, 4.5, and 5 min. As the solution from the differential equa-
tions is the vehicular density instead of the number of vehicles,

TABLE I
COMPARISON OF THE MEAN NUMBER OF VEHICLES IN THE ROAD REGION
(1.5, 2] BETWEEN THE ODE’S SOLUTIONS AND SIMULATION RESULTS

Time instance ODE’s Simulation | Error (%) D-statistic
(min) (# of cars) (# of cars)
3.9 16.3874 15.3554 6.30 0.1581
4 16.9526 16.8446 0.64 0.1527
42 24.1911 22.6240 6.48 0.1331
4.5 30.9754 31.2382 0.85 0.1197
5 16.5939 15.3282 7.63 0.1638

we acquire it through integrating the density profile. For ex-
ample, the mean number of vehicles within the region (z1, 2]
is E[N(z1,z2,t)] = fff n(x, t)dz.

Table I compares the mean number of vehicles in the region
(1.5, 2] on the urban signalized route at several time instances,
from which we can see that the deviations between the ODEs’
solutions and simulation results are less than 7.7%, and at time
instances 4 and 4.5 min, we can even achieve an error less than
1%. Note that for computation simplicity, we solve the ODEs
in (8) and (9) instead of the PDE in (7). However, as we are
using a density-dependent velocity profile, v(z, t) is a function
of n(xz,t), and (9) is no longer an ODE theoretically, but we
solve it as an ODE as a way to approximate the mean value.

To evaluate if the distributions of the number of vehicles from
simulations can be approximated with a Poisson distribution, we
conduct the Kolmogorov—Smirnov test (K-S test) [17] on their
cumulative distribution functions (CDFs). In the K-S test, given
F,(x), the empirical cumulative distribution function (ECDF)
obtained by simulations, we compare it to F},(z), the hypoth-
esized CDF. The result of the K-S test is based on the value
of the greatest discrepancy between the empirical and hypothe-
sized cumulative distribution, which is called the D-statistic. It
is formally defined as

D= max |Fe(z) — Fy(x)] . (18)

As we aim to approximate the ECDF by certain hypothesized
CDF (and not to prove that they are identical), we only examine
the D-statistic value. If the value is small, it indicates that the
ECDF can be approximated by the hypothesized CDF. In our
case, the hypothesized CDF will be the CDF of Poisson distri-
bution with the parameter as the mean of the simulation results.

We treat the case with deterministic velocity profile
(v = 1 km/min) as the benchmark for this goodness-of-fit
study, of which we found its D-statistic is about 0.1. With
regard to Table I, the D-statistics of the simulation results with
vehicle interactions considered remain small relative to the
benchmark (at about 0.14 on average) for all time instances,
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while Fig. 3 plots the empirical CDF of the number of vehicles
within the road region (1.5, 2] at time instance 4.5 min for the
5000 simulation trials and the Poisson hypothesized CDF with
parameter as the mean of the simulated results. They appear
to be close to each other, and it is interesting to observe that
the dependency that is brought upon by the density-dependent
velocity profile, and traffic signals do not seem to be destroying
the Poisson property and stochastic independence of the sto-
chastic model.

B. Evaluation With Cascaded Traffic Signals

We now evaluate the robustness of our model with more com-
plicated traffic signal systems and demonstrate the potential of
our model for modeling vehicular density in urban routes with
the ramifications of consecutive traffic signals for system engi-
neering and planning in both the transport and communication
networks.

Fig. 4 depicts the new street configuration for simulations. We
consider that there are two traffic signals that are 500 m apart,
located at the 2 and 2.5 km locations, respectively. Both of them
have a 1-min cycle time, with 30-s green, 3-s amber, and 27-s
red signal periods. The velocity profile is modeled in the same
way as in the previous example according to the signal cycle.
Assuming that cars only enter the route at location O with a rate
of 30 cars/min and no cars join or depart at junctions in this
example, we explore how the number of vehicles in the road
segment (2, 2.5] varies with the phase shift between the two
signals. We consider three cases here. They are respectively:
1) the first and second signals are totally in phase; 2) the first
signal is 15 s lag behind the second one; and 3) the first signal
is 30 s lag behind the second one.

Fig. 5(a) plots the simulation results of the mean number of
vehicles in the road region (2, 2.5], and Fig. 5(b) the corre-
sponding D-statistics during the time interval (3, 5] for the three
cases. First, we can see from Fig. 5(b) that the D-statistics re-
main small (at about 0.15) even with more complicated and os-
cillating traffic signal systems, except when the mean number
of vehicles is small. The empirical and Poisson CDFs at time

357 0.7 ¢

—— O 'sec |

@ 0
Q@ Q0
L 30} | £ 06} -eo- 15 sech
] ] -+ 30 sec|
2 25 2 05% 1
15} . \ 15} ]
5 20t 7 v 4 o 3 R \
o Ly -
Ewsy] N\ \ {5
= { / A 3 iz
c 107 A7 A\l c
g . V[T o]\ §
54 7 |- sec

= 1 ¢ |-+ 30sec =

3 32343638 4 42444648 5 3 32343638 4 42444648 5

Time (min) Time (min)
(@) (®)

Fig. 5. (a) Mean number of vehicles in the road region (2, 2.5]. (b) Corre-
sponding D-statistics against time with different phase shift between the two
traffic signals.
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Fig. 6. Correlation coefficient in time interval (3, 5] in the two-traffic-light sce-
nario with different arrival rate (phase shift = 15 s).

instance 4.8 min for the three cases are plotted in Fig. 7, which
again shows a very good match.

To evaluate the stochastic independence of the model with
vehicle interactions, we examine the dependency of the number
of cars in two nonoverlapping regions with vehicle interactions,
raise the arrival rate o of vehicles to the urban route in steps
from 10 to 30 cars/min, and examine the correlation between
the number of vehicles in two consecutive regions (2, 2.2] and
(2.2, 2.4] in time interval (3, 5]. We can see from Fig. 6 that
as the arrival rate decreases, the correlation decreases. For o« =
30 cars/min, the average correlation is 0.2041 (the closer the
coefficient is to 1, the stronger the correlation between the vari-
ables), while for 20 and 10 cars/min, it drops to 0.0334 and
0.00214, respectively. The reason behind this is that there are
less interactions between vehicles with lower traffic load, and
thus the stochastic independency of the PALM is better main-
tained. Therefore, given that the arrival rate is not too high, the
degree of dependency between the number of vehicles in two
nonoverlapping regions is low.

From the numerical results, we can see that the signaling
system plays an important role in distributing vehicles in both
space and time dynamics. For example, it appears in Fig. 5(a)
that the signaling combination with no phase shift has a more
stable mean number of vehicles during the time interval (3.5, 5]
than the other two combinations with phase shift. Therefore,
such observation motivates the future research direction of opti-
mizing node connectivity in signalized roads by controlling the
signaling system. For instance, we can have the signaling cy-
cles or phase shift between consecutive traffic signals change
according to vehicular density in order to maintain a sufficient
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Fig.8. Space-time averaged number of vehicles in the road region (2, 2.5] from
3.4 to 4.4 min as a function of traffic signals’ phase shift.

density level on each road segment for better connectivity in the
communication network.

On the other hand, from the transport network point of
view, we can control the traffic load on a road segment in
order to reduce transport congestions. Fig. 8§ shows how the
mean number vehicles in the road region (2, 2.5] within the
time interval (3.4, 4.4] varies with the phase shift between
the two traffic signals, which appears that the minimal traffic
congestion can be achieved if we set the phase shift to be about
30 s. Therefore, through the stochastic traffic model, we can
identify the operating point for minimal transport congestion,
and at such an operating point, our model can be further applied
to identify regions with poor connectivity for the placement of
roadside infrastructure nodes to boost the overall communi-
cation connectivity, which will be discussed in the following
section. In this way, we can optimize both the transport (in
terms of congestion) and communication networks (in terms of
connectivity) based on the information provided by our model.

VI. MODEL VALIDATION WITH EMPIRICAL DATA

In this section, we utilize Inductive Loop Detector (ILD) data
in central London to validate the key result of the stochastic
traffic model that the number of vehicles within a road region
(or vehicular density) at certain time-space instance is a Poisson
process. The selected site is on Marylebone Road, London,
which is a three-lane dual carriage-way with a dedicated bus
lane in each direction. We consider the eastbound traffic at this
site.

09F
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Fig. 9. Poisson CDF and empirical CDF of weekday vehicular density at
Marylebone Road, London.

Flow and occupancy data for each lane were obtained from
the ILD for each 15-min sampling period for six months, from
August 1, 2008, to January 31, 2009. By assuming that the traffic
patterns at a certain weekday hour are similar and independent,
we derive the vehicular density from the flow, occupancy, and
vehicle length data in the time window 8:30 to 8:45 (on a 24-h
scale) on every weekday (Monday to Friday excluding public
holidays to represent the peak-hour case). Due to the space limit,
the reader is referred to [18, Sec. 4.6] for the detailed derivation
of the vehicular density from empirical data.

Fig. 9 plots the CDF of the vehicular density from empir-
ical data and the hypothesized Poisson CDF at the detector in
time window 8:30 to 8:45 on weekdays, which on average has a
traffic load of 33 cars per min. Interestingly, we can see from the
figure that the key result of the stochastic traffic model (i.e., ve-
hicular density as a Poisson process) represents a valid approxi-
mation even for signalized urban road networks. The D-statistic
of K-S test for this case is only 0.1056, with a cutoff value of
0.1264 at a significance level of 0.05, which means the null hy-
pothesis that the empirical distribution is Poisson cannot be re-
jected. We have also examined the time windows 23:30 to 23:45
to represent the off-peak-hour traffic, which corresponds to a
traffic load of about 22 cars/min. The D-statistic for this case is
0.1074, with a cutoff value of 0.1149 at a significance level of
0.05, and again the null hypothesis cannot be rejected.

VII. ANALYSIS OF VANET CONNECTIVITY

In this section, we demonstrate that connectivity dynamics of
vehicular networks can be characterized by the stochastic traffic
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model as well. Specifically, with the knowledge of the vehic-
ular density dynamics from the proposed model, we determine
the probability that the network within an urban road segment
is connected and extend the investigation to k-connectivity of
the network. In addition, we demonstrate how the traffic model
can be utilized to identify poorly connected regions and facil-
itate the infrastructure node placement and transmission range
adjustment processes for improving network connectivity.

To model wireless transmission between vehicles, a radio
link model is assumed in which each vehicle has a transmis-
sion range r, and two vehicles are able to communicate (or are
connected) directly with each other via a wireless link if the Eu-
clidean distance between them is less than or equal to r. In a
one-dimensional ad hoc network, a node is said to be discon-
nected from the forward network if it is not connected to any
forward neighbors in the network (e.g., node 2 in Fig. 10), where
“forward neighbors” here represents nodes that are on the right
of the considered node assuming that the stream of traffic moves
from left to right.

A network is said to be connected if, for every pair of nodes,
there exists a path (that is composite of one or more number of
communication links) between them, and otherwise it is discon-
nected. For the connectivity of a one-dimensional network, the
following definition holds.

Definition 1: For a one-dimensional ad hoc network, it is con-
nected if and only if there does not exist any nodes in the net-
work that are not connected to any of the forward nodes.

In other words, the network is disconnected if the separation
between any two adjacent nodes is greater than r, as illustrated
in Fig. 10. Therefore, the probability that the network in a road
segment is connected is equivalent to the probability that no
nodes got isolated from the forward network. The reader is re-
ferred to the proof of Proposition 3, which considers the general
case of a k-connected network.

A. Connectivity Without Vehicle Interactions

For analytical simplicity, we cease to focus on time dynamics
here, and assume the system has reached a steady state with
respect to time. Thus, all system variables and parameters
(including the velocity profile) become independent of time,
and we simply drop the variable ¢ from our previously defined
notation.

We define N(x,,2,) = N(xp) — N(z,), where zp > x4,
as the number of vehicles in the region (z,, x;]. According to
the stochastic model, the actual number of vehicles distributed
within a road region is Poisson-distributed. Thus, we can acquire
from it the probability that a specific number of vehicles are
located within a road region, which is given by

P(N(z)=n) = MG—E[NW

E[N (zq,2)]"
n!

(19)
P (N(wa, 1) =) = e~ FINErerol (20)

where E[N(z)] = [ n(u)du.

Consider a road segment of length L. Cars arrive at location
0 as a homogeneous Poisson process with mean rate a. Since
we assume the system has reached a steady state with respect
to time, the velocity profile is only a function of space, but in-
dependent of time. Thus, for any two vehicles that pass through
the road with an interarrival time of I, the velocity—time graph
of the second vehicle is the same as that of the first vehicle, but
lags behind by time I. Let us denote such velocity—time func-
tion experienced by vehicles that pass through the road segment
as v(s). At time ¢, the physical separation between the ith and
the (¢ + 1)-th cars is

= | o(s)ds

where I; is the interarrival time between the ith and (74 1)-th ar-
rivals. We are interested in finding the critical interarrival time
of theroad T, such thatif I; < T, the sth and (i+1)-th cars will
remain connected throughout the whole journey. On the other
hand, if I; > T, the maximum separation between the two cars
in the road segment will be greater than . We have

imax {dr, (1)) = max { /t iTc v(s)ds} —r @

2D

teQ

where ) is the set of time instances such that the ith and
(7 4+ 1)-th cars coexist in the road segment. Given the velocity
profile, we are able to find 7, as a function of r. For Poisson
arrival process with parameter o, P(I; < 1.) = 1 — e~ °T¢,
let it be p.. Therefore, the probability that the entire network
remains connected (conditioning on that the population size of
the road is nonzero, i.e., N(L) > 0) is

P(net con) = T P(Nl(L) —0) ;pg—lp(N(L) =7)-

(23)

Since the number of cars in the road segment has a Poisson

distribution with parameter E[N(L)], which can be computed
from the fluid model, by substituting (19) into (23), we have

(ech[N(L)] — 1)
Pe (eE[N(L)] — 1) ’

As an illustrative example, consider a road segment of length
10 km. Given the velocity profile v(z) as in Fig. 11(a), we can
find that 7. = r, and we can compute from the fluid model that
E[N(L)] = 481 for & = 30 cars/min. Thus, according to (24),
we plot the probability that the network in the road segment is
connected as a function of the transmission range 7 in Fig. 11(b).
The reader is referred to Section VII-E for additional examples
and applications regarding the tradeoff between transmission
range and connectivity. In real practice, the velocity profile can
be obtained through empirical measurements, and more compli-
cated velocity profiles can be handled by our models.

P(net con) = (24)

B. Connectivity With Vehicle Interactions

Section VII-B gives us an exact treatment of modeling the spa-
tial separations between vehicles and connectivity of the network.
Strictly speaking, when vehicle interactions are considered, the
stochastic model is no longer valid. Therefore, we can only do
approximation here and use simulation to evaluate its validity.

For velocity profile that is a function of both the space and
time, and with vehicle interactions, we approximate the prob-
ability of connectivity based on the results of the fluid model,
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Fig. 11. (a) Velocity profile. (b) Corresponding probability that the network is
connected as a function of transmission range 1.

which captures the time and space dynamics as well as vehic-
ular interactions. We now consider a specific time instance g,
and thus the variable ¢ is again simply dropped from our nota-
tion. The probability over a period of time can be obtained by
taking the time-average of multiple time instances.

Again, we consider a road segment with length L in region
(0, L]. With the knowledge of the mean density profile n(z)
from the fluid model, we can derive the pdf

fu(x) =n(z)/E[N(L)] (25)
such that f7,(x)Ax represents the probability that a random
node in the road segment is located in the small region (z,x +
Auz]. Given that there are j nodes located in the road segment at
a time instance and assuming that their locations are indepen-
dent (even when there are vehicle interactions, we have shown
that the degree of dependency remains low if the traffic load is
not too high), we now regard a randomly chosen node located in
the road segment. The probability that this node is disconnected
from the forward network is given by the weighted sum of the
probability that the other 5 — 1 nodes are not located within
the transmission range in front over all possible locations of the
node in the road segment.

P( node discon|j nodes)
L—r
= / P(the other j — 1 nodes are not in (z,2 + r])
Jo

X fr(x)dz
i1

:/OH <1_[+T fL(x)dw>J

Note that we define a node is not disconnected if it is located in
region (L — 7, L] in the road segment.

According to [5], the events that an individual node is isolated
or disconnected from the forward network are almost indepen-
dent from node to node with the assumptions that the number of
nodes in the road segment N > 1 and r < L. Thus, the proba-
bility that there are no disconnected nodes in the road segment
or the network is connected is

fr(@)da. (26)

P(net con)
= P(no discon node)
~ " (1 = P(node discon| j nodes))’ P(N(L) = j).

=0

27)
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Fig. 12. Relative error = |P (net con) — P(net con)|/P(net con) as a
function of the expected number of cars in the network for homogenous Poisson
arrival with constant velocity profile.

By substituting (19) and (26) into (27), we are able to find
this probability based on the input n(z) computed from the fluid
model.

When the expected number of cars in the network is large, for
the simplicity of calculation, we can approximate the probability
above with

P(no discon node)

= (1 — P(node discon))’ P(N(L) = j)

=0

(28)

where
P(node discon)

L—r
= / P(node discon| z) fr(z)dx
0

L—7r
:/ P(N(z+ Az,z+7r)=0) fr(z)dz.
0
Substitute (20) into it, and we have
L—r
P(node discon) = / e PINGHAwetn)]l £ (2)da. (29)
0

By substituting (19) and (29) into (28), we have

P(net con)

= P(no discon node)

el L—r
— Z (1 _ / e—E[N(m—I—Am,J:—l—T)]fL(a:)dx)
=0 0

J
y Me—mmm
J:

L—r
= exp <—E[N(L)] / e EING+Az 2] £ () da |
0

(30)

To verify the tightness of approximating (27) with (30), we plot
the relative error |P (net con) — P(net con)|/P (net con) as a
function of the expected number of cars in the network in Fig. 12
for a homogeneous Poisson arrival with constant speed. From
that, we can see that the error of the approximation converge to
zero as the expected number of cars in the network is large. For in-
stance, when there are 100 expected cars in the network, the error
is less than 1%. The expected number of cars in the network is a
function of the arrival rate, velocity, and the length of the network.
In general, given that the length of the road segment L considered

J
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Fig. 13. Analytical and simulated probability that the network in road region
(1.5,2.5] at time instance 4.5 min in the two-traffic-light scenario is k-connected
as a function of transmission range .

islong enough, we can have a sufficient expected number of cars,
and thus P(net con) can be well approximated by (30). Further
evaluation of the analytical results with consideration of vehicle
interactions is shown later in Fig. 13.

C. k-Connectivity

In Sections VII-B and VII-C, we consider specifically the
1-connectivity of the network, we now proceed to investigate
the general case of k-connectivity. Once again, the result is not
applicable in principle to cases with vehicle interactions be-
cause of the existence of dependency. However, our previous
evaluations show that the Poisson property and stochastic inde-
pendence of the model can still be primarily retained when the
traffic load is not too high even in the presence of vehicle in-
teractions. Therefore, we treat the results for cases with vehicle
interactions as an approximation and verify its validity through
simulations here.

For connected one-dimensional ad hoc network, we can char-
acterize the degree of connectivity by examining the forward
node degree of nodes, which represents the number of direct
single-hop forward neighbors of a node. Given that a node is lo-
cated at x, we define that the forward node degree of the node as
the number of nodes in the region (z + Az, x + r]. Let Kp(z)
denote the forward node degree of a given node located at .
With the PALM assumptions, we have
P (Kp(z)=k)=P(N(x 4+ Az,x + 1) =k)
_ E[N(z+ Az,z +r)]*

k!

efE[N(erAm,a:+r)] )

€1y

To associate forward node degree to connectivity in a one-
dimensional communication network, we use a geometric graph
G = G(V, E) to represent the ad hoc network, which consists
of a set of nodes (vertices) and a set of communication links
(edges). There is an edge between two vertices ¢ and j if and
only if the Euclidean distance between them |i — j| < 7.

Let us label the vertices in the one-dimensional geometric
graph from left to right as nodes 1, 2, 3, and so on. If there is an
edge (communication link) between vertices (nodes) ¢ and j,
where j > i, it directly implies there are edges between vertex ¢
and vertices located in between nodes ¢ and j since those node
pairs have shorter Euclidean distances than that between nodes 4
and j.

With reference to [4], a graph is said to be k-connected if for
each node pair, there exist at least £ mutually independent paths
connecting them. Also, graph is k-connected if and only if no
set of (k — 1) nodes exists whose removal would disconnect the
graph. Then, we have the following proposition.

Proposition 3: In a one-dimensional geometric graph G, let
Kpmin(G) denotes the minimum forward node degree of graph
G, then

P(G is k-connected) = P(Kpmin(G) > k). (32)

Proof: We divide the proof into two parts. First, we prove
that P(G is k-connected) < P(Kpmin(G) > k), followed
by proving P(G is k-connected) > P(Kpmin(G) > k). The
combination of them proves Proposition 3. O

Proposition  3.1: P(G s k-connected) <
P(KFmin(G) Z k)

Proof: This is equivalent to proving (G is k-connected) im-
plies (Kpmin(G) > k), which can be proven by contradiction.
Assume on the contrary that (Kpmin(G) = k — 1 < k), that is,
every node only connects to at least k — 1 forward neighbors. In
this case, if we remove k& — 1 nodes that are forward neighbors
of a specific node ¢ that has only k£ — 1 forward neighbors, node @
will be disconnected from the forward network, and the network
is disconnected. Hence, the network (graph) is not k-connected.

(]

Proposition  3.2: P(G s k-connected) >
P(KFmin(G) Z k)

Proof: This is equivalent to proving (Kpmin(G) > k) im-
plies (G is k-connected). In a one-dimensional network, assume
that every node connects to at least k& forward neighbors, i.e.,
(KFmin(G) > k), then it is trivial that no set of & — 1 nodes
whose removal will disconnect the network. For example, in the
worst case, if we remove k£ — 1 nodes whose are forward neigh-
bors of a specific node 7 which has only & forward neighbors,
node ¢ is still connected to the forward network with one for-
ward neighbor. Hence, the network (graph) is k-connected. [

Consider the case when £ = 1 in Proposition 3, we have
P(G is connected) = P(Kgmin(G) > 1), that is, the network
is connected if and only if every node has at least one forward
neighbor, which is equivalent to Definition 1, and the proba-
bility can be found with (30). The generalized version of (30)
for k-connected network is as follows.

For a randomly chosen node in the road segment, the proba-
bility that it has less than k forward neighbors is

P(Ke < k) = / T P(Ke(y) < ko) fr (2)da

/L =y, [N(z + Az, +1)]°
7!

[N($+Ar x+7“)]f (z)dz. (33)

By Proposition 3 and following similar steps in the derivation
of (30), we have

P(k-connnected)
= P(KF min Z k)
~ exp (—E[N(L)|P(Kr < k))
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Ler kz_:l E[N(z + Az, z +1)]

= exp ~EV(D)] |

7!

X e_E[N(I"'A‘”’z”)]fL(a:)dx) . (34)

Therefore, given the density profile n(z) from the fluid model
and the communication range r, the probability that the network
in a one-dimensional road segment is k-connected can be found.

To verify the analytical results in (30) and (34), we compare
them to simulated results. For the cascaded traffic lights sce-
nario described in Section V-B, we plot the simulated and an-
alytical results in Fig. 13 for the probability that the network
is k-connected (for & = 1 and 2) as a function of the trans-
mission range r. We consider the network in the road region
(1.5, 2.5] at time instance 4.5 min. From the figure, we can see
that the analytical and simulated results are close to each other
even when vehicle interactions are considered by (16), and the
k-connected probability grows to 1 when the transmission range
is large enough.

D. Applications of the Stochastic Traffic Model

Through the stochastic traffic model, many system engi-
neering and network management issues can be investigated.
As an illustrative example, we demonstrate here with numerical
results how the knowledge of connectivity dynamics from the
proposed model facilitates infrastructure node assignment and
transmission range adjustment of mobile nodes for boosting
the overall network connectivity.

1) Infrastructure Node Assignment: Although we can iden-
tify road segments that are likely to be disconnected with (30),
the range of a road segment is still too large for us to determine
the optimal position for infrastructure node placement. To fur-
ther reduce the potential range, we can examine the probability
P(Ky(z) > k) forall 2 belong to the road segment. The regions
with low probability denote the desired locations for infrastruc-
ture nodes.

First, we need to determine a probability threshold
e > 0, then we maximize k (which is an integer) such
that {ming¢ (s, 2, P(Kr(x) > k) > €} holds.

We define the maximum k value that satisfies the inequality
above as the maximum targeted connectivity of the network in
the road segment (z,, 3], which is the maximum degree of
connectivity that the network can achieve subjected to the prob-
ability threshold . Let us denote it as K ..

For all z belonging to the road segment (z,, 2}, we define
the region with {P(Kr(z) > k) < €} as the k-connectivity
gap. After knowing K, of the road segment, we can easily
identify the connectivity gaps as the regions with

{P(Kr(z) > Knax) < e}V € (x4, xp).

Specifically, if K,.x = 0, the connectivity gap represents the
region that is likely to be disconnected in the network, where
infrastructure nodes should be placed to maintain connectivity.

To illustrate how the stochastic traffic model can be used
to identify a poorly connected region and facilitate the infra-
structure node placement process, we explore connectivity in
the road segment (2, 2.5] time-averaged over the time interval
(3, 5] in the two-traffic-light scenario described in Section V-B.
We consider vehicles arrive at constant rates (denoted by «) of
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Fig. 14. Connectivity (¢ = 0.25) with and without infrastructure nodes in
road region (2, 2.5] averaged over the time interval (3, 5] in the two-traffic-
light scenario with phase shift = 30 s, transmission range = 100 m.
(a) Arrival rate = 30 cars/min. (b) Arrival rate = 3 cars/min.

30 and 3 cars/min to respectively represent the peak-hour and
off-peak-hour traffic. Transmission range of vehicles is assumed
to be 100 m unless otherwise specified. We set the phase shift be-
tween the two traffic lights to be 30 s, which corresponds to the
operating point with minimal congestion according to Fig. 8, so
as to emphasize the potential applications of the proposed model
on optimizing both the transport and communication networks.

For the peak-hour case (« = 30 cars/min), we find that
Kpnax = 4 with the probability threshold e set to be 0.25.
Fig. 14(a) plots the time-averaged P(Kp(z) > 4) for location
points within the road segment (2, 2.5], from which we can see
that the connectivity gaps (where P(Kr(z) > 4) < 0.25) are
region (2.05, 2.28]. In order to further boost the connectivity of
the network, we place infrastructure nodes to cover the connec-
tivity gaps. Assuming that infrastructure nodes have the same
communication range as mobile nodes (i.e., 100 m), we place
three infrastructure nodes at locations 2.1, 2.2, and 2.3 km. With
the introduction of infrastructure nodes, we can see from the
dashed line in the figure that min,¢(2,2.5) P(Kr(7) > k) has
been raised above the probability threshold, and K ,,x now be-
comes 5.

For the off-peak-hour case, we find that K, = 0, since we
can see from Fig. 14(b) that P(Kr(z) > 0) < 0.25 in region
(2, 2.4]. Note that the inverse of the solid line in Fig. 14(b) de-
notes P(Kr(z) = 0), which characterizes the probability that
the location point z is isolated from the forward network, thus
the connectivity gap (where P(Kr(xz) = 0) > 0.75) actually
represents the likely disconnected region in the network. We add
four infrastructure nodes at locations 2.1, 2,2, 2.3, and 2.4 km
to prevent disconnection of the network, which is shown by the
dashed line in the figure.

Since infrastructure nodes are static, the regions that are
covered by one newly added infrastructure nodes in the
backward direction will have Kg be increased by 1 de-
terministically. Therefore, for all x that is covered by one
infrastructure node, the curve P(Kg(x) > Kpax) is increased
by E[N(z+ Az, z+7)]Kmax e~ EIN(z+Az,z4r)] / Kmax!, which
is sufficient to rise above the threshold. To minimize the number
of infrastructure nodes used for bringing the whole curve above
the threshold, it is a one-dimensional coverage problem.

2) Transmission Range Adjustment: Other than adding
road-side infrastructure nodes, we can also adjust the transmis-
sion ranges of vehicles to achieve an almost surely connected
network.

As illustrated in Fig. 13, given the transmission range r, we
can calculate from (34) the probability that the network in the
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Fig. 15. Probability that the network in road region (2, 2.5] is connected time-
averaged over interval (3, 5] as a function of (a) transmission range r and (b) the
probability threshold .

road segment is k-connected at a time instance. We can then
take the time average of the probabilities to determine the crit-
ical transmission range for achieving certain degree of connec-
tivity with high probability over a period of time. For instance,
for the off-peak-hour case, we plot in Fig. 15(a) the time-aver-
aged probability that the network is connected over time interval
(3, 5] as a function of transmission range, from which we can
see that as the transmission range of vehicles increases beyond
370 m, the probability the network is connected is greater than
95%.

Instead of having all vehicles use large transmit power and
thus transmission range, we can adjust the transmission range
of an individual vehicle dynamically according to its location
and the corresponding vehicular density n(x, t) so as to prevent
disconnection of the network.

At a time instance, given fr,(z), which is derived from n(z),
we can adjust r to rx (x) such that P(N (z+ Az, z+7rx(x)) >
1) > & for all , where ¢ is a certain probability threshold that
is close to 1, to ensure connectivity. Hence, we have

e—E[N(z+A.r,z+r*(z))] <1- E (35)
Substitute (35) into (30), the probability that the network in
the road segment (0, L] is connected after such manipulation is

P(net con) > exp (—E[N(L)](l — &) ./0 - fL(J;)dx) .

(36)

Fig. 15(b) depicts the probability that the network is con-

nected for the off-peak-hour case averaged over time interval

(3, 5] as a function of ¢. For instance, we can see from the figure

that with ¢ = 0.95, the time-averaged probability of connec-
tivity is great than 0.9.

VIII. CONCLUSION AND FUTURE WORK

Vehicles in urban road networks do not distribute homoge-
neously primarily due to road layout and the presence of traffic
lights. However, most of the existing studies on node connec-
tivity have the implicit assumption that nodes are distributed ho-
mogeneously in the geographic area, which is inappropriate in
VANETSs and may lead to erroneous results. In addition, con-
nectivity modeling of VANET in practical urban environment
(with vehicle interactions and traffic signals) remains to be an
unknown issue in the literature.

In light of the inadequacy, we have presented in this paper a
stochastic traffic model for VANETS in signalized road systems
to capture the time and space dynamics of moving vehicles in
order to model mobility and connectivity in practical VANETS.

The fluid dynamic model treats vehicles as a continuous fluid,
and the expected vehicular density is readily computable by
solving the PDEs, while the stochastic model considers the be-
havior of an individual vehicle and provides probability distribu-
tion knowledge. As the key contribution, we have incorporated
vehicle interactions in the model through a density-dependent
velocity profile to closely approximate the practical road condi-
tion. With additional signaling inputs, it automatically captures
the shockwave propagation of vehicles’ stop-and-go motions at
traffic signals.

Furthermore, we have validated the Poisson distributional re-
sult of the stochastic traffic model against real-world empirical
inductive loop detector measurements in central London, and
have provided numerical results to evaluate the quality of the
model with approximation of vehicular interactions in terms of
the expected value and distribution of its solution. In essence,
we have shown that the fluid model well captures the evolution
of the traffic stream, while the Poisson distributional conclusion
of the stochastic model is still a good approximation for the dis-
tribution of the actual number of vehicles even when vehicles in-
teract with each other as their movement is controlled by traffic
lights. These validation results guarantee the robustness of con-
nectivity analysis in this paper.

With the density knowledge acquired from the stochastic
traffic model, we have derived the probability that the network
in a road segment is k-connected and illustrated that the pro-
posed model can be utilized for identifying the operating point
for minimal transport congestion and regions with poor con-
nectivity. In general, we have shown that the stochastic traffic
model can serve as a useful tool for system engineering and
planning for both the communication networks and transport
systems.

Nowadays, most of the vehicles are installed with navigation
systems that can collect velocity information. Such informa-
tion can serve as an initial input to the stochastic traffic model
for computing the vehicular density. The future evolution of
the traffic can then be approximated by the density-dependent
velocity profile, and the propagation of shockwave, compres-
sion, and rarefaction of the traffic stream due to traffic signals
can also be automatically captured given the corresponding sig-
naling information.

Our proposed model can be extended in several areas to study
more complicated traffic scenarios, and it serves as the funda-
mental building block for constructing more elaborate urban
traffic models—for example, routes with a greater number of
segments and traffic signals and with arrival and departure of
vehicles at road junctions. As other extensions, roads with mul-
tiple lanes, bidirectional traffic, and more complicated urban
road topology (e.g., 2-D road network) can be represented by
superposing multiple versions of urban routes.
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