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Abstract

Information theoretic Broadcast Channels (BC) and Muitipiccess Channels (MAC) enable a single node to
transmit data simultaneously to multiple nodes, and mleltipdes to transmit data simultaneously to a single node
respectively. In this paper, we address the problem of lafleduling in multi-hop wireless networks containing nodes
with BC and MAC capabilities. We first propose an interfeeemaodel that extendprotocol interference model
originally designed for point to point channels, to inclutie possibility of BC and MAC. Due to the high complexity
of optimal link schedulers, we introduce the Multiuser Gledlaximum Weight algorithm for link scheduling in
multi-hop wireless networks containing BCs and MACs. Giwemetwork graph, we develop nelocal pooling
conditionsand show that the performance of our algorithm can be fulbratterized using the associated parameter,
the multiuser local pooling factorWe provide examples of some network graphs, on which weydpphl pooling
conditions and derive the multiuser local pooling factoe Wove optimality of our algorithm in tree networks and
show that the exploitation of BCs and MACs improve the thigqug performance considerably in multi-hop wireless
networks.

I. INTRODUCTION

The link scheduling problem for multi-hop wireless netweoitkas received significant attention in the past few
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years [1]-[10]. The common assumption in these studies iist{t0-point communication, that is, the possibilities
of network information theory have not been incorporatedhis papgwe expand the scope of link schedulers to
include multi-user communication scenarios using teamsgdeveloped in multi-user information theory. We first
propose a generalized interference model to allow for sughisuser communication scenarios. We then introduce
the Multiuser Greedy Maximum Weight (MGMW) scheduler foethroposed interference model and analyze its
performance for arbitrary network graphs. For that purpagederive special conditions, that we shall call multiuser
local pooling conditions.

In a wireless network with shared spectrum, in generalyfi@tence prevents all point-to-point nodes from being

used at full capacity at the same time. The general objeofitke scheduling problem is to determine which links
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to activate simultaneously in a network. A scheduling pol&said to be throughput optimal if it can keep all the
gueues stable under any stabilizable arrival rate vedtat,is, any arrival rate vector for which the network can be
stabilized. In a multi-hop network with multiple flows anddik link capacities, the throughput optimal scheduling
problem was initially proposed iri_[19]. The complexity ofetloptimal scheme, however, is very high, making
it highly impractical to implement. Recently, researchease focused on certain classes of network interference
models which impose constraints on the set of links that carsimultaneously active in a network. One such
model is thenode exclusive interference modeider which a node cannot simultaneously transmit and vecei
and also cannot communicate simultaneously with more tim@mode. An optimal schedule for the node exclusive
interference model, known as Maximum Weighted Matching,d@omplexityO(N?) [16], whereN is the number

of nodes in the network. A more general interference modtildas:— hop interference model, with being the the
minimum number of hops between any two active links (whkea 1, we end up with node exclusive interference
model). Maximum weight matching is NP-hard fbr> 2 [9].

To address the complexity issue, low complexity suboptiahgdrithms like greedy maximal scheduling have been
proposed. An example of greedy scheduling is Greedy MaxMatthing (GMM) for node exclusive interference
models[[1]. Apart from being suitable for distributed implentation[[12], GMM has the property that at each time
slot the sum of the weight of the scheduled links is no lesa th&action1/2 of the maximum weight[8],[113].
This also leads to the conclusion that it achieves at leasaaidn1/2 of the capacity region of the network][1].
However, the performance of the GMM scheme turns out to bédter than this lower bound in many scenarios,
as shown in[[14] and [6]. The authors [ [6] characterizedpbdormance of the GMM scheme using a parameter
called the local pooling factor, which is obtained from theoWwledge of the network topology, and interference
constraints. It was shown using this local pooling factat tBMM was in fact throughput optimal for many classes
of network graphs including all tree networks, under theeesgclusive interference modél [3].

The past work on scheduling mainly focused on orthogonawe sharingi.e., if a link is active no other
interfering link can be active simultaneously. Link modelssing from the development of network or multi-
user information theory have not been incorporated. Fomgka, usingsuperposition codinga node could
simultaneously transmit to two or more links at a rate lowernt the individual link capacities, but higher than
what could be achieved by time sharing between the indivitioks [15], [17]. Similarly, by usingsuccessive
interference cancellatiotechniques at the receiver node in a Multiple Access Charwel or more nodes could
transmit simultaneously to a receiver node with the aclhikeveate region being larger than the time sharing region.
In a network, nodes may form information-theoretic broatlead multiple access channels using the appropriate
multiuser encoding technique to exploit the entire capaegion of the associated multiuser channels. In this work,
we design a multiuser greedy scheduling algorithm, MGMW, rietworks with multiuser channels. In order to
analyze the performance of MGMW, we develop an interferanoelel and certain associated conditions, which
we refer to asr,,-local pooling conditions. Theseew conditions involve the rates achievable over the multiuser
channels and are different from the classical local pootingditions developed for the point-to-point paradigm.

Based on the multiuser local pooling conditions, we derivetiuser local pooling factorg’,, and show that
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(a) Broadcast capacity region. (b) MAC capacity region.

Figure 1: The capacity regions of the two-user Gaussian BCMAC are illustrated in this figure.

the performance of our algorithm can be characterized usifgIndeed, we show that the efficiency ratio of
MGMW, defined as the largest fraction of the network stabititgion that can be stabilized by MGMW cannot
be less tharr’,. We also show that the efficiency ratio of MGMW can not be laripanos?,, another parameter
derived from theos,,-local pooling conditions. To illustrate our ideas cleanye focus on networks with 2-user
multiuser channels in this paper. While the generalizatinthe n-user case is straightforward, the corresponding
local pooling conditions are mathematically cumbersoneeisequently we do not present them in this paper.

We start the development of MGMW and its performance in $esfllll and[1V respectively, for multiuser
channels in which the rate is a given fixed point on the mudtiusapacity region. We then generalize MGMW
and analyze its performance in Sectigds V VI for the casghich the rate of multiuser channels is variable,
chosen appropriately over the entire capacity region. Arssing conclusion we deduced from our results is that,
for certain network configurations, variable-rate MGMW daad to an inferior performance compared to fixed-rate
MGMW. For both fixed-rate and variable rate MGMW, we consideamples with different network topologies to
understand what topologies lead to throughput optimabty MGMW. If MGMW is not throughput optimal, we
compare its performance with the optimal performance a$ agethe performance of GMM, the greedy scheduler

without multiuser channels. We also simulate MGMW using ebitaary network topology in Sectidn MIlI.

Il. SYSTEM MODEL

We model the wireless network as a grapt), £) whereV is the vertex set representing the nodes &risl the
set of edges. Each edge represents a directed point-tbipdirover which a sender node transmits to a receiver
node. To present ideas clearly, we assume a single-hop retvedfic model. The extension to multi-hop traffic
models is readily possible using techniqueslih [6], [4]. Véswame a time slotted model indexed byn which
the packets arrive at the start of every time slot. The paak®@tals in each link are independent and identically
distributed across time slots, but may be correlated adimlss. Each node keeps a separate queue for every edge
it transmits over. Let),(t) represent the queue length for the packets to be transnoittededgel and A\, denote
the arrival rate for edgé

We assume that a node can communicate to a single nodeair af nodessimultaneously, using information
theoretic broadcast and multiple access channels. Thematmon theoretic Broadcast Channel (BC) occurs when
a transmitting node sends jointly encoded data using aldeitandebook, intended to more than one receiver at the

same time, from which the receivers can decode their reispdoformation. Similarly, a Multiple-Access Channel



(MAC) occurs when a node receives simultaneously from mbaa tone transmitter nodes . The MAC (or BC)
capacity region for a given power constraint is the closuréhe convex hull of the set of rate vectors such that
there exists codebooks at this rate, with an average powewlibe power constraint, such that the receivers can
decode with arbitrarily small probability of errdr [17].d={1 illustrates the capacity region of a two user AWGN
Broadcast Channel and an AWGN MAC. Given the channels, amehgiertain coding schemes, we have certain
BC and MAC rate regions that our rates belong to. In the reshefdevelopment, for the ease of exposition, we
shall refer to these asapacity regios. The important observation is that the MAC and BC rate regire strictly
larger than the respective time-sharing achievable raimms. Any point in the interior of the capacity region is
achievable by choosing the appropriate set of codes. Irptpsr, we restrict attention to BCs and MACs comprised
of only two edgesi.e., a sender can transmit to two receivers (BC) or two sendarsicaultaneously transmit to
one receiver (MAC). In the sequel, we use the term link in aegersense to include point-to-point links as well as
links made up of BC and MAC links. Aoint-to-point linkconsists of a sender node transmitting to a receiver node
over one edge. Anultiuser linkis formed when a node transmits to two receiver nodes oveiraopadges (BC),

or when a pair of nodes transmit to a common receiver nodetaxeedges (MAC). We will specify the nature of
the link wherever necessary. Note that the generalizafi@upresults to the scenario in which a multiuser channel
can involve more than two edges is straightforward. Howetrer algebra involved and the conditions we derive
become highly complicated and we do not present this gdpatiain in this paper.

We assume that a multiuser lifk, [) can operate at any rate on the boundary or the interior ofapeadty region,
denoted byR,,, and that the scheduling policy has the freedom to choosapheopriate rate poinc,, (t), ¢, (t))

in each time slot. In Sectidn]ll, we initially assume a simphetwork model where each transmitter, capable of
multiuser communication chooses a single rate pair frombitxendary of the capacity region for the associated
multiuser link (BC or MAC), and whenever it chooses to traiisoner that link, it uses the associated rate pair.
Thus, for a multiuser linkk, 1), (c.(t), ciu(t)) = (cw,cu) is fixed throughout and the scheduler does not have
the freedom to choose the rate of the multiuser link. In Elg(cL, c¢;,.) is the fixed rate pair associated with the
multiuser link(k, ). In SectiorY, we relax this assumption so that the multilisgrcan operate at any point in the
capacity region, with the scheduling policy having the fil@® to choose an appropriate rate point every time slot.
Note that the point-to-point link capacities also belonghe multiuser link capacity region (4s,,0) and (0, ¢,)),

but are defined separately to distinguish these from theiuselt link case, where both edges of the multiuser
link have non-zero transmission rates. For a Gaussian BCAE Ms seen in Fid]l;,, < ¢., andc, < ¢, and

% + l—l’“ > 1. This means that we can achieve rates strictly larger thagetlachieved by time sharing between the
two point-to-point links. It is worth stressing that using3& link does not mean that the same message is being
sent to both receivers, but rather different messages épsickre sent to the receivers connected by the etiges
and k. Similarly, using a multiple-access channel entails the trnsmitters sending different information to the
common receiver. It should also be noted that we do not rutettmu possibility of any edge being utilized as a
point-to-point link, even if it is a part of some multiusenHi.

To incorporate the possibility of such information theard8C and MAC links, we are motivated to introduce a



generalized binary interference model. Similar to clagddiinary interference models, each edge& is associated
with a set consisting of all edges that conflict with.e., the links that absolutely cannot be scheduled when édge
is scheduled. We call this set theain interference seand denote it byX,. For edgd, let Y, denote the set of edges
that can be paired withto form a multiuser link. We call, the secondary interference sef [, to distinguish it
from the main interference set, and also due to the fact tiaetiges that lie in each other’s secondary interference
set do not necessarily exclude each other: they simply eedach other’s rates. Note thgtand X, are mutually
exclusive sets and if eddgec Y,, thenl € Y,. Let ¢, be the individual capacity of the point-to-point lidk Link /
can be active at rate only if no other edge: € X, UY, is active. If edgek € Y, is active simultaneously as edge
I, then it implies that they are active as multiuser liikl), at some ratéc,,(t), ¢, (t)), chosen from the boundary
of the capacity region, as illustrated in Fig. 1. We also obesé¢hat the notion ofmain andsecondaryinterference
sets could serve a more general purpose than allowing fotiuset links. For instance, it is possible to extend the
definition of secondary interference sets to include leterice Channels [20], a scenario in which two or more
interfering links can be active simultaneously at reducés using suitable coding techniques. We use the term
interfering links to indicate that these links are not aklmlmo be simultaneously active in a protocol interference
model. Our interference model, while incorporating muéiulinks, does carry over some limitations of the protocol
interference model, namely the discrete nature of interfee. The rate of a link ideally depends on the interference
caused by other links, and this is captured in more realistidels like the SINR model. Scheduling problem with
the SINR model has also been investigated extensively ifitdrature [10]-[15]. However, the problem of optimal
scheduling with the SINR model is known to be NP hard and thét fs one of the main motivations of the use
of approximate discrete interference models such as tharypinterference model. Owing to a significant portion
of the literature focusing on such models, there is a betteletstanding of wireless scheduling for graph based
or binary interference models. We leverage this undergtgnid our extension of the protocol interference model
when we introduce the idea of secondary interference setshé¥, the capacity regions of the multiuser links in
the presence of interfering links may also not be known. H@areour model only requires knowing an achievable
rate region for the multiuser link which is strictly convex.
We define a rate allocation vectgr™ ¢! of link rates where”, represents the rate of transmission over the ddge
A rate allocation vector must satisfy the following constts:
@) If r, > 0thenr, =0, Vk € X,. This condition describes the main interference condtfaina point-to-point
link 1.
(i) If r, >0andr, >0, and also ifk € Y, and! €Y,, thenr, = ¢,,, andr, = ¢,,. Furthermorer, = 0 for all
j €Y, UY, wherej # k,l . This condition captures the constraints arising from theosdary interference set
Y;: If a multiuser link is scheduled then the edges belonginthéosecondary interference sets of either of the
two edges that constitute the multiuser link cannot be saleed Thus a node is allowed to transmit or receive
simultaneously over at most two edges.

(iii) There exists ngj € £ such thatj does not interfere with any link and yet is not scheduled.



Figure 2: Five edge network with point-to-point link cap@s ¢, , c,, ¢;, ¢, andc,. Links (1,2) and (4,5) each form

broadcast links.

Let R denote the set of all possible rate allocation vectooa a network graph. In generd,can be an uncountable
set, since it includes rate allocation vectors correspunth every rate pair on the boundary of the capacity region
of a multiuser link. For any subsét C &, Ry is defined as the set of alE|-dimensional rate allocation vectors
that satisfy the constraints in (i), (i) and (iii), witl’ substituted for€ in constraint (iii). As an example, a
network graph comprised of five edges is shown in Elg. 2, aleith the set of feasible rate vectors. Table |
describes the interference sets that we could define fom#tisork under a node-exclusive interference model. In
the figure, nodel, can set up a multiuser link to send data(éh, d,) at a rate(c,,, ¢,, ), chosen from the capacity
region. Similarly, nodel, can transmit tod,, d;). The rate allocation vectorg for this network are{0 ¢, 00 c;],
[00¢;5¢,0], [c;000¢s], [¢,00¢,0], [¢12 €21 00¢s], and|e, 00 ¢,5 ¢54], Where(ce,,, ;1) and(cus, ¢s4) are non zero
rate pairs chosen from their respective multiuser capaegions denoted bR ,, andR,;. Note that in the absence
of the BC links only the first four rate vectors would be avaliéa

The optimal stability region, or equivalently, the capacitygren of a networkis the set of all arrival rate vectors
such that for any arrival vector in this set, there existsssgheduling scheme that can keep the queue lengths from
growing unbounded. Here, we use the term optimal stabiigan to distinguish the network capacity region from
the multiuser information theoretic capacity region. Thtimal stability region of the network [19] is given by the
interior of the setA = {X: X < ¢, for some¢ € Co(R)}, whereCo(R) denotes the convex hull of the vectors in
R and < represents componentwise inequality. Izret@(t) — R be a scheduling policy that selects a feasible rate
vector for every time slot, based on the queue length stamwé(t). Let IT denote the set of all such scheduling
schemesr. For this model, the entire capacity region can be achiewethb Maximum Weight scheduler [19],
which at every time slot, selects the rate vector which has the highest sum of queighted rates. To compare
the advantage of using multiuser links, we also define a sstleéduling policies that cannot utilize the possibility
of multiuser links. LetR denote the set of rate vectors for a network with sole paiftdint communication. Sét
satisfies the following interference constraints> 0= r, =0, Vk € X, UY,. Let 7 : Q(¢t) — R be a scheduling
scheme designed based on this constraint anii ldenote the set of all such scheniesNote thatlIl ¢ II. Our
objective is to find a low complexity scheme that belongs #g6tll and characterize its performance with respect
to the capacity region, as well as to compare its performamdbat of other schemes chosen solely frdinin

the next section, we describe the MGMW scheme for the netwwokel in which the multiuser link rates are a



ikt | x| v |

1 {3 {2}
2 {3.4} {1}
3 {1,2,5} 0
4 {2} {5}
5 {3} {4

Table I: Interference sets for the five edge network of Elg. 2.

fixed point on the boundary of the capacity region.

[1l. M ULTIUSER GREEDY MAXIMUM WEIGHT (MGMW) ALGORITHM

Let the rate of any multiuser linkk,!) be a fixed point(c,,,c,) on the boundary of the capacity region so
that ¢, (t) = ¢, andc,,(t) = ¢,,.. In this case, the set of all rate allocation vectBrés now a finite set. For the
network model with fixed multiuser link rates, we present ae&gly” scheduling policy, MGMW which selects
a rate allocation vector frorR in each time slot. MGMW, in principle is similar to the GMM, stiussed in[[6].
Before giving a precise definition of MGMW, it will be instrtiee to summarize its operation descriptively:

Each link is assigned a weight, which is basically the queaghted link rates. In each time slot, MGMW first
greedily picks the link (point-to-point or multiuser) withe highest weight. It then removes all interfering links
and picks the link with the highest weight from the remainiimgs. This process goes on until there are no more

links left to pick. More precisely, leC denote the set of all links (point-to-point as well as mudén),i.e.,
L={EU{(k,))e& |keY, andl e Y,}}.
For any elementn € £, we define the weight of a linkV/,,(¢) as follows:

Q;(t)c;, m is a point-to-point linkj

W..(t) = (1)

Q.(t)ew + Q,(t)e,, mis a MAC/BC link (k,1)
MGMW operates as follows. At any point in the algorithm, Eetdenote the set of currently unselected links that

do not interfere with any of the selected links. MGMW initks Z to £ and repeats steps— 2 until Z = ().
1. Select a linkm with the highest weight ir%Z.

m € argmax{W, (¢)}. (2)

nez

Note thatm need not be unique. In case of a tie between a point-to-pioiktand a multiuser link, MGMW
gives priority to the point-to-point link.

2. After the selection, remove all links that conflict with, i.e,, set their rates in the rate allocation vector to
zero. If m is a point-to-point linkj then the scheduler setgk) = 0, for all k € X, UY]. If m is a multiuser
link (k,1) then it setsr(i) = 0, for all i € X, UY, U X, UY, excepti = k,l. UpdateZ to consist of only

non-interfering links.



At the end of the procedure MGMW yields a rate vector that bgoto the seR. Also, if Y, = 0,VI € £, MGMW
reduces to the GMM of |6].

Example 1. . MGMW for the five edge network of Fid.] 2.

The set of point-to-point, and multiuser links for this casegiven by £ = {1,2,3,4,5,(1,2),(4,5)}. Let the
link rates bec, =4, ¢, =6,¢; =2,¢, =8, ¢5 =5, (Cus, ¢54) = (4,3) and (10, ¢21) = (3,4). Let Q,(t) = 20,
Q.(t) =5, Qs(t) =2, Q.(t) = 12 and Qs (t) = 1. Applying the MGMW algorithm, link4 is observed to have the
highest weight ob6. Link 1 as well as(1, 2) each have weigtg0. Link 4, having the highest weight, is picked first
and following step 2, the interfering edgesand5 given in Tabldll are removed from sgt Among the remaining
links, highest weight is seen to 188 for link 1. Noded, is hence selected to transmit over lihkThe chosen rate

allocation vector is theft 00 8 0]. Thus, at timef, no multiuser link is chosen to transmit.

A. Performance Characterization of MGMW Scheduler
We adopt the definition of efficiency ratio given in| [6] to debe the performance of the MGMW algorithm.
The efficiency ratio of the MGMW scheduling algorithmis defined as the largest fraction of the capacity region

such that any arrival rate vector inside this region can bbilted by MGMW,i.e.,

~* :=sup {7 | the system is stable under MGMW 3)
for all arrival rate vectors\ < wA.}

We study the efficiency of the MGMW algorithm for any network telating it to a parameter that we call the
multiuser local pooling factgrwhich depends on the network topology and the interfersat® In the no multiuser
link scenario, i.e, when the s&f = () for all I, [14] showed that the GMM scheduler is throughput optimal fo
network graphs which satisfy certain conditions. Thesed@tmms, known as local pooling conditions are based on
the network topology and the link interference constrailig6], a more general condition calledlocal pooling
was introduced to characterize the performance of GMM fbitiary interference graphs, including those for which
GMM was not throughput optimal. s In this section we identiw network conditions in the presence of multiuser
links, which we callmultiuser local pooling €,,-local pooling)conditions We will use these conditions to define
the multiuser local pooling factor for any network graphcRethat £ is the set of all links for a given network
graph. To describe the,,-local pooling conditions, we focus on certain subsetsCofwhich we call candidate
maximum weight (MW) subsets. A set of links,;,,, C £ is called a candidate MW subset, if there exist queue
lengths, not all zero, such thét,,, = argmax,_,{WW,}. Not all subsets of, can be candidate MW subsets. In

fact, every candidate MW subsét,, - satisfies the following property:For any pair of edgeg and! such that

2Consider anyL . Suppose there are two point-to-point linkss L, | € Lasy such thatl € Y. Then the weights of the links
and!l are equal, i.eqrcr = q;c;. Suppose the weight of the broadcast link is not greater tiwainof the individual linksgrcr; +qicix < qrci-
Substituting forg; from qi.c,. = q;c; gives us the conditiorfc% + CCL—;C < 1. This contradicts our earlier assumption on the rates ®ibtioadcast
channel thatcc% + ccsz > 1, and hence the weight of the broadcast link exceeds thateofnttiividual links. Thus,L sy cannot be the set

with the highest weight.



k €Y, both individual edge¢ and! of the multiuser link(k,{) do not appear as point-to-paint links i,
separately. In other words, if an edgeppears as a point-to-point link in the def;.,, then no other edge in the
secondary interference set pfappears as a point-to-point link ibyw: {j € Lyw = 1 ¢ Ly forall l € Y;}.

We also denote& to be the set consisting of all the edgeslip, .

Lyvw

Example 2. Consider the network graph of Figl 2. Examples of candidat® Mibsets for this graph are the sets
{1,3,(4,5)} and{(1,2),2,3,(4,5)}. The set(1, 2), 1, 2,3} and{1, 2, 3} however, are not candidate MW subsets,
as the linksl and 2 appear together as point-to-point links in both sets, whis® comprising the edges of the
multiuser link (1,2). For this network graph the sét,,, , = {1,2,3,4,5}.

We now introduce the idea af,,-local pooling conditions applied to candidate MW subsets.

Definition 3. Let L,,,, be any candidate MW subset. Theg,, contains point-to-point and multiuser links as its

elements. LeR denote the set of all rate allocation vectors for the &gf, . Also, letR CR be

Lyvw Lyvw Lyw

the set of rate allocation vectors df, that can be chosen by the MGMW policy, when link€ ip,;, have the

MwW!
maximum weight. Theh,,,, satisfiesr,,- local poolingif, for any given pairi, 7, wherefi is a convex combination
of the rate vectors iR, ,,,, and#/ is a convex combination of the rate vectorsRp

hold:

uw- €ither of the following
(i) There exists a point-to-point link € L, such thato,, u; < v;, or

(i) There exists a multiuser linkk, ) € L, such thato, (u.ci + tcn) < Vicu + vicy.

Condition (i) becomes the standarelocal pooling condition of{[6], when defined for an arbiaubset of edges

in £. Theo,-local pooling condition is distinguished by the fact thiaisi stated only over candidate MW subsets.
We introduce (ii) to generalize it to the case where multipdigie links are possible, such as information theoretic
broadcast or multiple access channels. We define a paramétefor a network as the supremum of all, such
that every candidate MW subsét,,,, of L satisfiess,,-local pooling,i.e.,

oy, =sup{oy | V¥ Lyw € L, conditions (i)or (ii)are satisfied for evefy and '},

whereji andi/ are convex combinations of the rate vector&jr, . andR respectively. We calbl, a multiuser

Lyvw
local pooling factor. To show throughput optimality whercdb pooling conditions were satisfied, the authors in
[14] argued that if a set of links alternately had the highpstue weighted rate in a small interval of time, and
if they satisfied local pooling, then GMM served to bring dotlve highest weights in that interval. The proof

used a fluid limit argument to find a Lyapunov function whos#tdvas then shown to be negative. A similar

approach is followed in the proof of Lemma 1 in [6]. When ruastr links are included, one needs to consider
the weight of both point-to-point and multiuser links. Thésds to local pooling conditions being defined over a
fixed class of subsets, i.e., candidate MW subsets of linksraot over all subsets of links. The reason for this
will become evident in the proof of Theorem 1, where it is sd®at while considering the set with links having

maximum weight, one may exclude non-candidate MW subssttinks in these sets cannot have the maximum

weight simultaneously.
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Based on ther,,; local pooling conditions, we identify a condition for a céate MW subsetl.,,,,, with which
o-local poolingdoes not holdL,,,,, does not satisfy,,-local poolingif there exists a pair of vectorg, 7 that
are convex combinations of the rate vectorRin,,, andR,,, . respectively, such that they satisfy, ji = 7. We

define the parameter!, as follows:
oY =inf{oy | 3 an Lyw € L, such thats,, i = ¥ for somef, 7}.

where# is a convex combination of rate vectorsRy andji is a convex combination of rate vectorshn

MW MW"

We now give Theorerhll and Theorérh 2 to prove that the efficieaty of the MGMW scheduler satisfies the

relationoy, <~v* < o¥.
Theorem 1. The network is stable under MGMW algorithm for all arrivalteavectorsx satisfyingx e ol A.

Proof: The Proof is given in Appendix A. ]
While TheorenfIl shows that any arrival rate withify A is stabilizable by the MGMW algorithm, we further
link the performance of the MGMW te?, in Theoreni2 by showing that there exist arrival rates, eabily close
but strictly outside o&7, A, for which the system is unstable under the MGMW scheme. figmeld, together with
Theoren{2 implies that the efficiency ratio of MGMW is boundedow by %, and bounded above byY,.

Theorem 2. Let there exist a candidate MW subde},,,, € £ such that for some positive numbey;, and a pair

of vectorsji, 7, which are convex combinations of the element®n, , andR,,, ., o.ji = 7 is satisfied. Then,
for any e > 0, there exists a > 0 such that the arrival rate = 7 + ek makes the system unstable under the
MGMW scheme.

Proof: The proof is given in Appendix B. ]
Theorem 1 and Theorem 2 establish sufficient and necessadjtioms respectively for local pooling to occur under
the MGMW policy. Unlike the GMM policy, for which a single cdition is both necessary and sufficient for local
pooling, we have separate necessary and sufficient conglidae to the presence of multiuser links. While these
two conditions are identical in certain cases such as tregonks satisfying specific rate constraints, they are not

necessariry identical in a general network.

IV. PERFORMANCE OFMGMW

In this section, we analyze the performance of MGMW in sonme@a network topologies. We use the bounds on
efficiency ratio of MGMW obtained in the previous section t@leate the throughput gain by leveraging multiuser
links in these network graphs. Even though the optimal Btalegion of a network with multiuser links is larger
than that of a network with point-to-point links alone, famse networks it may be possible that MGMW achieves
a smaller stability region than GMM. However, we provide rexdes of two network graphs, specifically a tree
network graph and a star network graph, for which we show M@&MW achieves a larger stability region than

GMM. In this process, we also explore the tightness of oumbguln particular, we show that the lower bound is
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tight for tree networks when the multiuser link rates arerieted to certain rate regions. Moreover, the lower bound
on efficiency ratio is good enough to prove that the stabiltgion with MGMW is larger than that with GMM
for the star network example. We also simulate the perfommaf MGMW and GMM on a randomly generated
network graph, and observe that MGMW can stabilize a higlhevaah rate for each link in the random network
graph.

We first show that MGMW is throughput optimal for certain treetworks.

A. Tree Networks

In the following theorem, we show that under the node exetusiterference assumption, MGMW is throughput
optimal for directed tree graphs in which no two multiusek§i have a link in common. The node exclusive
interference assumption for our model only restricts a nfsden transmitting and receiving at the same time.
It does not restrict a node from transmitting simultanepusl multiple nodes, or receiving simultaneously from

multiple nodes.

Theorem 3. Let G = (V,€) be a directed tree graph such thad NY, = ¢ for all £, € €. Lete?, +¢2,, >
max(C,,Cpn, C.Cnrn ) TOr €very multiuser linKm, n) in £. Then, if the primary and secondary interference sets are
constructed under the node exclusive interference assompt., = ¢¥, = 1, implying that MGMW is throughput

optimal for this tree network graph.

The proof is given in Append{xIC. Theordmh 3 also shows that M&M throughput optimal for downlink cellular
networks without intercell interference with multiusemks consisting of broadcast channels. This is because the

downlink cellular model is an instance of a tree network.
B. A Network witho{, < 1.

Consider the network graph shown in Hig. 3. All links have & raf 1 when used as point-to-point links. All
multiuser links have a rate of (0.75,0.75) each. We defing,, for a candidate MW sek,,, as the highest value
of o,,-local pooling satisfied by.,,,,. We show in[21] that,,,,,, > 2/3 for all candidate MW subsets,,, of
the star network graph in Figl 3, and hence the efficiency r@tiMGMW is at least 2/3 for this network graph.
Here we will only show this for one candidate MW subset and mok repeat the same operation for all candidate

MW subsets. In order to fine we make use of the following relation that we derive in ApgieC:

Lyw?
miniEl---\ﬁLMW\ fiTHl
Toyw = ] 7T (4)
maXjer. Ry, | ”T ||1
where# ¢ IiLMW, 7 € Ry, andT is a|E, .| x |&.,,, | Matrix such thatll, = 1, if i € Lyw; T) =
¢y andTy, = ¢, if (k,1) € Lyw; andT;; = 0 otherwise.
Consider the candidate MW subskt, = {(1,2),(3,4), (5,6), (7,8), (9,10), (11,12)}. The setR, . is given
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by:

7, 5300 2 300 2 200
7, 002 2002200 2 3
7l=]2 20100220100
7, 00220100 2201

%] [0 100220100 2 2]

Applying the relation[(3R) to the specifield,,,, set yieldso,,,,, > 2/3. Furthermore, we also show in [21] that
oLy < 3/4 for this network graph. For the same network graph, if we @okelthe possibility of multiuser links,

it can be shown that GMM algorithm has an efficiency ratio & @tith respect to the capacity region in the no
multiuser link scenario). To see this, we only need to caerstte setl = {1,2,3,4,5,6,7,8,9,10,11,12}. The
set L forms a cycle, and in the same manner as that shown for thinkixycle network in [[6], one obtains the
local pooling factor as 2/3. Hence, in this example, MGMW rgunéees a larger stability region compared to GMM.
This is because the optimal stability region of a networktfa multi-user case is a superset of the optimal stability
region of the same network in the no multiuser link scenario.

In the following section, we explore a more general networddel, where we assume that rather than just one
point, the whole rate region is available to the encoder axbder, as well as the scheduler. The scheduler then
selects a suitable multiuser link rate pair from this regimevery time slot. For this network model, we provide a
generalized version of the MGMW scheme and analyze its pedoce by deriving local pooling conditions that

are similar to the ones derived for the case with fixed mudtidmk rates.

V. USING THE ENTIRE MULTIUSER CAPACITY REGION VARIABLE RATE MGMW

We present the extension of the MGMW scheme wherein we alléavselect an arbitrary rate pair from the rate
region of each multiuser link in each time slot. From thisrpan, we restrict attention to network graphs that only
have BC links as multiuser links, and omit the technicalttret of MAC links due to space constraints. While
the variable rate MGMW algorithm remains unchanged in thes@nce of MAC links, the performance analysis of
variable rate MGMW involves treating the MAC links and BCK#as separate cases.

The MGMW scheme, as described before in Sediian I, injtidlietermines the weight of all point-to-point and
multiuser links. Since the entire multiuser capacity rag®onow available to the scheduler, the weight of a multiuser
link is defined as the sum of queue weighted edge rates, mzedhover all possible choices of rate pairs within

the capacity region of the multiuser link. For any element £, We define the weight of a linkV,, (¢) as follows:
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Q;(t)c;, m is a point-to-point linkj

W.. (t) = max Qk(t)ckl + Qz(t)clk’ (5)

(eprse1k) ER K
m is a multiuser link(k, 1),

where R,, is the capacity region of the multiuser lirfk, [), and is assumed to be known. For instance, consider
the operation of variable rate MGMW scheme for the networdpbrof Fig[2.R,, andR,; are the multiuser rate
regions of links(1,2) and(4,5) and are assumed to be known. The variable rate MGMW then B$és ¢alculate

the weight of each link. Letc;, (¢), ¢z, (¢)) and (ci,(t), c;, (t)) be the transmission rate pairs that correspond to the
weight of the multiuser linkg1,2) and (4,5). Now that all the weights and their associated transmissites are
known, variable rate MGMW then assigns the rate allocatiectar following the same procedure as described for
the MGMW scheme in Sectidn]lII.

For a BC link, since the capacity region of the multiuser lisistrictly convex, as shown in Fid.] 1, the transmission
rate pair associated with the weight of the link is uniquel earresponds either to a multiuser link configuration (if
the rate pair that yields the maximum weight allocates nemo-zates to both edges) or to one of the point-to-point
links (if the rate of one of the edges is zero). Thus, only oina® configurations can be associated with the weight
of the multiuser link at any given time. With the new weightdatilated as described above, the operation of the
MGMW algorithm is identical to the one described in Secfiihdnd yields a rate allocation vector that belongs to
the setR. The setR for a network graph is now an uncountable set, as it inclugesyerate pair on the boundary

of the capacity region, rather than one fixed rate point.
Local pooling conditions for variable rate MGMW

The performance of the variable rate MGMW scheme can be a@dlyn a manner similar to that of MGMW, by
relating the multiuser,,-local pooling factor to the efficiency ratio of variable edilGMW. We retain the same
notion of efficiency introduced earlier in Sectibn] IV. Notet the network capacity region defined in Secfidn Il is
a superset of the capacity region obtained by fixing the onseti link rates. We now present the multiusgr-local
pooling conditions for the variable rate MGMW scheme.

Let L, be any candidate MW subseéte., a subset off whose links can achieve the maximum weight simul-
taneously. Every candidate MW subdet,,, satisfies the following property: For any pair of eddeand! such
that £ € Y, and vice versa, a candidate MW subggt,, can contain at most one out of the three lirfks!), &

andl, i.e.,

I(k,l)€LMW + IkeLMW + ILELMW < 17

for any multiuser link(k,1), wherel is an indicator variable taking the value 1 whenc L, and 0

neL vy
otherwise. This property of.,,, follows from the fact that the weight of linkk,!), as a consequence of being
maximized over the entire multiuser capacity regiBp,, can correspond to only one out of the three possible
configurations (point-to-point link, point-to-point link! or multiuser link (&, 1)).

Given a candidate MW subset, the transmission rates of tmt-fmepoint links are fixed at their respective capacity
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values, whereas the transmission rates of multiuser lirgks take different values from the associated capacity
regions. LetC, . be the set containing all possible transmission rates gedcwith the links inL,,, . We

illustrate these sets in the example below:

Example 4. Consider the network graph of Figl 2. An example of a candidA¥ subset for this graph is the
set{1,3,(4,5)}. The sets{(1,2),1,3} and {(1,2),2,3} however, are not candidate MW subsets, as they both
contain links (links(1,2) and 1 in one, and(1,2) and 2 in the other) that cannot have the maximum weight at

the same time. For the example,,, = {1,3,(4,5)}, £ is {1,3,4,5} and the edges have rates given by

Lyw
{e1, ¢35, (¢, 1)}, where(c;,, c;,) is an arbitrary non-zero rate pair selected from the boynd&afR ;. Since the
rates of point-to-point links are fixed, each elemen€gf, , would correspond to a non-zero rate pair chosen from
Rus-

We now state the,,-local pooling conditions applied to candidate MW subsets.

Definition 5. LetR be the set of all rate allocation vectors on the subset of edgg .. For each transmission

Lyw

when

Ve e

Lyw:?

rate vectorce ..., let R~ be the set of all rate allocation vectors that MGMW can assigre
the links inL,, achieve maximum weight with their transmission rates glwed Note thatR ~— C R

CLMW'

For any two vectorgi and 7, whereji is a convex combination of elementsRp

Lyvw

We then say thak ,,, satisfieso,,-local pooling if everyRiMW satisfies the following conditions:
and7 is a convex combination

MW

of rate vectors iRy,

(i) There exists a point-to-point link € L, such thato,,u; < v;, or

(i) There exists a multiuser linkk, 1) € L,y such thato,, u, < v, andoyp, < v;.

The multiuser local pooling factor;, of a network is the supremum of a#l,, such that every candidate MW

subsetL ,,y, of L satisfiess,,-local pooling,i.e.,
oy, =sup{oy |VLyw €L, Vel,,,  conditons (i) or(i) are satisfied for evey and 77}, (6)

where i and © are again convex combinations of the rate vector®jn,, andR] _ respectively. For the
variable rate MGMW scheme, we state the following result tedends the performance analysis results for the

MGMW scheme with fixed multiuser link rates.

Theorem 4. For a graph G with the multiuser local pooling factos:, as defined in(), variable rate MGMW

scheme stabilizes all arrival rate vectokse o7, A, i.e.,
Y=oy (7)

Proof: The proof is given in Appendix D. ]
We observe that for the variable rate MGMW, the multiuseralogooling conditions involve verifying the
conditions over all possible sets of transmission ratescieted with the links inL,,,. This is in contrast to the
case where the multiuser link rate is fixed, since there ig trahsmission rate vector associated with the links in

an L, subset. We now derive an upper bound for the efficiency obtéeirate MGMW can further be analyzed
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Figure 4: A network with two multiuser links.

as follows. Lets,, be defined as:
0, = Inf {ch | 3L.,w € £,and an associated transmission rate vecterC,, ., (8)
such thato,, i > 7 for someji, o'}, 9)

A and being convex combinations of the rate vectorstin,, andRj  respectively.

Theorem 5. For a graphG with 5,, as defined in(@), there exist arrival rate vectors arbitrarily close to, but

outsided,; A, such that the network graph is unstable under variable M@&MW.

V< ou. (10)

Proof: The proof is similar to that of the fixed multiuser link rateseaand is given in Appendix E. ]

Theorem# and Theorefld 5 together imply that < +* < 4,,. Since theo,,-local pooling conditions need
to be satisfied by all rate assignments associated with tiks that belong to ard.,;,,, subset, some of the rate
assignments could limif,, more than other rate assignments, leading to a lower valweffiofency for variable
rate MGMW.
The stability region of a network with multiuser link becosneven larger when we allow the entire achievable rate
region for each multiuser link to be used by the schedulewdVer, the proposed variable rate MGMW policy,
which is a natural extension of the fixed rate MGMW policy canfprm poorly compared to the fixed rate MGMW
policy. Indeed, the efficiency ratio of the variable rate M@Mpolicy is in fact bounded above by the efficiency
ratio of a fixed rate MGMW policy (with fixed rates being chodeom the rate region of multiuser links). In the
following section, we provide examples of network graphsvirich we illustrate how the availability of the entire
multiuser capacity rate region can bring down the efficienfcyariable rate MGMW. We observe further that GMM
is actually throughput optimal for these network graphsgxas in the absence of multiuser links. These examples
illustrate that it might be more beneficial to use a fixed rat@ W scheduler whose rates have been carefully

chosen from the corresponding rate regions of multiuséslcompared to the variable rate MGMW scheduler.

VI. PERFORMANCE OF VARIABLE RATEMGMW
In this section, we illustrate the performance of the vdeahte MGMW scheme using some examples. Specif-

ically, we provide some cases in which the variable rate MGM®&/forms much more poorly in terms of the
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efficiency ratio, compared to the fixed rate MGMW scheduletthte extent that, certain arrival rates that are
stabilizable by fixed rate MGMW make the queues blow up foialde rate MGMW. While the optimal network
stability region is larger when the rates are allowed to yveus show that the variable rate MGMW may perform

worse relative to fixed rate MGMW with regard to efficiencyioat

Example 6. Consider the network graph shown in Fif.] 7a. The network bas édges and is capable of using
the multiuser links(l,,1,) and (l,,1;), whose multiuser capacity regions are given®y, and R.; respectively.
We assume that all the point-to-point links have unit capesiLet(1 — €,,¢,) € Ry, and (e,,1 —€,) € R,5 be
two arbitrary rate pairs. We now show that the efficiency aialde rate MGMW is limited by the choice of the

multiuser link rate pairs according to the relation:
< 14+¢, +6
7> -5
whered = (e, — ;) + (e, — €;) iS a positive quantity that depends on the value of the lin& pairs.
Proof: Consider the candidate MW subsget, . = {(l,,1.), (I.,15)} with the link rates given byl —¢,,¢,) €

(11)

Ry, and (e, 1 —€,) € Ry, Wheree,, e, € (0,1). Let 7 be a convex combination of the rate allocation vectors on
Lw, with the link rates that yield the maximum weight assumebedl — ¢,,¢,) and(e,, 1 —¢;). We choose’
to be:

7=05%[1—¢00¢]+05%[0e1—¢0].

Let fi be a convex combination of the rate allocation vector®j We choose€i as:

@IW'

fi=05K((1-¢)[1010]+6[0100]+¢[0001]).

Then, i = K7, which implies from Theoreml5 that the efficiency of variabdée MGMW cannot be greater than
—. For ji to be a convex combination of the rate allocation vectormust satisfy0.5K[(1 —€,) + €, + €,] = 1,

implying that
1
K
Since the multiuser capacity region is strictly convéx; ¢, + ¢, > 1, which implies thate, > ¢,. Similarly,

=(l—e +6+e)/2 (12)

1—e¢, 4+ ¢, > 1, which implies thakt, > ¢,. Letd = (e, —¢,) + (e, — €,), SO thatd > 0. Substituting the numerator

in (I2) with §, we obtain,
1

== (146 +96)/2. (13)

[ |
Eq. (I1) suggests that the efficiency of variable rate MGMWesiler for the network graph in Fig17a is

limited by those multiuser rate points which have smallduea ofe, andd, as they yield lower values af,,. In
this example, a smaller; andé corresponds to those multiuser rate points which are closmé of the edges’

point-to-point capacities, as shown in Hig] 7b antl 7c.

Example 7. Consider the network graph in Figl 5 with four edges havingdtiomer links (1,4) and (2, 3) , where
R.. andR,; are their respective multiuser capacity regions. (let €,,¢,) € Ry, and (1 — €., €5) € R, be two

arbitrary rate pairs. Then, we show that the efficiency ofalde rate MGMW is upper bounded as :
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Figure 5: Four edge network with two multiuser links.

_2— (& +e6)

<
v 2

, Wheree, + ¢, < 1. (24)
Proof: We chooseL v = {(1,14), (I.,15)} with links having rateg1 — e, ¢,) € Ry, and (1 — €,,€;) € Ras.
Let7=05x[1—¢00¢]4+0.5%[01 — ¢, ¢; 0] be a convex combination of rate allocation vectordin,, with
the assumed link rates, apid= 0.5 K * (1 —¢,)*[1010]4+0.5% K% (1 —¢,) [0 10 1] be a convex combination
of rate allocation vectors iR, .. Using the fact thafi is a convex combination, we obtain the relation:
== (a+e)/2 (15)
In this case, the conditiofi = K7 is satisfied ife, + ¢; = 1, ande, + ¢, = 1. The strict convexity of the multiuser
capacity region gives us the conditions> ¢,, ande; > ¢,. Both these conditions together imply thatt-¢, < 1.
[ |
From Eq. [14), we observe that increasing the quantity- ¢, decreases the upper bound on the efficiency of
variable rate MGMW to close to 0.5, and hence rate pairs irclvht least one of the edges get high rates, dominate
the performance of variable rate MGMW. Note that in the abeesf multiuser links, GMS is throughput optimal
for both network graphs [3].
The above examples highlight certain scenarios where thabka rate MGMW scheduler can perform poorly in
terms of efficiency ratio, when compared to a MGMW policy wadisks operate a fixed rate chosen carefully
from the multiuser capacity region. Choosing a fixed ratenpaiso reduces the coding complexity of the multiuser

links by requiring fewer number of codebooks.

VII. SIMULATION OF THE PERFORMANCE OFMGMW

In this section, we simulate the performance of MGMW with dixaultiuser link rates and GMM in a randomly
connected network graph. Figurel 6a shows an arbitrary mktg@ph having point-to-point as well as multiuser
links. The multiuser (BC) links in this graph are links (1,8,7), (3,8), (5,6), and (9,14). In this example we chose
the transmission rates of the point-to-point links at randaniformly between 3 and 10 units. The rates of the
multiuser links are chosen to ensure the convexity of the region is assured. The arrival process for each edge
is Bernoulli and we denote the arrival rate with

In Fig.[6B, we plot the total queue size (sum of queue lengthmsaeh edge) as we increase the arrival rate in
edges 9 and 14, from 2 to 2.5 as we kegp= 1 for all other links. Here, the transmission rates of linkd 8,and
(9,14) are 6, 4 and (4,3) respectively. The graph suggeatdMBEMW yields a constant gain in arrival rate for the
multi-user links as each edge of the multiuser link (9,143éen to sustain around 5% more traffic, as compared
to the GMM case.
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Figure 6: An Arbitrary network graph with 15 edges and 5 biza links.

In Fig.[6d, we simultaneously increase the arrival rate sxedges 1, 2, 9, 14, 3 and 8 while keeping the arrival
rates at other edges fixed at 1. Here, the capacities of tirdsedre 10, 8, 6, 4, 12 and 8, and the transmission
rates of the BCg1,2), (9,14) and (3, 8) are (9,5), (4,3) and (10,6) respectively. Similar to thevjmes scenario,
the plots again show that the total queue size with MGMW iselotthan that with GMM. Here, each edge of the
multiuser links is able to sustain 10% more traffic than intleemultiuser link case. Thus, for the network in Fig.
64, MGMW appears to stabilize a larger range of arrival rates
VIIl. CONCLUSIONS

In this paper we explored the problem of link scheduling irettisg that allows for the use of techniques from
multi-user information theory. To this end, we proposed affied version of the binary interference model by
introducing the notion of a secondary interference set éahdink of the network. The interference model proposed
in this paper could be thought of in a loose sense as a hybtigedbinary interference model and the SINR model.
Since the optimal algorithm is known to have high complexity? hard in many cases), we provided a suboptimal
greedy algorithm called MGMW for our interference model. \blaracterized the performance of MGMW by
deriving local pooling conditions and relating the muldu$ocal pooling factor to the efficiency of MGMW. For a
network with capacity regiorh and a multiuser local pooling facter,,, we showed that MGMW stabilizes every
arrival rate vector irv,, A and that there exists a non-stabilizable arrival rate veatbitrarily close to, but strictly
outside ofos,, A. We gave examples of certain network graphs where MGMW wamighput optimal and a graph
where the multiuser local pooling factor is less than one.al¥e considered a network model where the scheduler
has the freedom to select the multiuser link rate every titoe ¥e analyzed the performance of the variable rate
MGMW scheduler and showed that the availability of the entate region could hurt the performance of variable
rate MGMW. Finally, we also observed the performance of MGNfWAn arbitrary graph and compared it to that
of GMM.
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APPENDIXA

ProOOF OFTHEOREM[I

The proof shows stability of the network under MGMW by findiagLyapunov function and showing that it
has a negative drift for the fluid limit of the system. The id&fathe proof is similar to the stability proof in
[6], which is for the scenario of no multiuser links. We assuthat the arrival process for each link satisfies
conditions for the fluid limit to exist, which is that the Sag Law of Large Numbers (SLLN) should hold for
the arrival process. For example, SLLN holds when the paekétals in each queue are IID with bounded
second moments. Here, we assume a modified arrival procéssewve relax the IID assumption in the first
time slot alone, and allow a deterministic but finite numb&packets to arrive in the first time slot. Note that

—

this does not affect the applicability of SLLN arld™> | A,(n)/n — E(A,(n)) = A,w.p 1. Let A(¢) denote the
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—

cumulative arrival process anfl(t) denote the cumulative service process until time slofor the arrival and
service processes, we usgg(t) = A,(|t]), andS,(t) = S,(|t]). For the queue proces3,(t), we employ linear
interpolation. We now consider a sequence of scaled quaya@ms(@l(-),ff"(-), S?(-)). where we apply the
scalingQ; (nt)/n, A,(nt)/n, andS,(nt)/n, VI € £ with the queue process satisfyig, . Q;'(0) < n. Then,
using the techniques to establish fluid limit [n_[11], one cdow that a fluid limit exists almost surelye, for
almost all sample paths and for any positive— oo, there exists a sub-sequenee with n;, — oo such that
following convergence holds uniformly over compact sets. &l [ € &, tAl"j (n;t) = A, éS{”’ (t) — s,(t), and
nLle"" (n;t) — q(t). ¢,(t) ands,(t) are the fluid limits for the queue length processes and thecgerate processes
respectively. The fluid limit is absolutely continuous arehbe the derivative af, () exists almost everywhere [11]

satisfying:

iq o) = A —m@®)]" qt) > 0. (16)
dt 0 otherwise

where,(t) = “£(s,(t)). We now show that the largest queue weighted rate (taken pwiet-to-point link or
broadcast links) of the fluid limit model always decreasedenrthe MGMW algorithm. This allows us to define
the Lyapunov function for the system as the maximum weigletr @l links and establish its drift to be negative.
Consider the time¢ when the derivativet ¢, (t) exists for alll € £. Let L,(t) denote the set of links with the
largest weightj.e.,

Ly(t) ={m € L | w,, = max,,c, w,, }.
Define the derivative of the weights of links ify as follows:

Lq;(t)e; m is a point-to-point linkj

W (t) = 4 Lg,(t)ew + q(t)e mis a
multiuser link (k, 1)

Let L(¢) denote the set of links fromk,(¢), which have the maximum derivative of the weights,

L(t) = {m € L | i,.(t) = max 1, (t)}.

meLq(t)

Then, one can find a smallsuch that in the intervalt, ¢ + ¢), links in L(¢) will have the highest weights in that
time interval,i.e., min,,c () W, (7) > Max,,co\ e W(r) for all 7 in (¢,¢ + 6). MGMW will select links from the
set L(¢) first in the interval(t,¢ + 0), since it picks the links in decreasing order of weights. # fecus on the
links in L(t), then any rate allocation vector selected by MGMW(int + §), projected on the sek(t) would
yield a rate allocation vector that is an elemenRgf,,. This in turn implies tha&(¢), the service rate vector under
MGMW projected onL(t) is a convex combination of the elementsRy,. A formal argument to show this is
mostly identical to that in[[6] and is omitted here. Becau§¢he convexity condition% + l—f > 1, L(t) is a
candidate MW subset. Considerialying strictly within o2, A. Sincec?, is the local pooling factor, and.(¢) is

a candidate MW set, it follows from the multiuser local pogliconditions that there exists a link € L(t) that

satisfies
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A, < m;(t), if mis point-to-point link, 17)
AnCo + ey, < m(t) e +m, () ey, if mis multiuser link(k, 7).

For any candidate MW set,,, let 5, be any convex combination of the elements (rate allocatertors) of

the setR Since everyL,,,, C L satisfieso%, local pooling, andX lies strictly within o, A, the quantity

Lyw*

€ max ((Sj - /\j), (Skckl + 8Cik — ArCry — )\lclk))

57, =
MW (k,)EL pryy
JEL MW

is strictly positive for everyl,,,,,. We then define the infimum of all such positive quantitiesralesuch subsets

L, and all vectorss’,,,,. as

€ = inf €, .
5Ly YEMW CLY Mw

and we observe that > 0. Hence, from the relation ii (17), there existse L(t) such that the following holds:

(18)

A, — m;(t) < —e€, if m is point-to-point link, (19)
M = m(8)ew + (N —m(t))ew. < —ev, if mis alink (k,1).

From [18), and the fact that all links ih(¢) have the same derivativé, {19) implies that < —e*, Ym € L(t).
Hence, we observe that there exists no linkZift) with «@,, > 0, andg,, > 0, whereq,, = max(q,.¢,), if mis a
multiuser link (k, 7). Now, we can consider the following Lyapunov functi®ft) := max,,., w,,. For V(t) > 0,
we have that

—V(t) < maxw,, < —€". (20)

where%V(t) = lim,,, “2=0 s the right hand derivative df (¢). This implies that the largest weight must
decrease in the time intervél, ¢t + §). Since the above inequality holds almost everywherg the negative drift
of the Lyapunov function implies that the fluid limit model thfe system is stable and hence by the result in [11],

the original system is also stable.

APPENDIXB

PROOF OFTHEOREMI[Z

We construct an arrival traffic using the approachlin [6] ahdws that under this traffic pattern the network is
unstable under MGMW. Lef denote the number of possible rate allocations on thd ggt. The vector?, being

a convex combination of the elementsRn can be written as

MW
J—1
U= E w; Ty, 7 €Re,,,
0

wherew, > 0forall0 <i < J—1land> ' 'w, —1. Letwv, be a rational number which satisfigs’ " |w, — v,

< 8
— J
for anyd > 0. Such awv; clearly exists for everw,. To enable the construction of the traffic pattern we now @efin

J—1

a new vector/ = > i_, v:T;. Thus one can make the vectdrarbitrarily close to7. We now specify our arrival
traffic with load 7 + ek, such that the system is unstable under MGMW. The arriv#fidrior every queue consists
of IID packet arrivals in each time slot, except for the fiigte slot alone. Packets arrive at the beginning of time

slots. Without loss of generality we assume that for the whid MW subsetl,,, if (k,1) is a multiuser link
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in L,w, thenk denotes the edge of the linl,!) that can be present as a point-to-point linkip,,,. Let the
initial queue state vector béo = 0. Let j denote any point-to-paint link belonging tb,,, and (k,!) denote

any multiuser link inL,,,. Then the packet arrivals in the first time slot are such t:ﬁasatisfies the following

constraints:

Qjcj = chkl + Qlclk = chk + Ci — CxCpy > chz + ¢iCiis (21)

for all links 4, (k,1) € Lyw. We show in Lemmall that a vectof0 = 0 satisfying [Z1) exists. We now describe
the statistics of our arrival traffic. Let vector be picked with probability,. Conditioned on~; being picked, one
of two events may occur:

1. With probability 1 — ¢,

(@) r.(j) packets arrive into every point-to-point linke L, such that,(j) = ¢, > 0, and

(b) ¢, and¢,, packets arrive into link& and! respectivelyv(k,!) € L, such that-,(k) > 0 andr,(l) > 0.

We show that when packets arrive in the manner describedeintéy MGMW picks rate allocation vectat;, and

at the end of time slot, the queues ir,,,, continue to satisfy the relation in_(21).
() The weight of any point-to-point linki € L,y satisyingr,(j) = c,, is given byQ,c, + c;. Using [21) we
obtain:

Q;c; + ¢ > Qcy, VI € Ly such thatr, (1) = 0, and
Qic; +¢ > QuCrn + QuCor > Qi
V(m,n) € Lyw such thatr;(m) = r,(n) = 0. (22)

The inequality in[(2R) follows since? — c,.c,.., > 0.

(i) For any multiuser link(k,!) satisfyingr,(k) = ¢, andr,(k) = ¢,
(Qu + cu)en+(Q + ci)en > Q,¢;, Yj € Lyyw S. tr(j) =0,
Qe + Qe+, + ¢ > Qo + Qo
V(m,n) € Lyw such thatr;(m) = r,(n) =0,
Qucu + Qe + 3, + ¢ > Qe + ¢ien,
Qicr + Qe + ¢, + ¢ > Qe + Cren, (23)
where [2B) holds since
Quen + Qe+ ¢, + ¢ =Quee + e + (e —cn)> + ¢
(iii) Forlink k € L,y satisfyingr;(k) = ¢, and(k,l) € L, for somel, we have:
Qucr + ¢ > Qc;, Vi € Lyy with r,(5) =0
Qe+ > QuCon + Qo > Qo
Qe + ¢ > Q,c, and

chk + Ci = (Qk + Ck)ckl + Qlclk- (24)
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The weight of linkk therefore dominates all the links not served )y MGMW breaks the tie between the
weights ofk and(k,!) shown in [2#) by scheduling link. (i), (ii) and (iii) establish that weight of links served
in 7, dominate the weight of other links and hence MGMW schediles

2. With probability ¢, packets arrive into the queues in,y in the following manner.

(@) ¢; + ¢; packets arrive into point-to-point links€ L,y for which r;(j) = ¢;.

(b) ¢, + ¢, packets into linkk andc,,, + ¢, packets arrive into the queuesiofand! for multiuser links(k, () such
thatr,(k) > 0 andr,(l) > 0.

(c) ¢,. packets arrive into all other links: € L, for which r,(m) = 0.

The quantities;, ¢,, and¢, are such that they satisfy the following weight criteria:

C;C; = CuCyp = CrCry + E1C1 > G0y (25)
It can be shown using an argument identical to that used 0y t{fat there exist positive;, ¢,, andé, that satisfy
relation [25). When packets arrive according to the eZ&mGMW still schedules,. This is becausd_(21) and

(29) yield
(Q; +¢)e; = (Qr + &)ew + (Qu + &)y

= (Qk + ék)ck + Ci — CiCpry
> (Ql + éz)cz + cicp-

which again satisfies relation (21). However, at the endmoétslott, when packets arrive as in evehtthe length

of each queug € & increases by a fixed positive quantity. We can now describe the queue evolution for

Lyvw

our arrival traffic. The initial queue state satisfies](21pefiefore at the end of each time slot, with probability

1 — ¢, the queues of all edgeise & remain unchanged and with probabilitythe queues increase by a fixed

Lyvw

positive quantity. Since the queuesiin,,, are non-decreasing, and the event that the queue lengteses by a
fixed positive quantity occurs infinitely often, the systesrunstable under the MGMW scheme. The arrival rate of
our proposed arrival traffic is determined as follows. Eedenote the vector defined as:

- ¢ jeér,
k() = o

0 J¢&,,u-
The arrival rate is then given by :

J—1
X= Z(Ui(l — €)7, + ve(T, + E)) =7+ k.

i=0

Lemma 1. There exist queue length@, Q,,...Q,,, where M is the number of edges ih,,,, such that they
satisfy:
3
Qjcj = chkl + chzk = chk + Ci — CpCpy > chz + ¢Ce- (26)
Proof: ConsiderK such that
K _ K+ccy—c

Ck.

(27)

Then, to satisfy equality 2, we need to choose
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Figure 7: A network with two multiuser links.

Qz _ Qk(ck - Ckl) + Ci — CkCry (28)

Cix

Now, for inequality (3) to hold, substituting fap, we have,

Qk (Ckclk + CciCp — Clck) > i [ci — Ckaz] +
Cuin Cix

CiCie — € F Crlry.- (29)

From our assumption that,/c, + ¢,./c, > 1, the left hand side of(29) is positive. Hence fbrl(29) to haiek

need

Qk>[

This must be satisfied for eve(y,l) € L,y .

(@ —cpen)(a — ) + clcfk]

CiCry F CrCie — C1Cy

Letp = max {

(2 —crew) (e — ew) + el
(k,D)EL pry '

CiCr + CiCre — CLCy,

Then choosek such that( K + c.c,, — ¢2)/c, > p for all links (k,1) € L,w. Then, [2¥) gives the values 6§,
and Q,. The value ofQ, corresponding tda, is then obtained fron{(28). Thus one can find{a> 0 and hence
a positive queue vectcrrj0 satisfying relation[{21). In a similar manner one can findippas ¢;, ¢, and ¢, that
satisfy relation[(25). [ ]

In the example given below, we find the initial queue statetare@, for a given L, . To illustrate the proof,
we provide the following simulation example:

We consider the network graph described in Example 6. Thwvithdhl link capacities are 10 packets, while
the fixed rate for the BC links (1,4) and (2,3) are (5,8) and)(8espectively. Considering ,,, to be the set
{(1,4),(2,3)}, and by choosingi = 0.5 % 20/19 (0.8 [10 0 10 0] + 0.6 [0 10 0 0] + 0.5[0 0 0 10]) and 7 = 0.5
[8006]+0.5%[0580], we obtaina?, = 19/20, implying that the efficiencyy < 19/20 for this network graph.
We then simulate the unstable traffic pattern describedamtbof of Theorem 2 and plot the queue sizes in [Elg. B.
The figure shows the queue sizes increasing over the obsemvedlots, thus verifying Theorem 2 for Example
6. Packets arrive according to rate allocation ve¢sod 0 6] with probability 0.5, and the vectdb 0 0 8] with
probability 0.5. Additional packets may arrive into the gae with probability 0.0002. The additional packets are
such that they satisfy the constraint in eq.(24), in the poddrheorem 2.
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Figure 8: Plot of queue sizes for the links in Higl 7a

APPENDIXC

PROOF OF THEOREM3

The proof idea can be summarised as follows: Every candig&tesubsetl ,,,;, of a tree network grapy has
a noded,, such that every rate allocation vector én,,,, schedules one of the links connecteddo Any two
convex combinations of rate vectors will therefore satigfg multiuser local pooling conditions for one of these

links. We prove this by using a linear program to represeatrtultiuser local pooling conditions.

Lemma 2. For the candidate MW subsét,, ., let o, denote the highest value of, for which L,,,, satisfies
the multiuser local pooling conditions specified in Defmiti3. M is defined as a matrix whose columns consist of
all rate allocation vectors in the s&, . M denotes the matrix whose columns are all the rate allocatictors
in the setR,,, . Also, let¢ and ¢ denote all ones column vectors of lenggy,

Ll and|R,,, | respectively.
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oMW can then be represented as the solution to the linear progyaman below:

max 7 (30)

>0

subject torM° < ¢
FMO = 7.

x, =0, if (k1) € Lyyw andk ¢ Ly,

where
'\7'0 _ Mkjckl + Mljcllm if (k7l) € Lyw,
Ly -
M,; otherwise
Mo — Mkjckl + Mljcllm if (k7l) € Lyw,
lj

M otherwise

lj

whereM;; denotes the indef, j) of the matrixM.

Proof: oW can be written as the solution to the following linear progravhich is obtained from the

multiuser local pooling conditions.
inf oy (32)
subject too (Ma), > (M3),, for point-to-point link j,
o (M@), ¢ + (M), ¢ = (MB) e + (MB), ey
for multiuser links(k, 1),
anda’é=1, fé=1,a>0, 3= 0.

Here (M&), denotes index of the vectorMa. Settingy = od, and denoting,. as the edge paired with in the
multiuser link (k,1), the dual function of the linear program is given by:

Since

IRL prw | IRL prw |

(M7), = Z (M,,)7.) and (M9), = (M.;)7.,

j=1 j=1

the dual problem can be expressed as
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Figure 9: Example of a possible,, for a tree network. Heré ;. = {l,, (I, 1), (I5,1.), s, (15, 1) }. The multiuser

links are the pairs of edges enclosed by ellipses in the figure

RLprw | ny
max infﬂ{a(l —y) —z+yey— Z Z%Miﬂj
j=1 i=1

Z=0,y,2 5,7,8

IRL | no
=Y (TnlMuen, +Ma)y

j=1 k=1

RLpw !, no
+zfB'e+ Z (Zxk[(,vljkcklk +Mjlkclkk]>ﬁj}'
i=1 k=1
The above maximization can then be reduced to

max —z
>0,z

subject to

ny
y(ej— E M, —
i=1
no

Z«Tk[(lvlkjcklk + Mlkjclkk]) >20,5=1,..., |RLMW\

k=1

ny

ze; + Zwll\h”—i—

i=1

no
Zwk[(l\/lkjcklk +My ] >0, 5 =1, [fe 00

k=1

y=1.
The dual problem in[(30) then follows by defining= —z, and extending the length afto |£
|E

| so that it has

Lyw

Luw| — 11 — N, Zero elements. [ ]
The dual problem is to find afi = 0 that maximizes the value af for which the constraints il (30) are satisfied.

From the dual problem, the sét,,,, satisfies 1-local pooling if = 1 is a solution to the problem, which implies

that there exists am, such that constrainf (80) is satisfied with equality.

We now show that for every.,,,, one can find a¥ to satisfy the equality constraint ih(30). Sinfg,, is a set

of links from a tree network graph, it satisfies one or bothhaf following conditions:

() L,w has an isolated point-to-point linke., it consists of two nodes of degree one each that are only ctethe
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to each other.

(2) L,w has at least one node with degree 1.

If L,w has an isolated point-to-point link, let us denote the ligkibWe then set thé'" index of the vectolr,
corresponding to link to be one and all other elements @fto be zero. Since linK, being an isolated link is
always served under the node exclusive interference medety column vector of/, - has itsl** index equal

to one. Such ai¥ yields 7 = 1 for the dual problem in[{30), and hends,,, satisfies 1-local pooling.

When L,,,, satisfies condition 2, we focus on the node to which the nod#egfee 1 is connected and denote it
by d,. An example ofL,,,, and the nodel, is shown in Fig[®. We now describe the construction of theorec
Z. The elements of this vector depends on the type of link€. jn,, connected tal,. The links can belong to

following types:

(1) point-to-point links connected td,. If j is a point-to-point link connectind,, then we setr; = 1/¢;.

(2) Multiuser links that have nodé, as transmitter or receiver. If a multiuser like, n) € L, is such that
edgesm or n are connected td,, and if the point-to-point linksn andn are not inL,,, then we set,, =0
andz, = m

(3) If a multiuser link(m,n) € L, is such that edges. or n are connected td,, and if say point-to-point links
m € Lyw, then setr,, = (1 — Lk) /2. Note that for eachn, the assignment is possible for only one element

x,, from our assumption that,, NY, = {®}vm,n € £.

Finally we set all other indices iii to zero. We now show that if is chosen as defined, it satisfies the constraints

in (30) for = = 1. We first note that under the node-exclusive interferencdaly@mongst the links that shaiig

as a common node, only one of the links may be active. As atresery columnj of M° satisfies one of the

following conditions:

0] I\N/Iﬁ?j = ¢,, for only one point-to-point link € L, that is connected td,, in which casel\?lf; = 0 for any any
other linkk € L, k # 7 havingd, as one of its nodes.

(i) l\7|°mj =c,n, l\7|2]. =2 +c  for a multiuser link(m,n) € L, where at least one of edges or n are

connected tal,. In this casel\7|§’j = 0 for any other edgé € £ [ # m that hasd, as one of its nodes.

Lywo

(i) M°, =c,, M =c,c,., for a multiuser link, such thatm,n) € Ly andn € Ly, wherem hasd, as

nj

one of its nodes. Agairi\:/lg’j = 0 for any other edgé € £ I # m that hasd, as one of its nodes.

Laws
Additionally, we observe foM° that if condition (iii) is satisfied by some columnfor some link(m,n) € Lyw,
then any column that allocates non-zero ratesnto satisfies condition (iii). This is because MGMW always
selects linkm as it gives priority to the point-to-point link over the miulier link. In a similar manner, we can
conclude that if for some columjy condition (ii) is satisfied by some linkn,n) € L, then every column that
allocates non-zero rates to lirfke, n) satisfies (ii). This is a consequence of the fact that comdlitii) implies that
(m,n) € Lyw wWhilem ¢ Lyw, n ¢ Lyw.

We now exploit the structure d¥l° to show that?’M° = ¢ is satisfied by the’ that we have constructed. Consider

any columnj in M. If j satisfies condition (i) for somé thenz, = 1/¢, yields the inner product of and column
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j to be 1. If j satisfies (ii) for som&m,n thenz,, =0, z, = 1/(c2,, + ¢2,,) again yielding the inner product
as one. A similar conclusion holds whensatisfies (i) for somgm,n) with z,, = 1/¢,,, , = 0. Since every
column j satisfies one of the three condition&M° = ¢ is indeed satisfied. It now remains to be verified that
TM° < é.

Consider any multiuser linkm,n) € L, such that the edges or n haved, as a node. Then for any column
3y (M3

mj?

M? ) may take on the valueg.,,, c,.c,..), (0,c,c,m), and(c,.n,c;,  +c: ). Whenz,, =1/c,, z, =0,

) mn

the inner product is less than or equal to oner |f=0, =, = 1/(c,, + ¢2,,), then the inner product is less than
or equal to one since?, + ¢ > max(¢,Cnm, CmCmn- If cOlUuMN j has a non zero rate for a point-to-point link
connected tal,, the inner product is equal to one.

our construction of the vectar ensures that the constraints [n](30) are satisfied fer1. This implies that 1-local

pooling is satisfied by, . Since everyL,,,, satisfies 1-local pooling, from Theordmh 1, MGMW is throughpu

optimal for network graplg. O
As a corollary of 2, we have the following result that yieldéoaer bound on the value af;" .
min, ., g T
Tongy = er b T2 (32)
man@...\RLMW\ HNTHI

This result follows by first setting all the non-zero elenseotZ to 1, i.e, by settinge; = 1, for every; satisfying
j € Lyw, or(i,j) € Ly for some multiuser linki, j). One can then normalizé by max;.; 17T, to

obtain relation[(3R).

IRL W

APPENDIXD
PROOF OFTHEOREMH

Proof: We first show that if themultiuser local pooling factoof a graphG(V, €) is o;,, then the network is
stable under the variable rate MGMW algorithm for all arikate vectors\ satisfyingX oA
We consider the fluid limit model of the system as defined inghaof of Theoreni ll. Consider the times when the
derivative £ ¢, (t) exists for alll € £. Let L,(t) denote the set of links with the highest weight at tim&he weight
of each link in L,(t), given by eq.[(b) is denoted by,,(t). We show in Lemm&l3 thaw,,(¢) is differentiable
almost everywhere. The derivative of the weights of linkd.y{t) is then given by

“4g¢,(t)e;  mis a point-to-point linkj,
() = 3 & (@ (e (1) + alt)er (1) misa

multiuser link (k,1).
Let L(t) denote the set of links froni,(¢), which have the maximum derivative of the weights,

L(t) = {m € £ | w,,(t) = max i,()}.

€L (t)
Then, there exists a smdllsuch that in the intervak, t+6), links in L(¢) will have the highest weights ift, t+0),

ie.,

in w D . 33
ngll{?t) wm(T) > mggz\il),((t) W (T) (33)
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Let ¢(7) € C.« be the rate assignments under which the linksL{t) achieve the maximum weight at times
T € (t,t+0). Since variable rate MGMW picks links froth(¢) first, the rate allocation vector selected by variable
rate MGMW, when projected oh(t) will be an element oR;;). We show in Lemmaél4 that the service rate vector
w(t), under variable rate MGMW, when projected b(¥) is a convex combination of the elementsRif), . Using
Lemma 3, along with the fact thak lies strictly within o, A., we show in Lemm&l5 that there exists € L(t)
such that

W, (1) < —€, (34)

wheree* > 0. Since all links inL(t) have the same derivativé, {34) implies thia; < —e*, Vm € L(t). Now, we
can consider the following Lyapunov functidi(t) := max,,c, w,,. For V(¢) > 0, we have that

T v < maxi, < . (35)
where L2V (t) = lim,,, Y42V s the right hand derivative of (). This implies that the largest weight must
decrease in the time intervél, ¢t + §). Since the above inequality holds almost everywherg ihe negative drift
of the Lyapunov function implies that the fluid limit model thfe system is stable and hence by the resultin [11],
the original system is also stable. Thus the efficiency ofakde rate MGMW is atleast as large as the multiuser

local pooling factor. ]
Lemma 3. For all m € L(t), the link weightw,, (¢) is differentiable almost everywhere ir> 0.

Proof: Supposem is a point to point linkj. The weightw,,(t) = ¢,(t)c; is absolutely continuous since

J

¢, 1s a scalar constant ang (¢) is absolutely continuous. Whem is a BC link (k,l), we use the Implicit

Function Theorem[18] to show thai,,(¢) is absolutely continuous. Since,,(t) maximizes the inner product
((cris ), (gx(t),q(t))), the optimal rate pair can be expressed)@s (¢,.(t), ¢ (t)), wheren(t) is the proportion-
ality factor. Using the Implicit Function Theorem, we carpeessy as a continuously differentiable function @f
andg,. Sinceg,(t) andg,(t) are differentiable almost everywhere, and by writing (¢) asq2(t)n(t) + ¢ (t)n(t),

we obtain thatw,, (t) is also differentiable almost everywhere. [ |
Lemma 4. The service rate vectat(t) projected onL(t) is a convex combination of the elementsRgf),.

Proof: We know from Eq.[(3B) thatnin,,c ) W, (7) > max,,c.\ e W(T) in (¢,¢ + ). This implies there
exists ann, such that for alln > n,,
2w > w0
Let #(7) be the rate allocation vector chosen by variable rate MGMWirire slot+ € (¢,¢ + ¢). Then for
all n > n,, 7 () projected onL(t) belongs to the seR;,), wherec(r) € C,, is the transmission rate vector
associated with the links il (¢) at time 7. Consider the service rate vector defined in terms of the cumulative

service process as:
o Si(n(t +0)) = S (nt)

! nd for link {. (36)

We now show that" can be expressed as a convex combination of the rate alacagictors inR;')). We first

consider an edgg such that(k, ) is a multiuser link inL(¢). From Eq. [36),m* can be expressed in terms of the
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rate allocation vector in each time slot in the inter¢gl + ), so that

nt+4§ n Ydr
= Bt e (37)

nS

Considering only those time slots whenr,(7) serves link(k, 1), and denotingy, as the fraction of the timéis

served as a point-to-point link, we have
Sl ST ()

i=0 Jntt+r;

= — + a;¢ (38)
n6
mTL e —c (t) + e (t)]dr
L ) — 0 ol o)
nd

Lo [ e () = e (®))dr

aadl & + ase + ayel, (t), (40)
nd
kq

wherea, = Z=27 Sincec;, (r) | (1) — ¢, (t)] < e. Then,

for all n > n,, we can bound the first term of Eq.{40) as
S ST e () — Ol ekmax, 7,
* < €.
nd - no -
Sincec;, (t) is continuous int, Vn > n,, asé — 0, we havee — 0. From Eg. [4D), we note that by makirg

(41)

arbitrarily small,7;* can be expressed in terms of the transmission raté& jralone. Also, since the transmission
rate of any point-to-point link is fixed for anyé(r), = can be expressed in terms &t). Hence, for any edgé
in L(t), we can writer; for n > n, as,
nt+8 .
S ()dT

nd (42)

wherer; (1) € R3()). The second term in Eq_(#2) is a convex combination of the adtbcation vectors iR} .

=€+

As 7 — m,(t), € — 0, and hencet(t) is a convex combination of the rate vectorsRii’),. [ |
Lemma 5. Given thatX € o3, A, there exists a linkn € L(t) such thatd,, (t) < —¢*, for somee* > 0.

Proof: If X € oA, X projected on the subsdi(t) is of the formo?, 1, wherey is a convex combination
of the rate allocation vectors iR, ,,. Then, using Lemmgl4 and the fact thatt) satisfieso;, local pooling, we
know that there exists a linkn € L(¢) satisfying Eq.[(44), given by:

A; < m;(t) m is point-to-point link j, or (43)
A <, and A, < m(t) m is a multiuser link(k, ). (44)
Eq. (44) implies that there exists a link € L(t) such that
N d 7 S
= Gee, = (X0 - 7,0) ¢, <0, (45)
for point-to-point link j, or
W, = 5 (@ (et (1) + @ () (1)) <O, (46)
for multiuser link (k,1). Eq. [45) follows if Eq. [(4B) is satisfied. We then provide fbowing argument to show
that Eq. [[44) implies Eq[{46) for a multiuser lirfk,[): Supposel(46) is not satisfied ard, > 0. Since Eq.[(44)

implies that™: < 0 and %% < 0, there exists &,, where 4, > 0, such that
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. (t+6,) < q;(t), q(t+46,) <ql(t), and 47)
w,, (t+6,) > w,,(t). (48)

Let (c;,(t + 1), ¢ (t +61)) = argmax, | . . @ (t+01)cu + @ (t + 6:)c. Then, Eq. [(47) implies that
qe(t)er, (t+6,) + q(t)cr, (t+ 8,) > w,,(t + 6,).

However, from our definition of weight, (t)c;, (t+6:)+q.(¢) ¢, (t+5,) < w,,(t), and thereforev,, (t) > w,, (t+75,),

which contradicts Eq[{48). Hencé, {46) must be satisfieénThy defining:* > 0 similar manner as done in Eg.

(18), we conclude thab,, (t) < —¢*. [

APPENDIXE
PROOF OFTHEOREM[G
Suppose, for a candidate MW subdegf,,,, with associated transmission rate vectore C, .., there exists a
dy > 0, and a pair of vectors, i satisfyings,, i > 7,; wherer/ is a convex combination of rate vectorsR@"MW
, and/i is a convex combination of rate vectorsRy .. Then, in a manner similar to the proof of Theorem 2, we
can construct a traffic pattern with arrival rae= 7 + ¢k, wheree > 0 is arbitrary andk = 0 is fixed, such that
the system is unstable under the variable rate MGMW politye @rrival ratex is arbitrarily close to, but outside

the boundary of the regioa,,I'. Let i/ = >

0

a7, and Y.’ a, = 1, wherer, € RiLw- We now specify the
statistics of the arrival pattern in each time slot: Let thi¢ial queue Iength@(o) = 0. At each time slot{ > 1,

o

we pick a vector”; € R7’  with probability o;. Conditioned onv;, one of two events may occur.

1. With probability 1 — ¢,

(a) ¢; packets arrive into the queue of point-to-point lipnkv;j € L,y such that-;(j) = ¢,.

(b) (k) and ¢°(I) packets arrive into the queues of every multiuser liikkl) € L, for which r,(k) >
0 andr,(l) > 0.

2. With probability ¢,

(@) ¢, + ¢, packets arrive into the queue of every point-to-point ljnk L, for which r,(j) = ¢;.

(b) ¢é. + ¢°(k) and ¢, + ¢°(l) packets arrive into the queues of every multiuser ljtkl) € L, for which
r.(k) > 0 andr,(l) > 0.

(c) ¢, packets arrive into the queues of all edges £ such that,(j) = 0.

¢;, Cn, andey, are fixed positive quantities defined for every point-torpdink j € Ly, and(k,l) € Lyw. They

Lyvw

satisfy the following conditions:

¢ = ékco(k) + élco(l)v Vj, (ka Z)a € LMwa

C;Cj

é e’ (k) =c°(l) éy, Y(k,1) € Lyyw- (49)
In the following lemma we show that these quantities exist.

Lemma 6. There exist fixed quantities > 0, corresponding to every edgec £ such that they satisfy the

conditions in(49).

Lyw
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Proof: The proof of Lemma6 is similar to the proof of Lemma 1 and fatoby equating the quantities in
(49) to a constanK and then computing each), ¢,, andc,, in terms of K. [ |
We now discuss the behaviour of the queued jp, in Lemmas 6 and 7. As a consequence of Lemmas 6 and

7, we will show that the queues become unstable under theibledarrival traffic.
Lemma 7. Suppose the queues in,,, satisfy the condition iff49) as stated below:
Qic; = Qe (k) + Quet ()Y, (k, 1) € Lagw,
Q.c’(k) =c(1)Q,, V (k1) € Lyw-. (50)

Then, if the queue lengi),, for everyj € £
relation (B0).

is increased taQ, + ¢;, the new queue lengths will again satisfy

Lyw?

Proof: From relations[(49) and (50), we observe th@t + ¢;)c;, = (Q, + ¢é.)c° (k) + (Q, + &)c°(1). Also,
using [B0) we obtair{@, + &) ¢’ (k) = (1) (Qx + &) |
Lemma 8. Suppose at the end of time slot 1, the queues irl,,,, satisfy the relation(cd). Then, at the end of
time slot¢, with probability 1 — ¢, the length of all queues if,,,, remains unchanged, and with probabilitythe
lengths of every queue ih,,, increases by a fixed positive quantity; i.e.(Jf = Q,(t + 1) — A,(t) denotes the
L. at the end of time slot, then with probabilityl — ¢, Q,(t) = Q,(t —1) Vj € £ and with
probability €, Q,(t) = Q,(t) + &, Vj € £

queue ofj € £

Lyw?

Lyw

Proof: We consider the arrival statistics of packets that we defpregiously. Conditioned on vectat being
picked, packets only arrive into those links that have nam zates in7,. We now show that the weight of links
that have a non-zero rate if), when calculated after the arrival of packets, strictly dwates the weight of all
other links inL,,; and hence, MGMW picks the rate allocation vecior. Consider first the packet arrivals as
described in event. Queues inL,,,,, by assumption satisfy relation {50) at the end of gloAt the beginning of
time slot¢ + 1, after packets have arrived, the fOllowing is true: For allltser links (k,1) € L,y satisfying

r;(k) > 0 andr;(l) > 0:

(¢7,¢}) = argmax [(Qk + cZ)cM—i—(Ql + ¢})ey), and (51)
k1> Clk €EREL
(Qu + ) +(Q, + &)t >Q..c5, + Qe (52)

Y(m,n) € Ly satisfyingr,(m) = r,(n) = 0. SinceQ, andQ, satisfy [50),(Q. + ¢2) andQ, + ¢°) also satisfy
(&0), implying that the queue length ratios remain unchdn{f&l) follows from the fact that the queue length ratios
remain unchanged and the pé&ir, ¢?) lies on the boundary oR,,. (52) is obtained by noting that the weight of
links that are not served in, remains unchanged. In a similar manner, for point-to-plaiks j € L, satisfying

r.(4) >0,

Qg‘ (t) +¢;)c; > max (Ql(t)cl, Qﬂl(t)c:n + Qn (t)ci,) (53)
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for all links I, (m,n) € Ly satisfyingr,(l) = r,(m) = r;(n) = 0. Relations[[(52) and ($3) together imply that
MGMW schedules rate allocation vectey over L, in time slott. Since the number of packets arriving into
queuej equalsr,(j), at the end of time slot, Q,(t) = Q;(t — 1), Vj € &,,,,, -

Next, consider the case when packets arrive as describeceitt 2 Applying LemmadZ, the queue length®, +

¢, Vj € &, Wil satisfy (50). Since the additional packets that arrimeo eachj € £, . equalsr,(j), the
same argument used for packet arrivals in evieithplies that MGMW again picks rate allocation vectgr and
hence,Q;(t) = Q,(t — 1) + ¢, at the end of time slot. [

We can now describe the queue evolution pattern for our pamkival traffic. The initial queue stat@, =
0,Yj € &, satisfies[(B0). From Lemnid 8, the queue lengths do not dexreas the event that each queue
length increases by a fixed positive quantity occurs infipisdten. Hence, the system is unstable under our proposed
arrival traffic. The arrival rate of the traffic pattern is thevaluated as followsk = Nla(l—er+ 30 ek,

wherek(j) = ¢, Vj € Er,,,,- -
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