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Abstract

Information theoretic Broadcast Channels (BC) and Multiple Access Channels (MAC) enable a single node to

transmit data simultaneously to multiple nodes, and multiple nodes to transmit data simultaneously to a single node

respectively. In this paper, we address the problem of link scheduling in multi-hop wireless networks containing nodes

with BC and MAC capabilities. We first propose an interference model that extendsprotocol interference models,

originally designed for point to point channels, to includethe possibility of BC and MAC. Due to the high complexity

of optimal link schedulers, we introduce the Multiuser Greedy Maximum Weight algorithm for link scheduling in

multi-hop wireless networks containing BCs and MACs. Givena network graph, we develop newlocal pooling

conditionsand show that the performance of our algorithm can be fully characterized using the associated parameter,

the multiuser local pooling factor. We provide examples of some network graphs, on which we apply local pooling

conditions and derive the multiuser local pooling factor. We prove optimality of our algorithm in tree networks and

show that the exploitation of BCs and MACs improve the throughput performance considerably in multi-hop wireless

networks.

I. I NTRODUCTION

The link scheduling problem for multi-hop wireless networks has received significant attention in the past few

years [1]-[10]. The common assumption in these studies is point-to-point communication, that is, the possibilities

of network information theory have not been incorporated. In this paper1 we expand the scope of link schedulers to

include multi-user communication scenarios using techniques developed in multi-user information theory. We first

propose a generalized interference model to allow for such multi-user communication scenarios. We then introduce

the Multiuser Greedy Maximum Weight (MGMW) scheduler for the proposed interference model and analyze its

performance for arbitrary network graphs. For that purpose, we derive special conditions, that we shall call multiuser

local pooling conditions.

In a wireless network with shared spectrum, in general, interference prevents all point-to-point nodes from being

used at full capacity at the same time. The general objectiveof the scheduling problem is to determine which links

1This work was presented in part at IEEE INFOCOM, San Diego, CA, March 14-19, 2010
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to activate simultaneously in a network. A scheduling policy is said to be throughput optimal if it can keep all the

queues stable under any stabilizable arrival rate vector, that is, any arrival rate vector for which the network can be

stabilized. In a multi-hop network with multiple flows and fixed link capacities, the throughput optimal scheduling

problem was initially proposed in [19]. The complexity of the optimal scheme, however, is very high, making

it highly impractical to implement. Recently, researchershave focused on certain classes of network interference

models which impose constraints on the set of links that can be simultaneously active in a network. One such

model is thenode exclusive interference modelunder which a node cannot simultaneously transmit and receive,

and also cannot communicate simultaneously with more than one node. An optimal schedule for the node exclusive

interference model, known as Maximum Weighted Matching, has a complexity,O(N 3) [16], whereN is the number

of nodes in the network. A more general interference model isthek− hop interference model, withk being the the

minimum number of hops between any two active links (whenk = 1, we end up with node exclusive interference

model). Maximum weight matching is NP-hard fork ≥ 2 [9].

To address the complexity issue, low complexity suboptimalalgorithms like greedy maximal scheduling have been

proposed. An example of greedy scheduling is Greedy MaximalMatching (GMM) for node exclusive interference

models [1]. Apart from being suitable for distributed implementation [12], GMM has the property that at each time

slot the sum of the weight of the scheduled links is no less than a fraction1/2 of the maximum weight [8], [13].

This also leads to the conclusion that it achieves at least a fraction1/2 of the capacity region of the network [1].

However, the performance of the GMM scheme turns out to be farbetter than this lower bound in many scenarios,

as shown in [14] and [6]. The authors in [6] characterized theperformance of the GMM scheme using a parameter

called the local pooling factor, which is obtained from the knowledge of the network topology, and interference

constraints. It was shown using this local pooling factor that GMM was in fact throughput optimal for many classes

of network graphs including all tree networks, under the node exclusive interference model [3].

The past work on scheduling mainly focused on orthogonal resource sharing,i.e., if a link is active no other

interfering link can be active simultaneously. Link modelsarising from the development of network or multi-

user information theory have not been incorporated. For example, usingsuperposition coding, a node could

simultaneously transmit to two or more links at a rate lower than the individual link capacities, but higher than

what could be achieved by time sharing between the individual links [15], [17]. Similarly, by usingsuccessive

interference cancellationtechniques at the receiver node in a Multiple Access Channel, two or more nodes could

transmit simultaneously to a receiver node with the achievable rate region being larger than the time sharing region.

In a network, nodes may form information-theoretic broadcast and multiple access channels using the appropriate

multiuser encoding technique to exploit the entire capacity region of the associated multiuser channels. In this work,

we design a multiuser greedy scheduling algorithm, MGMW, for networks with multiuser channels. In order to

analyze the performance of MGMW, we develop an interferencemodel and certain associated conditions, which

we refer to asσM -local pooling conditions. Thesenew conditions involve the rates achievable over the multiuser

channels and are different from the classical local poolingconditions developed for the point-to-point paradigm.

Based on the multiuser local pooling conditions, we derive amultiuser local pooling factor,σL

M
, and show that
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Figure 1: The capacity regions of the two-user Gaussian BC and MAC are illustrated in this figure.

the performance of our algorithm can be characterized usingσL

M
. Indeed, we show that the efficiency ratio of

MGMW, defined as the largest fraction of the network stability region that can be stabilized by MGMW cannot

be less thanσL

M
. We also show that the efficiency ratio of MGMW can not be larger thanσU

M
, another parameter

derived from theσM -local pooling conditions. To illustrate our ideas clearly, we focus on networks with 2-user

multiuser channels in this paper. While the generalizationto then-user case is straightforward, the corresponding

local pooling conditions are mathematically cumbersome; consequently we do not present them in this paper.

We start the development of MGMW and its performance in Sections III and IV respectively, for multiuser

channels in which the rate is a given fixed point on the multiuser capacity region. We then generalize MGMW

and analyze its performance in Sections V and VI for the case in which the rate of multiuser channels is variable,

chosen appropriately over the entire capacity region. A surprising conclusion we deduced from our results is that,

for certain network configurations, variable-rate MGMW canlead to an inferior performance compared to fixed-rate

MGMW. For both fixed-rate and variable rate MGMW, we considerexamples with different network topologies to

understand what topologies lead to throughput optimality for MGMW. If MGMW is not throughput optimal, we

compare its performance with the optimal performance as well as the performance of GMM, the greedy scheduler

without multiuser channels. We also simulate MGMW using an arbitrary network topology in Section VII.

II. SYSTEM MODEL

We model the wireless network as a graphG(V , E) whereV is the vertex set representing the nodes andE is the

set of edges. Each edge represents a directed point-to-point link over which a sender node transmits to a receiver

node. To present ideas clearly, we assume a single-hop network traffic model. The extension to multi-hop traffic

models is readily possible using techniques in [6], [4]. We assume a time slotted model indexed byt in which

the packets arrive at the start of every time slot. The packetarrivals in each link are independent and identically

distributed across time slots, but may be correlated acrosslinks. Each node keeps a separate queue for every edge

it transmits over. LetQl(t) represent the queue length for the packets to be transmittedover edgel andλl denote

the arrival rate for edgel.

We assume that a node can communicate to a single node or apair of nodessimultaneously, using information

theoretic broadcast and multiple access channels. The information theoretic Broadcast Channel (BC) occurs when

a transmitting node sends jointly encoded data using a suitable codebook, intended to more than one receiver at the

same time, from which the receivers can decode their respective information. Similarly, a Multiple-Access Channel
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(MAC) occurs when a node receives simultaneously from more than one transmitter nodes . The MAC (or BC)

capacity region for a given power constraint is the closure of the convex hull of the set of rate vectors such that

there exists codebooks at this rate, with an average power below the power constraint, such that the receivers can

decode with arbitrarily small probability of error [17]. Fig. 1 illustrates the capacity region of a two user AWGN

Broadcast Channel and an AWGN MAC. Given the channels, and given certain coding schemes, we have certain

BC and MAC rate regions that our rates belong to. In the rest ofthe development, for the ease of exposition, we

shall refer to these ascapacity regions. The important observation is that the MAC and BC rate regions are strictly

larger than the respective time-sharing achievable rate regions. Any point in the interior of the capacity region is

achievable by choosing the appropriate set of codes. In thispaper, we restrict attention to BCs and MACs comprised

of only two edges,i.e., a sender can transmit to two receivers (BC) or two senders can simultaneously transmit to

one receiver (MAC). In the sequel, we use the term link in a generic sense to include point-to-point links as well as

links made up of BC and MAC links. Apoint-to-point linkconsists of a sender node transmitting to a receiver node

over one edge. Amultiuser linkis formed when a node transmits to two receiver nodes over a pair of edges (BC),

or when a pair of nodes transmit to a common receiver node overtwo edges (MAC). We will specify the nature of

the link wherever necessary. Note that the generalization of our results to the scenario in which a multiuser channel

can involve more than two edges is straightforward. However, the algebra involved and the conditions we derive

become highly complicated and we do not present this generalization in this paper.

We assume that a multiuser link(k, l) can operate at any rate on the boundary or the interior of the capacity region,

denoted byRkl, and that the scheduling policy has the freedom to choose theappropriate rate point(ckl(t), clk(t))

in each time slot. In Section III, we initially assume a simpler network model where each transmitter, capable of

multiuser communication chooses a single rate pair from theboundary of the capacity region for the associated

multiuser link (BC or MAC), and whenever it chooses to transmit over that link, it uses the associated rate pair.

Thus, for a multiuser link(k, l), (ckl(t), clk(t)) = (ckl, clk) is fixed throughout and the scheduler does not have

the freedom to choose the rate of the multiuser link. In Fig. 1, (ckl, clk) is the fixed rate pair associated with the

multiuser link(k, l). In Section V, we relax this assumption so that the multiuserlink can operate at any point in the

capacity region, with the scheduling policy having the freedom to choose an appropriate rate point every time slot.

Note that the point-to-point link capacities also belong tothe multiuser link capacity region (as(ck, 0) and(0, cl)),

but are defined separately to distinguish these from the multiuser link case, where both edges of the multiuser

link have non-zero transmission rates. For a Gaussian BC or MAC, as seen in Fig. 1,ckl < ck, and clk < cl and
ckl

ck
+ clk

cl
> 1. This means that we can achieve rates strictly larger than those achieved by time sharing between the

two point-to-point links. It is worth stressing that using aBC link does not mean that the same message is being

sent to both receivers, but rather different messages (packets) are sent to the receivers connected by the edgesl

andk. Similarly, using a multiple-access channel entails the two transmitters sending different information to the

common receiver. It should also be noted that we do not rule out the possibility of any edge being utilized as a

point-to-point link, even if it is a part of some multiuser link.

To incorporate the possibility of such information theoretic BC and MAC links, we are motivated to introduce a
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generalized binary interference model. Similar to classical binary interference models, each edgel ∈ E is associated

with a set consisting of all edges that conflict withl, i.e., the links that absolutely cannot be scheduled when edgel

is scheduled. We call this set themain interference setand denote it byXl. For edgel, let Yl denote the set of edges

that can be paired withl to form a multiuser link. We callYl the secondary interference setof l, to distinguish it

from the main interference set, and also due to the fact that two edges that lie in each other’s secondary interference

set do not necessarily exclude each other: they simply reduce each other’s rates. Note thatYl andXl are mutually

exclusive sets and if edgek ∈ Yl, then l ∈ Yk. Let cl be the individual capacity of the point-to-point linkl. Link l

can be active at ratecl only if no other edgek ∈ Xl ∪ Yl is active. If edgek ∈ Yl is active simultaneously as edge

l, then it implies that they are active as multiuser link(k, l), at some rate(ckl(t), clk(t)), chosen from the boundary

of the capacity region, as illustrated in Fig. 1. We also observe that the notion ofmain andsecondaryinterference

sets could serve a more general purpose than allowing for multiuser links. For instance, it is possible to extend the

definition of secondary interference sets to include Interference Channels [20], a scenario in which two or more

interfering links can be active simultaneously at reduced rates using suitable coding techniques. We use the term

interfering links to indicate that these links are not allowed to be simultaneously active in a protocol interference

model. Our interference model, while incorporating multiuser links, does carry over some limitations of the protocol

interference model, namely the discrete nature of interference. The rate of a link ideally depends on the interference

caused by other links, and this is captured in more realisticmodels like the SINR model. Scheduling problem with

the SINR model has also been investigated extensively in theliterature [10]-[15]. However, the problem of optimal

scheduling with the SINR model is known to be NP hard and this fact is one of the main motivations of the use

of approximate discrete interference models such as the binary interference model. Owing to a significant portion

of the literature focusing on such models, there is a better understanding of wireless scheduling for graph based

or binary interference models. We leverage this understanding in our extension of the protocol interference model

when we introduce the idea of secondary interference sets. Further, the capacity regions of the multiuser links in

the presence of interfering links may also not be known. However, our model only requires knowing an achievable

rate region for the multiuser link which is strictly convex.

We define a rate allocation vector~r1×|E| of link rates where~rl represents the rate of transmission over the edgel.

A rate allocation vector must satisfy the following constraints:

(i) If rl > 0 thenrk = 0, ∀k ∈ Xl. This condition describes the main interference constraint for a point-to-point

link l.

(ii) If rl > 0 andrk > 0, and also ifk ∈ Yl and l ∈ Yk, thenrl = clk, andrk = ckl. Furthermore,rj = 0 for all

j ∈ Yl ∪ Yk wherej 6= k, l . This condition captures the constraints arising from the secondary interference set

Yl: If a multiuser link is scheduled then the edges belonging tothe secondary interference sets of either of the

two edges that constitute the multiuser link cannot be scheduled. Thus a node is allowed to transmit or receive

simultaneously over at most two edges.

(iii) There exists noj ∈ E such thatj does not interfere with any link and yet is not scheduled.
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Figure 2: Five edge network with point-to-point link capacities c1, c2, c3, c4 andc5. Links (1,2) and (4,5) each form

broadcast links.

Let R denote the set of all possible rate allocation vectors~r on a network graph. In general,R can be an uncountable

set, since it includes rate allocation vectors corresponding to every rate pair on the boundary of the capacity region

of a multiuser link. For any subsetE ⊂ E , RE is defined as the set of all|E|-dimensional rate allocation vectors

that satisfy the constraints in (i), (ii) and (iii), withE substituted forE in constraint (iii). As an example, a

network graph comprised of five edges is shown in Fig. 2, alongwith the set of feasible rate vectors. Table I

describes the interference sets that we could define for thisnetwork under a node-exclusive interference model. In

the figure, noded3 can set up a multiuser link to send data to(d1, d2) at a rate(c12, c21), chosen from the capacity

region. Similarly, noded4 can transmit to(d2, d5). The rate allocation vectors~r for this network are:[0 c2 0 0 c5],

[0 0 c3 c4 0], [c1 0 0 0 c5], [c1 0 0 c4 0], [c12 c21 0 0 c5], and[c1 0 0 c45 c54], where(c12, c21) and(c45, c54) are non zero

rate pairs chosen from their respective multiuser capacityregions denoted byR12 andR45. Note that in the absence

of the BC links only the first four rate vectors would be available.

Theoptimal stability region, or equivalently, the capacity region of a networkis the set of all arrival rate vectors

such that for any arrival vector in this set, there exists some scheduling scheme that can keep the queue lengths from

growing unbounded. Here, we use the term optimal stability region to distinguish the network capacity region from

the multiuser information theoretic capacity region. The optimal stability region of the network [19] is given by the

interior of the setΛ = {~λ : ~λ � ~φ, for some~φ ∈ Co(R)}, whereCo(R) denotes the convex hull of the vectors in

R and� represents componentwise inequality. Letπ : ~Q(t) → R be a scheduling policy that selects a feasible rate

vector for every time slot, based on the queue length state vector ~Q(t). Let Π denote the set of all such scheduling

schemesπ. For this model, the entire capacity region can be achieved by the Maximum Weight scheduler [19],

which at every time slott, selects the rate vector which has the highest sum of queue-weighted rates. To compare

the advantage of using multiuser links, we also define a set ofscheduling policies that cannot utilize the possibility

of multiuser links. Let̂R denote the set of rate vectors for a network with sole point-to-point communication. Set̂R

satisfies the following interference constraints:rl > 0 ⇒ rk = 0, ∀k ∈ Xl ∪ Yl. Let π̂ : Q(t) → R̂ be a scheduling

scheme designed based on this constraint and letΠ̂ denote the set of all such schemesπ̂. Note thatΠ̂ ⊂ Π. Our

objective is to find a low complexity scheme that belongs to the setΠ and characterize its performance with respect

to the capacity region, as well as to compare its performanceto that of other schemes chosen solely fromΠ̂. In

the next section, we describe the MGMW scheme for the networkmodel in which the multiuser link rates are a
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link l Xl Yl

1 {3} {2}

2 {3,4} {1}

3 {1,2,5} ∅

4 {2} {5}

5 {3} {4}

Table I: Interference sets for the five edge network of Fig. 2.

fixed point on the boundary of the capacity region.

III. M ULTIUSER GREEDY MAXIMUM WEIGHT (MGMW) ALGORITHM

Let the rate of any multiuser link(k, l) be a fixed point(ckl, clk) on the boundary of the capacity region so

that ckl(t) = ckl and clk(t) = clk. In this case, the set of all rate allocation vectorsR is now a finite set. For the

network model with fixed multiuser link rates, we present a “greedy” scheduling policy, MGMW which selects

a rate allocation vector fromR in each time slot. MGMW, in principle is similar to the GMM, discussed in [6].

Before giving a precise definition of MGMW, it will be instructive to summarize its operation descriptively:

Each link is assigned a weight, which is basically the queue-weighted link rates. In each time slot, MGMW first

greedily picks the link (point-to-point or multiuser) withthe highest weight. It then removes all interfering links

and picks the link with the highest weight from the remaininglinks. This process goes on until there are no more

links left to pick. More precisely, letL denote the set of all links (point-to-point as well as multiuser), i.e.,

L = {E ∪ {(k, l) ∈ E2 | k ∈ Yl and l ∈ Yk}} .

For any elementm ∈ L, we define the weight of a linkWm(t) as follows:

Wm(t) =











Qj(t)cj , m is a point-to-point linkj

Qk(t)ckl +Ql(t)clk, m is a MAC/BC link (k, l)

. (1)

MGMW operates as follows. At any point in the algorithm, letZ denote the set of currently unselected links that

do not interfere with any of the selected links. MGMW initializesZ to L and repeats steps1− 2 until Z = ∅.

1. Select a linkm with the highest weight inZ.

m ∈ argmax
n∈Z

{Wn(t)}. (2)

Note thatm need not be unique. In case of a tie between a point-to-point link and a multiuser link, MGMW

gives priority to the point-to-point link.

2. After the selection, remove all links that conflict withm, i.e., set their rates in the rate allocation vector to

zero. If m is a point-to-point linkj then the scheduler setsr(k) = 0, for all k ∈ Xj ∪ Yj. If m is a multiuser

link (k, l) then it setsr(i) = 0, for all i ∈ Xk ∪ Yk ∪ Xl ∪ Yl excepti = k, l. UpdateZ to consist of only

non-interfering links.
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At the end of the procedure MGMW yields a rate vector that belongs to the setR. Also, if Yl = ∅, ∀l ∈ E , MGMW

reduces to the GMM of [6].

Example 1. . MGMW for the five edge network of Fig. 2.

The set of point-to-point, and multiuser links for this caseis given byL = {1, 2, 3, 4, 5, (1, 2), (4, 5)}. Let the

link rates bec1 = 4, c2 = 6, c3 = 2, c4 = 8, c5 = 5, (c45, c54) = (4, 3) and (c12, c21) = (3, 4). Let Q1(t) = 20,

Q2(t) = 5, Q3(t) = 2, Q4(t) = 12 andQ5(t) = 1. Applying the MGMW algorithm, link4 is observed to have the

highest weight of96. Link 1 as well as(1, 2) each have weight80. Link 4, having the highest weight, is picked first

and following step 2, the interfering edges2 and5 given in Table I are removed from setZ. Among the remaining

links, highest weight is seen to be80 for link 1. Noded3 is hence selected to transmit over link1. The chosen rate

allocation vector is then[4 0 0 8 0]. Thus, at timet, no multiuser link is chosen to transmit.

A. Performance Characterization of MGMW Scheduler

We adopt the definition of efficiency ratio given in [6] to describe the performance of the MGMW algorithm.

The efficiency ratio of the MGMW scheduling algorithmγ is defined as the largest fraction of the capacity region

such that any arrival rate vector inside this region can be stabilized by MGMW, i.e.,

γ∗ := sup {γ | the system is stable under MGMW (3)

for all arrival rate vectors~λ � γΛ.
}

We study the efficiency of the MGMW algorithm for any network by relating it to a parameter that we call the

multiuser local pooling factor, which depends on the network topology and the interferencesets. In the no multiuser

link scenario, i.e, when the setYl = ∅ for all l, [14] showed that the GMM scheduler is throughput optimal for

network graphs which satisfy certain conditions. These conditions, known as local pooling conditions are based on

the network topology and the link interference constraints. In [6], a more general condition calledσ-local pooling

was introduced to characterize the performance of GMM for arbitrary interference graphs, including those for which

GMM was not throughput optimal. s In this section we identifynew network conditions in the presence of multiuser

links, which we callmultiuser local pooling (σM -local pooling)conditions. We will use these conditions to define

the multiuser local pooling factor for any network graph. Recall thatL is the set of all links for a given network

graph. To describe theσM -local pooling conditions, we focus on certain subsets ofL, which we call candidate

maximum weight (MW) subsets. A set of linksLMW ⊂ EB is called a candidate MW subset, if there exist queue

lengths, not all zero, such thatLMW = argmax
n∈Z

{Wn}. Not all subsets ofEB can be candidate MW subsets. In

fact, every candidate MW subsetLMW satisfies the following property:2: For any pair of edgesk and l such that

2Consider anyLMW . Suppose there are two point-to-point linksk ∈ LMW , l ∈ LMW such thatl ∈ Yk. Then the weights of the linksk

andl are equal, i.e,qkck = qlcl. Suppose the weight of the broadcast link is not greater thanthat of the individual links,qkckl+qlclk ≤ qkck.

Substituting forql from qkck = qlcl gives us the conditionckl
ck

+
clk
cl

≤ 1. This contradicts our earlier assumption on the rates for the broadcast

channel thatckl
ck

+
clk
cl

> 1, and hence the weight of the broadcast link exceeds that of the individual links. Thus,LMW cannot be the set

with the highest weight.
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k ∈ Yl, both individual edgesk and l of the multiuser link(k, l) do not appear as point-to-point links inLMW

separately. In other words, if an edgej appears as a point-to-point link in the setLMW , then no other edge in the

secondary interference set ofj appears as a point-to-point link inLMW : {j ∈ LMW ⇒ l /∈ LMW for all l ∈ Yj}.

We also denoteELMW
to be the set consisting of all the edges inLMW .

Example 2. Consider the network graph of Fig. 2. Examples of candidate MW subsets for this graph are the sets

{1, 3, (4, 5)} and{(1, 2), 2, 3, (4, 5)}. The sets{(1, 2), 1, 2, 3} and{1, 2, 3} however, are not candidate MW subsets,

as the links1 and 2 appear together as point-to-point links in both sets, whilealso comprising the edges of the

multiuser link (1, 2). For this network graph the setELMW
= {1, 2, 3, 4, 5}.

We now introduce the idea ofσM -local pooling conditions applied to candidate MW subsets.

Definition 3. Let LMW be any candidate MW subset. ThenLMW contains point-to-point and multiuser links as its

elements. LetRLMW
denote the set of all rate allocation vectors for the setELMW

. Also, let R̃LMW
⊆ RLMW

be

the set of rate allocation vectors onELMW
, that can be chosen by the MGMW policy, when links inLMW have the

maximum weight. ThenLMW satisfiesσM - local poolingif, for any given pair~µ, ~ν, where~µ is a convex combination

of the rate vectors inRLMW
and ~ν is a convex combination of the rate vectors inR̃LMW

, either of the following

hold:

(i) There exists a point-to-point linkj ∈ LMW such thatσMµj < νj, or

(ii) There exists a multiuser link(k, l) ∈ LMW such thatσM (µkckl + µlclk) < νkckl + νlclk.

Condition (i) becomes the standardσ-local pooling condition of [6], when defined for an arbitrary subset of edges

in E . TheσM -local pooling condition is distinguished by the fact that it is stated only over candidate MW subsets.

We introduce (ii) to generalize it to the case where multiple-edge links are possible, such as information theoretic

broadcast or multiple access channels. We define a parameter, σL

M
, for a network as the supremum of allσM such

that every candidate MW subsetLMW of L satisfiesσM -local pooling,i.e.,

σL

M
= sup {σM | ∀LMW ∈ L, conditions (i)or (ii)are satisfied for every~µ and~ν} ,

where~µ and~ν are convex combinations of the rate vectors inRLMW
andR̃LMW

respectively. We callσL

M
a multiuser

local pooling factor. To show throughput optimality when local pooling conditions were satisfied, the authors in

[14] argued that if a set of links alternately had the highestqueue weighted rate in a small interval of time, and

if they satisfied local pooling, then GMM served to bring downthe highest weights in that interval. The proof

used a fluid limit argument to find a Lyapunov function whose drift was then shown to be negative. A similar

approach is followed in the proof of Lemma 1 in [6]. When multiuser links are included, one needs to consider

the weight of both point-to-point and multiuser links. Thisleads to local pooling conditions being defined over a

fixed class of subsets, i.e., candidate MW subsets of links and not over all subsets of links. The reason for this

will become evident in the proof of Theorem 1, where it is seenthat while considering the set with links having

maximum weight, one may exclude non-candidate MW subsets, as links in these sets cannot have the maximum

weight simultaneously.
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Based on theσM local pooling conditions, we identify a condition for a candidate MW subsetLMW with which

σM -local poolingdoes not hold.LMW does not satisfyσM -local pooling if there exists a pair of vectors~µ, ~ν that

are convex combinations of the rate vectors inRLMW
andR̃LMW

respectively, such that they satisfyσM~µ � ~ν. We

define the parameterσU

M
as follows:

σU

M
= inf{σM | ∃ anLMW ∈ L, such thatσM~µ � ~ν for some~µ, ~ν}.

where~ν is a convex combination of rate vectors inR̃LMW
and~µ is a convex combination of rate vectors inRLMW

.

We now give Theorem 1 and Theorem 2 to prove that the efficiencyratio of the MGMW scheduler satisfies the

relationσL

M
≤ γ∗ ≤ σU

M
.

Theorem 1. The network is stable under MGMW algorithm for all arrival rate vectors~λ satisfying~λ ∈ σL

M
Λ.

Proof: The Proof is given in Appendix A.

While Theorem 1 shows that any arrival rate withinσL

M
Λ is stabilizable by the MGMW algorithm, we further

link the performance of the MGMW toσU

M
in Theorem 2 by showing that there exist arrival rates, arbitrarily close

but strictly outside ofσU

M
Λ, for which the system is unstable under the MGMW scheme. Theorem 1, together with

Theorem 2 implies that the efficiency ratio of MGMW is boundedbelow byσL

M
and bounded above byσU

M
.

Theorem 2. Let there exist a candidate MW subsetLMW ∈ L such that for some positive numberσM , and a pair

of vectors~µ, ~ν, which are convex combinations of the elements inRLMW
and R̃LMW

, σM~µ � ~ν is satisfied. Then,

for any ǫ > 0, there exists a~k ≻ 0 such that the arrival rate~λ = ~ν + ǫ~k makes the system unstable under the

MGMW scheme.

Proof: The proof is given in Appendix B.

Theorem 1 and Theorem 2 establish sufficient and necessary conditions respectively for local pooling to occur under

the MGMW policy. Unlike the GMM policy, for which a single condition is both necessary and sufficient for local

pooling, we have separate necessary and sufficient conditions due to the presence of multiuser links. While these

two conditions are identical in certain cases such as tree networks satisfying specific rate constraints, they are not

necessariry identical in a general network.

IV. PERFORMANCE OFMGMW

In this section, we analyze the performance of MGMW in some sample network topologies. We use the bounds on

efficiency ratio of MGMW obtained in the previous section to evaluate the throughput gain by leveraging multiuser

links in these network graphs. Even though the optimal stability region of a network with multiuser links is larger

than that of a network with point-to-point links alone, for some networks it may be possible that MGMW achieves

a smaller stability region than GMM. However, we provide examples of two network graphs, specifically a tree

network graph and a star network graph, for which we show thatMGMW achieves a larger stability region than

GMM. In this process, we also explore the tightness of our bounds. In particular, we show that the lower bound is
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tight for tree networks when the multiuser link rates are restricted to certain rate regions. Moreover, the lower bound

on efficiency ratio is good enough to prove that the stabilityregion with MGMW is larger than that with GMM

for the star network example. We also simulate the performance of MGMW and GMM on a randomly generated

network graph, and observe that MGMW can stabilize a higher arrival rate for each link in the random network

graph.

We first show that MGMW is throughput optimal for certain treenetworks.

A. Tree Networks

In the following theorem, we show that under the node exclusive interference assumption, MGMW is throughput

optimal for directed tree graphs in which no two multiuser links have a link in common. The node exclusive

interference assumption for our model only restricts a nodefrom transmitting and receiving at the same time.

It does not restrict a node from transmitting simultaneously to multiple nodes, or receiving simultaneously from

multiple nodes.

Theorem 3. Let G = (V , E) be a directed tree graph such thatYk ∩ Yl = ∅ for all k, l ∈ E . Let c2
mn

+ c2
nm

>

max(cmcmn, cncnm) for every multiuser link(m,n) in L. Then, if the primary and secondary interference sets are

constructed under the node exclusive interference assumption, σL

M
= σU

M
= 1, implying that MGMW is throughput

optimal for this tree network graph.

The proof is given in Appendix C. Theorem 3 also shows that MGMW is throughput optimal for downlink cellular

networks without intercell interference with multiuser links consisting of broadcast channels. This is because the

downlink cellular model is an instance of a tree network.

B. A Network withσU

M
< 1.

Consider the network graph shown in Fig. 3. All links have a rate of 1 when used as point-to-point links. All

multiuser links have a rate of (0.75,0.75) each. We defineσLMW
for a candidate MW setLMW as the highest value

of σM -local pooling satisfied byLMW . We show in [21] thatσLMW
≥ 2/3 for all candidate MW subsetsLMW of

the star network graph in Fig. 3, and hence the efficiency ratio of MGMW is at least 2/3 for this network graph.

Here we will only show this for one candidate MW subset and will not repeat the same operation for all candidate

MW subsets. In order to findσLMW
, we make use of the following relation that we derive in Appendix C:

σLMW
≥

mini∈1...|R̃LMW
| ‖~̃ri

T‖1

maxj∈1...|RLMW
| ‖~rjT‖1

, (4)

where ~̃ri ∈ R̃LMW
, ~rj ∈ RLMW

and T is a
∣

∣ELMW

∣

∣ ×
∣

∣ELMW

∣

∣ matrix such thatTii = 1, if i ∈ LMW ; Tlk =

ckl andTll = clk if (k, l) ∈ LMW ; andTij = 0 otherwise.

Consider the candidate MW subsetLMW = {(1, 2), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12)}. The setR̃LMW
is given
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Applying the relation (32) to the specifiedLMW set yieldsσLMW
> 2/3. Furthermore, we also show in [21] that

σLMW
≤ 3/4 for this network graph. For the same network graph, if we exclude the possibility of multiuser links,

it can be shown that GMM algorithm has an efficiency ratio of 2/3 (with respect to the capacity region in the no

multiuser link scenario). To see this, we only need to consider the setL = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. The

setL forms a cycle, and in the same manner as that shown for the six-link cycle network in [6], one obtains the

local pooling factor as 2/3. Hence, in this example, MGMW guarantees a larger stability region compared to GMM.

This is because the optimal stability region of a network forthe multi-user case is a superset of the optimal stability

region of the same network in the no multiuser link scenario.

In the following section, we explore a more general network model, where we assume that rather than just one

point, the whole rate region is available to the encoder and decoder, as well as the scheduler. The scheduler then

selects a suitable multiuser link rate pair from this regionin every time slot. For this network model, we provide a

generalized version of the MGMW scheme and analyze its performance by deriving local pooling conditions that

are similar to the ones derived for the case with fixed multiuser link rates.

V. USING THE ENTIRE MULTIUSER CAPACITY REGION: VARIABLE RATE MGMW

We present the extension of the MGMW scheme wherein we allow it to select an arbitrary rate pair from the rate

region of each multiuser link in each time slot. From this point on, we restrict attention to network graphs that only

have BC links as multiuser links, and omit the technical treatment of MAC links due to space constraints. While

the variable rate MGMW algorithm remains unchanged in the presence of MAC links, the performance analysis of

variable rate MGMW involves treating the MAC links and BC links as separate cases.

The MGMW scheme, as described before in Section III, initially determines the weight of all point-to-point and

multiuser links. Since the entire multiuser capacity region is now available to the scheduler, the weight of a multiuser

link is defined as the sum of queue weighted edge rates, maximized over all possible choices of rate pairs within

the capacity region of the multiuser link. For any elementm ∈ L, We define the weight of a linkWm(t) as follows:
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Wm(t) =



























Qj(t)cj , m is a point-to-point linkj

max
(ckl,clk)∈Rkl

Qk(t)ckl +Ql(t)clk,

m is a multiuser link(k, l),

(5)

whereRkl is the capacity region of the multiuser link(k, l), and is assumed to be known. For instance, consider

the operation of variable rate MGMW scheme for the network graph of Fig. 2.R12 andR45 are the multiuser rate

regions of links(1, 2) and(4, 5) and are assumed to be known. The variable rate MGMW then uses (5) to calculate

the weight of each link. Let(c∗45(t), c
∗
54(t)) and(c∗12(t), c

∗
21(t)) be the transmission rate pairs that correspond to the

weight of the multiuser links(1, 2) and(4, 5). Now that all the weights and their associated transmissionrates are

known, variable rate MGMW then assigns the rate allocation vector following the same procedure as described for

the MGMW scheme in Section III.

For a BC link, since the capacity region of the multiuser linkis strictly convex, as shown in Fig. 1, the transmission

rate pair associated with the weight of the link is unique, and corresponds either to a multiuser link configuration (if

the rate pair that yields the maximum weight allocates non-zero rates to both edges) or to one of the point-to-point

links (if the rate of one of the edges is zero). Thus, only one of the configurations can be associated with the weight

of the multiuser link at any given time. With the new weights calculated as described above, the operation of the

MGMW algorithm is identical to the one described in Section III, and yields a rate allocation vector that belongs to

the setR. The setR for a network graph is now an uncountable set, as it includes every rate pair on the boundary

of the capacity region, rather than one fixed rate point.

Local pooling conditions for variable rate MGMW

The performance of the variable rate MGMW scheme can be analyzed in a manner similar to that of MGMW, by

relating the multiuserσM -local pooling factor to the efficiency ratio of variable rate MGMW. We retain the same

notion of efficiency introduced earlier in Section IV. Note that the network capacity region defined in Section II is

a superset of the capacity region obtained by fixing the multiuser link rates. We now present the multiuserσM -local

pooling conditions for the variable rate MGMW scheme.

Let LMW be any candidate MW subset,i.e., a subset ofL whose links can achieve the maximum weight simul-

taneously. Every candidate MW subsetLMW satisfies the following property: For any pair of edgesk and l such

that k ∈ Yl and vice versa, a candidate MW subsetLMW can contain at most one out of the three links(k, l), k

and l, i.e.,

I(k,l)∈LMW
+ Ik∈LMW

+ Il∈LMW
≤ 1,

for any multiuser link(k, l), whereIn∈LMW
is an indicator variable taking the value 1 whenn ∈ LMW and 0

otherwise. This property ofLMW follows from the fact that the weight of link(k, l), as a consequence of being

maximized over the entire multiuser capacity regionRkl, can correspond to only one out of the three possible

configurations (point-to-point linkk, point-to-point link l or multiuser link(k, l)).

Given a candidate MW subset, the transmission rates of the point-to-point links are fixed at their respective capacity
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values, whereas the transmission rates of multiuser links can take different values from the associated capacity

regions. LetCLMW
be the set containing all possible transmission rates associated with the links inLMW . We

illustrate these sets in the example below:

Example 4. Consider the network graph of Fig. 2. An example of a candidate MW subset for this graph is the

set {1, 3, (4, 5)}. The sets{(1, 2), 1, 3} and {(1, 2), 2, 3} however, are not candidate MW subsets, as they both

contain links (links(1, 2) and 1 in one, and(1, 2) and 2 in the other) that cannot have the maximum weight at

the same time. For the exampleLMW = {1, 3, (4, 5)}, ELMW
is {1, 3, 4, 5} and the edges have rates given by

{c1, c3, (c∗45, c
∗
54
)}, where(c∗

45
, c∗

54
) is an arbitrary non-zero rate pair selected from the boundary of R45. Since the

rates of point-to-point links are fixed, each element ofCLMW
would correspond to a non-zero rate pair chosen from

R45.

We now state theσM -local pooling conditions applied to candidate MW subsets.

Definition 5. LetRLMW
be the set of all rate allocation vectors on the subset of edgesELMW

. For each transmission

rate vector~c ∈ CLMW
, let R~c

LMW
be the set of all rate allocation vectors that MGMW can assignon ELMW

, when

the links inLMW achieve maximum weight with their transmission rates givenby~c. Note thatR~c

LMW
⊂ RLMW

∀~c ∈

CLMW
. We then say thatLMW satisfiesσM -local pooling, if everyR~c

LMW
satisfies the following conditions:

For any two vectors~µ and~ν, where~µ is a convex combination of elements inRLMW
, and~ν is a convex combination

of rate vectors inR~c

LMW
,

(i) There exists a point-to-point linkj ∈ LMW such thatσMµj < νj, or

(ii) There exists a multiuser link(k, l) ∈ LMW such thatσMµk < νk and σMµl < νl.

The multiuser local pooling factorσ∗
M

of a network is the supremum of allσM such that every candidate MW

subsetLMW of L satisfiesσM -local pooling,i.e.,

σ∗

M
= sup

{

σM | ∀LMW ∈ L, ∀ ~c ∈ CLMW
, conditions (i) or(ii) are satisfied for every~µ and~ν

}

, (6)

where ~µ and ~ν are again convex combinations of the rate vectors inRLMW
and R

~c

LMW
respectively. For the

variable rate MGMW scheme, we state the following result that extends the performance analysis results for the

MGMW scheme with fixed multiuser link rates.

Theorem 4. For a graphG with the multiuser local pooling factorσ∗
M

as defined in(6), variable rate MGMW

scheme stabilizes all arrival rate vectors~λ ∈ σ∗
M
Λ, i.e.,

γ∗ ≥ σ∗

M
. (7)

Proof: The proof is given in Appendix D.

We observe that for the variable rate MGMW, the multiuser local pooling conditions involve verifying the

conditions over all possible sets of transmission rates associated with the links inLMW . This is in contrast to the

case where the multiuser link rate is fixed, since there is only transmission rate vector associated with the links in

anLMW subset. We now derive an upper bound for the efficiency of variable rate MGMW can further be analyzed
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Figure 4: A network with two multiuser links.

as follows. Letσ̂M be defined as:

σ̂M = inf
{

σM | ∃LMW ∈ L, and an associated transmission rate vector~c ∈ CLMW
, (8)

such thatσM~µ > ~ν for some~µ, ~ν} , (9)

~µ and~ν being convex combinations of the rate vectors inRLMW
andR~c

LMW
respectively.

Theorem 5. For a graphG with σ̂M as defined in(9), there exist arrival rate vectors~λ arbitrarily close to, but

outsideσ̂MΛ, such that the network graph is unstable under variable rateMGMW.

γ∗ ≤ σ̂M . (10)

Proof: The proof is similar to that of the fixed multiuser link rate case and is given in Appendix E.

Theorem 4 and Theorem 5 together imply thatσ∗
M

≤ γ∗ ≤ σ̂M . Since theσM -local pooling conditions need

to be satisfied by all rate assignments associated with the links that belong to anLMW subset, some of the rate

assignments could limit̂σM more than other rate assignments, leading to a lower value ofefficiency for variable

rate MGMW.

The stability region of a network with multiuser link becomes even larger when we allow the entire achievable rate

region for each multiuser link to be used by the scheduler. However, the proposed variable rate MGMW policy,

which is a natural extension of the fixed rate MGMW policy can perform poorly compared to the fixed rate MGMW

policy. Indeed, the efficiency ratio of the variable rate MGMW policy is in fact bounded above by the efficiency

ratio of a fixed rate MGMW policy (with fixed rates being chosenfrom the rate region of multiuser links). In the

following section, we provide examples of network graphs inwhich we illustrate how the availability of the entire

multiuser capacity rate region can bring down the efficiencyof variable rate MGMW. We observe further that GMM

is actually throughput optimal for these network graphs examples in the absence of multiuser links. These examples

illustrate that it might be more beneficial to use a fixed rate MGMW scheduler whose rates have been carefully

chosen from the corresponding rate regions of multiuser links compared to the variable rate MGMW scheduler.

VI. PERFORMANCE OF VARIABLE RATEMGMW

In this section, we illustrate the performance of the variable rate MGMW scheme using some examples. Specif-

ically, we provide some cases in which the variable rate MGMWperforms much more poorly in terms of the
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efficiency ratio, compared to the fixed rate MGMW scheduler tothe extent that, certain arrival rates that are

stabilizable by fixed rate MGMW make the queues blow up for variable rate MGMW. While the optimal network

stability region is larger when the rates are allowed to vary, we show that the variable rate MGMW may perform

worse relative to fixed rate MGMW with regard to efficiency ratio.

Example 6. Consider the network graph shown in Fig. 7a. The network has four edges and is capable of using

the multiuser links(l1, l4) and (l2, l3), whose multiuser capacity regions are given byR14 andR23 respectively.

We assume that all the point-to-point links have unit capacities. Let (1 − ǫ1, ǫ4) ∈ R14 and (ǫ2, 1 − ǫ1) ∈ R23 be

two arbitrary rate pairs. We now show that the efficiency of variable rate MGMW is limited by the choice of the

multiuser link rate pairs according to the relation:

γ ≤
1 + ǫ1 + δ

2
, (11)

whereδ = (ǫ4 − ǫ1) + (ǫ2 − ǫ1) is a positive quantity that depends on the value of the link rate pairs.

Proof: Consider the candidate MW subsetLMW = {(l1, l4), (l2, l3)} with the link rates given by(1− ǫ1, ǫ4) ∈

R14 and (ǫ2, 1− ǫ1) ∈ R23, whereǫ1, ǫ4 ∈ (0, 1). Let ~ν be a convex combination of the rate allocation vectors on

LMW , with the link rates that yield the maximum weight assumed tobe (1− ǫ1, ǫ4) and(ǫ2, 1− ǫ1). We choose~ν

to be:

~ν = 0.5 ∗ [1− ǫ1 0 0 ǫ4] + 0.5 ∗ [0 ǫ2 1− ǫ1 0] .

Let ~µ be a convex combination of the rate allocation vectors inRLMW
. We choose~µ as:

~µ = 0.5K ((1− ǫ1) [1 0 1 0] + ǫ2 [0 1 0 0] + ǫ4 [0 0 0 1]) .

Then,~µ = K~ν, which implies from Theorem 5 that the efficiency of variablerate MGMW cannot be greater than

1

K
. For ~µ to be a convex combination of the rate allocation vectors, itmust satisfy0.5K[(1− ǫ1) + ǫ2 + ǫ4] = 1,

implying that
1

K
= (1− ǫ1 + ǫ2 + ǫ4)/2. (12)

Since the multiuser capacity region is strictly convex,1 − ǫ1 + ǫ4 > 1, which implies thatǫ4 > ǫ1. Similarly,

1− ǫ1+ ǫ2 > 1, which implies thatǫ2 > ǫ1. Let δ = (ǫ4 − ǫ1)+ (ǫ2 − ǫ1), so thatδ > 0. Substituting the numerator

in (12) with δ, we obtain,
1

K
= (1 + ǫ1 + δ)/2. (13)

Eq. (11) suggests that the efficiency of variable rate MGMW scheduler for the network graph in Fig. 7a is

limited by those multiuser rate points which have smaller values ofǫ1 andδ, as they yield lower values of̂σM . In

this example, a smallerǫ1 and δ corresponds to those multiuser rate points which are close to one of the edges’

point-to-point capacities, as shown in Fig. 7b and 7c.

Example 7. Consider the network graph in Fig. 5 with four edges having multiuser links(1, 4) and(2, 3) , where

R14 andR23 are their respective multiuser capacity regions. Let(1 − ǫ1, ǫ4) ∈ R14 and (1 − ǫ2, ǫ3) ∈ R23 be two

arbitrary rate pairs. Then, we show that the efficiency of variable rate MGMW is upper bounded as :
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γ <=
2− (ǫ1 + ǫ2)

2
, whereǫ1 + ǫ2 < 1. (14)

Proof: We chooseLMW = {(l1, l4), (l2, l3)} with links having rates(1 − ǫ1, ǫ4) ∈ R14 and (1− ǫ2, ǫ3) ∈ R23.

Let ~ν = 0.5 ∗ [1− ǫ1 0 0 ǫ4] + 0.5 ∗ [0 1− ǫ2 ǫ3 0] be a convex combination of rate allocation vectors inLMW with

the assumed link rates, and~µ = 0.5 ∗K ∗ (1− ǫ1) ∗ [1 0 1 0]+ 0.5 ∗K ∗ (1− ǫ2) ∗ [0 1 0 1] be a convex combination

of rate allocation vectors inRLMW
. Using the fact that~µ is a convex combination, we obtain the relation:

1

K
= (2− (ǫ1 + ǫ2)) /2. (15)

In this case, the condition~µ = K~ν is satisfied ifǫ1 + ǫ3 = 1, andǫ2 + ǫ4 = 1. The strict convexity of the multiuser

capacity region gives us the conditionsǫ4 > ǫ1, andǫ3 > ǫ2. Both these conditions together imply thatǫ1 + ǫ2 < 1.

From Eq. (14), we observe that increasing the quantityǫ1 + ǫ2 decreases the upper bound on the efficiency of

variable rate MGMW to close to 0.5, and hence rate pairs in which at least one of the edges get high rates, dominate

the performance of variable rate MGMW. Note that in the absence of multiuser links, GMS is throughput optimal

for both network graphs [3].

The above examples highlight certain scenarios where the variable rate MGMW scheduler can perform poorly in

terms of efficiency ratio, when compared to a MGMW policy whose links operate a fixed rate chosen carefully

from the multiuser capacity region. Choosing a fixed rate point also reduces the coding complexity of the multiuser

links by requiring fewer number of codebooks.

VII. S IMULATION OF THE PERFORMANCE OFMGMW

In this section, we simulate the performance of MGMW with fixed multiuser link rates and GMM in a randomly

connected network graph. Figure 6a shows an arbitrary network graph having point-to-point as well as multiuser

links. The multiuser (BC) links in this graph are links (1,2), (4,7), (3,8), (5,6), and (9,14). In this example we chose

the transmission rates of the point-to-point links at random, uniformly between 3 and 10 units. The rates of the

multiuser links are chosen to ensure the convexity of the rate region is assured. The arrival process for each edge

is Bernoulli and we denote the arrival rate withλl.

In Fig. 6b, we plot the total queue size (sum of queue lengths at each edge) as we increase the arrival rate in

edges 9 and 14, from 2 to 2.5 as we keepλl = 1 for all other links. Here, the transmission rates of links 9,14 and

(9,14) are 6, 4 and (4,3) respectively. The graph suggests that MGMW yields a constant gain in arrival rate for the

multi-user links as each edge of the multiuser link (9,14) isseen to sustain around 5% more traffic, as compared

to the GMM case.
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Figure 6: An Arbitrary network graph with 15 edges and 5 broadcast links.

In Fig. 6c, we simultaneously increase the arrival rate across edges 1, 2, 9, 14, 3 and 8 while keeping the arrival

rates at other edges fixed at 1. Here, the capacities of these links are 10, 8, 6, 4, 12 and 8, and the transmission

rates of the BCs(1, 2), (9, 14) and (3, 8) are (9,5), (4,3) and (10,6) respectively. Similar to the previous scenario,

the plots again show that the total queue size with MGMW is lower than that with GMM. Here, each edge of the

multiuser links is able to sustain 10% more traffic than in theno multiuser link case. Thus, for the network in Fig.

6a, MGMW appears to stabilize a larger range of arrival rates.
VIII. C ONCLUSIONS

In this paper we explored the problem of link scheduling in a setting that allows for the use of techniques from

multi-user information theory. To this end, we proposed a modified version of the binary interference model by

introducing the notion of a secondary interference set for each link of the network. The interference model proposed

in this paper could be thought of in a loose sense as a hybrid ofthe binary interference model and the SINR model.

Since the optimal algorithm is known to have high complexity(NP hard in many cases), we provided a suboptimal

greedy algorithm called MGMW for our interference model. Wecharacterized the performance of MGMW by

deriving local pooling conditions and relating the multiuser local pooling factor to the efficiency of MGMW. For a

network with capacity regionΛ and a multiuser local pooling factorσM , we showed that MGMW stabilizes every

arrival rate vector inσMΛ and that there exists a non-stabilizable arrival rate vector, arbitrarily close to, but strictly

outside ofσMΛ. We gave examples of certain network graphs where MGMW was throughput optimal and a graph

where the multiuser local pooling factor is less than one. Wealso considered a network model where the scheduler

has the freedom to select the multiuser link rate every time slot. We analyzed the performance of the variable rate

MGMW scheduler and showed that the availability of the entire rate region could hurt the performance of variable

rate MGMW. Finally, we also observed the performance of MGMWin an arbitrary graph and compared it to that

of GMM.
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APPENDIX A

PROOF OFTHEOREM 1

The proof shows stability of the network under MGMW by findinga Lyapunov function and showing that it

has a negative drift for the fluid limit of the system. The ideaof the proof is similar to the stability proof in

[6], which is for the scenario of no multiuser links. We assume that the arrival process for each link satisfies

conditions for the fluid limit to exist, which is that the Strong Law of Large Numbers (SLLN) should hold for

the arrival process. For example, SLLN holds when the packetarrivals in each queue are IID with bounded

second moments. Here, we assume a modified arrival process, where we relax the IID assumption in the first

time slot alone, and allow a deterministic but finite number of packets to arrive in the first time slot. Note that

this does not affect the applicability of SLLN and
∑

∞

n=1
Ai(n)/n → E(Ai(n)) = λiw.p 1. Let ~A(t) denote the
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cumulative arrival process and~S(t) denote the cumulative service process until time slott. For the arrival and

service processes, we useAl(t) = Al(⌊t⌋), andSl(t) = Sl(⌊t⌋). For the queue processQl(t), we employ linear

interpolation. We now consider a sequence of scaled queuingsystems( ~Qn(·), ~An(·), ~Sn(·)). where we apply the

scalingQn

l
(nt)/n, Al(nt)/n, andSl(nt)/n, ∀l ∈ E with the queue process satisfying

∑

l∈E
Qn

l
(0) ≤ n. Then,

using the techniques to establish fluid limit in [11], one canshow that a fluid limit exists almost surely,i.e, for

almost all sample paths and for any positiven → ∞, there exists a sub-sequencenj with nj → ∞ such that

following convergence holds uniformly over compact sets. For all l ∈ E , 1

nj
A

nj

l (njt) → λlt, 1

nj
S

nj

l (t) → sl(t), and

1

nj
Q

nj

l (njt) → ql(t). ql(t) andsl(t) are the fluid limits for the queue length processes and the service rate processes

respectively. The fluid limit is absolutely continuous and hence the derivative ofql(t) exists almost everywhere [11]

satisfying:

d

dt
ql(t) =











[λl − πl(t)]
+

ql(t) > 0.

0 otherwise.
(16)

whereπl(t) = d

dt
(sl(t)). We now show that the largest queue weighted rate (taken overpoint-to-point link or

broadcast links) of the fluid limit model always decreases under the MGMW algorithm. This allows us to define

the Lyapunov function for the system as the maximum weight over all links and establish its drift to be negative.

Consider the timest when the derivatived

dt
ql(t) exists for all l ∈ E . Let L0(t) denote the set of links with the

largest weight,i.e.,

L0(t) = {m ∈ L | wm = maxm∈L wm}.

Define the derivative of the weights of links inL as follows:

ŵm(t) =



























d

dt
qj(t)cj m is a point-to-point linkj

d

dt
qk(t)ckl + ql(t)clk m is a

multiuser link (k, l)

.

Let L(t) denote the set of links fromL0(t), which have the maximum derivative of the weights,

L(t) = {m ∈ L | ŵm(t) = max
m∈L0(t)

ŵm(t)}.

Then, one can find a smallδ such that in the interval(t, t+ δ), links in L(t) will have the highest weights in that

time interval,i.e., minm∈L(t) ŵm(τ) > maxm∈L\L(t) ŵ(τ) for all τ in (t, t+ δ). MGMW will select links from the

setL(t) first in the interval(t, t + δ), since it picks the links in decreasing order of weights. If we focus on the

links in L(t), then any rate allocation vector selected by MGMW in(t, t + δ), projected on the setL(t) would

yield a rate allocation vector that is an element ofRL(t). This in turn implies that~π(t), the service rate vector under

MGMW projected onL(t) is a convex combination of the elements ofR̃L(t). A formal argument to show this is

mostly identical to that in [6] and is omitted here. Because of the convexity conditionckl

ck
+ clk

cl
> 1, L(t) is a

candidate MW subset. Consider a~λ lying strictly within σL

M
Λ. SinceσL

M
is the local pooling factor, andL(t) is

a candidate MW set, it follows from the multiuser local pooling conditions that there exists a linkm ∈ L(t) that

satisfies
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λj < πj(t), if m is point-to-point linkj, (17)

λkckl + λlclk < πk(t)ckl+πl(t)clk, if m is multiuser link(k, l).

For any candidate MW setLMW , let ~sLMW
be any convex combination of the elements (rate allocation vectors) of

the setR̃LMW
. Since everyLMW ⊂ L satisfiesσL

M
local pooling, and~λ lies strictly within σL

M
Λ, the quantity

ǫ~sLMW
= max

(k,l)∈LMW
j∈LMW

(

(sj − λj), (skckl + slclk − λkckl − λlclk)
)

is strictly positive for everyLMW . We then define the infimum of all such positive quantities over all such subsets

LMW and all vectors~sLMW
as

ǫ∗ = inf
{~sLMW

∀LMW ⊂L}
ǫ~sLMW

. (18)

and we observe thatǫ∗ > 0. Hence, from the relation in (17), there existsm ∈ L(t) such that the following holds:

λj − πj(t) ≤ −ǫ∗, if m is point-to-point linkj, (19)

(λk − πk(t))ckl + (λl − πl(t))clk ≤ −ǫ∗, if m is a link (k, l).

From (16), and the fact that all links inL(t) have the same derivative, (19) implies thatŵm ≤ −ǫ∗, ∀m ∈ L(t).

Hence, we observe that there exists no link inL(t) with ŵm ≥ 0, andqm > 0, whereqm = max(qk,ql), if m is a

multiuser link (k, l). Now, we can consider the following Lyapunov functionV (t) := maxm∈L wm. For V (t) > 0,

we have that
d+

dt+
V (t) ≤ max

m∈L
ŵm ≤ −ǫ∗. (20)

where d+

dt+
V (t) = limδ↓0

V (t+δ)−V (t)

δ
is the right hand derivative ofV (t). This implies that the largest weight must

decrease in the time interval(t, t+ δ). Since the above inequality holds almost everywhere int, the negative drift

of the Lyapunov function implies that the fluid limit model ofthe system is stable and hence by the result in [11],

the original system is also stable.

APPENDIX B

PROOF OFTHEOREM 2

We construct an arrival traffic using the approach in [6] and show that under this traffic pattern the network is

unstable under MGMW. LetJ denote the number of possible rate allocations on the setLMW . The vector~ν, being

a convex combination of the elements inR̃LMW
, can be written as

~ν =
J−1
∑

i=0

ωi~ri, ~ri ∈ R̃LMW

whereωi ≥ 0 for all 0 ≤ i ≤ J−1 and
∑

J−1

i=0
ωi = 1. Let vi be a rational number which satisfies

∑

J−1

i=0
|ωi − vi| ≤

δ

J

for any δ > 0. Such avi clearly exists for everyωi. To enable the construction of the traffic pattern we now define

a new vector̂~ν =
∑

J−1

i=0
vi~ri. Thus one can make the vector~̂ν arbitrarily close to~ν. We now specify our arrival

traffic with load~̂ν+ ǫ~k, such that the system is unstable under MGMW. The arrival traffic for every queue consists

of IID packet arrivals in each time slot, except for the first time slot alone. Packets arrive at the beginning of time

slots. Without loss of generality we assume that for the candidate MW subsetLMW , if (k, l) is a multiuser link
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in LMW , thenk denotes the edge of the link(k, l) that can be present as a point-to-point link inLMW . Let the

initial queue state vector be~Q0 � 0. Let j denote any point-to-point link belonging toLMW , and (k, l) denote

any multiuser link inLMW . Then the packet arrivals in the first time slot are such that~Q0 satisfies the following

constraints:

Qjcj = Qkckl +Qlclk = Qkck + c2
k
− ckckl > Qlcl + clclk, (21)

for all links j, (k, l) ∈ LMW . We show in Lemma 1 that a vector~Q0 � 0 satisfying (21) exists. We now describe

the statistics of our arrival traffic. Let vector~ri be picked with probabilityνi. Conditioned on~ri being picked, one

of two events may occur:

1. With probability 1− ǫ,

(a) ri(j) packets arrive into every point-to-point linkj ∈ LMW such thatri(j) = cj > 0, and

(b) ckl andclk packets arrive into linksk and l respectively∀(k, l) ∈ LMW such thatri(k) > 0 andri(l) > 0.

We show that when packets arrive in the manner described in event1, MGMW picks rate allocation vector~ri, and

at the end of time slott, the queues inLMW continue to satisfy the relation in (21).
(i) The weight of any point-to-point linkj ∈ LMW satisyingri(j) = cj, is given byQjcj + c2

j
. Using (21) we

obtain:

Qjcj + c2
j
> Qlcl, ∀l ∈ LMW such thatri(l) = 0, and

Qjcj + c2
j
> Qmcmn +Qncnm > Qmcm,

∀(m,n) ∈ LMW such thatri(m) = ri(n) = 0. (22)

The inequality in (22) follows sincec2
m
− cmcmn > 0.

(ii) For any multiuser link(k, l) satisfyingri(k) = ckl andri(k) = ckl,

(Qk + ckl)ckl+(Ql + clk)clk > Qjcj, ∀j ∈ LMW s. t ri(j) = 0,

Qkckl +Qlclk + c2
kl
+ c2

lk
> Qmcmn +Qncnm,

∀(m,n) ∈ LMW such thatri(m) = ri(n) = 0,

Qkckl +Qlclk + c2
kl
+ c2

lk
> Qlcl + clclk,

Qkckl +Qlclk + c2
kl
+ c2

lk
> Qkck + ckckl, (23)

where (23) holds since

Qkckl +Qlclk + c2
kl
+ c2

lk
= Qkck + ckckl + (ck − ckl)

2 + c2
lk
.

(iii) For link k ∈ LMW satisfyingri(k) = ck and (k, l) ∈ LMW for somel, we have:

Qkck + c2
k
> Qjcj, ∀j ∈ LMW with ri(j) = 0

Qkck + c2
k
> Qmcmn +Qncnm > Qmcm,

Qkck + c2
k
> Qlcl, and

Qkck + c2
k
= (Qk + ck)ckl +Qlclk. (24)
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The weight of linkk therefore dominates all the links not served by~ri. MGMW breaks the tie between the

weights ofk and(k, l) shown in (24) by scheduling linkk. (i), (ii) and (iii) establish that weight of links served

in ~ri dominate the weight of other links and hence MGMW schedules~ri.

2. With probability ǫ, packets arrive into the queues inLMW in the following manner.

(a) cj + ĉj packets arrive into point-to-point linksj ∈ LMW for which ri(j) = cj.

(b) ckl + ĉk packets into linkk andclk + ĉl packets arrive into the queues ofk andl for multiuser links(k, l) such

that ri(k) > 0 andri(l) > 0.

(c) ĉm packets arrive into all other linksm ∈ LMW for which ri(m) = 0.

The quantitieŝcj, ĉk, and ĉl are such that they satisfy the following weight criteria:

ĉjcj = ĉkck = ĉkckl + ĉlclk > ĉlcl. (25)

It can be shown using an argument identical to that used for (21) that there exist positivêcj, ĉk, and ĉl that satisfy

relation (25). When packets arrive according to the event2, MGMW still schedules~ri. This is because (21) and

(25) yield

(Qj + ĉj)cj = (Qk + ĉk)ckl + (Ql + ĉl)clk

= (Qk + ĉk)ck + c2
k
− ckckl

> (Ql + ĉl)cl + clclk.

which again satisfies relation (21). However, at the end of time slott, when packets arrive as in event2, the length

of each queuej ∈ ELMW
increases by a fixed positive quantityĉj. We can now describe the queue evolution for

our arrival traffic. The initial queue state satisfies (21). Therefore at the end of each time slot, with probability

1− ǫ, the queues of all edgesj ∈ ELMW
remain unchanged and with probabilityǫ, the queues increase by a fixed

positive quantity. Since the queues inLMW are non-decreasing, and the event that the queue length increases by a

fixed positive quantity occurs infinitely often, the system is unstable under the MGMW scheme. The arrival rate of

our proposed arrival traffic is determined as follows. Let~k denote the vector defined as:

~k(j) =











ĉj j ∈ ELMW

0 j /∈ ELMW
.

The arrival rate is then given by :

~λ =
J−1
∑

i=0

(vi(1 − ǫ)~ri + viǫ(~ri + ~k)) = ~ν + ǫ~k.

.

Lemma 1. There exist queue lengthsQ1,Q2, . . .QM , whereM is the number of edges inLMW , such that they

satisfy:

Qjcj
1
= Qkckl +Qlclk

2
= Qkck + c2

k
− ckckl

3

> Qlcl + clclk. (26)

Proof: ConsiderK such that

Qj =
K

cj
, Qk =

K + ckckl − c2
k

ck
. (27)

Then, to satisfy equality 2, we need to choose
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Figure 7: A network with two multiuser links.

Ql =
Qk(ck − ckl) + c2

k
− ckckl

clk
(28)

Now, for inequality (3) to hold, substituting forQl we have,

Qk

(ckclk + clckl − clck)

clk
>

cl
clk

[c2
k
− ckckl] +

clclk − c2
k
+ ckckl. (29)

From our assumption thatckl/ck + clk/cl > 1, the left hand side of (29) is positive. Hence for (29) to hold, we

need

Qk >

[

(c2
k
− ckckl)(cl − clk) + clc

2
lk

clckl + ckclk − clck

]

.

This must be satisfied for every(k, l) ∈ LMW .

Let p = max
(k,l)∈LMW

[

(c2
k
− ckckl)(cl − clk) + clc

2
lk

clckl + ckclk − clck

]

.

Then chooseK such that(K + ckckl − c2
k
)/ck > p for all links (k, l) ∈ LMW . Then, (27) gives the values ofQj

andQk. The value ofQl corresponding toQk is then obtained from (28). Thus one can find aK > 0 and hence

a positive queue vector~Q0 satisfying relation (21). In a similar manner one can find positive ĉj, ĉk, and ĉl that

satisfy relation (25).

In the example given below, we find the initial queue state vector ~Q0 for a givenLMW . To illustrate the proof,

we provide the following simulation example:

We consider the network graph described in Example 6. The individual link capacities are 10 packets, while

the fixed rate for the BC links (1,4) and (2,3) are (5,8) and (8,5) respectively. ConsideringLMW to be the set

{(1, 4), (2, 3)}, and by choosing~µ = 0.5 ∗ 20/19 ∗ (0.8 [10 0 10 0] + 0.6 [0 10 0 0] + 0.5 [0 0 0 10]) and~ν = 0.5 ∗

[8 0 0 6] + 0.5 ∗ [0 5 8 0], we obtainσU

M
= 19/20, implying that the efficiencyγ ≤ 19/20 for this network graph.

We then simulate the unstable traffic pattern described in the proof of Theorem 2 and plot the queue sizes in Fig. B.

The figure shows the queue sizes increasing over the observedtime slots, thus verifying Theorem 2 for Example

6. Packets arrive according to rate allocation vector[8 0 0 6] with probability 0.5, and the vector[5 0 0 8] with

probability 0.5. Additional packets may arrive into the queues with probability 0.0002. The additional packets are

such that they satisfy the constraint in eq.(24), in the proof of Theorem 2.
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Figure 8: Plot of queue sizes for the links in Fig. 7a

APPENDIX C

PROOF OF THEOREM3

The proof idea can be summarised as follows: Every candidateMW subsetLMW of a tree network graphG has

a noded0, such that every rate allocation vector onLMW schedules one of the links connected tod0. Any two

convex combinations of rate vectors will therefore satisfythe multiuser local pooling conditions for one of these

links. We prove this by using a linear program to represent the multiuser local pooling conditions.

Lemma 2. For the candidate MW subsetLMW , let σLMW
M denote the highest value ofσM for whichLMW satisfies

the multiuser local pooling conditions specified in Definition 3.M is defined as a matrix whose columns consist of

all rate allocation vectors in the setRLMW
. M̃ denotes the matrix whose columns are all the rate allocationvectors

in the setR̃LMW
. Also, let~e and ~̃e denote all ones column vectors of length|RLMW

| and |R̃LMW
| respectively.
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σ
LMW
M can then be represented as the solution to the linear programgiven below:

max
~x≥0

τ (30)

subject to~xM0 � ~e

~xM̃0 � τ.

xk = 0, if (k, l) ∈ LMW and k /∈ LMW ,

where

M̃
0

lj
=











M̃kjckl + M̃ljclk, if (k, l) ∈ LMW ,

M̃lj otherwise.

M
0

lj
=











Mkjckl +Mljclk, if (k, l) ∈ LMW ,

Mlj otherwise.

whereMij denotes the index(i, j) of the matrixM.

Proof: σ
LMW
M can be written as the solution to the following linear program which is obtained from the

multiuser local pooling conditions.

inf
σ,~α,~β≥0

σM (31)

subject toσ (M~α)
j
> (M̃~β)j, for point-to-point link j,

σ (M~α)
k
ckl + (M~α)

l
clk > (M̃~β)kckl + (M̃~β)lclk

for multiuser links(k, l),

and~α′~e = 1, ~β′~̃e = 1, ~α ≥ 0, ~β � 0.

Here(M~α)
l

denotes indexl of the vectorM~α. Settingγ = σ~α, and denotinglk as the edge paired withk in the

multiuser link (k, l), the dual function of the linear program is given by:

inf
σ,~γ�0,~β�0

{

σ +

n1
∑

i=1

xi[(M̃~β)i − (M~γ)i] +

n2
∑

k=1

xk[(M̃~β)kcklk
+ (M̃~β)lkclkk − (M~γ)kcklk

− (M~γ)lkclkk]

+ y(~γ′~e− σ) + z(~β′~̃e− 1)

}

.

Since

(M~γ)i =

|RLMW
|

∑

j=1

(Mij)γi) and (M̃~γ)i =

|R̃LMW
|

∑

j=1

(M̃ij)γi,

the dual problem can be expressed as
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max
~x�0,y,z

inf
σ,~γ,~β

{

σ(1− y)− z + y~e′~γ −

|RLMW
|

∑

j=1

n1
∑

i=1

xiMijγj

−

|RLMW
|

∑

j=1

( n2
∑

k=1

xk[(Mkjcklk
+Mlkjclkk]

)

γj

+z~β′~̃e+

|R̃LMW
|

∑

j=1

( n2
∑

k=1

xk[(M̃jkcklk
+ M̃jlk

clkk]

)

βj

}

.

The above maximization can then be reduced to

max
~x�0,z

−z

subject to

y

(

ej −
n1
∑

i=1

xiMij−

n2
∑

k=1

xk[(Mkjcklk
+Mlkjclkk]

)

≥ 0, j = 1, . . . , |RLMW
|

zej +

n1
∑

i=1

xiM̃ij+

n2
∑

k=1

xk[(M̃kjcklk
+ M̃lkjclkk] ≥ 0, j = 1, . . . , |R̃LMW

|,

y = 1.

The dual problem in (30) then follows by definingτ = −z, and extending the length of~x to |ELMW
| so that it has

|ELMW
| − n1 − n2 zero elements.

The dual problem is to find an~x � 0 that maximizes the value ofτ for which the constraints in (30) are satisfied.

From the dual problem, the setLMW satisfies 1-local pooling ifτ = 1 is a solution to the problem, which implies

that there exists an~x, such that constraint (30) is satisfied with equality.

We now show that for everyLMW , one can find an~x to satisfy the equality constraint in (30). SinceLMW is a set

of links from a tree network graph, it satisfies one or both of the following conditions:

(1) LMW has an isolated point-to-point link,i.e., it consists of two nodes of degree one each that are only connected
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to each other.

(2) LMW has at least one node with degree 1.

If LMW has an isolated point-to-point link, let us denote the link by l. We then set thelth index of the vector~x,

corresponding to linkl to be one and all other elements of~x to be zero. Since linkl, being an isolated link is

always served under the node exclusive interference model,every column vector ofMLMW
has itslth index equal

to one. Such an~x yields τ = 1 for the dual problem in (30), and henceLMW satisfies 1-local pooling.

WhenLMW satisfies condition 2, we focus on the node to which the node ofdegree 1 is connected and denote it

by d0. An example ofLMW and the noded0 is shown in Fig. 9. We now describe the construction of the vector

~x. The elements of this vector depends on the type of links inLMW connected tod0. The links can belong to

following types:

(1) point-to-point links connected tod0. If j is a point-to-point link connectingd0, then we setxj = 1/cj.

(2) Multiuser links that have noded0 as transmitter or receiver. If a multiuser link(m,n) ∈ LMW is such that

edgesm or n are connected tod0, and if the point-to-point linksm andn are not inLMW , then we setxm = 0

andxn = 1

c2mn+c2nm
.

(3) If a multiuser link(m,n) ∈ LMW is such that edgesm or n are connected tod0, and if say point-to-point links

m ∈ LMW , then setxn =
(

1− 1

ck

)

/c2
lk

. Note that for eachm, the assignment is possible for only one element

xn from our assumption thatYm ∩ Yn = {Φ}∀m,n ∈ E .

Finally we set all other indices in~x to zero. We now show that if~x is chosen as defined, it satisfies the constraints

in (30) for τ = 1. We first note that under the node-exclusive interference model, amongst the links that shared0

as a common node, only one of the links may be active. As a result, every columnj of M̃0 satisfies one of the

following conditions:

(i) M̃
0
ij
= ci, for only one point-to-point linki ∈ LMW that is connected tod0, in which caseM̃0

k
= 0 for any any

other link k ∈ LMW , k 6= j havingd0 as one of its nodes.

(ii) M̃
0
mj

= cmn, M̃
0
nj

= c2
mn

+ c2
nm

for a multiuser link(m,n) ∈ LMW where at least one of edgesm or n are

connected tod0. In this caseM̃0
lj
= 0 for any other edgel ∈ ELMW

, l 6= m that hasd0 as one of its nodes.

(iii) M̃
0
mj

= cm, M̃
0
nj

= cmcmn for a multiuser link, such that(m,n) ∈ LMW andn ∈ LMW , wherem hasd0 as

one of its nodes. Again,̃M0
lj
= 0 for any other edgel ∈ ELMW

, l 6= m that hasd0 as one of its nodes.

Additionally, we observe for̃M0 that if condition (iii) is satisfied by some columnj for some link(m,n) ∈ LMW ,

then any column that allocates non-zero rates tom,n satisfies condition (iii). This is because MGMW always

selects linkm as it gives priority to the point-to-point link over the multiuser link. In a similar manner, we can

conclude that if for some columnj, condition (ii) is satisfied by some link(m,n) ∈ LMW then every column that

allocates non-zero rates to link(m,n) satisfies (ii). This is a consequence of the fact that condition (ii) implies that

(m,n) ∈ LMW while m /∈ LMW , n /∈ LMW .

We now exploit the structure of̃M0 to show that~x′
M̃

0 = ~̃e is satisfied by the~x that we have constructed. Consider

any columnj in M̃
0. If j satisfies condition (i) for somei, thenxi = 1/ci yields the inner product of~x and column
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j to be 1. If j satisfies (ii) for some(m,n then xm = 0, xn = 1/(c2
mn

+ c2
nm

) again yielding the inner product

as one. A similar conclusion holds whenj satisfies (iii) for some(m,n) with xm = 1/cm, xn = 0. Since every

column j satisfies one of the three conditions,~x′
M̃

0 = ~̃e is indeed satisfied. It now remains to be verified that

~x′
M

0 ≤ ~e.

Consider any multiuser link(m,n) ∈ LMW such that the edgesm or n haved0 as a node. Then for any column

j, (M0
mj
,M0

nj
) may take on the values(cm, cmcmn), (0, cncnm), and(cmn, c2mn

+ c2
nm

). Whenxm = 1/cm, xn = 0,

the inner product is less than or equal to one. Ifxm = 0, xn = 1/(c2
mn

+ c2
nm

), then the inner product is less than

or equal to one sincec2
mn

+ c2
nm

> max(cncnm, cmcmn. If column j has a non zero rate for a point-to-point link

connected tod0, the inner product is equal to one.

our construction of the vector~x ensures that the constraints in (30) are satisfied forτ = 1. This implies that 1-local

pooling is satisfied byLMW . Since everyLMW satisfies 1-local pooling, from Theorem 1, MGMW is throughput

optimal for network graphG.

As a corollary of 2, we have the following result that yields alower bound on the value ofσLMW
M .

σLMW
≥

mini∈1...|R̃LMW
| ‖~̃ri

T‖1

maxj∈1...|RLMW
| ‖~rjT‖1

, (32)

This result follows by first setting all the non-zero elements of ~x to 1, i.e, by settingxj = 1, for everyj satisfying

j ∈ LMW , or (i, j) ∈ LMW for some multiuser link(i, j). One can then normalize~x by maxj∈1...|RLMW
| ‖~rj

T‖1 to

obtain relation (32).

APPENDIX D

PROOF OFTHEOREM 4

Proof: We first show that if themultiuser local pooling factorof a graphG(V , E) is σ∗
M

, then the network is

stable under the variable rate MGMW algorithm for all arrival rate vectors~λ satisfying~λ ∈ σ∗
M
Λ.

We consider the fluid limit model of the system as defined in theproof of Theorem 1. Consider the times when the

derivative d

dt
ql(t) exists for alll ∈ E . Let L0(t) denote the set of links with the highest weight at timet. The weight

of each link inL0(t), given by eq. (5) is denoted bywm(t). We show in Lemma 3 thatwm(t) is differentiable

almost everywhere. The derivative of the weights of links inL0(t) is then given by

ŵm(t) =



























d

dt
qj(t)cj m is a point-to-point linkj,

d

dt
(qk(t)c

∗
kl
(t) + ql(t)c

∗
lk
(t)) m is a

multiuser link (k, l).

Let L(t) denote the set of links fromL0(t), which have the maximum derivative of the weights,

L(t) = {m ∈ L | ŵm(t) = max
i∈L0(t)

ŵi(t)}.

Then, there exists a smallδ such that in the interval(t, t+δ), links in L(t) will have the highest weights in(t, t+δ),

i.e.,

min
m∈L(t)

ŵm(τ) > max
m∈L\L(t)

ŵm(τ). (33)
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Let ~c(τ) ∈ CL(t) be the rate assignments under which the links inL(t) achieve the maximum weight at times

τ ∈ (t, t+ δ). Since variable rate MGMW picks links fromL(t) first, the rate allocation vector selected by variable

rate MGMW, when projected onL(t) will be an element ofRc(τ)

L(t). We show in Lemma 4 that the service rate vector

~π(t), under variable rate MGMW, when projected onL(t) is a convex combination of the elements ofR
c(t)

L(t) . Using

Lemma 3, along with the fact that~λ lies strictly within σ∗
M
Λ., we show in Lemma 5 that there existsm ∈ L(t)

such that

ŵm(t) ≤ −ǫ∗, (34)

whereǫ∗ > 0. Since all links inL(t) have the same derivative, (34) implies thatŵm ≤ −ǫ∗, ∀m ∈ L(t). Now, we

can consider the following Lyapunov functionV (t) := maxm∈L wm. For V (t) > 0, we have that
d+

dt+
V (t) ≤ max

m∈L
ŵm ≤ −ǫ∗. (35)

where d+

dt+
V (t) = limδ↓0

V (t+δ)−V (t)

δ
is the right hand derivative ofV (t). This implies that the largest weight must

decrease in the time interval(t, t+ δ). Since the above inequality holds almost everywhere int, the negative drift

of the Lyapunov function implies that the fluid limit model ofthe system is stable and hence by the result in [11],

the original system is also stable. Thus the efficiency of variable rate MGMW is atleast as large as the multiuser

local pooling factor.

Lemma 3. For all m ∈ L(t), the link weightwm(t) is differentiable almost everywhere int ≥ 0.

Proof: Supposem is a point to point linkj. The weightwm(t) = qj(t)cj is absolutely continuous since

cj is a scalar constant andqj(t) is absolutely continuous. Whenm is a BC link (k, l), we use the Implicit

Function Theorem [18] to show thatwm(t) is absolutely continuous. Sincewm(t) maximizes the inner product

〈(ckl, clk) , (qk(t), ql(t))〉, the optimal rate pair can be expressed asη(t) (qk(t), ql(t)), whereη(t) is the proportion-

ality factor. Using the Implicit Function Theorem, we can expressη as a continuously differentiable function ofqk

andql. Sinceqk(t) andql(t) are differentiable almost everywhere, and by writingwm(t) as q2
k
(t)η(t) + q2

l
(t)η(t),

we obtain thatwm(t) is also differentiable almost everywhere.

Lemma 4. The service rate vector~π(t) projected onL(t) is a convex combination of the elements ofR
c(t)

L(t).

Proof: We know from Eq. (33) thatminm∈L(t) ŵm(τ) > maxm∈L\L(t) ŵ(τ) in (t, t + δ). This implies there

exists ann1 such that for alln > n1,

min
i∈L(t)

wn

i
(τ) > max

p∈\L(t)
wn

p
(τ).

Let ~rn(τ) be the rate allocation vector chosen by variable rate MGMW intime slot τ ∈ (t, t + δ). Then for

all n > n1, ~rn(τ) projected onL(t) belongs to the setRc(τ)

L(t), wherec(τ) ∈ CL(t) is the transmission rate vector

associated with the links inL(t) at timeτ . Consider the service rate vector~πn defined in terms of the cumulative

service process as:

πn

l
=

Sn

l
(n(t+ δ))− Sn

l
(nt)

nδ
for link l. (36)

We now show that~πn can be expressed as a convex combination of the rate allocation vectors inRc(t)

L(t). We first

consider an edgel, such that(k, l) is a multiuser link inL(t). From Eq. (36),πn

l
can be expressed in terms of the
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rate allocation vector in each time slot in the interval(t, t+ δ), so that

πn

l
=

∫nt+δ
nt

rn
l

(τ)dτ

nδ
(37)

Considering only those time slotsτi whenrl(τ) serves link(k, l), and denotingα1 as the fraction of the timel is

served as a point-to-point link, we have

πn

l
=

∑

k1

i=0

∫

nt+τi+1

nt+τi
c∗
lk
(τi)dτ

nδ
+ α1cl (38)

=

∑

k1

i=0

∫

nt+τi+1

nt+τi
[c∗

lk
(τi)− c∗

lk
(t) + c∗

lk
(t)]dτ

nδ
+ α1cl. (39)

=

∑

k1

i=0

∫

nt+τi+1

nt+τi
[c∗

lk
(τi)− c∗

lk
(t)]dτ

nδ
+ α1cl + α2c

∗

lk
(t), (40)

whereα2 =
∑k1

i=0
τi

nδ
. Sincec∗

lk
(τ) is continuous inτ ≥ 0, there exists anǫ such that|c∗

lk
(τi) − c∗

lk
(t)| < ǫ. Then,

for all n > n1, we can bound the first term of Eq. (40) as
∑

k1

i=0

∫

nt+τi+1

nt+τi
[c∗

lk
(τ) − c∗

lk
(t)]dτ

nδ
≤

ǫkmaxi τi
nδ

≤ ǫ. (41)

Sincec∗
lk
(t) is continuous int, ∀n > n1, as δ → 0, we haveǫ → 0. From Eq. (40), we note that by makingǫ

arbitrarily small,πn

l
can be expressed in terms of the transmission rates in~c(t) alone. Also, since the transmission

rate of any point-to-point linkk is fixed for any~c(τ), πn

k
can be expressed in terms of~c(t). Hence, for any edgel

in L(t), we can writeπn

l
for n > n1 as,

πn

l
= ǫ+

∫

nt+δ

nt
rn

l
(τ)dτ

nδ
(42)

wherern

l
(τ) ∈ R

c(t)

L(t). The second term in Eq. (42) is a convex combination of the rate allocation vectors inRc(t)

L(t).

As πn

l
→ πl(t), ǫ → 0, and hence~π(t) is a convex combination of the rate vectors inRc(t)

L(t).

Lemma 5. Given that~λ ∈ σ∗
M
Λ, there exists a linkm ∈ L(t) such thatŵm(t) ≤ −ǫ∗, for someǫ∗ > 0.

Proof: If ~λ ∈ σ∗
M
Λ, ~λ projected on the subsetL(t) is of the formσ∗

M
µ, whereµ is a convex combination

of the rate allocation vectors inRL(t). Then, using Lemma 4 and the fact thatL(t) satisfiesσ∗
M

local pooling, we

know that there exists a linkm ∈ L(t) satisfying Eq. (44), given by:

λj < πj(t) m is point-to-point link j, or (43)

λk < πk andλl < πl(t) m is a multiuser link(k, l). (44)

Eq. (44) implies that there exists a linkm ∈ L(t) such that

ŵm =
dqj

dt
cj =

(

~λj(t)− ~πj(t)
)

cj < 0, (45)

for point-to-point linkj, or

ŵm = d

dt
(qk(t)c

∗
kl
(t) + ql(t)c

∗
lk
(t)) < 0, (46)

for multiuser link (k, l). Eq. (45) follows if Eq. (43) is satisfied. We then provide thefollowing argument to show

that Eq. (44) implies Eq. (46) for a multiuser link(k, l): Suppose (46) is not satisfied and̂wm ≥ 0. Since Eq. (44)

implies that dqk

dt
< 0 and dql

dt
< 0, there exists aδ1, where δ1 > 0, such that



32

qk(t+ δ1) < qj(t), ql(t+ δ1) < ql(t), and (47)

wm(t+ δ1) ≥ wm(t). (48)

Let (c∗
kl
(t+ δ1), c

∗
lk
(t+ δ1)) = argmax

ckl,clk∈Rkl
qk(t+ δ1)ckl + ql(t+ δ1)clk. Then, Eq. (47) implies that

qk(t)c
∗

kl
(t+ δ1) + ql(t)c

∗

lk
(t+ δ1) > wm(t+ δ1).

However, from our definition of weightqk(t)c
∗
kl
(t+δ1)+ql(t)c

∗
lk
(t+δ1) ≤ wm(t), and thereforewm(t) > wm(t+δ1),

which contradicts Eq. (48). Hence, (46) must be satisfied. Then, by definingǫ∗ > 0 similar manner as done in Eq.

(18), we conclude that̂wm(t) ≤ −ǫ∗.

APPENDIX E

PROOF OFTHEOREM 5

Suppose, for a candidate MW subsetLMW with associated transmission rate vector~c 0 ∈ CLMW
, there exists a

σ̂M > 0, and a pair of vectors~ν, ~µ satisfyingσ̂M~µ ≥ ~ν,; where~ν is a convex combination of rate vectors inRco

LMW

, and~µ is a convex combination of rate vectors inRLMW
. Then, in a manner similar to the proof of Theorem 2, we

can construct a traffic pattern with arrival rate~λ = ~ν + ǫ~k, whereǫ > 0 is arbitrary and~k � 0 is fixed, such that

the system is unstable under the variable rate MGMW policy. The arrival rate~λ is arbitrarily close to, but outside

the boundary of the region̂σMΓ. Let ~̂ν =
∑

J−1

i=0
αi~ri, and

∑

J

i=1
αi = 1, where~ri ∈ R

~c o

LMW
. We now specify the

statistics of the arrival pattern in each time slot: Let the initial queue lengths~Q(0) = 0. At each time slot,t ≥ 1,

we pick a vector~ri ∈ R
~c o

LMW
with probabilityαi. Conditioned on~ri, one of two events may occur.

1. With probability 1− ǫ,

(a) cj packets arrive into the queue of point-to-point linkj, ∀j ∈ LMW such thatri(j) = cj.

(b) co(k) and co(l) packets arrive into the queues of every multiuser link(k, l) ∈ LMW for which ri(k) >

0 andri(l) > 0.

2. With probability ǫ,

(a) ĉj + cj packets arrive into the queue of every point-to-point linkj ∈ LMW for which ri(j) = cj.

(b) ĉk + ~c o(k) and ĉl + ~c o(l) packets arrive into the queues of every multiuser link(k, l) ∈ LMW for which

ri(k) > 0 andri(l) > 0.

(c) ĉj packets arrive into the queues of all edgesj ∈ ELMW
such thatri(j) = 0.

ĉj, ĉkl, and ĉlk are fixed positive quantities defined for every point-to-point link j ∈ LMW , and(k, l) ∈ LMW . They

satisfy the following conditions:

ĉjcj = ĉkc
o(k) + ĉlc

o(l), ∀j, (k, l),∈ LMW ,

ĉl c
o(k) = co(l) ĉk, ∀(k, l) ∈ LMW . (49)

In the following lemma we show that these quantities exist.

Lemma 6. There exist fixed quantitieŝcj > 0, corresponding to every edgej ∈ ELMW
, such that they satisfy the

conditions in(49).
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Proof: The proof of Lemma 6 is similar to the proof of Lemma 1 and follows by equating the quantities in

(49) to a constantK and then computing eachcj, ckl andclk in terms ofK.

We now discuss the behaviour of the queues inLMW in Lemmas 6 and 7. As a consequence of Lemmas 6 and

7, we will show that the queues become unstable under the described arrival traffic.

Lemma 7. Suppose the queues inLMW satisfy the condition in(49) as stated below:

Qjcj = Qkc
o(k) +Qlc

o(l) ∀ j, (k, l) ∈ LMW ,

Qkc
o(k) = co(l)Ql, ∀ (k, l) ∈ LMW . (50)

Then, if the queue lengthQj, for everyj ∈ ELMW
, is increased toQj + ĉj, the new queue lengths will again satisfy

relation (50).

Proof: From relations (49) and (50), we observe that(Qj + ĉj)cj = (Qk + ĉk)c
o(k) + (Ql + ĉl)c

o(l). Also,

using (50) we obtain(Ql + ĉl) c
o(k) = co(l) (Qk + ĉk).

Lemma 8. Suppose at the end of time slott− 1, the queues inLMW satisfy the relation(50). Then, at the end of

time slott, with probability1− ǫ, the length of all queues inLMW remains unchanged, and with probabilityǫ, the

lengths of every queue inLMW increases by a fixed positive quantity; i.e., ifQ̃j = Qj(t+ 1)− Aj(t) denotes the

queue ofj ∈ ELMW
at the end of time slott, then with probability1− ǫ, Q̃j(t) = Q̃j(t− 1) ∀j ∈ ELMW

, and with

probability ǫ, Q̃j(t) = Q̃j(t) + ĉj, ∀j ∈ ELMW
.

Proof: We consider the arrival statistics of packets that we definedpreviously. Conditioned on vector~ri being

picked, packets only arrive into those links that have non zero rates in~ri. We now show that the weight of links

that have a non-zero rate in~ri, when calculated after the arrival of packets, strictly dominates the weight of all

other links inLMW ; and hence, MGMW picks the rate allocation vector~ri . Consider first the packet arrivals as

described in event1. Queues inLMW , by assumption satisfy relation (50) at the end of slott. At the beginning of

time slot t + 1, after packets have arrived, the fOllowing is true: For all multiuser links(k, l) ∈ LMW satisfying

ri(k) > 0 andri(l) > 0:

(co
k
, co

l
) = argmax

ckl,clk∈Rkl

[(Q̃k + co
k
)ckl+(Q̃l + co

l
)clk], and (51)

(Q̃k + co
k
)co

k
+ (Q̃l + co

l
)co

l
>Q̃mc

o

m
+ Q̃nc

o

n
, (52)

∀(m,n) ∈ LMW satisfyingri(m) = ri(n) = 0. SinceQ̃k and Q̃l satisfy (50),(Q̃k + co
k
) and Q̃l + co

l
) also satisfy

(50), implying that the queue length ratios remain unchanged. (51) follows from the fact that the queue length ratios

remain unchanged and the pair(co
k
, co

l
) lies on the boundary ofRkl. (52) is obtained by noting that the weight of

links that are not served inri, remains unchanged. In a similar manner, for point-to-point links j ∈ LMW satisfying

ri(j) > 0,

Q̃j(t) + cj)cj > max
(

Q̃l(t)cl, Q̃m(t)c
o

m
+ Q̃n(t)c

o

n
,
)

(53)
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for all links l, (m,n) ∈ LMW satisfyingri(l) = ri(m) = ri(n) = 0. Relations (52) and (53) together imply that

MGMW schedules rate allocation vectorri over LMW in time slot t. Since the number of packets arriving into

queuej equalsri(j), at the end of time slott, Q̃j(t) = Q̃j(t− 1), ∀j ∈ ELMW
.

Next, consider the case when packets arrive as described in event 2. Applying Lemma7, the queue lengths̃Qj +

ĉj, ∀j ∈ ELMW
will satisfy (50). Since the additional packets that arriveinto eachj ∈ ELMW

equalsri(j), the

same argument used for packet arrivals in event1 implies that MGMW again picks rate allocation vector~ri, and

hence,Q̃j(t) = Q̃j(t− 1) + ĉj, at the end of time slott.

We can now describe the queue evolution pattern for our packet arrival traffic. The initial queue statẽQj =

0, ∀j ∈ ELMW
satisfies (50). From Lemma 8, the queue lengths do not decrease, and the event that each queue

length increases by a fixed positive quantity occurs infinitely often. Hence, the system is unstable under our proposed

arrival traffic. The arrival rate of the traffic pattern is then evaluated as follows:~λ =
∑

J−1

i=0
αi(1− ǫ)~ri +

∑

J−1

i=1
ǫ~k,

wherek(j) = ĉj, ∀j ∈ ELMW
.
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