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Abstract—Security always comes with a price in terms of per-
formance degradation, which should be carefully quantified. This
is especially the case for wireless ad hoc networks (WANETS),
which offer communications over a shared wireless channel
without any preexisting infrastructure. Forming end-to-end
secure paths in such WANETS is more challenging than in con-
ventional networks due to the lack of central authorities, and
its impact on network performance is largely untouched in the
literature. In this paper, based on a general random network
model, the asymptotic behaviors of secure throughput and delay
with the common transmission range r,, and the probability p
of neighboring nodes having a primary security association are
quantified when the network size n is sufficiently large. The costs
and benefits of secure-link-augmentation operations on the secure
throughput and delay are also analyzed. In general, security has a
cost: Since we require all the communications operate on secure
links, there is a degradation in the network performance when
py < 1. However, one important exception is that when p; is
Q(1/log n), the secure throughput remains at the Gupta and
Kumar bound of ®(1/+/nlog n) packets/time slot, wherein no
security requirements are enforced on WANETSs. This implies that
even when the p; goes to zero as the network size becomes arbi-
trarily large, it is still possible to build throughput-order-optimal
secure WANETS, which is of practical interest since ps is very
small in many practical large-scale WANETSs.

Index Terms—Ad hoc networks, network performance, network
security, wireless networks.

1. INTRODUCTION

HE GROWTH of modern communication networks, such
as the Internet and wireless cellular systems, over the last
decade has surpassed many expectations. Indeed, going back in

Manuscript received January 06, 2009; revised November 24, 2009
and March 08, 2010; accepted May 05, 2010; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor D. Agrawal. Date of publication Feb-
ruary 04, 2011; date of current version April 15, 2011. This work was supported
in part by the U.S. National Science Foundation under Grants CNS-0916391,
CNS-0721744, and CNS-0716450. The work of Y. Fang was supported in
part by the National Science Foundation of China under Grant 61003300,
the Fundamental Research Funds for the Central Universities under Grant
JY 10000901021, and the China 111 Project under Grant BO8038 with Xidian
University, Xi’an, China. The work of Y. Zhang was supported by the U.S.
National Science Foundation under Grants CNS-0716302 and CNS-0844972
(the CAREER Award).

C. Zhang and Y. Song are with the Department of Electrical and Computer
Engineering, University of Florida, Gainesville, FL. 32611 USA (e-mail:
zhangchi@ufl.edu; yangsong @ufl.edu).

Y. Fang is with the Department of Electrical and Computer Engineering, Uni-
versity of Florida, Gainesville, FL. 32611 USA, and also with the National Key
Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071,
China (e-mail: fang@ece.ufl.edu).

Y. Zhang is with the School of Electrical, Computer, and Energy Engineering,
Arizona State University, Tempe, AZ 85287-7206 USA (e-mail: yczhang @asu.
edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNET.2011.2106162

time to the origins of these networks, it would have been hard to
imagine the importance and scale to which these networks have
developed. Now, projecting into the future, we strongly believe
that this trend will continue, if not accelerate. Hence, the com-
munication devices and protocols of today must be capable of
operating with the same efficiency in the very large-scale net-
works of the future. This highlights the need for asymptotic
analysis on a network and its corresponding protocol design,
which characterizes the asymptotic behaviors of network per-
formance as its size n grows. This is especially the case for wire-
less ad hoc networks (WANETS), which offer communications
over a shared wireless channel without any preexisting infra-
structure, since more effort needs to be made to harmonize the
behavior of different participants and manage distributed net-
work resources to support end-to-end (e2e) communication de-
mands compared to the network with infrastructure. Obviously,
this kind of unavoidable coordination overhead, which may be
tolerable in small-scale networks, is possible to become a domi-
nant factor in large-scale networks and should be quantitatively
analyzed.

Since both throughput and delay are important network
performance metrics, significant effort in the last few years has
been devoted to understanding the scaling laws on throughput
and delay and their relationship in WANETSs. In their seminal
work, Gupta and Kumar [1] show that the per-flow throughput
capacity for static WANETSs scales as ©(1/y/nlogn) (refer
to Appendix A for the standard asymptotic notation used
throughout this paper) under the assumption that nodes
with common transmission range are randomly distributed.
Note that this work [1] implicitly uses a fluid model for es-
tablishing throughput scaling. Later work by Kulkarni and
Viswanath [2] consolidates the result in [1] with an explicit
constant-packet-size model. Following the same method-
ology, the corresponding delay of ©(y/n/logn) and the
complete throughput-delay tradeoffs of static WANETSs are
first obtained in [3]. Recently, with the percolation theory,
Franceschetti et al. [4] show that the per-flow throughput of
©(1/+/n) is achievable if each node can adjust its transmission
range through power control. The throughput-delay tradeoffs
under different mobility models are also studied in the literature
(e.g., [3] and [5]-[12]).

A drawback common to all the above results is the neglect of
security requirements, which are receiving growing attention in
recent years because many large-scale WANETS are expected to
be deployed in hostile scenarios such as military and homeland
security operations [13]. It is known that security always comes
with a price, as securing communications against the adversary
typically consumes more network resources in terms of band-
width and/or hardware capacities. This price may be tolerable in
small-scale WANETS, but it may dominate the consumption of
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scarce network resources in large-scale WANETS. This situation
makes the investigation of throughput-delay tradeoffs with se-
curity requirements in large-scale WANETS an important open
challenge.

Although security requirements in WANETS are application-
dependent, in this paper we focus on the most critical and fun-
damental one that reflects the distinct nature of WANETSs and
enables analytical tractability; that is, we require that wireless
communications should operate on secure links whenever nec-
essary. A WANET can be informally visualized as a group of
wireless communication devices/nodes held by users coming
together spontaneously to form a network for a common pur-
pose (e.g., emergency response). Some keying materials for pri-
mary security associations (SAs), which we will formally de-
fine later (cf. Section II-A), are already preconfigured in com-
munication devices based on the trust relationships among the
persons involved. The problem is how to exploit those primary
SAs to provide secure communications for arbitrary node pairs
when needed. Neighbor authentication or securing the phys-
ical link, which provides hop-by-hop security, is the first step
for providing e2e secure communications in all kinds of net-
works. This is especially crucial for WANETS since every node
needs to act as a router to forward packets for others. If the
node cannot authenticate its neighbors,! how can it trust them to
handle its packet correctly? Obviously, neighboring nodes with
primary SAs can authenticate each other directly with precon-
figured keying materials, and the physical links between them
can be secured accordingly. Since the number and the distri-
bution of primary SAs are determined by the embedded social
network (e.g., trust relationship) of users, a node may not have
primary SAs with any of its neighbors. In fact, the probability
that a node shares a primary SA with any other node, i.e., py,
will be very small in practice when the node population 7 in the
WANET increases. In this case, if the physical link still needs
to be secured, secure link augmentation (SLA) operations? are
required and performed with the help of physically connected
common friends of two end-nodes of this physical link.

Whenp; < 1, there is in general network performance degra-
dation because we require all communications operate on secure
links, and some network resources, i.e., the unsecured links,
cannot be utilized compared to WANETSs without secure re-
quirements. Although we can obtain more derived secure links
with SLA, network resources consumed by SLA is another kind
of security cost that should be taken into consideration. There-
fore, it is natural to ask the following: What is the price of se-
curity (performance degradation) we have to pay in WANETSs?
Can we design a protocol to achieve the optimal secure net-
work performance or minimize the price of security? In this
paper, we answer these questions with rigorous analysis based
on reasonable assumptions on WANETSs. We formally charac-
terize the tradeoffs between key predistribution related to py
and secure network performance. Our results show that the min-

'We say two nodes are friends when they have a primary SA. We say two
nodes are neighbors if their Euclidean distance is no greater than the transmis-
sion range 1., . There is a physical link between any two neighboring nodes, and
this link can be secured with the primary SA if the neighboring nodes are also
friends. We call this kind of secure link a primary secure link. A link can also
be secured with the help of other authenticated neighbors; we call this kind of
secure link a derived secure link.

2SLA here means the procedure of securing a physical link between two
neighboring nodes that are not friends. A detailed description of SLA opera-
tions is given in Scheme 2 in Section V-A.
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imal price of security with SLA is strictly smaller than that
without SLA, which theoretically necessitates SLA operations
in WANETSs with security requirements. We also design two
schemes to achieve the minimal price of security with or without
SLA, respectively. Furthermore, these schemes provide several
important insights on protocol design for secure communica-
tions in WANETSs as follows. 1) It is unnecessary and even
harmful to think that in order to achieve the minimal price of
security, we have to obtain as many derived secure links as pos-
sible. In fact, the physical links that need to be secured with
SLA are few and should be carefully selected. 2) Our schemes
show that it is possible to construct the secure backbone and
select the physical links that need to be secured in a totally
distributed fashion with negligible communication overhead,
and this “secure infrastructure” is unrelated to source—destina-
tion (S—-D) pairs and can be reused again and again. 3) Although,
in general, secure network performance degrades with p ¢, with
or without SLA, one important exception we find is that when p
is Q(1/logn), the secure throughput remains at the Gupta and
Kumar bound of ©(1/1/nlogn) packets/time slot, wherein no
security requirements are enforced on WANETSs. This implies
that even when p# goes to zero as the network size becomes ar-
bitrarily large, it is still possible to build throughput-order-op-
timal secure WANETS, which is of practical interest since py is
very small in many practical large-scale WANETS.

II. BACKGROUND AND RELATED WORK

The impact of security requirements on the performance
of WANETS is largely untouched in the literature with only a
few exceptions [14], [15]. In this section, we first review some
keying schemes and secure operations related to the fulfillment
of our security requirements and then present recent results on
secure connectivity and throughput, respectively. We compare
these results with ours obtained in this paper and point out our
own contributions.

A. On Predistribution of Keying Materials/SAs

When we say two nodes have a primary SA, we mean that
two nodes trust each other in the sense that either a symmetric
key is shared between them or they know each other’s authentic
public keys. We further assume that SAs are always symmetric
because trust relationship is symmetric in nature [14], [16]. The
concept of SA here is closely related to the topic of predis-
tributed key establishment and management in the security pro-
tocol design [17]-[20]. In what follows, we summarize some
representative schemes proposed in the literature and demon-
strate that the parameter py is a good abstraction of trust rela-
tionships among network nodes regardless of the implementa-
tion details of keying schemes.

1) Eschenauer and Gligor’s Key Pool Scheme [17]: Before
the nodes are deployed, an offline trust authority (TA) will pro-
vide a large key pool of size P. Each node randomly picks &
different keys from this key pool. Therefore, two neighboring
nodes have a primary SA if they share at least one common key
in the key pool with probability p ¢, which is given as

) (P — k)1)?
™) (P —2k)! P!

where the second equality holds for P > 2k.

pr=1- =1- (D
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2) Chan et al.’s Random-Pairwise Key Scheme [18]: Each
node identity (ID) is paired with f other randomly selected dis-
tinct node IDs, and a pairwise key is pregenerated for each pair
of nodes. The key is stored in both nodes’ key ring along with
the ID of the other node that knows the key. Therefore, the prob-
ability ps of two selected nodes sharing a primary SA is directly
given by

pr = f/n. 2

3) Hubaux et al.’s Self-Organized Public-Key Scheme [19],
[20]: Like in PGP [21], each node’s public and private keys are
created by the node itself. Unlike in PGP, where certificates of
the public keys are mainly stored in centralized certificate repos-
itories, certificates in this scheme are stored and distributed by
the nodes in a fully self-organized manner. For simplicity, we
assume that each node has f friends, and it has already stored
the certificates of its friends’ public keys. Therefore, the proba-
bility p s that a node can directly authenticate one of its neighbor
is also given by (2).

4) Multiple Trust Authority Scheme [19], [20]: In this
scheme, there are P secure domains. In each secure domain,
there exists one offline trust authority, which creates public—pri-
vate key pairs for each node belonging to its domain. Each
node belongs to k randomly selected domains. Therefore, two
nodes have a primary SA if they belong to the same domain,
with probability p¢, which is given in (1).

Note that the processes of neighbor authentication and pair-
wise key establishment based on primary SAs and the ways to
secure more physical links with SLA have been presented in a
unified approach in our previous work (cf. [14, Section II-B]),
which is omitted here due to space constraints. Here, we just em-
phasize that we assume a homogeneous trust model, i.e., each
pair of nodes has a primary SA with the same probability p¢,
and py’s are pairwise-independent for each pair of nodes.

To sum up, we have the following observations from the
schemes discussed above. First, we need to keep py as small as
possible. A larger py requires more memory space for storing
keying materials in each node, and when that node is compro-
mised, the revealed keys will have a larger impact on network
security. Therefore, with the same network performance, we
are interested in the scheme with the minimal ps. Second, all
these schemes assume homogeneous and independent trust
relationships among network nodes, i.e., every node pair has
the same probability py of sharing a primary SA, which hap-
pens independently of other node pairs. Although these two
properties are not necessarily valid in all practical situations
(cf. [14, Section II-A2]), we adhere to these assumptions
throughout the paper for the analytical tractability.

B. On Secure Connectivity

Secure connectivity here refers to the requirement that there
should exist a secure path connecting arbitrary node pairs,3
which indicates the availability of secure communications. Pri-
mary results analyzing secure connectivity have been presented

3A secure path consists of consecutive secure links. Of course, this require-
ment is reasonable only when the S—D pair is in the same trust domain and there
exists at least one physical path connecting the S-D pair. Therefore, it is nec-
essary to have py = Q(logn/n) and r,, = Q(y/logn/n) (cf. [14, Section
II-C]). In what follows, we always assume that it is the case.
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in [17] based on an approximation model for sensor networks.
More precise analyses are given in [22] and [23]. These results
suffer from two main drawbacks. First, they assume that in
order to achieve the secure connectivity, the network should
at least be connected with primary secure links, which is not
necessarily the case. Second, they only study the case under
certain requirement on py for a given r,, = O(y/logn/n), the
common transmission range.

In our previous work [14], we overcome these limitations by
giving a thorough study on 7,,—p tradeoffs with the secure con-
nectivity constraint under the assumptions that n nodes are ran-
domly distributed in a unit area and that primary SAs are pre-
distributed as described. Our main results are as follows.

* The network is securely connected without SLA or with

one-hop SLA when py - n - mr2 = Q(logn).

* The network is securely connected with k,,-hop SLA when
pg-n-mr2 > ¢, where ¢ = O(1) and k,, = O(logn).

It is impossible for the network to be securely connected
when pg - n - wr2 < c for the routing-security dependency
loop problem, where ¢ = O(1).

We want to keep 7, and py as small as possible. However,
the above results show that we cannot minimize both to main-
tain secure connectivity. There are tradeoffs between r,, and py
under the secure-connectivity constraint, but we can achieve a
better r,—py tradeoff when multihop SLA is utilized.

The problem left here is that secure connectivity alone is not a
good performance metric for secure WANETSs. From the above
results, if we only consider secure connectivity, then for the situ-
ation of py < 1, we can trivially achieve the secure connectivity
by taking a larger r,,. However, this will lead to a dramatic re-
duction in achievable throughput (cf. Section VI). Therefore,
when we say there exists a secure path for an S—D pair, we must
also ask what the secure throughput can be supported. Other-
wise, the existence of secure paths is meaningless because the
throughput that can be supported may be very low. In this paper,
we continue our investigation on characterizing those network
performance metrics for secure WANETS.

C. On Secure Throughput

Recently, Bhandari and Vaidya [15] suggest that their tech-
niques developed for studying the capacity of multichannel
WANETs with random (¢, f) assignment [24] can be utilized to
analyze the secure throughput with the key pool scheme [17].
For multichannel WANETs with random (¢, f) assignment,
there are c channels of equal bandwidth available. Each node
can only work on a subset of f channels, which is preassigned
from ¢ channels randomly. It can be mapped into secure
WANETS with each node randomly selecting f keys from a key
pool of size c. The ability of two neighboring nodes switching
on a common channel can be viewed as having a common key
to secure their physical link. Based on this idea, they obtain the

secure throughput of © ( br ) for py = Q(1/logn). To

nlogn
the best of our knowledge, this is the only work contributing
to this topic. Our work is done concurrently with and indepen-
dently of the work in [15] and differentiates itself from [15] as
follows.

First of all, it is worth noting that there are some funda-
mental differences between multichannel WANETS and secure
WANETS. If two neighboring nodes in a multichannel WANET
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do not share a common assigned channel, there exists no phys-
ical link between them. In contrast, if two neighboring nodes
in a secure WANET do not share a common key, it only means
that they cannot establish a primary secure link. The physical
link still exists and can be secured and utilized if they can find
a connected common friend to help them. Also note that if
two concurrent transmission pairs in a multichannel WANET
use different channels, they will not interfere with each other.
By comparison, even if two concurrent transmission pairs in a
secure WANET use different keys to secure their transmissions,
it is still possible for them to interfere with each other. By
taking these differences into consideration, we show that when
SLA is utilized, a secure throughput of ©(1/y/n -logn) is
achievable, which is much higher than the result in [15] for
ps = Q(1/logn).

Second, we adopt different models more suitable for secure
WANETS. Following previous works, e.g., [1], [6]-[9], and [11],
the results in [15] and [24] are implicitly based on the fluid
model, in which the packets are allowed to be arbitrarily small as
n — 00. In contrast, we follow [2], [3], and [10] and explicitly
assume the constant-packet-size model, where the packet size
remains constant, i.e., does not scale down with n. Although the
analysis of the constant-packet-size model is much harder than
that of the fluid model [10], we still prefer the former since in re-
ality the packet size does not change when more nodes are added
to the network. Furthermore, for a WANET with secure require-
ments, each packet includes a message authentication code of
at least constant size for cryptographic operations. This security
overhead on the packet level can be ignored asymptotically only
with the constant-packet-size model. The adoption of the con-
stant-packet-size model also facilitates our analysis on packet
delays [2], [3], [10].

Finally, we utilize different techniques to derive more gen-
eral results. We demonstrate how to take advantage of the con-
siderable similarity between our problem and existing work on
parallel computing and leverage the results on faulty arrays to
obtain scaling laws on secure throughput and delay. Our results
actually apply to all possible p;’s when py = Q(logn/n).

III. SYSTEM ASSUMPTIONS AND MAIN RESULTS

A. Random Network Model of WANETs

1) Node Distribution: We are mainly interested in static
WANETSs or networks with slow mobility, in which the
round-trip time (RTT) of a packet between any S-D pair is
much smaller than the timescale of network topology changes.
We do not consider the WANETS with rapid topology changes
because in this case the overhead of maintaining end-to-end
paths will dominate wireless transmissions, while in this paper
we focus on the overhead introduced by security requirements
and its impact on data transmissions.

We model the node positions as a random point process
as follows. Let {X;, X5,...} be independent and uniformly
distributed random points on a bounded region A in the plane.
Given a positive integer n, the point process { X1, Xo, ..., X,,}
is referred to as the uniform n-point process on A and de-
noted by A;. Given a positive number A = 7, let Po(X)
be a Poisson random variable with parameter A, indepen-
dent of {X;,Xo,...}. Then, it can be shown that the point
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process {Xl,XQ,...,XpO()\)} is a Poisson point process
with mean A on A, [25, p. 18, Section 1.7] and is denoted by
Pa. It is assumed throughout this paper that for any n or A,
the random point processes X, and P, are coupled in this
manner. V,, is shorthand either for A,, or P,. Recall that P,
is characterized by the following the spatial independence
property: If Ay, Aa, ..., A,,, are arbitrarily disjoint regions of

A, then the numbers of points in Py on Ay, As, ..., A, are
mutually independent Poisson random variables with mean
AA1], A|Asa], ..., Al A |, respectively. Because of this extreme
independence property, it is often easier to work with Py
rather than X,,. Therefore, we shall often start by proving limit
theorems about Py as A — oo and then deduce results for
X,, from these. The rationale behind this de-Poissonization
technique (cf. [25, p. 37, Section 2.5]) is that given that there
are exactly k points of P, in a region A, these k points are
independently and uniformly distributed in A. Thus, &), can
be well approximated by Py as n or A tends to infinity. Note
that the results obtained in this paper apply to both &, and P,

(i.e.,Vn).
We further assume that A is a torus* with a unit area and
take A\ = n as |A| = 1, which corresponds to the dense net-

work model [1], [3] because the area is fixed and the density
of nodes increases with the network size n. Another possible
model that can be used to study the asymptotic behavior of
large-scale WANETS is to keep the node density A as a con-
stant and let the area of A increase linearly with n, which corre-
sponds to the extended network model [26], [27]. In this paper,
we concentrate on the dense network model just for fair com-
parisons, as most known results about WANETSs without secure
requirements are based on this model [1]-[3], [10]. We note,
however, that our results can also be applied to the extended
network model by utilizing the scaling technique introduced
in [26, p. 28, Section 2.2].

2) Interference Models: We adopt the following two widely
used models [1] to describe the necessary and sufficient con-
dition for the successful reception of a transmission over one
hop. In what follows, we assume that time is slotted for pack-
etized transmissions and that only O(1) packets can be trans-
mitted per time slot, i.e., our analysis is explicitly based on the
constant-packet-size model. A transmitter sends data at a con-
stant rate of W packets/time slot for a successful transmission,
and zero for an unsuccessful transmission, where W = O(1).

3) Protocol Model: We assume that all nodes use a common
range 7, for their transmissions, and a transmission from node %
to node j is successful if and only if d;; < 7, and ds; > (1 +
A)r,, for any other simultaneous transmitter, say node k. Here,
d;; is the distance between nodes ¢ and j, and A is a positive
constant independent of n.

4) Physical Model: We assume that all nodes use a common
power P, for their transmissions, a transmission from node %
to node j is successful if and only if for a concurrent trans-
mitter set S, we have the signal-to-interference-plus-noise
ratio (SINR) at receiver j, denoted as SINR,;;, satisfying

Pn - Gij > 3.

No+ > P,-Gij —
reSVE)

SINR;; =

4We assume the torus to avoid border effects, which otherwise complicates
the analysis. We note, however, that the results in this paper hold for square,
disk, or any other shapes of practical interest.
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Here, (3 is the SINR threshold, N, represents the ambient noise,
and G;; denotes the link gain on link ¢ — j. We use G;; = di_jo‘
for simplicity, where o > 2 is the path-loss exponent.

We mainly focus on the protocol model in this paper for a
cleaner presentation of the key ideas. We also show that the same
results on secure WANETS can be obtained under the physical
model in Appendix C.

5) Traffic Pattern: Similar to previous works [2], [3],
[9], [10], we consider the uniform-permutation traffic pat-
tern, i.e., there are n flows/sessions and each node is a
source node for only one unicast session and a destination
node for another unicast session. Suppose that the source

node i+ € {1,...,n} has data intended for destination
node d(7), and then d(1),d(2),...,d(n) is a random per-
mutation of 1,2,...,n, where d(i) # i for all .

B. Network Performance Metrics

1) (Secure) Throughput: A per-flow throughput 7 is said to
be feasible/achievable if every node can send at least at a rate of
7 packets/time slot to its chosen destination. We denote by 7'(n),
the maximum feasible throughput as the throughput capacity for
the network. When security requirements are enforced, we de-
fine secure throughput as the maximum throughput that can be
supported on secure paths for all S—D pairs. Note that when SLA
is utilized, the traffic overhead for constructing secure paths will
be excluded from the total traffic on secure paths, so secure
throughput is only measured as the data rate achieved on the
application layer.

2) (Secure) Delay: The delay of a packet is the time it takes
the packet to reach the destination after it leaves the source. We
do not take the queueing delay at the source into account since
our interest is in the network delay. We are interested in the
expectation of the average packet delay over all S—D pairs and
all random network configurations, which is denoted as D(n)
throughout the paper. Note that for secure WANETS, the secure
delay is measured only on secure paths. If SLA is utilized, the
time required to construct the secure path for the packet going
through this path will be calculated as a part of secure delay of
that packet.

3) Price for Security: The loss on the secure throughput or
the increase on the secure delay compared to WANETSs without
secure requirements will be defined as the price for security.

C. Main Results of Our Work

The goal of this paper is to study the impact of r, and pg
on the secure throughput and delay of random networks de-
fined in Section III-A. The following results hold with high
probability (w.h.p.)5 when the network size n — oo. Here,
we only consider the situation when py = (logn/n) and

rn = Q(y/logn/n) (cf. Footnote 3).

Theorem 1: When py = Q(logn/n), the secure throughput
without SLA is T'(n) = @( ps

n-logn

packets/time slot
(segment A-B in Fig. 1), and the secure delay is D(n) =
® ( nps )
\/ logn
Theorem 2:
1) When p;y = Q(logn/n) and also py = O(1/logn),
the secure throughput with SLA is T'(n) = O(y/ps/n)

SHere, w.h.p. refers to a probability at least 1 — e(n), for a function €(n)
going to 0 with n — oo.
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logn 1 1 [;,, logn b,
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Fig. 1. Impact of security requirements on throughput scaling in random net-
works. The shaded area represents throughput loss due to secure requirements.
The scales of the axes are in terms of the orders in n.

packets/time slot (segment C-D in Fig. 1), and the corre-
sponding delay is D(n) = ©(y/n/py).

2) When py = Q(1/logn), the secure throughput with SLA
is T(n) = O(1/y/n-logn) packets/time slot (segment
D-E in Fig. 1), and the corresponding delay is D(n) =
O(y/n/logn).

Comparing Theorem 1 to Theorem 2, we can conclude that
SLA is necessary because, in general, it can increase the achiev-
able throughput as a factor of ©(y/log n). However, it does not
mean that we should try to secure all physical links. Remember
that SLA also incurs extra communication overhead, and the
scheme we design to achieve the throughput in Theorem 2
shows that we need to carefully choose links to be secured with
the help of friends in order to guarantee that the benefits from
SLA always exceed its costs (cf. Section V).

In order to calculate the price of security, we recall the results
on network performance of WANETSs without security require-
ments [2], [3], [10], which can be summarized as the following
theorem.

Theorem 3: The throughput capacity of WANETSs
without security requirements is 7'(n) = ©O(1/\/n-logn)
packets/time slot (dashed lines in Fig. 1), and the corresponding
delay is D(n) = ©(y/n/logn).6

From Theorem 3, we can find that the price of security mainly
exhibits in the loss of throughput. Fig. 1 gives an illustration of
the comparison on throughput capacity with or without security
requirements. It is worth noting that when p ¢ is Q(1/ logn), se-
curity comes with no price in an asymptotic sense, i.e., secure
network performance remains on the same order compared to
the networks without security requirements (cf. Theorem 2-2).
We believe that this result is quite important because it provides
valuable insight on the desirable operating points that balance
security and efficiency concerns. We need to minimize py in
order to reduce the memory size for keying materials and miti-
gate the impact of nodes being compromised. Our result implies
that even when p goes to zero as the network size becomes ar-
bitrarily large, as long as py = Q(1/logn), it is still possible
to secure a large-scale WANET with negligible overhead. Our
results also show that security requirements in general will not

The throughput capacity of ©(1/+/n - log 1) was first proved by Gupta and
Kumar in [1], but their analysis is based on the fluid model. The same result was
obtained by Kulkarni and Viswanath [2] through the constant packet size model.
El Gamal et al. [3], [10] further improved this result by giving bounds on D(n).
Note that recently Franceschetti et al. [4] showed that the ©(1/+/n) throughput
capacity is achievable if we relax the assumption that all nodes use the same
7,,. Here, we still use ©(1/+/n - log n) bound on throughput because our trust
model is a homogeneous one, and for a fair comparison, we also assume the
random network model is homogeneous, i.e., all nodes have the same 7, .
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Fig. 2. Secure communication scheme without SLA. (a) Dividing unit torus.
(b) Corresponding ! x [ array.

increase the e2e delay. This can be intuitively explained as fol-
lows: In order to keep the secure connectivity, which is the pri-
mary requirement for secure services, the negative effect of a
smaller py should be compensated by a larger 7,,, which will
effectively decrease the number of hops a packet needs to travel
and thus the e2e delay.

IV. NETWORK PERFORMANCE WITHOUT SLA

We now present a parameterized secure communication
scheme without SLA and analyze its performance. Our theo-
retical results in Theorem 4 confirm that the bounds given in
Theorem 1 are achievable and tight.

A. Scheme Description

1) Scheme 1: The Secure Communication Scheme Without
SLA:
1) Torus Partition: Divide the unit torus into a set of regular

ci-logn
. . nPs
constant [see Fig. 2(a) for an illustration].

2) Setting Transmission Range: Set r,, = V5 ¢, Which
guarantees that each node can directly communicate
with any node in the same cell or in the immediate
vertical and horizontal neighboring cells.

3) Routing: Packets are delivered from the source to the
destination in two phases. First, they are forwarded
along the cells in the row that contains the source cell
until they reach the column that contains the destination
cell. In the second phase, packets are forwarded along
the cells in the same column to their destination. The
L-shaped curve connecting the source and destination
as described above is called S—D routes [shaded area in
Fig. 2(a)].

4) Cell Scheduling: A cellular time-division multi-
access (TDMA) transmission scheme is used, in
which each cell becomes active, i.e., its nodes can
transmit successfully to nodes in the same cell or in
neighboring cells, at regularly scheduled time slots
(cf. Proposition 1).

5) Packet Transmission Scheduling: Each packet will have
a timestamp ¢, denoting the timeslot the packet was
transmitted by the source. When a cell becomes active,

cells, each of side length ¢,, = , where c¢; is a
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it will select the packet with the smallest ¢; in the cell
to transmit. If there are ties, choose the packet from the
S-D pair ¢ that maximizes (¢, + 4) mod n. Note that
only one packet is transmitted per time slot per cell.”
Our packet transmission scheduling scheme will treat
the packets from different sessions equally and prefer
the oldest packet in each session.

6) Secure Inter/Intracell Transmission: All the packets will
be transmitted on primary secure links. When a node
needs to transmit a packet to its neighboring cell, it al-
ways transmits the packet to one of its friends in that cell
(secure intercell transmission). Otherwise, it will drop
the packet. When a node needs to transmit a packet to
the node in the same cell and they are not friends, the
node will find one of their common friends in the same
cell as the relay node (secure intracell transmission). If
it cannot find one, it will drop the packet.

Here, we give some primary results on the scheme described.
We first recall the following result on the property of cell sched-
uling in Step 4, which is widely known now [2].

Proposition 1: Under the protocol model, there exists an in-
terference-free schedule such that each cell becomes active reg-
ularly once in K2 time slots without interfering with any other
simultaneously transmitting cell. Here, K depends only on A
and is independent of 7.

Next, we show that the probability that the scheduled packet
is dropped in Step 6 in Scheme 1 approaches to zero as n — oo.
This claim is true due to the following lemma.

Lemma 1: In Scheme 1, we can always find a constant c;
such that we have the following.

1) Each cell contains ©(logn/ps) nodes w.h.p.

2) Given an arbitrary node i, each cell contains O(logn)
friends of ¢ w.h.p.

3) Given two arbitrary nodes ¢ and 7 in the same cell, either
they are friends or they have at least one common friend in
that cell w.h.p.

Proof: See Appendix B. ]

Lemma 1 shows that, for any source node S [see Fig. 2(a)
for an example], it can always find a friend in each neighboring
cells w.h.p. If multiple friends are available in a cell, S ran-
domly chooses one and defines this friend as its secure relay
in this cell. With the routing rule in Step 3, this friend-finding
procedure (i.e., each secure relay find its own friends in the fol-
lowing neighboring cells) is continued until there is a secure
backbone [regular solid lines in Fig. 2(a)] spanning all cells.
Based on Lemma 1-2, every node can construct its own secure
backbone8 as described. Therefore, each packet can follow this
secure backbone until it reaches the secure backbone node k in
the same cell as the destination node D through secure inter-
cell transmissions. If £ is a friend of D, it can directly transmit
the packet to D. Otherwise, it needs to find a common friend j
to relay the packet, which is guaranteed to happen w.h.p. ac-
cording to Lemma 1-3. Therefore, there are at most two secure

TEach S-D pair is identified by the source node’s ID.

8Note that the source node does not need to construct this secure backbone
beforehand. It will emerge gradually with the data flow and extend to a new cell
when the source node’s packet goes through that cell. Here, we just show that
there exists such a secure backbone for each node to facilitate the analysis in
Section IV-B.
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intracell transmissions [bold solid lines in Fig. 2(a)] for each
packet w.h.p.

B. Performance Analysis of Scheme 1

Note that Scheme 1 only operates on primary secure
links. These links will be established after direct neighbor
authentication operations, which only needs to local broad-
casts. Obviously, the overhead and the delay incurred here
is negligible compared to multihop data communications
(cf. [14, Section II-B]). Therefore, in what follows, we only
concentrate on the throughput and delay in the data delivery
phase.

Our analysis on Scheme 1 mainly relies on some well-known
results about two-dimensional (2-D) arrays [28], [29], which
have been extensively studied in the parallel and distributed
computing research community. Therefore, we first review
some related definitions and results.

A 2-D [ x | array consists of I, = [? processors or processing
units (PUs) arranged in a 2-D [ x [ grid. Each PU is connected
to its four neighbors via point-to-point wired communication
links. In the multiple-instruction—multiple-data (MIMD) mode,
the PUs perform routing in a series of synchronous time slots.
During each time slot, a PU may send one packet to its neigh-
bors along each of the (up to four) links incident on it. A PU may
also receive one packet along each of its incident links during a
time slot. The PUs can be indicated by their coordinates within
the array; the PU at position (7, j), 0 < ¢, j < [, is denoted P; ;.
Here, position (0, 0) lies in the upper left corner [see Fig. 2(b) for
an illustration]. A torus is an array with so-called wraparound
links, which connect P; o with P;;_; and Py ; with P4 ;.
Throughout this paper, all results about an array can be extended
to the corresponding torus, so we do not distinguish tori from
arrays hereafter and simply call them arrays?® for simplicity. An
h—h routing problem on 2-D arrays refers to the scenarios that
each PU is the source and destination of exactly h packets.

Lemma 2: ([28] and [29]) h—h routing on [ X [ arrays can be
performed deterministically in h-1/2+O(h>/6.12/3) time slots,
with average packet delay ©(1).

We now point out the correspondence between Scheme 1 and
the optimal communication scheme for the 2-D array. Let

e
Cn logn

Cell C; ; in Fig. 2(a) corresponds to PU P; ; in Fig. 2(b) for
0 < 4,7 < [. Without loss of generality, we assume that
each source node has only one packet in our WANET model,
so there are ©(logn/py) packets generated in each cell based
on Lemma 1-1. By letting

h =0©(ogn/py) 4

we have formed a correspondence in the traffic pattern between
our WANET model and the array, i.e., we associate the h packets
generated in a PU with the packets of the nodes contained in the
corresponding cell. Routing and scheduling algorithms used by
the array to achieve the performance given in Lemma 2 are the
same as the schemes we described in Steps 3 and 5, respectively.

9Also notice that, throughout this paper, we only consider 2-D arrays within
the MIMD mode.
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In fact, Scheme 1 simulates the optimal communication scheme
for the array by requiring the scheduled node in cell C; ; to
perform the communication operation performed by PU F; ; of
the array.

Next, we discuss the difference between our WANET model
and the array. Note that each PU can transmit and receive up
to four packets in each time slot, while in our cell scheduling
scheme in Step 4, each cell will be scheduled to be active once
in K2 time slots (cf. Proposition 1). Therefore, compared to the
array, the scheme performed in WANET will have a slowdown
by no more than a factor of 4K?2.

Therefore, we make a correspondence between the perfor-
mance of secure intercell communications with that of commu-
nications between neighboring PUs. Based on Lemma 2, we can
conclude that the total number of time slots needed to deliver
n packets (one for each source node) to their destination nodes’
cells is equal to

o (41{2%) K2 g () P19 o ( n-logn

Dy

(&)

We have already shown in Section IV-A that each packet only
needs at most two secure intracell transmissions, corresponding
to 2K 2 time slots. Therefore, the total number of time slots
needed to deliver n packets to their destination nodes, denoted
as ¢(n), can still be expressed in (5). Since only one packet has
been delivered for each node, we obtain per-node throughput
as 7 = 1/¢(n) packets/time slot. Since we assume the con-
stant-packet-size model and that one packet can be transmitted
in each time slot, we have T'(n) = 1/p(n) packets/time slot.
From Lemma 2 and equation (3), we can directly obtain D(n) =
O(y/n - py/logn) time slots.

Based on the above analysis, we have in fact given a construc-
tive lower bound on 7'(n) and upper bound on D(n) without
SLA as follows.

Theorem 4: When py = Q(logn/n), the secure throughput

without SLA is T'(n) = (\/T)

packets/time slot, and

n-logn

n-pf
logn

the corresponding delay is D(n) = O ( ) time slots.

In particular, when py = 1 or without any security re-
quirement, we can obtain Gupta and Kumar’s result [1].
El Gamal et al [3], [10] reprove their result under the
constant-packet-size model with complicated analysis on a
discrete-time queueing network. Here, we follow Kulkarni
and Viswanath’s methodology [2] to avoid these complicated
queueing analyses by exploiting the similarity between the
cell-based network model and the array. Therefore, our proof
is desirable in its simplicity. Moreover, it provides some nec-
essary background for understanding our more complicated
scheme designed with SLA.

V. NETWORK PERFORMANCE WITH SLA

In this section, we analyze achievable secure network per-
formance when SLA is allowed. We first present the following
schemes to achieve the performance bounds in Theorem 2.

A. Scheme Description

As aprelude to describing the scheme, we review the SLA op-
erations defined in our previous work [14]. When pf - n-7r2 >
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Fig. 3. Multihop SLA operations. Here, solid lines and dashed lines represent
primary secure links and primary SAs, respectively. Solid and open points rep-
resent nodes on the giant cluster (secure backbone) or not, respectively. Node 2
is isolated and needs to be connected with the secure backbone with the help of
its friend, e.g., node k.

co for some constant ca, the network consisting of nodes and
primary secure links (modeled as primary secure graph) is in
the percolated phase, i.e., most nodes are connected by a secure
backbone (also called the giant cluster in percolation theory)
with primary secure links. There are still p; - n nodes discon-
nected from the giant cluster, where 0 < p; < 1 is a constant
only depending on co. We call all these nodes isolated nodes,
though their degrees in the physical graph may be larger than 1.
Take node i in Fig. 3 as an example. When r,, = ©(1/,/npy)
and r,, = Q(1/v/nlogn) (or more precisely, when 7, is set
as in Step 2 of Scheme 3'), even if node i is isolated, w.h.p.
there exists at least one node in its transmission range, e.g.,
node j, belonging to the secure backbone. Also note that when
ps = Q(logn/n), w.h.p. node 7 has at least one friend, e.g.,
node k, in the secure backbone (cf. Lemma 3 for a justification
of these two statements). Therefore, with the help from node j
and k, we can perform multihop SLA as the following.

1) Scheme 2: The Multihop SLA Scheme:

1) Isolated node ¢ first sends a secure connection request
(SEC-REQ) message to one of its neighboring nodes j
in the secure backbone.

2) Node j will forward this SEC-REQ message to one of
its neighbors in the secure backbone, as long as the latter
never receives this message.

3) When the receiver, say, node k, receives the SEC-REQ
message, it will check whether node ¢ is its friend. If it is
not the case, node k will forward the SEC-REQ message
as described in Step 2. Otherwise, it will send back a
secure connection approval (SEC-APV) message to the
sender. This process will continue until node j receives
the SEC-APV message.

4) Nodes 7 and j mutually authenticate each other and se-
cure the physical link ¢ « 7.

One important property of Scheme 2 we obtained in [14] is that
node k is O(logn) hops away from node j. Put it in another
way, in order to find a friend of node ¢ in the secure backbone,
we need to visit O(logn) nodes w.h.p.

Also note that one prerequisite of Scheme 2 is that every node
should know whether it is an isolated node or a node in the
secure backbone. This necessitates a secure network partition
detection algorithm performed in each node to decide its role in
the primary secure graph. Our previous research [14] shows that
in the percolated phase, isolated nodes only form clusters with
size O(1) even when n — oo. Therefore, each node can send a
probe message, which will be forwarded only through primary
secure links. If the probe message can only go through O(1)
hops, w.h.p. the node is isolated. The associated overhead for the
secure network partition detection is on the same order of direct

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 2, APRIL 2011

e
=
o)
*\
O
s ©
&
e
=)
o

BT
A
o

(i

S| g s
Sti0 o i@ X.
N \

secure inter-squarelet  squarelet at
transmissions  position (/-1, /-1)

(a) (b)

PU at position (I-1, I-1)

Fig. 4. Secure communication Scheme 3’ with SLA. (a) Dividing unit torus.
Solid lines and dashed lines represent primary secure links and primary SAs,
respectively. The shaded area represents the squarelets that can be covered by
the secure backbone of source node \S. (b) Corresponding ! X [ array. Solid
points and open points represent PUs on and off the giant cluster, respectively.

neighbor authentication, as they both require communications
within O(1) hops, which can be ignored as compared to the
network-wide multihop communications.

Next, we present a primary secure communication scheme for
S-D pairs on the secure backbone, and our task is to deliver a
packet from the source node to the squarelet in which the desti-
nation node dwells.

2) Scheme 3': Secure Communications on the Secure
Backbone:

1) Torus Partition: Divide the unit torus into a set of regular
squarelets, each of side length

cg logn if — Q ( 1 )
v n ’ by logn
Sp = . ¢ (6)
N otherwise
npf

where c3 is a constant. Note that a cell used in Scheme 1
is much larger than a squarelet in general. In fact, a cell
contains O(logn) squarelets when p;y = o(1/logn)
[see Fig. 4(a) for an illustration].

2) Setting Transmission Range: Set r,, = V5 s, which
guarantees that nodes in neighboring squarelets can
communicate directly. Also notice that this r,, guaran-
tees that the primary secure graph is in the percolated
phase w.h.p. (this is a direct consequence of Theorem 2
in our previous work [14]).

3) Squarelet and Packet Transmission Scheduling: The
squarelet scheduling and the packet transmission sched-
uling in each active squarelet are the same as the cell
scheduling in Step 4 of Scheme 1, and the packet
scheduling in each active cell described in Step 5 of
Scheme 1, respectively.

4) Secure Intersquarelet Transmission: All the packets will
be transmitted on primary secure links crossing neigh-
boring squarelets. In other words, when a node needs to
transmit a packet to its neighboring squarelet, it always
transmits the packet to one of its friends in that squarelet.
As what we have done in Scheme 1, we can establish a
correspondence between our squarelet system and the
I x [ array by setting | = [1/s,,]. See Fig. 4 for an il-
lustration. Here, two neighboring PUs will have a link
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3) Scheme 3: The Secure Communication Scheme With SLA:
* Phase 1—Primary secure link establishment and secure

| |
[ I JD:_‘

Fig. 5. Routing scheme on the percolated grid. Here, solid lines represent se-
cure links between neighboring PUs/squarelets. Solid and open points represent
PUs on and off the giant cluster (secure backbone), respectively. The shaded area
represents the finite clusters of PUs disconnected from the secure backbone, and
dashed lines represent borders of these clusters.

in the array if the packet holder in the corresponding
squarelet can find a friend in another squarelet. There-
fore, the array we obtained in Fig. 4(b) is a faulty array
(which will be defined more precisely soon) with link
failures, where a failure indicates there is no friend in a
neighboring squarelet.

5) Routing: Since here we only consider the intersquarelet
communications, routing between squarelets is equiv-
alent to that operating on PUs. Therefore, we use the
faulty array as an example for a cleaner presentation.
Note that the corresponding array is also percolated, and
we can guarantee that there exists a path connecting the
S-D PUs if the corresponding S—-D node pairs are on
the secure backbone. See Fig. 5 for an illustration. We
first fix one shortest path of length k connecting the S-D
PUs in the array without faulty links, which consists of
square nodes in Fig. 5. Our routing algorithm attempts
to follow this shortest path until it encounters a failure
link, e.g., at node ¢. At this point, we simply “circumnav-
igate” the cluster of isolated nodes (the shaded area) that
blocks the path until either the destination PU is reached
or the algorithm is back onto the original shortest path
to it (e.g., reach node m). Since the average size of the
cluster of isolated nodes is a constant w.h.p., the path
length of the route (bold lines in Fig. 5) found by our
scheme is O(k) on average [30].

We next summarize some basic results about torus partition
in Scheme 3’ in the following lemma.
Lemma 3: In Scheme 3, we can always find a constant c3
such that we have the following.
1) Each squarelet contains © (ns?) or Q(logn) nodes w.h.p.
2) Each squarelet w.h.p. contains © ((1— p;)ns?) and
© (pms,zl) nodes on and off the secure backbone, respec-
tively, where 0 < p; < 1 is a constant.
3) Given an arbitrary node ¢, each squarelet contains at least
one friend of ¢ with probability p;, independently of each
other, where p; is a constant.

network partition detection: After this phase, each node
finds its neighboring friends and knows whether it is on
the secure backbone.

Phase 2—Connecting isolated nodes to the secure back-
bone: After this phase, each isolated node will connect to
a node on the secure backbone with a derived secure link.
We further require that each isolated node only connects
to a secure backbone node in the same squarelet. For each
squarelet, this phase consists of the following three steps.

1) We first select a secure backbone node for each iso-
lated node in the same squarelet. Given a squarelet,
denote NI and NS as the node set of isolated nodes
and secure backbone nodes in that squarelet, respec-
tively. For u € NI, ¥(u) = v means that we select
node v € NS for node u. Then, we choose v in such
a way that for all v € NS, we have [{w € NI :
(w) = v}| < [INT|/NS]].

2) See Fig. 3 for an example. When node j € NS is
selected for node ¢ € NI, we call node j as the
deputy of node 7. We will run Scheme 2 for node 3.
Note that Scheme 2 has two multihop communica-
tions on the secure backbone. One is from node j to
node k, and the other is from node % to node 5. These
two communications can both be implemented with
Scheme 3'.

3) Isolated nodes transmit the packets generated by
themselves to their deputies, respectively.

e Phase 3—Secure-backbone communication: After Phase 2,

all the packets generated by sources are redistributed on
secure-backbone nodes only, and then we can utilize
Scheme 3’ to deliver these packets from the source nodes
or deputies to their corresponding destination squarelets
[solid lines from S to ¢ in Fig. 4(a)]. More precisely, if
the destination node is also on the secure backbone, we
define the squarelet in which it dwells as the destina-
tion squarelet. Otherwise, we define one of the closest
squarelets to the destination node, which is also covered
by the secure backbone, as the destination squarelet.
Note that the destination squarelet is always covered by
the transmission range of the destination node, which is
guaranteed by our torus partition in Scheme 3.

Phase 4—Last-hop delivery: See Fig. 4(a) for an example.
If node 7 is a friend of the destination node D, then 7 can
directly transmit the packet to D. Otherwise, we need to
secure link « — D. This can be done by utilizing Scheme 2
again: We find a friend of D, say node k, and then secure
the link ¢ — D with the help of k. As described in Step 2
of Phase 2, we need to use Scheme 3’ twice to fulfill this
operation.

4) Given an arbitrary node ¢, there exists at least one node
in node ¢’s transmission range that belongs to the secure
backbone, and node ¢ has at least one friend in the secure
backbone w.h.p.

Proof: See Appendix B. [ |
Based on these discussions, we now give the complete de-

scription of our scheme supporting secure communications be-
tween all S-D pairs as the following:

B. Performance Analysis of Scheme 3

We first analyze the performance of Scheme 3’. Our analysis
mainly relies on the following results on faulty arrays. A g-faulty
array refers to the array in which each link may fail indepen-
dently with some probability bounded above by a fixed value g.

Lemma 4: There exists a scheme for a g-faulty [ x [ array to
solve the 1-1 routing problem in ©([) time slots with probability
1 — 1/l when ¢ is small enough. Note that for faulty arrays, we
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are required to route packets on live links, and we only need to
route packets among all PUs connected by live paths.

Remark: Mathies proves Lemma 4 in [30] for ¢ < 0.5. It
is trivial to extend Lemma 4 to the h—h routing problem: in
the same way, we can perform the h—h routing on a g-faulty
l x [ array within ©(h - [) time slots with the average packet
delay of ©(l) w.h.p. Compared to Lemma 2, the result here
shows that when ¢ < 0.5, the running time for a g-faulty array
is almost the same as if there were no faults in the array links
(up to constant factors), if a routing scheme similar to the one
we described in Step 5 in Scheme 3’ is adopted. It is trivial to
find the correspondence between our Scheme 3’ and the (1 —
p1)-faulty array. Therefore, the above results can be leveraged
to analyze Scheme 3’ when p; > 0.5, which can be easily
achieved by tuning the parameter c, mentioned in Section V-A.
Following the same argument given in Section I'V-B, we obtain
the following result.

Corollary 1: When each node on the secure backbone has
at most O(1) packets, Scheme 3’ can deliver all these packets
within ©(n - s,,) time slots with the average packet delay of
O(1/s,) w.h.p.

Proof: This can be directly obtained from Lemmas 3 and
4. |

We now analyze the performance of Scheme 3. Note that
Phase 1 and Steps 1 and 3 in Phase 2 only need local broadcasts,
which will be dominated by other phases involving Scheme 3’.
We thus ignore them in our asymptotic analysis.

Step 1 in Phase 2 guarantees that every secure-backbone
node will act as the deputy for O(|NI|/|NS|) isolated nodes.
From Lemma 3-2, we know that it is equal to ©(1). There-
fore, every secure-backbone node only needs to handle ©(1)
SEC-REQ or SEC-APV messages. Then, the performance of
Scheme 3’ used in Step 2 of Phase 2 can be bounded as in
Corollary 1. For the same reason, the network performance in
Phase 4 is also bounded as in Corollary 1. From Steps 1 and 3
of Phase 2, we can guarantee that each secure-backbone node
only holds ©(1) packets at the beginning of Phase 3, assuming
that each source node only generates one packet. Therefore, we
can apply Corollary 1 again to Phase 3. To sum up, the perfor-
mance of Scheme 3 is on the same order of that of Scheme 3/,
which is characterized by Corollary 1. By substituting (6) into
Corollary 1 and following the argument given in Section IV-B,
we can obtain the bounds on the secure throughput and delay.

Based on the above analysis, we have in fact obtained a con-
structive lower bound on 7'(n) and upper bound on D(n) with
SLA as follows.

Theorem 5:

1) When py = Q(logn/n) and also pf = O( /1o

the secure throughput with SLA is T'(n Q(\/ps
packets/time slot, and the correspondmg delay is D(n )

O(4/n/py) time slots.

2) When py = Q(1/logn), the secure throughput with SLA
is T(n) = Q(1/4/n - log n) packets/time slot, and the cor-

= O(y/n/logn) time slots.

VI. OPTIMALITY OF OUR SCHEMES

responding delay is D(n)

In this section, we present upper bounds on the secure
throughput with or without SLA. The corresponding lower
bounds on the e2e delay will also be obtained. Since the upper
bounds derived here match the constructive lower bounds
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obtained in Sections IV and V, we complete the proof of
Theorems 1 and 2 of this paper under the protocol model. The
results in this section also show that the schemes we designed
in Sections IV and V are optimal at least in the order sense.
Note that we defer the proofs of Theorems 1 and 2 under the
physical model to Appendix C.

A. Upper Bounds on Secure Throughputs

The secure throughput of random networks defined in
Section III-A is limited by the following three constraints. The
maximum feasible throughput satisfying all these constraints
is an upper bound on the secure throughput. While there may
be other constraints under secure throughput as well, the con-
straints we consider here are sufficient to provide tight bounds,
as the upper bounds obtained here match the constructive lower
bounds provided in Sections IV and V.

1) Physical-Connectivity Constraint: We first need to make
sure that the network is physically connected, which constrains
ry as r, = Q(y/logn/n) [25], [31].

2) Secure-Connectivity Constraint: The throughput of se-
cure WANETS is constrained by the need to ensure that the net-
work is securely connected, so that every S—D pair can commu-
nicate through at least one secure path. Our previous work [14]
quantifies this constraint as follows (cf. Section II-B):

e 1, =1 ( loﬂ without SLA;

* T, = Q(I/M) with SLA.

3) Interference Constraint: The secure throughput is also
constrained by interference. Since the wireless channel is a
shared medium, under the protocol model, two nodes simulta-
neously receiving a packet from different transmitters must be
separated by enough distance. This implies a constraint on the
maximum number of simultaneous transmissions in torus A.
We characterize this constraint with the following lemma.

Lemma 5: The interference constraint requires that 7'(n) <

, where c3 is a constant.

Proof. We first consider the case when py = 1. Let L be
the expected distance between S—D pairs within the unit-area
torus, and then L = ©(1) w.h.p. (cf. [2, Claim 3.1 (3)]) Thus,
on average each packet needs to traverse at least @( ) hops
to reach the destination. Since each node generates packets at
rate T'(n), this means that the packets per time slot being trans-
mitted by the whole network are at least n7'(n ) L Under the
protocol model, each transmission “consumes” area i.e., disks
of radius %rn around every transmitter should be disjoint [1].
Since the area “consumed” is bounded above by the total area
|A| = 1, the maximum number of feasible simultaneous trans-
missions is no more than ﬁzr%. Hence, we have the constraint

Lew—s = 1m< 2

n:T,

’fL’I“n

The throughput of network when py = 1 is at least as large as
the throughput of the network when py < 1 (this is trivially true
by not using unsecured physical links), s
bound for T'(n) when p; < 1. [
By combining the above constraints, we obtain the following
theorem on the upper bounds on the secure throughput.
Theorem 6:
1) When py = Q(logn/n), the secure throughput without

SLAis T(n) = O ( ps

n-logn

packets/time slot.
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2) When p; = Q(logn/n) and also pf = O(1/lo
the secure throughput with SLA is T'(n ,/

packets/time slot.
3) When py = O(1) and also p;y = Q(1/logn), the se-
cure throughput with SLA is T'(n) = O(1/y/n -logn)

packets/time slot.

B. Lower Bounds on Secure Delays

Lower bounds on secure delays can be analyzed in a similar
fashion. The only thing we need to do is to replace the interfer-
ence constraint with the following path-length constraint.

1) Path-Length Constraint: Since only a single packet can be
transmitted per cell per time slot, the e2e delay is lower bounded
by the number of hops on the path. Let L be the expected dis-
tance between S-D pairs. We then have D(n) > L. If we re-
quire that the packet is always transmitted through the secure
path, D(n) is even larger, therefore D(n) = Q(1/r,,).

By combining the above constraint with physical and secure
connectivity constraints, we obtain the following theorem for
the lower bounds on the secure delay.

Theorem 7:

1) When py = Q(logn/n), the secure delay without SLA is

D(n) = Q (1 /{;gpf)
2) When p; = Q(logn/n) and also pf O(1/logn), the

secure delay with SLA is D(n) = Q(y/n / ) time slots.
3) When py = O(1) and also pf = Q( /1o ) the secure

delay with SLA is D(n) = Q(y/n/logn) tlme slots.

time slots.

VII. CONCLUDING REMARKS

In this paper, based on a general random network model, the
asymptotic behaviors of secure throughput and delay with the
common transmission range 7, and the probability p s of neigh-
boring nodes having a primary security association are quanti-
fied when the network size n is sufficiently large. The costs and
benefits of secure link augmentation operations on the secure
network performance are also analyzed.

APPENDIX A
ASYMPTOTIC NOTATION

We use the following standard notation throughout the paper.
For two nonnegative functions f(-) and g(-), the following
apply.

1) f(n) = O(g(n)) means that there exists a constant ¢ and
an integer N such that f(n) < ¢- g(n) forn > N (ie.,
asymptotic upper bound).

2) f(n) = o(g(n)) means that lim,,_,. f(n)/g(n) =0 (i.e.,
asymptotic insignificance).

3) f(n) = Q(g(n)) means that there exists a constant ¢ and
an integer N such that f(n) > c¢- g(n) forn > N (ie.,
asymptotic lower bound).

4) f(n) = w(g(n)) means that lim,, . f(n)/g(n) = o
(i.e., asymptotic dominance).

5) f(n) = ©(g(n)) means that f(n) = O(g(n)) and g(n) =

O(f(n)) (i.e., asymptotic tight bound).
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APPENDIX B
SOME RESULTS ABOUT TORUS PARTITIONS
IN SCHEMES 1 AND 3’

As a prelude, we first establish the following Chernoff
bound [32] for a Poisson random variable X of parameter \.
Lemma 6: Let X be a Poisson random variable of
parameter A. We have

—A )@
Pr(X >a] < w, fora > A @)
a(l
and
—A )@
Prix¥ <a <V pora < 8)
aa

For 0 < ¢ < 1, Chernoff bounds given in (7) and (8) can be
combined and simplified to

Pr|X — Al > 6A] < 2 %°V2, )

Proof: Note that for any random variable X > 0, and con-
stants a, t > 0, we have X > q if and only if e*¥ > ¢!, Thus,
by Markov’s inequality, we have

E tX
PrX > o] < 2L

et(z

For a Poisson random variable X, we have

tk ,—\\k
X7 eFem A
P
keN
(Ae?)
—o Y B
keN '
S R e (CEs

Therefore, we have Pr[X > a] < M Dgmta = Al =)~
For a > A, we choose ¢t = log(a/A) > 0 and obtain (7)
Following a similar approach, we can obtain (8) for a < A by
choosing t = log(a/\) < 0.

By substituting a = (1 4 6)\ into (7), we obtain

8

A
Pr[X > (1+6))] < (W) < e M4 (10)

By substituting a = (1 — ) into (8), we obtain

_s A

Pr[X < (1-6)) < <(1—65W> <e M2 (11

Therefore, we can obtain (9) by combining (10) and (11). [ |
Then, we prove Lemma 1 for Scheme 1 in Section IV-A and
Lemma 3 for Scheme 3’ in Section V-A. We first show that these
two lemmas hold when node positions follow the Poisson point
process, i.e., P,.
Proof of Lemma 1 with Py,:

1) Based on the description of Scheme 1 in Section IV-A, we
know that there are m = | L | = B -
number of nodes in each cell is a Poisson random vari-
able X with parameter A = ncZ = c1logn/py, where
c1 is a constant and py = Q(logn/n). For 0 < § < 1,

let A,, be the event that there is at least one cell with more

cells, and the
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than (1 + &)\ or less than (1 — §)A nodes. By the union
bound and (9) in Lemma 6, we have

cp62

2 1\ #r
Pr[A,] <mPr[|X — A| > 6)] < —21 (—) g

2)

3)

1

~

cilogn \ n

as n tends to infinity for any ¢; > 4/62. Therefore, each
cell contains ©(\) = O(logn/ps) nodes w.h.p.

Given an arbitrary node 7 in a particular cell, the number
of ¢’s friends in that cell is a Poisson random variable Y of
parameter A’ = psA = ¢qlogn. For 0 < § < 1, by the
Chernoff bound in (9), we have

1 c16%/2 1\2
Pr[ly — N |>6)N] < 2 (—) <2 (—)
n

n

for any ¢; > 4/62. Applying union bound over all m <
n cells in the network, the probability that this happens in
any cell is at most 2/n, which tends to zero as n tends to
infinity. Therefore, each cell contains ©()\') = O(logn)
friends of node 7 w.h.p.

Consider an arbitrary cell. All nodes in this cell and
primary secure links between these nodes form a sub-
graph, which can be modeled as an Erdos—Rényi random
graph [33], [34]. From the above proof, we know that the
number of nodes in each cell is ©(logn/ps) and that the
average node degree in this subgraph is ©(logn), which
is larger than the logarithm of the number of nodes in
the cell, given that p; = (logn/n). Therefore, by the
properties of the Erdos—Rényi random graph [33], [34],
this subgraph is connected, i.e., there exists a secure path
connecting arbitrary node pairs in the cell. Because all
nodes in the cell are in the transmission range of each
other, to find this secure path only needs one-hop local
communications, which can be ignored compared to the
multihop data communications. ]
Proof of Lemma 3 With P,,:

Based on the description of Scheme 3’ in Section V-A, we
know that when p; = o(1/logn), there are m = 1/s2 =
% squarelets, and the number of nodes in each squarelet

is a Poisson random variable X of parameter A = ns2 =

c3/py, where c3 is a constant and py = Q(logn/n) and
ps = o(1/logn).For 0 < 6 < 1, let A,, be the event that
there is at least one squarelet with more than (1 + §)\ or
less than (1 — §)\ nodes. By the union bound and (9) in
Lemma 6, we have

cq62

2 1\ 2
Pr[A,] <mPr[|X — \| > )] < —£L <_> -0

2)

C3 n

as n tends to infinity for any c3 > 4/62. Therefore, each
squarelet contains ©(\) = © (ns2) nodes w.h.p.

When py = €(1/logn), the proof of Lemma 3-1
is straightforward and is omitted here due to space
constraints.

Suppose there are Z nodes in the network, where Z is a
Poisson random variable of parameter n. From our pre-
vious work [14], we know that (1 — p;) - | Z| nodes (called
backbone nodes) are connected by a secure backbone (also
called the giant cluster in the percolation literature) with
primary secure links. There are still p; - |Z| nodes (called
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isolated nodes) disconnected from the giant cluster, where
0 < p; < lisaconstant only depending on parameter c3 in
Scheme 3’. From the randomness of the construction of the
network model, we know that all backbone nodes or iso-
lated nodes are also uniformly distributed in the unit torus.
Therefore, following the similar argument in the proof of
Lemma 3-1, we can prove that each squarelet w.h.p. con-
tains © ((1 — p;)ns2 ) backbone nodes and © (p;ns2 ) iso-
lated nodes.

3) Because the number of nodes in each squarelet is a
Poisson random variable independent of that in any other
squarelet, and p;’s between different node pairs are also
independent, the event that a squarelet contains at least one
friend of a given node 7 is independent of that in any other
squarelet. Next, we show that this event happens with
probability p;, which is lower-bounded by a constant. Re-
call that in Scheme 3’, when py = (1/log n), the number
of nodes in each squarelet, i.e., | X|, is lower-bounded by
(1 — 8)c3 logn. We thus have

m=1-(1-ppH

(1-8)c3 logn
>1-(1- & > 1= g (1-8)eacs
logn

where 6, c3, and c4 are all constants. When py =

o(1/logn), the number of nodes in each squarelet, i.e.,

| X|, is lower-bounded by (1 — §)cs/ps. We thus have
p=1-(1—-ppH

>1—(1— pf)(1—5)ca/Pf > 1— e (1=8cs

where 6 and c3 are all constants.

4) First, from (6) in Scheme 3’, we directly arrive at the con-
clusion that each squarelet contains at least one node on
the secure backbone w.h.p. Since 7,, = \/Ssn, we know
that in node ¢’s transmission range, there exists at least
one squarelet. Therefore, there exists at least one node in
node ¢’ s transmission range that belongs to the secure back-
bone w.h.p. Second, recall that in Scheme 3’ we can guar-
antee that the primary secure graph is in the percolated
phase w.h.p.. We also have proven in our previous work
(cf. [14, Theorem 2]) that when the primary secure graph
is in the percolated phase, each node belongs to the se-
cure backbone with a probability S, where S is a constant.
When p; = Q(logn/n), there are at least ©(log n) friends
of node ¢ in the whole network, and each friend belongs
to the secure backbone with the probability S. From the
Chernoff bound, it is easy to show that at least one of these
O(logn) friends belongs to the secure backbone. ]

Note that X, can be well approximated by P,, as » tends to in-
finity. Therefore, by the de-Poissonization technique introduced
in [25, p. 37, Section 2.5], we can prove that Lemmas 1 and 3
also hold when nodes follow a uniform point process, i.e., &,
for n tending to infinity. Due to space constraints, we omit this
routine proof here.

APPENDIX C
SECURE NETWORK PERFORMANCE UNDER
THE PHYSICAL MODEL

Here, we show that the same results on secure WANETS as in
Theorems 1 and 2 can be obtained under the physical model.
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Fig. 6. Cell scheduling scheme. Here is an illustration of the cells being divided
into K2 groups for the case of K = 3, i.e., nine groups. All the dark cells that
are in group 1 transmit in the same time slot. In the next time slot, all the cells
in group 2 transmit, and so on.

We first show that the constructive lower bounds provided in
Sections IV and V will not be changed under the physical model.
Note that the protocol model only relates to the cell scheduling
part of schemes proposed in Sections IV and V. Therefore, if
we can show that the same property of the cell scheduling as
described in Proposition 1 still holds for the physical model,
we are done. In what follows, we prove this claim based on the
assumption that o > 2.

Proof of Proposition 1 Under the Physical Model: We use
the same cell scheduling scheme as in Proposition 1 under the
protocol model (see Fig. 6 for an illustration). The received
power of the desired signal is lower-bounded by

Po-Gij =Py -di* > Py - (V5e,) ™
where ¢, is the side length of each cell.

We then bound the interference, i.e., I. Consider a particular
cell C. If one node from this cell is transmitting, all other si-
multaneous transmissions may occur in cells belonging to the
same set of cells that are as a vertical and horizontal distance
of exactly some multiples of a particular integer K. Actually,
the interfering cells are placed along the perimeter of concentric
squares, whose center is C, and each square contains 2K i(7 =
1,2,..., L) interfering cells as depicted in Fig. 6, where L is
the number of such concentric squares. For example, the first
concentric square contains eight interfering cells, whereas the
second concentric square contains 16 interfering cells, for the
particular case where K = 4. Each node in the intended cell C
transmits data packets to nodes in the four neighboring cells.
Then, the distance between these nodes (the possible receivers
in the four adjacent cells) and the interfering ones is at least
(K — 2)epni(i = 1,2,...,L). As we are considering a lower
bound, we take the worst case. Then, the number of concen-
tric squares (irrespective of the position of the intended cell, be-
cause the worst case is when the intended cell is at one corner
of the area) is at most L. < fﬁ] . We proceed to upper-bound
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the interference at the receiver j as

Z P g-e (Recall that S is the
R concurrent transmitter set)
kesS\{j}

i P, - 2Ki
— -2) an]O‘

< % 1+AL$1“dx
= g |1 e )
- [(K%%]a (573) * ez (o)

<esmm—=—=  (Recall thata > 2)
[(K = 2)en]

where c5 is a positive constant. Therefore, based on the physical
model (cf. Section III-A2), we have
P’n . |4 " —Q
0 + Cs [(K72)cn]"’

C(;Pn
c7c®No + cg Py,

(12)

where cg, ¢7, and cg are constants. Recall that ¢,, < 1. There-
fore, SINR;; in (12) can be lower-bounded by some constant 3,
which guarantees the successful reception of packets at node j.
Thus, we complete the proof that Proposition 1 also holds under
the physical model. [ |
Next, we show that the upper bound on the secure throughput
and the lower bound on the e2e delay provided in Section VI will
not be changed under the physical model. Note that the interfer-
ence model only affects the interference constraint. Therefore,
if we can show that the physical model yields the same inter-
ference constraint, we are done. The following lemma on the
existence of a correspondence between physical and protocol
models on simultaneous transmission sets guarantees that it is
indeed the case.
Lemma 7: Let A(B) = (48(2a 2) (). Suppose that

for A > A(f), the protocol model allows simultaneous trans-
missions for a transmitter—receiver (T-R) pair in a set S. Then,
there exists a power assignment {P;,1 < ¢ < n} allowing the
same T-S pair set S under the physical model with threshold .

Proof: Refer to the proof of Theorem 4.1 in [35, p. 174]. 1
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