
1

The Case for Feed-Forward Clock Synchronization
Julien Ridoux, Darryl Veitch, Timothy Broomhead

Department of Electrical & Electronic Engineering, The University of Melbourne, Australia
{jridoux, dveitch}@unimelb.edu.au, t.broomhead@ugrad.unimelb.edu.au

Abstract—Variable latencies due to communication delays or
system noise is the central challenge faced by time keeping
algorithms when synchronizing over the network. Using extensive
experiments, we explore the robustness of synchronization in
the face of both normal and extreme latency variability and
compare the feedback approaches of ntpd and ptpd (a software
implementation of IEEE-1588) to the feed-forward approach of
the RADclock, and advocate for the benefits of a feed-forward
approach. Noting the current lack of kernel support, we present
extensions to existing mechanisms in the Linux and FreeBSD
kernels giving full access to all available raw counters, and
then evaluate the TSC, HPET, and ACPI counters’ suitability
as hardware timing sources. We demonstrate how the RADclock
achieves the same micro-second accuracy with each counter.

Index Terms—RADclock, feed-forward, synchronization, clock
source, TSC, HPET, ACPI, IEEE-1588, latency, robustness

I. INTRODUCTION

For more than 20 years, the NTP protocol and ntpd dae-
mon [1], [2] have been the standard solution for clock syn-
chronization over IP networks, in particular the Internet, where
timestamps are exchanged between a host client and a remote
reference clock server. It has been generally successful in
synchronizing hosts to the millisecond scale, but its limitations
prevent its use in new applications requiring high accuracy.

For example, to reduce costs and increase network capac-
ity, the telecommunication industry is gradually replacing its
expensive synchronized E1/T1 mobile base station backhauls
with asynchronous Ethernet lines. To execute handoffs, the
base stations require accurate sub-microsecond synchroniza-
tion, which they cannot derive from the signal carrier anymore.
Additional GPS or CDMA receivers can be used instead, but
their high cost (incompatible with femto-cells for example)
and unsuitability for underground deployment motivates syn-
chronization over asynchronous networks.

The IEEE-1588 Precision Time Protocol (PTP) [3] is seen as
an alternative to ntpd for such synchronization needs. It has
been developed to support sub-microsecond synchronization
over Local Area Network (LAN) islands. This comes however
at the cost of replacing all LAN hardware components with
IEEE-1588 enabled devices. Interest in PTP-compatible soft-
ware implementations such as ptpd [4], [5] is rising, motivated
either by cost issues, or through a desire to allow inexpensive
clients to immediately take advantage of IEEE-1588 enabled
devices already installed on the network.

The ntpd and ptpd algorithms share some core features.
Each incorporates a feedback based ‘servo’ or clock syn-
chronization algorithm that outputs corrections to the local
clock based on new timestamp inputs from the server, as
well as previous correction values. Each then disciplines the

system clock of the host computer (maintained in the kernel
and with its own correction mechanisms) via existing kernel
support from the operating system [6]. Another feedback loop
is then created since the algorithms actually use system clock
timestamps as an (indirect) way to access the previous clock
corrections. There are two immediate disadvantages from this
design: a coupling between the kernel mechanisms (effectively
a second feedback controller) and the clock servo itself, and
the inability to separate the notion of absolute time from that
of clock rate. As we will show, the result is accuracy which can
be erratic, a descent into instability under certain conditions,
and slow convergence.

A feed-forward design, whereby past clock corrections are
not fed back into the next round of clock corrections, the
latter being based only on the filtering and processing of
server timestamps and raw hardware counter timestamps (the
counter forms the hardware basis of the host clock), inherently
avoids these problems. For example it is a key principle of the
RADclock algorithm (Robust Absolute and Difference clock)
[7], [8], [9], [10], [11], [12], [13], which has been shown to be
a highly accurate and robust client-side solution for Internet
clock synchronization. Until now however there has been a
serious practical issue inhibiting feed-forward approaches: a
lack of kernel support. This has resulted in a need for one-
off kernel modifications, and has restricted the choice of
hardware counter to the TSC (Time Stamp Counter), rather
than for example the HPET (High Precision Event Timer).
The TSC counts CPU cycles and is a high resolution counter
with many advantages, but it has important limitations in
some hardware architectures with features such as power
management, frequency stepping, and multi-cores, which the
HPET does not share.

The first contribution of this paper is to build the case for
feed-forward approaches, represented by RADclock, by using a
set of careful timing experiments to highlight their advantages
over the feedback incumbent, represented by ptpd and ntpd.
The second contribution is to precisely identify the kernel
support required to allow feed-forward timing algorithms to
compete on an equal footing, and the third is their implemen-
tation (freely available at http://www.synclab.org/radclock) un-
der both FreeBSD and Linux. Existing kernel mechanisms
allow any counter available in the hardware to be selected,
but only provide access to a transformed version of the chosen
counter’s value, tailored to the needs of feedback algorithms.
Our kernel extensions provide direct access to the raw, full
value of each counter for the first time, both in the kernel
and from user space. The fourth contribution is to exploit this
access to characterize and compare the counters as hardware
timing sources. We provide for the first time precise measure-

http://www.synclab.org/radclock

2

ments of their stability (in the precise timing sense of Allan
deviation), and their access latency both from kernel space
and user space, under both nominal and stressed conditions.
Finally, we compare the performance of the RADclock across
the different counters. We find that the differences are very
small, falling under the noise of the measurement methodology
itself.

This paper combines, extends and synthesizes the work of
the conference papers [14], [15]. The main extensions are
the inclusion of counter characterization results for Linux as
well as FreeBSD, and extensive performance and robustness
results for ntpd as well as ptpd. The paper is structured as
follows. Section II reports on the impact of variable latencies
on ptpd, ntpd and the RADclock, and highlights the need
for the robustness of a feed-forward based synchronization
algorithm. In Section III, we present a minimal set of kernel
extensions to support any feed-forward algorithm based on
any available hardware counter. Section IV evaluates the
most common counters as timing sources, comparing their
stability and access latency under various scenarios. Finally,
in Section V we discuss the latency of the new kernel support
itself as seen from kernel and user space, before testing the
impact of counter choice on RADclock performance.

II. IMPACT OF LATENCY VARIABILITY

We begin in II-A with a brief description of the ptpd, ntpd
and RADclock algorithms, and a review of prior performance
studies. We describe our methodology in II-B, and use it to
compare RADclock and ptpd over a LAN in II-C, focusing on
the impact of network and system latency variability on clock
variability. These latencies, caused primarily by hardware and
software queueing and scheduling, are the problem that a
synchronization algorithm has to overcome in trying to correct
the drift of the local oscillator, as they effectively corrupt
the raw data used by the algorithm, namely timestamps.
Section II-D compares RADclock and ptpd in both LAN and
WAN environments. Finally, Section II-E briefly discusses the
measurement of time differences using all three clocks.

A. The Synchronization Algorithms, and Prior Evaluations

ptpd The IEEE-1588 standard does not specify how to
compensate for local oscillator drift, but the common practice
is to use a Proportional-Integral (PI) controller fed by the
timestamps exchanged with the reference server, and ptpd uses
a similar approach [5]. Using local timestamps taken in the
kernel, ptpd tries to correct both clock rate and clock error
(difference from true time) simultaneously.

Both [16] and [17] examined the impact of network latency
jitter, quantization, and temperature on the performance of
the PI controller. In [16], each is considered using very
simple models, such as a constant rate error resulting from
a temperature change. A Matlab based simulation study is
presented for a set of clients in a line topology. In [17], the
performance of a single client under cross-traffic congestion is
simulated in the OMNET++ simulator. In both studies, clock
errors are derived from the simple models used but there is no
use of real data or more realistic non-linear drift and noise.

Host Unix PC

Time Server
Stratum 1

GPS
Receiver

Hub

DAG
Card

PPS Sync. NTP flow UDP flow Time Request

RADclock

ntpd-GPS

ntpd-GPS DAG-GPS

External MonitorInternal Monitor

ntpd-NTP

ptpdptpd

IEEE 1588 flow

UDP Sender
& Receiver

Atomic
Clock

Fig. 1. Testbed. Timestamps, triggered by UDP packets, are taken internally
by clients in the Host, and externally in the External Monitor.

ntpd Relying on local timestamps taken in user space,
ntpd’s algorithm implements a sophisticated PLL/FLL
(Phase/Frequency Lock Loop) [1], which having been refined
over the past 20 years, is far more complex than the PI
controller of ptpd. The design of ntpd in detailed in [18].

Most of the published performance results for ntpd can be
found in [18], [19]. While providing a thorough account of the
local oscillator characteristics for the purpose of the PLL/FLL
design, [18] provides mainly performance results based on
emulation. It does not evaluate ntpd against an independent
reference in a real environment. Despite its age, we know
of no independently validated performance results for ntpd
approaching the scope and detail that we provide here.
RADclock The RADclock is feed-forward based. It does not
rely on a feedback loop ‘locking onto’ the input signal, but
instead post-processes server and local raw counter kernel
timestamps to estimate the current clock error E(t), which
is removed when the clock is read. More concretely, the
(absolute) RADclock is defined as Ca(t) = N(t)·p̄+K−E(t),
where N(t) is the raw timestamp made at true time t, p̄ is a
stable estimate of average counter period, and K a constant
which aligns the origin to the required timescale (such as UTC)
(see [9], [11] for details, and [20] for a less formal description).
The feed-forward design provides both an absolute clock and a
difference clock (a clock uncorrected for drift used to measure
time differences very accurately).

The RADclock (using the TSC as the counter on a single
core with no power management) has been tested and inde-
pendently validated on (collectively) years of live data [11],
[21], [13], where in particular its robustness against disruptive
events has been shown. In contrast, here we test it using several
different counters, and compare its robustness directly to that
of other approaches, which has only been done before to a
limited extent for ntpd only [13].

The RADclock approach is fundamentally different because
timing packets are timestamped using raw counter values
which are independent of clock state, whereas ntpd uses the
system clock to generate its input, creating a feedback loop.

B. Experimental Methodology

Figure 1 shows the key testbed components used in our
comparison methodology. A Stratum-1 Time Server (right) is
synchronized locally to a GPS signal by the ntpd daemon
and serves time packets using both the NTP and IEEE-1588

3

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114
−50

0

50

100

150

Time [Hours]

C
lo

c
k

E
rr

o
r

[µ
s
]

RADclock

ptpd

20 40 60 80 100
[mus]

ptpd

Median 59.3

IQR 31.6

30 40 50
[mus]

RADclock

Median 38.3

IQR 8.1

Fig. 2. Ideal environment: bettong by itself with minimal host and network load. Left: clock errors using external monitor, Right: histograms.

0 3 6 9 12 15 18 21 24
−150

−100

−50

0

50

100

150

Time [Hours]

C
lo

c
k

E
rr

o
r

[µ
s
]

RADclock

ptpd

−50 0 50 100
[mus]

ptpd

Median 23.5

IQR 34.9

40 60 80
[mus]

RADclock

Median 50.7

IQR 17.7

Fig. 3. Results for wallaby after it joins bettong on the hub. Spikes in host noise generate instability in ptpd (arrow marks event examined in Figure 4).

protocols. A PC host simultaneously runs several clocks to be
evaluated/compared (left), including ntpd synchronized both
over the network and via a local GPS signal. The external
monitor consists of a GPS synchronized (with atomic clock
PRS-10 corrected PPS) DAG capture card [22] using an 100
Mbps Ethernet hub as a tap.

The benchmarking methodology [21] relies on a flow of
UDP packets sent and received by the PC host. Each UDP
packet triggers an event which is timestamped by all clocks
running in the host and the DAG card. The internal comparison
of these timestamps gives a noise free view of their relative
error, while the comparison of each clock’s timestamps against
the DAG provides an independent and absolute comparison.
To provide a fair comparison, all clocks are configured with
their default parameters and share a common constant polling
period. For ntpd we found it necessary to restrict its configu-
ration to a single server and disable adaptive polling rate, to
avoid bad behavior.

We use the rdtsc() function, which accesses the TSC (using
assembler instructions) from either kernel or user space, as a
low latency low level timestamping operation for benchmark-
ing purposes (the availability of this function is one of the
advantages of using the TSC).

C. RADclock and ptpd over LAN

Our first experiment in a LAN environment uses two client
hosts, wallaby (FreeBSD 5.3) and bettong (Linux 2.6.20),
which run both the RADclock and ptpd daemons, each using
the TSC as the underlying counter. Figure 2 shows the error
over time (evaluated using the external monitor) of each client
clock in bettong under ideal conditions: no other machine on
the hub; negligible network traffic; very light host load. The
time series show very consistent performance for each clock,
however the RADclock is considerably less variable, with an
Inter-Quartile Range (IQR) of 8.1 µs compared to 31.6 µs for
ptpd. In this very undemanding, stationary LAN environment,

the poorer performance of ptpd is a direct result of its inability
to adequately filter the (nonetheless low) latency variability
generated by both the network and the host.

To assess median performance we must compare it against
the theoretical limit of A/2, where A is the path asymme-
try between the client and server. We measure the network
component of A as An = 28 µs, yielding a net median
error of 24.3 µs for the RADclock and 45.3 µs for ptpd. The
asymmetry estimate can be further improved by including the
host component Ah (see [11]) but for space reasons we omit
this and focus exclusively on variability below. The findings
for ptpd are worse than those from [5], namely median errors
under 10 µs and an IQR of around 5-10 µs, but details of how
these were obtained were not provided.

While keeping bettong running, we next add wallaby to the
hub. Again the hosts are minimally loaded as is the network.
The results in Figure 3 for wallaby are roughly similar to
before although variability increases for each clock, since
wallaby has a higher measured operating system noise [21]. It
appears from Figure 3 that the RADclock has higher median
error, however since asymmetry effects have not been removed
here, no such conclusion can be drawn. As mentioned above
we focus on variability in this paper.

Before leaving this benign environment we examine two

0 15 30 45 60 75 90 105

−800

−600

−400

−200

0

Time [Minutes]

C
lo

c
k
 E

rr
o

r
[µ

s
]

RADclock
ptpd

0 3 6 9 12 15
−6000

−4000

−2000

0

2000

Time [Minutes]

C
lo

c
k

E
rr

o
r

[µ
s
]

RADclock
ptpd

Fig. 4. Left: zoom on clock startup for bettong, Right: zoom on reaction to
host noise event for wallaby (marked by arrow in Figure 3).

4

0 3 6 9 12 15 18 21 24 27 30 33

−500

−100
0

100

500

Time [Hours]

C
lo

c
k

E
rr

o
r

[µ
s
]

RADclock

ptpd

−1000 −500 0 500 1000
[mus]

ptpd

Median 82.1

IQR 260.8

30 40 50 60
[mus]

RADclock

Median 40.2

IQR 9.4

Fig. 5. Results for bettong with network congestion added (but still low host load). The RADclock is basically unaffected, ptpd is strongly affected.

0 3 6 9 12 15 18 21 24 27 30 33

−500

−100
0

100

500

Time [Hours]

C
lo

c
k

E
rr

o
r

[µ
s
]

RADclock

ptpd

−1000 0 1000
[mus]

ptpd

Median −26.7

IQR 322.3

−30 −20 −10 0
[mus]

RADclock

Median −17.2

IQR 12.1

Fig. 6. Results for wallaby with both network congestion and high host load. Both clocks are affected, but RADclock much less so.

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480

−100

0

100

Time [Minutes]

C
lo

c
k

E
rr

o
r

[µ
s
]

RADclock

ptpdDisconnect

Reconnect

150 180 210 240 270 300

−300

−250

−200

−150

−100

−50

0

Time [Minutes]

C
lo

c
k
 E

rr
o
r

[m
s
]

ptpd

275 285 295
0

2

4

6

8

Time [Minutes]

C
lo

c
k
 E

rr
o
r

[m
s
]

ptpd

Fig. 7. Robustness test: disconnection from server. The RADclock drifts gracefully, ptpd does not. Right: zooms on ptpd disconnection and reconnection.

interesting points with the help of Figure 4. The left plot shows
a zoom on the startup phase of both clocks for bettong. It
takes an hour and a half for ptpd to converge whereas the
RADclock achieves nominal performance almost immediately.
The right plot is a zoom-out (vertically) and in (horizontally)
on the spike pointed to by the arrow in Figure 3. The triggering
event for this spike is caused by operating system effects such
as interrupt scheduling and is typical of FreeBSD – no such
spikes were seen on Linux. What is of interest here is how
the clocks react to such an unusually ‘large’ system ‘noise’
input. In ptpd the event resulted in a very large jump in error
and a slow, oscillating return to synchronization. In contrast,
the RADclock is unaffected.

We next produce much more variable communication la-
tency and increase network congestion with traffic exchanged
between wallaby and a third host placed on the monitoring
hub. We repeatedly transfer a 750MB file simultaneously to
and from wallaby via the UNIX scp command, separated
by 10 s pauses. Each transfer is capped to 15000 Kbit/s, an
average load of around 30Mbit/s, over around 7 minutes.

Figure 5 shows the performance of the clocks on bettong
under this scenario of high network congestion, but low host
load. Comparing against Figure 2, we see that the RADclock is
barely affected, but ptpd suffers significantly. Figure 6 shows
the performance on wallaby during the same experiment.
Note that wallaby experiences not only significant network

congestion but also significant system noise because it is the
origin and destination of the cross-traffic. We again find that
the IQR for the RADclock is barely affected when comparing
either against Figure 5, or against the same machine under
very low load (in fact it is lower than that 17.7 µs found in
Figure 3!), whereas the IQR performance of ptpd degrades
by a further 61.5 µs from the already poor result of Figure 5.
In fact the performance of the RADclock under heavy load is
far better than the performance found for ptpd even under the
ideal conditions of Figure 2.

Note that under these high load conditions, the noise pol-
luting the external comparison also increases significantly, and
in fact dominates the actual clock error in the case of the
RADclock. This noise is more severe on the incoming side
(i.e. received UDP packets). Thus, whereas in the other plots
we showed errors as evaluated using the incoming direction,
in Figure 6 we have instead given performance using the
outgoing direction (even the outgoing direction suffers from
increased noise however in this more difficult environment,
which means that actual clock performance is better than the
results quoted above). The change from incoming to outgoing
brings with it a shift in median related both to asymmetry
which we have not attempted to correct for here.

Finally, we examine the robustness with respect to a loss
of connection to the time server. We return to the light load
scenario, and first allow each clock to converge. We then

5

Fig. 8. Impact of multiple servers and polling period adaptivity on ntpd. The gray areas indicate forced configuration (single server and 16 s polling period).

16 64 256 1024 16 64 256 1024

−200

0

200

400

600

ServerLAN

Polling Period [sec]

C
lo

c
k

E
rr

o
r

[µ
s
]

ntpd−NTP
RADclock

16 64 256 1024 16 64 256 1024

−500

0

500

ServerNear

Polling Period [sec]

C
lo

c
k

E
rr

o
r

[µ
s
]

ntpd−NTP
RADclock

16 64 256 1024 16 64 256 1024

−500

0

500

1000

ServerFar

Polling Period [sec]

C
lo

c
k

E
rr

o
r

[µ
s
]

ntpd−NTP
RADclock

Fig. 9. Distribution of RADclock and ntpd error as a function of polling period and distance to time servers (LAN; same campus; across the continent). The
ntpd and RADclock results are separated horizontally (note repeated horizontal axis) for clarity.

disconnect the monitoring hub from the network for about
2 hours, then reconnect it. Figure 7 shows the impact on
wallaby. The RADclock shows a gradual drift indicative of
the uncorrected local oscillator, and immediate recovery upon
reconnection. In contrast the reaction of ptpd is extreme. As
the middle plot in Figure 7 shows, following the disconnection
at 150 minutes ptpd dives to reach an error of -300 ms before
reconnection, after which its error remains in the ms range
(rightmost plot) for most of the hour required for convergence.

D. RADclock and ntpd over LAN and WAN

We now compare the RADclock to ntpd, which is much
more refined than a simple PI controller. It is well known
however, that the complexity of ntpd makes its configuration,
where accuracy is traded-off against robustness, a non-trivial
task. We demonstrate this by observing the performance of
ntpd running on a Linux host synchronizing to the Stratum-1
servers at our disposal.

The experiment shown in Figure 8 starts with ntpd synchro-
nizing to one of our 3 ServerNear servers, which are co-located
5 hops away from the client with a minimum Round-Trip Time
(RTT) measured at 0.89ms. We fix ntpd’s polling period to
16 s and let it converge. A noisy but stable performance is
then exhibited in a [-350,-50] µs band. After 18 hours, we
update ntpd’s configuration to allow ntpd to adaptively select
its polling period. The result is erratic performance in a [-
1.8,+0.6] ms band until we reimpose the constant 16 s value
at hour 46. At hour 52 we add the two remaining ServerNear
servers to ntpd’s configuration. These 3 servers are reached

with the same route and ntpd synchronizes to the best of them
exhibiting good performance in a [-50,+50] µs band. At hour
66 we relax the fixed poll period and ntpd shows again an
erratic performance, only slightly better behaved thanks to the
better ServerNear selected, despite the redundancy introduced
by the additional servers. At hour 112 we reinstate the original
configuration and again let ntpd converge. This phase is not
free of errors as shown by the short but large spike error of
1.2 ms at hour 124. Finally, at hour 128 we add two new
servers to the configuration. ServerLAN is a Stratum-1 on the
same LAN with a minimum RTT of 0.28 ms. ServerLoc is
located two hops away with minimum RTT 0.38 ms. Good
overall performance is now seen, but again, the use of multiple
nearby high quality servers does not prevent errors (hour 140).
At hour 146 we again relax the poll period constraint and find
erratic performance despite the richer network path diversity
provided by the 3 servers. Because the network congestion is
very low here, it is likely that the addition of cross-traffic will
translate into even worse performance.

This experiment shows the sensitivity of ntpd to its config-
uration. Letting ntpd choose its own polling period leads for
example to unstable behavior and performance degradation by
two orders of magnitude.

We now compare ntpd and the RADclock when ntpd has
been configured carefully to give its best possible performance
(single nearby statically allocated Stratum-1 server, static and
small polling period, avoidance of disruptive events). Figure 9
presents the clock error distributions of the RADclock and ntpd
under FreeBSD as a function of the polling period, and three
Stratum-1 NTP servers at different distances: ServerLAN,

6

5 10 15 20 25 30 35 40
−300

−200

−100

0

100

200

Time [days]

C
lo

c
k
 e

rr
o

r
[µ

s
]

RADclock

ntpd−NTP

−100 0 100 200
[mus]

Median: 34.8
IQR: 50.4

25 30 35 40 45
[mus]

Median: 35.6
IQR: 7.4

Fig. 10. Performance of RADclock and ntpd synchronizing to LAN Stratum-1 server and 256 s polling period; time series (left) and histograms (right).

5 10 15 20 25 30 35 40 45 50

−500

0

500

Time [hours]

C
lo

c
k
 e

rr
o

r
[µ

s
]

ntpd−NTP

Fig. 11. Performance of ntpd synchronizing to Stratum-1 LAN server with disruption periods due to in-kernel random delays added to NTP packets.

the best ServerNear, and ServerFar (3500km away, 14 hops,
minimum RTT 37.7 ms). In each plot, the thick black lines
show the median clock errors, and the surrounding lines give
the [1, 25, 75, 99] error percentiles. Each polling period
corresponds to a data capture of at least 3 weeks where ntpd
and the RADclock share the exact same flow of NTP packets.

As expected, the spread of errors increases both with
increased distance to the server (greater network latency
variability), and polling period (less raw data from the server).
For each point in the (server, polling period) space, RADclock
performs clearly better than ntpd both in terms of general
variability shown by the IQR, and outliers. The clocks exhibit a
similar median error (compare not to zero but to the horizontal
gray line, which corrects for the total route asymmetry).

Results similar to Figure 9 were presented in [13]. The
present figure is however entirely new, based on a more
recent version of FreeBSD (6.1 instead of 5.3) and associated
RADclock kernel timestamping, a different ntpd version and
configuration, and uses different (and better) servers. Under
these conditions each clock, in particular ntpd, performs better
compared to the results in [13]. The new results also use a
wider range of polling period (16 to 1024 s rather than 16
to 256), new and much longer data sets, and include fewer
routing disruptions (further improving ntpd’s performance).
This data, unique in the literature, took over 2 years to collect,
and represents over 9 months of fully validated continuous
operation of the two clocks running in parallel.

While ntpd is clearly more robust than ptpd, periods of sta-
bility loss occur for polling periods larger than 64 s even in the
LAN environment where congestion is low. Figure 10 shows
the entire time series and associated histograms corresponding
to ServerLAN with a polling period of 256 s. This time series
is characteristic of ntpd’s behavior observed in all data sets.
For long periods, ntpd performs decently but exhibits phases of
significant instability which sometimes last as long as a week!
Again, no particular environmental triggers are present, and all

points to instability in the ntpd feedback algorithm. Using the
exact same NTP packet input, the RADclock exhibits an error
IQR of 7.4 µs compared to ntpd’s 50.4 µs.

We conclude this section by actively disrupting ntpd. Here
ntpd is running on a Linux client and synchronizes to Server-
LAN with a fixed 16 s polling period. For the first 6 hours,
ntpd’s clock error is small, as seen in Figure 11. From hour 6
to 17 and from hour 26 to 43, we run a low priority user space
process, which uses the LibPCAP library to capture the flow
of NTP packets used by ntpd. This process forces each packet
captured in the kernel to be exported to user space without any
buffering, resulting in small delays before ntpd can access the
packets. Surprisingly, this makes ntpd extremely unstable. Its
performance degrades by two orders of magnitude and exhibits
patterns that remind one of Figure 6 for ptpd.

E. RADclock difference clock versus ptpd and ntpd.
Given any absolute clock Ca(t), the error incurred by using

it to measure a time difference: Ca(t2)−Ca(t1), is just the sum
of the clock errors at true times t1 and t2. The performance
for time difference measurement for each of RADclock, ptpd
and ntpd therefore follow from the results above. However, the
RADclock also provides a difference clock, which corresponds
to using a clock uncorrected for drift, and therefore unpolluted
by the inherent errors of drift estimation. As detailed in [21],
this results in far more accurate, and far more robust, mea-
surement of time differences below a critical time scale, than
if an absolute clock were used. For example, when measuring
the time taken to execute a code block, the number of CPU
cycles expended is often used. The difference RADclock using
the TSC counter corresponds to this same idea, except it also
converts the cycle count to seconds using an extremely robust
and accurate (say to 0.1 µs over a 1 s interval) estimate of long
term counter period. Due to their feedback natures, ptpd and
ntpd cannot provide a difference clock, but can only measure
time differences by subtracting absolute timestamps.

7

III. KERNEL SUPPORT FOR FEED-FORWARD ALGORITHMS

Although the above section compared three specific clocks,
the key conclusions are based on fundamentals. Feedback
controllers suffer the fundamental tradeoff whereby parameter
values which improve short term tracking degrade rate stability
over the time-scales at which tracking operates, and in more
extreme cases threaten global stability. The latter is paramount,
resulting in parameter setting with slow initial convergence,
and controller-induced errors in clock rate, but still with no
guarantee of stability if conditions worsen. In contrast, a feed-
forward approach cannot be unstable, and the absence of the
above tradeoff means that high accuracy can coexist with fast
convergence, both initially and following periods of high noise.

While the results of Section II were obtained using the TSC,
the RADclock algorithm itself will work with any counter of
constant nominal frequency that does not roll over. Currently,
PC architectures typically embed the Time Stamp Counter
(TSC), but also the Advanced Configuration and Power Inter-
face (ACPI) timer, and often the High Precision Event Timer
(HPET). In a number of architectures power management
makes use of the TSC problematic (here we disable it). The
ACPI and HPET are immune to this problem (refer to [15],
[23] for more details).

Because any of the above counters can be used for time-
keeping, the operating system selects the one it considers the
most reliable and provides a generic interface to access it.
This interface is called timecounter [24] on FreeBSD and
clocksource on Linux, and is internal to the kernel. While
the rdtsc() function allows the interface to be bypassed in
the case of the TSC, the other counters can only be accessed
via this interface. Unfortunately, it is not suitable for feed-
forward synchronization algorithms. To understand why, we
first describe briefly the principle underlying these interfaces.

All counters are initialized to 0 at system boot and incre-
mented at the period of their respective oscillators. With the
exception of the TSC, the available counters roll over several
times per minute (see table I). The kernel mechanism that
tracks roll-over events, thereby maintaining a consistent notion
of time, works as follows. On every system, the “hardware
clock”1 generates interrupts that are captured by the kernel
(typically every 1 ms). On every interrupt, the kernel creates
two timestamps. One timestamp is the reading of the current
hardware counter value (counter record) and the other is
derived from the system clock (time record).

When a program issues a gettimeofday() system call, or
when an interrupt is raised by the hardware clock, the kernel
needs to create a system clock timestamp. To this end, the
kernel reads the current counter value and computes δ, the
number of cycles elapsed between the last counter record and
the current value. The kernel converts δ into seconds, adds it
to the last time record and returns the result. If the timestamp
creation was triggered by gettimeofday(), the timestamp is
passed back to user space. If it was triggered by a hardware
clock interrupt, the timestamp becomes the new time record
and the current counter reading the new counter record.

1The hardware clock is usually based on the legacy 8254 Programmable
Interval Timer (PIT), the Real-Time Clock (RTC) or the HPET counter itself.

TSC HPET ACPI
Frequency CPU freq. 14.3 MHz 3.57 MHz
Size (bits) 64 32 / 64 24 / 32

TABLE I

Because a monotonically increasing time record is associ-
ated to every counter record, this mechanism implicitly tracks
the counter’s roll-over events. It is also robust to hardware
clock interrupts being missed, since their frequency is far
higher than that of any counter roll-over. It is an intrinsically
feedback mechanism however, since the conversion of δ into
seconds is performed by the kernel’s system clock, and is
driven by the information passed by the synchronization
algorithm to the kernel (via the adjtime() system call).

The kernel’s notion of time, and any synchronization algo-
rithm making use of the interface, are locked together. The
algorithm never sees a raw counter value, but only values
which have already been coupled to both its own state and
the system clock timestamping mechanism. It follows that a
feed-forward algorithm, being based on direct access to the
raw oscillator (via a counter), cannot use this interface. Based
on our previous experience with the TSC counter, we know
that the ideal counter has to be wide enough not to roll over,
have high stability and be accessible quickly and atomically.

Our implementation synthesizes such a counter. It consists
of a 64 bit cumulative counter record added to the timecounter
and clocksource interfaces. This 64 bit field is used to record
a snapshot of a cumulative count of the active counter and
because of its size, will not roll over. To allow access from
user space we implemented a new getcounter() system call.

When a program issues a getcounter() system call, or when
an interrupt is raised by the hardware clock, the kernel has
to determine the current cumulative counter value. The kernel
reads the current value of the counter and computes δ as in
the feedback case. The current cumulative counter value is
then created as the sum of δ and the last cumulative counter
record. In the case of triggering by getcounter(), the current
cumulative count is passed back to user space. If it was
triggered by a hardware clock interrupt, it is stored as the
new cumulative counter record.

This mechanism implements the simple yet crucial require-
ments for kernel support for feed-forward applications. It de-
couples the timestamping and timekeeping mechanisms in the
kernel while taking advantage of the existing implementation.
It is also generic enough to give access to future hardware
counters as soon as they are supported by the interfaces [25].
Finally, it gives access to consistent raw counter timestamps
via a new data structure available both from within the kernel
and to user space applications.

Note that allowing raw counters to be accessed has another
advantage, it allows the timestamping of timing packets to be
low level, and yet synchronization intelligence to be located
in a single place: user space, rather than being split between
user space and the kernel.

IV. COUNTER CHARACTERISTICS

Whereas all available counters are now fully accessible
to any synchronization algorithm, their characteristics may

8

differ. In this section we examine how a number of commonly
available counters compare as hardware timing sources.

We use recent computers that embed the TSC2, HPET and
ACPI counters. We focus mainly on a FreeBSD 7.0 system that
provides two access methods to the ACPI counter [26]. The
fast method simply reads the counter as quickly as possible.
The safe method is intended for ACPI architectures that may
not correctly latch the counter, and compensates by reading it
several times until a correct value is read, making it slower.

The characteristics we focus on are the key ones for feed-
forward synchronization algorithms, but the findings should
be useful for many applications requiring raw timestamps. As
far as we are aware this is the first study which systematically
characterizes, and compares, these counters.

A. Stability

In our testbed the FreeBSD kernel captures the PRS-10 PPS
signal through a serial port using the standard PPS API [27].
On each pulse, a raw 64 bit cumulative counter timestamp is
created within the kernel and exported using the PPS API.
In post-processing, the inter-pulse times measured in counter
units are calculated, and are then expressed in seconds using
the average pulse period computed over the trace using GPS
receiver timestamps. The resulting inter-pulse time series is
then analyzed using the Allan deviation plot to measure the
counter stability on different timescales. Allan deviation is a
time-scale dependent measure of variability that is commonly
used to analyze clock errors [11].

The above methodology enables us to observe counter sta-
bility when accessed via the timecounter interface. Figure 12
shows the Allan deviation of each counter measured over con-
secutive 1 week periods on a desktop computer (tastiger) and
a rack server (platypus) both located in the same temperature
controlled server room. In addition to the 4 counters which we
access via the timecounter interface, we also show the TSC
counter when accessed via the rdtsc() function both as a point
of reference, and to compare to our previous work [11].

Figure 12 shows that all the counters we observe exhibit
a stability below 1PPM (Parts Per Million) at any timescale
above 10 s. It also clearly indicates that on both test machines,
all counters have very similar characteristics. At small time
scales, the variability of the system noise due to the serial
port dominates but quickly falls below 0.1PPM at large scales.
The counters exhibit a familiar minimum a little past 1000
seconds, before flattening out to a low level at daily time scales
and beyond, consistent with a tightly controlled temperature
environment. The only differences between the counters are
weak and appear at large time scales, due to the weekly
temperature variations unavoidable in consecutive captures.

All counters on both test machines exhibit a “bump” in the
Allan deviation at around 200 s, which is related to the period
of the server room air conditioning system. This is of interest
for production environments that are equipped with similar
systems. Although the impact is noticeable it remains well
below 0.1PPM. A similar bump was noted in [9].

2All functions affecting the stability of the TSC have been disabled for the
purpose of comparison and consistency.

10
0

10
1

10
2

10
3

10
4

10
5

10
−8

10
−7

10
−6

τ [sec]

A
lla

n
 d

e
v
ia

ti
o
n

RDTSC
TSC
HPET
ACPI−fast
ACPI−safe

10
0

10
1

10
2

10
3

10
4

10
5

10
−8

10
−7

10
−6

τ [sec]

A
lla

n
 d

e
v
ia

ti
o
n

RDTSC
TSC
HPET
ACPI−fast
ACPI−safe

Fig. 12. Stability of 4 counters based on PPS based polling in a: Top –
desktop computer (tastiger); Bottom – rack server (platypus).

In conclusion, the counters exhibit virtually identical stabil-
ity characteristics, which makes them equivalently useful for
the purpose of timekeeping from this point of view.

B. Stability Under Stress

We examine the response of each counter to a predefined
scenario. Starting in a stable environment, the computer un-
dergoes alternating 90 minute long periods of stressed and
normal conditions. In the first two stress periods, a user space
infinite loop continuously maintains the CPU activity over
95%. During the last stress period, the computer network card
is set in promiscuous mode and a tcpdump process captures
all packets transmitted over the network. By generating heavy
cross traffic (the 100Mbit/s hub the computer is connected to
is loaded at maximum capacity), the network card generates
many interrupts on the system as packets are captured.

Using the PPS signal capture in the kernel, we compute
the number of cycles elapsed between consecutive pulses,
giving us a direct estimate of the “instantaneous” frequency
for each counter. Using the “normal conditions” period of
the test, we also compute an average reference frequency for
each counter. Figure 13 shows, for each counter, the error of
the instantaneous frequency relative to its reference frequency
expressed in PPM. The captures are each 11 hours long and
are taken sequentially on the rack server machine possum.

Our expectation was that the CPU load stress would affect
the TSC counter more than the others since it is located on the

9

0 1 2 3 4 5 6 7 8 9 10 11
−0.2

0

0.2

0.4

0.6

Time [hours]

F
re

q
u
e
n
c
y
 R

e
la

ti
v
e
 E

rr
o
r

[P
P

M
]

TSC
HPET
ACPI−fast
ACPI−safe

CPU CPU

Net.

Fig. 13. Instantaneous relative frequency error of each counter under CPU load and network interrupt stress scenario on the rack server possum.

CPU chip. Furthermore, it was supposed that the generation
of many interrupts would create unequal contention for the
counters’ access methods due to their differing hardware de-
sign. Figure 13 indicates that our preconceptions were wrong:
the frequencies of all counters change in a comparable manner
when under stress. Moreover, the results point to temperature
as a main factor for frequency change. Under CPU load,
the temperature of the computer increases notably, while the
creation of a multitude of network interrupts induces a much
milder temperature change (the high frequency oscillations
are due to the air conditioning system). The most probable
explanation for the observations is that the crystal and/or
the clock synthesizer chip on the motherboard is affected by
the temperature changes and that this is reflected by all the
counters that derive from it.

We have seen that all counters are equivalently stable even
under high stress, and that even under heavy load the fre-
quency variation remains below 1PPM, a significant result for
server machines which are likely to encounter such situations.
Finally, we see that even very high network activity has little
impact, an important feature for network intensive applications
such as network monitoring and anomaly detection that are
dependent on packet capture and timestamping.

C. Access Latency Under Stress

Each counter is read via a different mechanism. The TSC
value can be returned extremely fast and accessed in few
assembly instructions3. The HPET and ACPI counters are
accessed via reading on a data bus, which is slower. The HPET
counter however, is memory mapped and should therefore be
faster than ACPI.

Here, we study the access latency of each counter (including
the TSC) accessed via our extended interface, measured in
CPU cycles from within the kernel. Specifically, each time a
given counter is to be read, we first read the TSC using rdtsc(),
access the counter under study, then use rdtsc() again. These
two TSC values are exported to user space and subtracted from
each other to measure the counter access latency, comprising
the sum of the latencies of the timecounter or clocksource
interface, and that of the counter itself. As we discuss in the
next section, the former is approximately constant.

Figure 14 shows the latency of the counters expressed in
CPU cycles, over the same 11 hour stress scenario as described

32 instructions on 32 bit CPU systems and 1 instruction on 64 bit systems.

in Section IV-B. The distributions of the latency for each phase
of the stress scenario are presented in a compact format where
whiskers show the minimum and 95th percentile values. The
box lower and upper sides show the 25th and 75th percentiles
values, while the internal horizontal line marks the median.

We first look at the normal periods when the system is not
under stress. As expected, the TSC is the fastest counter with a
median access latency of 420 CPU cycles (less than 140 ns on
a 3 GHz processor). The HPET counter comes second with a
median value of 1935 cycles (0.65 µs), and the ACPI is last at
about 3690 cycles in its fast mode (1.23 µs), and 10440 cycles
in its safe mode (3.48 µs). These values are far from negligible
since they reach the micro-second level even for a fast modern
computer. Thus, whereas the counters were equivalent from
a stability perspective, their differences in access latency are
appreciable and can impact the quality of timestamping.

Although the size of the counters’ access latencies can have
an impact, their variability is typically quite small. The Inter-
Quartile Range (IQR) for the TSC is essentially null because
of the high level of discretization of the TSC reading that is
architecture dependent. HPET exhibits an IQR of 135 cycles,
ACPI-fast 285 cycles and ACPI-safe 390 cycles. Such small
values are encouraging as they translate to a lighter burden on
the synchronization algorithms’ delay variability filtering, and
may even have no effect at all if in addition the access latency
has symmetric calling and returning components.

The periods when the computer is under stress show an in-
teresting pattern. As shown by their distributions in Figure 14
the counter latencies take lower values during the CPU test.
The median values all drop by about 100 cycles, a counter-
intuitive result: performance improvement under stress! The
explanation is not that the counters are accessed faster, but that
our measurement methodology has one flaw. While robust to
frequency changes, reading the number of CPU cycles is prone
to pipelining and caching optimizations. Under CPU load, the
caches are “hot” and the apparent performance improvement
is an artifact of this. For the same reason, the slightly lower
number of instructions to measure the latency of the counters
reduces the probability of the corresponding execution being
scheduled out, which then reduces the number of outliers.

In the case of the network stress periods, the results obtained
are extremely close to the normal ones, even to the values of
the 95th percentiles. The only noticeable difference concerns
the extreme outliers, which do not appear in the plots, but
which take much higher values. In other words, in the presence

10

0 1 2 3 4 5 6 7 8 9 10 11
0

2000

4000

6000

8000

10000

12000

Time [hours]

C
o
u
n
te

r
L
a
te

n
c
y
 [
#
 C

P
U

 c
y
c
le

s
]

ACPI−safe

ACPI−fast

HPET

TSC
CPU CPU Net.

Normal CPU Net

350

400

450

500

550

TSC

Normal CPU Net

1800

1900

2000

2100

HPET

Normal CPU Net

3400

3600

3800

4000

ACPI−fast

Normal CPU Net

1

1.05

1.1
x 10

4
ACPI−safe

Fig. 14. Access latency for the 4 counters available (FreeBSD), under the stress scenario. Time series (top) and distributions from 0 to 95th percentile.

of network interrupts the counter access code is not interrupted
more often, but is it interrupted for longer. For example, the
maximum latency for HPET in the normal case is 38265 cycles
but 11874705 cycles under network load. The TSC counter is
an exception however. Because the network stress is based
on tcpdump, all incoming packets are timestamped, leading
to another “hot cache” optimization as the TSC counter is
continuously accessed, resulting in almost no outliers.

In summary, the reaction to the stress scenario is mild, and
almost identical, for each counter.

V. RAW TIMESTAMPING AND SYNCHRONIZATION

In this section we examine the impact of counter choice
on RADclock performance. Before doing so, we complete the
picture on the impact of the enhanced counter interface itself
by measuring its access latency from both kernel space and
user space. This is important for any clock application, since
clocks must be readable by any process.

A. Timecounter/Clocksource Timestamping Latency

First from a kernel perspective, we are interested in quanti-
fying the overhead produced by the use of the generic counter
interface, independently of the counter being accessed. For this
purpose we implemented a kernel module that performs two
calls to the rdtsc() function, then reads the TSC counter via
the interface, and then calls the rdtsc() again. This provides us
with the latency of the rdtsc() function itself and the latency
of the interface when reading the TSC counter. By subtracting
one from the other, we obtain the latency of the interface alone.

Figure 15 shows that this latency has an extremely compact
distribution on FreeBSD and Linux. The spread is only 240
cycles (80 ns on a 3 GHz processor) on FreeBSD and 152
cycles (50 ns) on Linux. For the purpose of software times-
tamping and synchronization, the kernel interface latency can

then be approximated by its median value, namely 240 cycles
on FreeBSD and 208 on Linux.

In summary, using the new interface for kernel timestamping
adds an extremely small penalty compared to that of the
rdtsc() function. Compared to the advantages it provides, it
is therefore a very attractive tool for this purpose.

B. User Space Timestamping Latency

A program running in user space that needs to timestamp
normally issues a gettimeofday() system call to access the
system clock. In the case of a feed-forward clock using the
TSC, the same program only need use the rdtsc() function to
create a raw TSC timestamp, which the clock can convert to an
absolute time in seconds asynchronously. The assembly code
composing the rdtsc() function bypasses any usual kernel/user
space channel and provides comparable performance whether
from the kernel or user space.

The ACPI, HPET or other counters do not offer this option,
and the use of the timecounter or clocksource interface forces
a user program to issue our new getcounter() system call to
retrieve a raw timestamp from the kernel. We now measure
the latency of this call, using a technique similar to before.

200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

[CPU cycles]

Min: 180

Median: 240

150 200 250
0

0.05

0.1

[CPU cycles]

Min: 136

Median: 224

Fig. 15. Kernel latency distribution from minimum to 99th percentile:
timecounter interface (FreeBSD, left) and clocksource interface (Linux, right).

11

3000 3500 4000
0

0.02

0.04

0.06

0.08

0.1

[CPU cycles]

Min: 2730

Median: 3540

IQR: 165

1400 1600 1800
0

0.005

0.01

0.015

0.02

0.025

0.03

[CPU cycles]

Min: 1256

Median: 1776

IQR: 160

Fig. 16. Histograms of user space getcounter() system call latency for
FreeBSD on possum (left) and Linux on kultarr (right).

Figure 16 shows the distribution of the system call latency
on FreeBSD and Linux, and this time, the penalty induced by
our solution becomes apparent. Whereas creating a raw times-
tamp based on rdtsc() cost about 150 cycles from user space,
it now costs over 3500 cycles (almost 1.2 µs) on FreeBSD
and over 1770 cycles (0.5 µs) on Linux. Furthermore, on both
systems the variance of the latency distribution can no longer
be ignored. Even if the clock were perfect, the timestamps
would often exhibit errors close or above 1 µs on modern
systems. This is even more important for synchronization
algorithms that themselves rely on such timestamps. This
result advocates the use of timestamps taken from within the
kernel for the time keeping application itself (RADclock does
this), which also reduces host latency variability.

C. Synchronization Algorithm Performance

We now examine the impact of counter choice on the RAD-
clock. Figure 17 shows the distribution of RADclock errors
against the DAG card reference on FreeBSD. The performance
of the RADclock using the TSC via the rdtsc() function
is shown, as well as each counter through the timecounter
interface. Each distribution corresponds to one entire week of
captured data where the RADclock synchronizes to a Stratum-1
server on the LAN using the NTP protocol. Note that the clock
errors have each been corrected by a common estimate of the
(in general unavoidable) network and host asymmetry bias as
described in [21], in order to focus on the error variability.

As expected from the results above on counter stability, and
the benefits of kernel based timestamping, RADclock performs
similarly irrespective of the counter used. The IQR of all clock
errors are all at about 7 µs, a value dominated by the impact of
the air conditioning on the counters, as also observed on our
Stratum-1 NTP servers fed with an atomic clock PPS signal.

The median error values vary in a band only a couple of
micro-seconds wide. It is tempting to explain these variations
through the differences between counter latencies which are
of the same order of magnitude, however the slightly different
network noise characteristics of each capture, or the counters’
stability at weekly timescales, are also possible causes.

Additionally, we observed the impact of the stress scenario.
While RADclock’s performance is slightly affected by the
extreme temperature change and network activity, the perfor-
mance is similar for all counters used. The median clock errors
of all counters are at most 1.8 µs apart in the case of CPU load

RDTSC TSC HPET ACPI−fast ACPI−safe

−15

−10

−5

0

5

10

C
lo

c
k
 E

rr
o

r
[µ

s
]

Fig. 17. RADclock final clock error for tastiger after asymmetry compensation
for each counter. Distribution summary is from 1st to 99th percentile.

TSC HPET ACPI

−20

−10

0

10

20

C
lo

c
k
 E

rr
o
r

[µ
s
]

Fig. 18. RADclock final clock error after asymmetry compensation on Linux.
Distribution summary (1st to 99th percentile) of TSC in server room, HPET
on desktop computer, and ACPI on laptop in office environment.

and 1.1 µs for network load. This result reinforces the previous
analysis and confirms that any counter under study is a valid
candidate for the purpose of timekeeping.

Finally, Figure 18 shows the performance of the RADclock
on a LAN but running on Linux in different environments.
The TSC counter is used on a uni-processor computer without
power management in the air conditioned server room. The
HPET and ACPI counters are used respectively by a multi-core
desktop computer, and a laptop with active power management
and CPU frequency stepping, both in an office environment.
The performance is extremely similar: even the laptop’s IQR
is below 8 µs, demonstrating the robustness of the approach
across a wide spectrum of configurations.

VI. CONCLUSION

An extensive set of experimental results were presented
demonstrating the sensitivity of two important synchronization
approaches: one based on the IEEE-1588 protocol (ptpd) and
the other (ntpd) the solution currently used by billions of
networked computers, to latency variability typical of network
based synchronization. In parallel, we showed the insensitivity
to these same variabilities of our alternative solution, the
RADclock. We argued that in large part it is the inherent advan-
tages of a feed-forward paradigm adopted by the RADclock,
rather than the feedback approach of ptpd and ntpd, which
is responsible for this striking difference. Noting that existing
kernel mechanisms are built around ntpd and do not satisfy

12

the requirements of feed-forward approaches, we identified
changes which allow the raw counter value for any avail-
able hardware counter to be accessed for the first time, and
made minimal extensions to existing kernel mechanisms on
FreeBSD and Linux to achieve this. We immediately profited
from this access to provide the first detailed characterization
of the common counters TSC, HPET and ACPI as hardware
timing sources on each of these operating systems, under both
nominal and stressed conditions. We found that they have iden-
tical stability properties, and a small access latency from kernel
space, but that there are small but non-negligible differences
in access latency from user space. We demonstrated that the
RADclock can use any of these counters with no measurable
difference in performance, which is important since the TSC,
although enjoying several advantages, cannot always be used
on systems with features such as power management.

ACKNOWLEDGMENTS

We acknowledge Cameron Chambers’ work on the imple-
mentation of the proposed kernel modifications. This research
was supported under Australian Research Council’s Discovery
Projects funding scheme (project number DP0985673). This
project has been made possible in part by a grant from the
Cisco University Research Program Fund at Silicon Valley
Community Foundation and by a Google Research Award.

REFERENCES

[1] D. L. Mills, “Network Time Protocol (Version 3) specification, imple-
mentation and analysis,” IEFT, Network Working Group, RFC-1305,
March 1992, 113 pages.

[2] ——, “The Network Computer as Precision Timekeeper,” in Proc.
Precision Time and Time Interval (PTTI) Applications and Planning
Meeting, Reston VA, December 1996, pp. 96–108.

[3] J. C. Eidson, Measurement, Control and Communication Using IEEE
1588. Springer, April 2006.

[4] “The Precision Time protocol (PTP), ptpd,” http://ptpd.sourceforge.net/.
[5] K. Correll, N. Barendt, and M. Branicky, “Design Considerations for

Software Only Implementations of the IEEE 1588 Precision Time
Protocol,” in Proc. ISPCS. Zurich, Switzerland, October 10-12 2005.

[6] D. L. Mills, “A Kernel Model for Precision Timekeeping,” IEFT,
Network Working Group, RFC-1589, 1994.

[7] A. Pásztor and D. Veitch, “A Precision Infrastructure for Active
Probing,” in Passive and Active Measurement Workshop (PAM2001),
Amsterdam, The Netherlands, April 23-24 2001, pp. 33–44.

[8] ——, “PC based precision timing without GPS,” in Proc. ACM
Sigmetrics Conf. Measurement and Modeling of Computer Systems,
Del Rey, California, June 15-19 2002, pp. 1–10.

[9] D. Veitch, S. Babu, and A. Pásztor, “Robust Synchronization of
Software Clocks Across the Internet,” in Proc. ACM SIGCOMM
Internet Measurement Conf., Taormina, Italy, Oct. 2004, pp. 219–232.

[10] E. Corell, P. Saxholm, and D. Veitch, “A User Friendly TSC Clock,”
in Passive and Active Measurement Conference (PAM2006), Adelaide
Australia, Mar. 30-31 2006, pp. 141–150.

[11] D. Veitch, J. Ridoux, and S. B. Korada, “Robust Synchronization
of Absolute and Difference Clocks over Networks,” IEEE/ACM
Transactions on Networking, vol. 17, no. 2, pp. 417–430, April 2009.

[12] J. Ridoux and D. Veitch, “Ten Microseconds Over LAN, for Free,” in
Proc. ISPCS’07, Vienna, Austria, Oct.1-3 2007, pp. 105–109.

[13] ——, “Ten Microseconds Over LAN, for Free (Extended),” IEEE
Trans. Instrumentation and Measurement (TIM), vol. 58, no. 6, pp.
1841–1848, June 2009.

[14] ——, “The Cost of Variability,” in Proc. ISPCS’08, Ann Arbor,
Michigan, USA, Sep. 24-26 2008, pp. 29–32.

[15] T. Broomhead, J. Ridoux, and D. Veitch, “Counter Availability and
Characteristics for Feed-forward Based Synchronization,” in Proc.
ISPCS’09. Brescia, Italy, Oct. 12-16 2009, pp. 29–34.

[16] N. Chongning, D. Obradovic, R. Scheiterer, G. Steindl, and F.-J. Goetz,
“Synchronization Performance of the Precision Time Protocol,” in Proc.
ISPCS 2007, Vienna, Austria, Oct. 1-3 2007.

[17] G. Giorgi and C. Narduzzi, “Modeling and Simulation Analysis of PTP
Clock Servo,” in Proc. ISPCS 2007, Vienna, Austria, Oct. 1-3 2007.

[18] D. L. Mills, Computer Network Time Synchronization: The Network Time
Protocol. Boca Raton, FL, USA: CRC Press, Inc., 2006.

[19] D. L. Mills and P.-H. Kamp, “The Nanokernel,” in 32nd Annual
Precision Time and Time Interval (PTTI) Meeting, Reston VA, November
2000, pp. 423–430.

[20] J. Ridoux and D. Veitch, “Principles of Robust Timing Over the
Internet,” ACM Queue, Communications of the ACM, vol. 53, no. 5,
pp. 54–61, May 2010.

[21] ——, “A Methodology for Clock Benchmarking,” in Tridentcom.
Orlando, FL, USA: IEEE Comp. Soc., May 21-23 2007.

[22] “Endace Measurement Systems,” http://www.endace.com/.
[23] T. Broomhead, L. Cremean, J. Ridoux, and D. Veitch, “Virtualize

Everything But Time,” in Proc. OSDI 2010, Vancouver, Canada, Oct.
4-6 2010.

[24] P. H. Kamp, “Timecounters: Efficient and precise timekeeping in SMP
kernels,” in Proceedings of the BSDCon Europe 2002, Amsterdam, The
Netherlands, 15-17 November 2002.

[25] P. Ohly, D. N. Lombard, and K. B. Stanton, “Hardware Assisted
Precision Time Protocol. Design and case study.” in Proceedings of LCI
International Conference on High-Performance Clustered Computing.
Urbana, IL, USA: Linux Cluster Institute, April 2008, pp. 121–131.

[26] T. Watanabe, “ACPI Implementation on FreeBSD,” in Proceedings
of the FREENIX Track: 2002 USENIX Annual Technical Conference.
Berkeley, CA, USA: USENIX Association, 2002, pp. 121–131.

[27] J. Mogul, D. Mills, J. Brittenson, J. Stone, and U. Windl, “Pulse-Per-
Second API for UNIX-like Operating Systems, Version 1.0,” IETF, Tech.
Rep., 2000.

Julien Ridoux (S’01-M’06) received the M.Eng. de-
gree in Computer Science (2001) and M.Sc. degree
in Telecommunication and Networks (2002) respec-
tively from the Ecole Polytechnique de l’Université
de Nantes (France) and University Paris 6 (France).
In 2005 he received the Ph.D. degree in Computer
Science from the University Paris 6. Since 2006 he
is a Research Fellow at The University of Melbourne
where his main research interests are distributed
clock synchronization and Internet traffic modeling.

Darryl Veitch (SM’02-F’10) completed a BSc.
Hons. at Monash University, Australia (1985) and
a mathematics Ph.D. from Cambridge, England
(1990). He worked at TRL (Telstra, Melbourne),
CNET (France Telecom, Paris), KTH (Stockholm),
INRIA (Sophia Antipolis, France), Bellcore (New
Jersey), RMIT (Melbourne) and EMUlab and CU-
BIN at The University of Melbourne, where he is
a Professorial Research Fellow. His research inter-
ests include traffic modelling, parameter estimation,
traffic sampling, and clock synchronization.

Timothy Broomhead began his degrees in mecha-
tronic engineering and computer science at the Uni-
versity of Melbourne (2007). Since 2008 he has
worked as an intern at the University of Melbourne
over summer breaks at the CUBIN laboratory, work-
ing on the RADclock project. He also has an in depth
interest in electronics and amateur radio, becoming
Australia’s youngest licensed operator (2001). He is
also an IT consultant since July 05 and led several
Web developments projects.

http://www.endace.com/

	Introduction
	Impact of latency variability
	The Synchronization Algorithms, and Prior Evaluations
	Experimental Methodology
	RADclock and ptpd over LAN
	RADclock and ntpd over LAN and WAN
	RADclock difference clock versus ptpd and ntpd.

	Kernel support for feed-forward algorithms
	Counter Characteristics
	Stability
	Stability Under Stress
	Access Latency Under Stress

	Raw Timestamping and Synchronization
	Timecounter/Clocksource Timestamping Latency
	User Space Timestamping Latency
	Synchronization Algorithm Performance

	Conclusion
	References
	Biographies
	Julien Ridoux
	Darryl Veitch
	Timothy Broomhead

