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Abstract—In this paper we build upon the recent observation
that the 802.11 rate region is log-convex and, for the first time,
characterise max-min fair rate allocations for a large class of
802.11 wireless mesh networks.

I. I NTRODUCTION

In this paper we build upon the recent proof in [15]
that the 802.11 rate region is log-convex and, for the first
time, characterise max-min fair rate allocations for a large
class of 802.11 mesh networks. By exploiting features of the
802.11e/n MAC, in particular TXOP packet bursting, we are
able to use this characterisation to establish a straightforward,
practically implementable approach for achieving max-min
throughput fairness. We demonstrate that this approach canbe
readily extended to encompass time-based fairness in multi-
rate 802.11 mesh networks.

Fairness in 802.11 networks has been the subject of a
considerable body of literature. A large part of this litera-
ture is concerned withunfairnessbehaviour in 802.11 net-
works due to hidden terminals, exposed terminals, capture,
upload/download unfairnessetc., see for example [1], [17],
[5], [10], [13] and references therein. Proportional fairness
over a single 802.11 hop is considered by [24] , but this
work makes the simplifying assumption that every wireless
station in a WLAN is always saturated, which cannot be
expected to hold in general and is an unreasonable hypothesis
for multi-hop networks. An extensive literature relates toutility
fairness in wired networks, but the CSMA/CA scheduling used
in 802.11 differs fundamentally from wired networks due to
carrier sense deferral of the contention window countdown and
the occurrence of colliding transmissions – both of which act
to couple together the scheduling of transmissions by stations
in a WLAN and lead to the rate region being non-convex.
Utility fairness has been considered in random access wireless
networks, but this work has been confined to the Aloha MAC,
see [9], [6], [11], [27] and references therein. The Aloha
framework assumes that idle and transmission slots are of the
same duration and so does not encompass standard 802.11
frame structure where (i) it is common for transmissions to
be more than an order of magnitude longer than the idle slot
duration in order to improve throughput efficiency and (ii) the
mean transmission duration is not identical at all stationsbut
instead depends on the packet size and PHY rate selected.
While it has been known for some time that Aloha networks
have a log-convex rate region [9], [27], it has only recently
been established that the 802.11 rate region is also log-convex
[15]; it is this fundamental result that underpins the max-min
utility fair analysis in the present paper.

This material is based upon works supported by the Science Foundation
Ireland under Grant No. 07/IN.1/I901.

II. N ETWORK MODEL

A. Network Architecture

We consider a mesh network formed from a set of inter-
connected WLANs and assume that the WLANs are non-
interferingi.e. that they either transmit on orthogonal channels
or are physically separated so that transmissions on the same
channel do not interfere. Traffic is routed between WLANs via
mesh points equipped with multiple radios. Communication
between mesh points is peer-to-peer so that sending a packet
from WLAN i to WLAN j involves a single transmission
(rather than routing via a central access point). We assume
that stations within a WLAN are within sensing distance of
one anotheri.e. there are no hidden terminals; we comment
later on incorporating hidden terminals. Such a mesh network
is illustrated, for example, in Figure 1. In this example the
network is formed from five inter-connected WLANs such
that three orthogonal channels are sufficient to achieve a non-
interfering allocation.

Fig. 1. Illustrating class of mesh networks considered.

B. Station throughput

Consider one of the WLANs in the mesh network and letn
denote the number of stations in the WLAN. Following [18],
we divide time into MAC slots where each MAC slot may
consist either of a PHY idle slot, a successful transmissionor
a colliding transmission (where more than one station attempts
to transmit simultaneously). Letτi denote the probability
that stationi attempts a transmission in a slot. The mean
throughput of stationi is then (e.g.see [18])

si(T ) =
τi
∏n

k=1,k 6=i(1 − τk)Di

σPidle + TsPsucc + Tc(1 − Pidle − Psucc)
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wherePidle =
∏n

k=1(1 − τk) is the probability that a slot
is a PHY idle slot,Psucc =

∑

i∈N τi
∏n

k=1,k 6=i(1 − τk)
is the probability that a slot is a successful transmission,
T = [τ1 ... τn]

T is the vector of attempt probabilities,Di

is the mean number of bits sent by stationi in a successful
transmission,σ is the PHY idle slot duration,Ts is the
mean duration of a successful transmission (including time
to transmit each data frame, receive the MAC ACK and wait
for DIFS) andTc the mean duration of a collision.

C. Incorporating TXOP

Later, we will make use of the TXOP packet bursting
in 802.11e/n to facilitate achieving max-min fairness. With
TXOP, the length of time during which a station can keep
transmitting without releasing the channel once it wins a
transmission opportunity is specified as a control parameter.
In order not to release the channel, a SIFS interval is inserted
between each packet-ACK pair and a successful transmission
round then consists of multiple packets and ACKs. By ad-
justing the TXOP time the number of packets that may be
transmitted by a station at each transmission opportunity can
be controlled. We can readily generalise the above throughput
expression to support TXOP packet bursting as follows. Firstly
observe that when TXOP packet bursting is used colliding
transmissions end after sending the first packet in a burst and
soTc is unchanged. However, the durationTs of a successful
transmission now depends on the size of the TXOP packet
burst. To encompass situations where stations may transmit
different sized bursts on winning a transmission opportunity
we letTs,i denote the mean duration of a successful transmis-
sion by stationi. The throughput of stationi is then

si(T ) =
τi

1−τi
PidleDi

σPidle +
∑n

i=1 Ts,i
τi

1−τi
Pidle + Tc(1− Pidle − Psucc)

It will prove useful to work in terms of the quantityxi =
τi/(1−τi) rather thanτi. With this transformation we have that
Pidle = 1/

∏n
k=1(1 + xk) andPsucc =

∑n
i=1 xi/

∏n
k=1(1 +

xk) and so

si(x,N) =
Nixi

X(x,N)

Li

Tc
(1)

whereNi = Ts,i/Tc, Li = Di/Ni and

X(x,N) = a+

n
∑

k=1

(Nk − 1)xi +

n
∏

k=1

(1 + xk)− 1 (2)

with a = σ/Tc, x = [x1, ..., xn]
T andN = [N1, ..., Nn]

T . We
also have that the mean fraction of time spent by stationi on
successful transmissions is

ti(x,N) =
Nixi

X(x,N)
(3)

which is simply a rescaling of the station throughput expres-
sion (1).

In the foregoing we have implicitly assumed that packet
losses only occur due to colliding transmissionsi.e.

Assumption 1:Packet losses from sources other than colli-
sions can be neglected.

We discuss relaxing this assumption and including channel
noise losses in Section VIII below. In addition, we will
generally make the following assumption,

Assumption 2:Frame transmissions are of durationTc.
A TXOP burst therefore consists of a sequence of frame trans-
missions each of durationTc. This assumption yields the useful
technical benefit that the collision durationTc is invariant with
the attempt ratesxi used in a WLAN – if stations used frames
of different duration then the duration of a collision would
depend on the specific set of stations involved in a collision
and so on the attempt ratesxi. More importantly, however, it
is also a natural assumption in the context of 802.11e where
TXOP bursts are specified in terms of their duration in seconds
(which, in turn, is motivated by consideration of time-based
fairness when stations use different PHY rates). With this
assumption,Ni can be interpreted as the mean number of
transmissions in a burst andLi as the mean size, in bits, of
the payload of each frame.

D. Constraining burst size

Before proceeding, it is important to note that it is necessary
to suitably constrain the sizeNi of allowed TXOP packet
bursts. To see this, say we letNi = λni with λ > 0, ni > 0
and look at the behaviour asλ → ∞. It can be verified that
dsi/dλ equals

nixi

X

(

1−
λ
∑n

j=1 njxj
∑n

j=1(λnj − 1)xj + a+
∏n

j=1(1 + xj)− 1

)

Li

Tc

which can be seen to be strictly positive. That is, increasing λ
(and so burst size)always increases throughput. In the limit,
si → nixi∑

n
j=1

njxj

Li

Tc
as λ → ∞. Observe that the idle time

and collision time terms (which remain of finite duration)
are washed out in the denominator and so the efficiency of
the network is maximised subject to the fixed per packet
overhead embodied byLi/Tc. In effect, this says that any point
strictly in the interior of the simplex{s :

∑n
i=1

siTc

Li
≤ 1}

is achievable by an appropriate choice ofNis. This high
efficiency comes at the price of unbounded delays and so is
not of practical interest. Instead, to maintain bounded delay it
is necessary to constrain the burst size and we letN̄i denote
the maximum burst size admissible at stationi.

E. Finite-load

It is useful to distinguish between the attempt probability
τi and the attempt probability design parameterτ̄i. τ̄i is the
probability that stationi considers making a transmission in
a slot, but a transmission will not actually take place unless
at least one packet is available to send. It is the attempt
probability τi which is relevant for the foregoing throughput
expressions.

When τi = τ̄i a station is said to besaturatedand sends
a packet at every transmission opportunity, otherwise it is
unsaturated. For unsaturated stations the attempt probability
τi depends jointly on the offered load andτ̄i. We will assume
that when a station is unsaturated the throughput is equal
to the offered loadi.e. that stations have sufficient buffering
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that queue overflow losses can be neglected when a station is
unsaturated1. We also assume that the corresponding attempt
probability τi is the just value that makes throughput expres-
sion (1) equal the offered load,i.e.

Assumption 3:Let U denote the set of unsaturated stations
in a WLAN andS the set of saturated stations, withU ∪S =
{1, 2, . . . , n} and U ∩ S = ∅. Let yi = τ̄i/(1 − τ̄i). The
attempt rate at a saturated stationj ∈ S is thenyj and the
set of admissible station attempt rates isX = [x1, y1]× ... ×
[xn, yn] with xi = yi for i ∈ S and0 otherwise. Letsi denote
the offered load at unsaturated stationi ∈ U . If a solution
(x,N) ∈ X ×N , whereN = [1, N̄1]× ...× [1, N̄n], exists to
the throughput balance equations

si =
Nixi

X(x,N)

Li

Tc
∀ i ∈ U (4)

then the offered load ofsi can be serviced by unsaturated
stationi ∈ U with the attempt ratexi and burst-sizeNi solving
the balance equations.

Note that for solutions to (4) to exist it is necessary and
sufficient that the set

C′ =

{

(x,N) ∈ X ×N : ∀ i ∈ U si ≤
Nixi

X(x,N)

Li

Tc

}

be non-empty2

F. Realisation in 802.11e/n

Following the approach taken in Bianchi-like throughput
models (e.g.see [18] and references therein), transmissions by
an 802.11 station can be modelled as a renewal process, with
renewals occuring after a successful transmission or discard.
The attempt probability can then be directly related to the
802.11 MAC parametersCWmin, CWmax, etc. For simplicity,
we will hereafter assume that the attempt probability design
parameter̄τi can be freely selected. However, this is not a
fundamental requirement of our analysis and can be readily
relaxed provided any constraints imposed onτ̄i continue to
yield a log-convex rate region; in particular, Theorem 3 below
carries over in the obvious way. As an example of admissible
constraints on̄τi, consider an 802.11 WLAN where we select
CWmin = CWmax = CW , whereCW is an appropriate
constante.g.32. Thenτ̄i is constrained to take the single value
2/(CW − 1) and the attempt probabilityτi can take values
in [0, 2/(CW − 1)] as the offered load on stations is varied.
By Theorem 1 in Section III, the corresponding WLAN rate
region is log-convex. Indeed, we can constrainτ̄i to take any
finite set of values (e.g.corresponding toCW taking powers
of 2) since the resulting rate region is the intersection of the
log-convex rate regions corresponding to each of the individual
constraints on̄τi and is therefore log-convex.

1Conservation of packets then means that the mean throughputmust
equal the mean arrival rate. Observe also that, by Loynes theorem [16], for
sufficiently large buffering we have the intuitive propertythat a station will
be unsaturated whenever the mean packet inter-arrival timeis less than the
mean service time.

2 This is because solutions to (4) are a superset of solutions to the optimiza-
tion problemmin(x,N)∈C′

∏N
i=1 xiNi. From the proofs of Theorems 1 and

3 (see later) this optimisation can be transformed into a convex problem such
that all the constraints are satisfied with equality at the optimal solution(s), if
the problem is feasible.

G. Additional notation

We represent the connectivity between WLANs via graph
G with verticesV and edgesE . Each vertex inV corresponds
to a WLAN and an edge exists between WLANs that can
communicate. Edges are labelled by the radio channel used.
LetNi(c) denote the set of neighbours of WLANi on channel
c i.e. a set of peering mesh points. We will assume that
each such set uses a channel with a unique label, but this
is just a notational assumption and does not require that
the physical channels are all different (in practice physical
channels would be reused to exploit spatial multiplexing).
Since there are no hidden terminals, peering mesh points form
a cliquei.e.Nj(c)∪{j} = Ni(c)∪{i} ∀ j ∈ Ni(c) and we let
n(c) = |Nj(c) ∪ {j}| denote the number of peers on channel
c. LetP denote the set of network flows. Associated with each
flow p is a source client station and router(p) (assumed loop-
free) consisting of edges inG (i.e. triples (i, j, c), j ∈ Ni(c))
traversed by the flow. For notational simplicity we assume that
flows do not start/finish at mesh points. LetPi,j(c) denote the
set of flows{p : (i, j, c) ∈ r(p), p ∈ P} relayed from WLAN
i to WLAN j on channelc, Pi(c) = ∪j∈Ni(c)Pi,j(c) denote
the set of all flows relayed by WLANi andP(c) = ∪i∈VPi(c)
denote the set of all flows relayed by peers on channelc.

III. L OG-CONVEXITY OF RATE REGION

We begin by extending the log-convexity analysis in [15] to
include TXOP packet bursting, and then use this to establish
log-convexity of the mesh network rate region. We present a
new method of proof that makes use of theory of posynomials
and geometric programming [2], [3].

Definition 1: WLAN Rate Region. The rate region of a
WLAN is the set R of achievable throughput vectors
S(x,N) = [s1 ... sn]

T , with i’th element given by (1), as
the vectorx ranges overX = [0, x̄1] × ... × [0, x̄n] and the
vectorN ranges overN = [1, N̄1]× ...× [1, N̄n].

Definition 2: Log-convexity. A setC ∈ R
n is convex if for

any s1, s2 ∈ C and 0 ≤ α ≤ 1, there exists ans∗ ∈ C such
that s∗ = αs1 + (1 − α)s2. A setC is log-convex if the set
logC := {log s : s ∈ C} is convex.

Theorem 1:The WLAN rate-regionR is log-convex.
Proof: The throughput of stationi is given by

si =
Nixi

X(x,N)

where

X(x,N) = a+
∑

j∈M

Njxj +
∏

j∈M

(1 + xj)− 1−
∑

j∈M

xj

= a+
∑

j∈M

Njxj +

n
∑

k=2

∑

A⊆M,|A|=k

∏

j∈A

xj .

and M = {1, 2, .., n} denotes the set of stations in the
WLAN. Making a change of variables toyj = log(xj) and
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ηj = log(Nj), we have

log(si) = yi + ηi − log

(

a+
∑

j∈M

exp(ηj + yj)

+

n
∑

k=2

∑

A⊆M,|A|=k

exp
(

∑

j∈A

yj

)

)

.

with yj ∈ Yj := (−∞, log(x̄j)], ηj ∈ Ej := (0, log(N̄j)].
Note that the right-hand-side is a concave function of(y, η)
since it is the transformed version of the reciprocal of a
posynomial [2]. Then the definition of a concave function
implies that

Ci =

{

(µ, y, η) ∈ R
n ×

∏

j∈M

Yj ×
∏

j∈M

Ej :

µi ≤ yi + ηi − log

(

a+
∑

j∈M

exp(ηj + yj)

+

n
∑

k=2

∑

A⊆M,|A|=k

exp
(

∑

j∈A

yj

)

)}

is a convex set. Therefore,C = ∩i∈MCi is also a convex set.
The log rate-region is then the image ofC under the (linear)
projection map that takes(µ, y, η) to µ. Thus, the log rate-
region is convex.

We also have the following corollary that will prove useful
later. LetR′(p̄) denote the set of achievable throughput vectors
S(x,N) = [s1 ... sn]

T as the vectorx ranges overX ∩ {x :
∏n

i=1(1 + xi) ≤ p̄} and the vectorN ranges overN .
Corollary 1: The constrained WLAN rate regionR′(p̄) is

log-convex for anȳp ≥ 1.
Proof: We requirep̄ ≥ 1 for R′ to be non-empty. Now

using the same transformation as in the proof of Theorem 1,
the constraint that

∏n
i=1(1 + xi) ≤ p̄ translates to restricting

attention to the following set

D =

{

(µ, y, η) ∈ R
n ×

∏

j∈M

Yj ×
∏

j∈M

Ej :

∑

j∈M

log(1 + exp(yj)) ≤ log(p̄)

}

which is a convex set as a consequence oflog(1 + exp(·))
being a convex function. The log rate-region is thenC ∩ D
which is convex, thus establishing the corollary.
We note that the proof above can be readily extended to
show that other constraints onτ (or x) and N vectors also
yield a convex set under our chosen transformation3. Since
the station transmission time (3) is simply a rescaling of the
station throughput expression (1) we also have the following
result.

3For example, consider a constraint of the form
∑n

i=1 x
2
i ≤ 1. Since the

left-hand-side becomeslog
(
∑n

i=1 exp(2yi)
)

≤ 0, log-convexity continues
to hold. Similarly, the constraint

∑n
i=1 τ

2
i ≤ 1 can be transformed toτi

1−τi
≤

xi for all i and
∑n

i=1 τ
2
i ≤ 1 with xi replacing τi

1−τi
in all the throughput

formulae. Since the first set of constraints can be transformed toτi+
τi
xi

≤ 1

for all i, the constraints are now posynomial constraints in(τ, x) and log-
convexity continues to hold.

Corollary 2: The sets of feasible transmission times corre-
sponding to rate regionsR andR′ are also log-convex.

A mesh network carries flows which traverse the component
WLANs. Let R(G) denote the network rate regioni.e. the
set of feasible flow throughputs. Since the throughput of
unsaturated stations equals their offered load (see Assumption
3 and related discussion regarding buffering requirements), the
network rate region is obtained by the appropriate intersection
of the individual WLAN rate regions. It follows immediately
from the log-convexity of the component WLAN rate regions
that the mesh network rate region is log-convex,i.e. we have
the following corollary.

Corollary 3: The mesh network rate-regionR(G) is log-
convex.

Proof: We will once again use the property that convexity
is preserved when taking intersections. Thus, it suffices to
outline the key steps of the proof. Consider mesh pointi on
channelc. Let Pi be the set of flows relayed by this mesh
point. Using the transformation from the proof of Theorem 1
the additional constraint that we need to satisfy is the flow-
balance constraint at every mesh pointi.e.

log

(

∑

p∈Pi

exp(s̃(p))

)

≤ yi + ηi − log

(

a+
∑

j∈Ni(c)

exp(ηj + yj)

+

nl(c)
∑

k=2

∑

A⊆Ni(c),|A|=k

exp
(

∑

j∈A

yj

)

)

where s̃(p) = log(s(p)), which is again a convex constraint.
Such constraints have to be satisfied for all the mesh points,
and hence we get log-convexity for the entire rate-region.

IV. M AX -MIN THROUGHPUT FAIRNESS

In this section we establish our main result, characterising
max-min fair throughput allocations in the class of 802.11
mesh networks considered.

A. Assumptions

Before proceeding we make the following assumptions. We
will relax all of these assumptions later, but they are useful
for gaining initial insight into the nature of the max-min fair
throughput allocation.

Assumption 4: PHY rate. All stations in the WLAN on
channelc use the same PHY rate for transmissions.
It follows from Assumption 2 that stations use the same frame
size i.e. Li = L.

Assumption 5: Maximum burst-size. A station can transmit
a maximum of one frame per flow at each successful trans-
mission. It follows thatNi ≤ N̄i = |Pi|, where |Pi| is the
number of flows carried by stationi, and we have an additional
constraint for each flow, namelys(p) ≤ xi

X(x,N)
Li

Tc
for flows

p ∈ Pi carried by stationi
Note that the additional constraint introduced here can once

again be transformed to a log-convex constraint and therefore
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Corollary 3 still holds and the network rate-region is stilllog-
convex.

Assumption 6: Attempt probability. All stations in the
WLAN on channelc use the same attempt probability design
parametery(c) = τ̄ (c)/(1− τ̄ (c)).

Recall that̄τ ∈ [0, 1) is the transmission attempt probability
when a station is saturated (always has a packet to send), but
the actual attempt probability will be lower when a station is
unsaturated. Note thaty(c) need not be the same for every
WLAN, but stations within a WLAN are assumed to use the
same value of attempt parameter.

The channel idle probabilityPidle(c) in the WLAN on
channelc is 1/

∏

k(1 + xk).

Assumption 7: Idle probability.
∏

k(1 + xk) ≤ p̄(c).

This assumption involves no loss of generality as by selecting
p̄(c) sufficiently large we can always ensure that the constraint
is inactive. Nevertheless, including this assumption allows us
to also consider smaller values ofp̄(c) as we will see later.
By Corollary 1, the rate region is log-convex for any value of
p̄ ≥ 1.

B. Water-filling & Bottleneck links

Assumptions 4-7 do not change the log-convexity of the
network rate region and so we immediately have that a
unique max-min rate allocation exists. The network rate region
also has the free disposal property [22] (same as coordinate-
convexity) since each co-ordinate of the throughput vectoris
lower bounded by 0 and any non-zero feasible vector can
always be decreased – by scaling the attempt rate vectorx
– while staying within the rate region. By [22, Theorem 3]
the max-min solution can therefore be found by water-filling.

Recall the water-filling algorithm in [22]:

1: Let P0 = P , R0 = R(G), n = 0
2: do
3: Find max T n s.t. Sp = T n ∀p ∈ Pn, S ∈ Rn

4: Rn+1 = {S ∈ Rn : Sp ≥ T n ∀p ∈ Pn}
5: Pn+1 = {p ∈ Pn : ∀S ∈ Rn+1, Sp > T n}
6: n = n+ 1
7: until Pn = Ø

whereP is the set of network flows,R(G) denotes the network
rate region (i.e. the set of feasible flow throughputs),S denotes
the vector of flow throughputs andSp is the throughput of
flow p (elementp of vectorS). On termination of this water-
filling algorithm, the remaining point inRn is the max-min
fair allocation of flow throughputs.

Step 3 is the key step in the algorithm. It finds the maximum
throughputT n that the flows in setPn may collectively use
while remaining within the network rate region. The flows
whose throughput cannot be increased aboveT n are then
removed from setPn, and step 3 repeated. We can express
step 3 more explicitly in our wireless mesh network context

as:

max
x,Tn

T n (5)

s.t. s(p) = T n ∀p ∈ Pn (6)

s(p) ≤ xk(c)

X(c)

L

Tc(c)
, ∀ p ∈ P , (k, •, c) ∈ r(p) (7)

∑

p:(k,•,c)∈r(p)

s(p) =
Nkxk(c))

X(c)

L

Tc(c)
(8)

x ≥ 0 (9)
∏

k

(1 + xk) ≤ p̄(c) (10)

Constraints (7)-(10) ensure that the vector of flow rates lies
within the network rate region.

For all flows there exists an iterationn such that the flow
is eventually removed from setPn because its throughput
cannot be increased aboveT n. When a flow is removed the
constraint (7) is necessarily tight (i.e. it cannot be loosened
by any choice ofx while respecting the other constraints) for
some WLAN c. We say that flowp is bottleneckedat this
WLAN. Our interest in bottlenecks stems from the following
property, which follows immediately from these observations,

Theorem 2:A throughput allocation is max-min fair if and
only if every flow has a bottleneck.
Observe also that all of the flows bottlenecked at the same
WLAN c have the same throughout (owing to constraint (6)),
and this is strictly greater than the throughput of the other
flows which traverse this WLAN but are not bottlenecked
there. We have therefore established that the well-known bot-
tleneck property of max-min throughput allocations in wired
networks also carries over to 802.11 mesh networks.

C. Main result

Surprisingly, despite the complex nature of the mesh net-
work rate region (where flow rates are strongly coupled at each
WLAN), we can obtain an almost complete characterisation
of the max-min allocation of station attempt probabilitiesand
burst sizes within each WLAN. This makes use of the char-
acterisation of the max-min allocation in terms of waterfilling
and bottlenecks.

Recall that we say that a flow issaturatedif it has a packet
available to send at every transmission attempt by the station,
and is otherwiseunsaturated.

Theorem 3:Under Assumptions 1-7, the max-min fair
throughput allocation within each WLAN possesses the fol-
lowing properties:

1) The attempt rate design parametery(c) ≥ x̄(c) in each
WLAN where x̄(c) is the attempt rate that maximises
the throughput of saturated flows.

2) Flows bottlenecked at the WLAN send one frame at
every successful transmission made by the station. When
y(c) = x̄(c), all bottlenecked flows are saturated. When
y(c) > x̄(c) they are unsaturated.

3) Non-bottlenecked flows are always unsaturated.

Proof: See Appendix A.
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The importance of Theorem 3 is that it goes a long way to
telling us how we might realise a max-min fair allocation in
wireless mesh networks. Specifically, consider a mesh network
where each WLAN is configured as follows:

1) Stations in a WLAN all use the same attempt rate
parametery(c) (e.g. in 802.11 terminology, all stations
in a WLAN use the same value ofCWmin = CWmax).

2) Stations use per flow queueing and at each transmission
opportunity send one frame of data from each non-empty
queue.

3) Parametery(c) is selected to maximise the throughput
of saturated flows in WLANc.

The network then satisfies Assumptions 4-7. Observe that the
per flow queueing discipline trivially ensures thaty(c) = x̄(c)
(saturated flows will transmit a packet at every transmission
opportunity). By Theorem 3 we then have an equivalence be-
tween bottlenecked flows and saturated flows. This equivalence
is of fundamental importance. Specifically, suppose each flow
uses ideal congestion control i.e. adjusts the flow rate to ensure
that the flow is saturated at one or more WLANs without
incurring queue overflow losses. Then congestion control will
ensure that every flow is bottlenecked and so, without further
effort, by Theorem 3 the network throughput allocation will
be max-min fair. That is, we have the following important
corollary of Theorem 3.

Corollary 4: Suppose each flow uses ideal congestion con-
trol and each WLAN in a mesh network is configured as stated
above. Then the resulting flow throughput allocation is max-
min throughput fair.

Of course, in practice we must work with real rather
than ideal congestion control. Nevertheless, under suitable
continuity conditions, we can expect that any congestion con-
trol algorithm that approximates ideal behaviour sufficiently
closely will, by Corollary 4, yield a throughout allocation
that is close to max-min fair and this is indeed confirmed
in simulations, see Section VI.

The network configuration in Corollary 4 also requires that
attempt probability parametery(c) is selected to maximise the
throughput of saturated flows in a WLAN. This is consid-
ered in detail in the next section. However, we note briefly
here that the reason for introducing Assumption 7 is that
by appropriately selectinḡp(c) then it turns out thaty(c)
can be found in a completely decentralised manner (i.e. no
message-passing or packet-sniffing) using an approach similar
to the idle-sense strategy for maximising WLAN throughput
studied in [7]. Assumption 7 could alternatively be replaced
by another constraint that simplifies selection ofy(c) so long
as we retain log-convexity of the rate region. For example,
as noted earlier we could simply impose the constraint that
y(c) = y for an appropriate fixed valuey, in which case no
adaptation is required (this corresponds to trivially selecting
CWmin = CWmax = CW whereCW is some fixed value),
although this appealing simplicity comes at the cost of a
reduction in network capacity.

lo
g
(s
2
)

log(s1)

P
0

P
1

P
2 Unconstrained

Fig. 2. Illustrating unconstrained rate region and rate region with Pidle

constraint.

V. M AXIMISING THROUGHPUT

A. Rate region boundary

We begin by studying the boundary of the rate region of
WLAN c. For this we will take a vectory, normalised such
that

∑

i yi = 1, and setxi(c) = λyi/Ni, λ ≥ 0. The vector
of station throughputs is thens = λ y

X(c)
L
Tc

. Sinceλ, X(c), L
andTc(c) are all scalars it can be seen that varyingλ adjusts
the position of the throughput vector on the ray in direction
y passing through the origin. To determine the rate region
boundary we need to find the values ofλ andNi that solve
the optimisation

max
λ,Ni

λ

X

s.t. λ ≥ 0, 0 ≤ Ni ≤ |Pi|, i ∈ {1, ...n(c)}
n(c)
∏

i=1

(1 + λyi/Ni) ≤ p̄(c) (11)

Since the objective is strictly increasing inNi (as already
noted) and constraint (11) becomes looser asNi increases,
at the maximumNi will lie on the constraint|Pi|. It can
be verified by inspection of the second derivative thatλ/X
is a concave function ofλ and so has a unique turning
point. To find the maximising value ofλ, we observe that
this will be determined either by constraint (11) becoming
active or by the turning point ofλ/X , whichever occurs first.
This is illustrated in Figure 2 – the dashed line marks the
unconstrained rate region (i.e. without constraint (11)) and the
solid curves mark the rate region boundary for different values
of p̄. For a sufficiently small value of̄p it is the constraint
(11) that determines the boundary of the rate region, see curve
markedP2 in the figure.

To determine the turning point ofλ/X , and so the uncon-
strained rate region boundary (marked by the dashed line in
Figure 2), differentiatingλ/X with respect toλ yields

1

X2



X − λ(
n
∑

i=1

yi +
n
∑

i=1

yi
Ni

∏

j 6=i

(1 +
λyi
Ni

)−
n
∑

i=1

yi
Ni

)





and setting this derivative equal to zero we have that theλ∗

corresponding to the turning point solves
n
∑

i=1

λ∗yi
Ni

∏

j 6=i

(1 +
λ∗yi
Ni

) + 1− a =

n
∏

i=1

(1 +
λ∗yi
Ni

)
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Substituting, we therefore have that the turning point (i.e.,
boundary of the rate-region) satisfies

n
∑

i=1

x∗
i

1 + x∗
i

n
∏

j=1

(1 + x∗
j ) + 1− a =

n
∏

j=1

(1 + x∗
j )

This can be rewritten as
n
∑

i=1

τ∗i + (1− a)P ∗
idle = 1

whereP ∗
idle =

∏n
i=1(1−τ∗i ). Note that this is a generalization

of the result from [19], [21] to the scenario with different slot
lengths (i.e., a < 1) and TxOP.

Using the Arithmetic Mean-Geometric Mean inequality, we
have

n
∑

i=1

1

1 + xi
≥ n n

√

√

√

√

n
∏

i=1

(
1

1 + xi
)

i.e.

1− 1
n
√
∏n

i=1(1 + xi)
≥ 1

n

n
∑

i=1

xi

1 + xi

After some algebra, it follows that selectinḡp(c) ≤ 1/(1 +
a−
√
2a) ensures that constraint (11) is guaranteed to become

tight either before or at the turning point ofλ/X . Note that1+
a−
√
2a ≤ 1 whena ≤ 1 and this bound on̄p(c) is tight (with

equality along the rayλ1, where1 denotes the all 1’s vector,
as n → ∞). This is illustrated by the middle curve marked
P0 in Figure 2, which touches the unconstrained rate region
along the 45 degree ray. With this choice ofp̄(c) constraint
(11) is active at the solution to the above optimisation and so
it is this constraint that determines the maximum value ofλ,
and thereby the maximum throughput of saturated flows.

B. Decentralised optimisation

Recall that our task is to select attempt rate parameter
y(c) to maximise the throughput of saturated flows. Selecting
p̄ = 1/(1 + a −

√
2a) so as to maximise the constrained

rate region, it follows from the discussion in the preceding
section that the throughput of saturated flows is maximised
whenPidle(c) = 1/p̄(c). That is, we need to selecty(c) such
that Pidle(c) = 1/p̄(c). This can be achieved in an entirely
decentralised manner since (i) the idle probabilityPidle(c) can
be directly observed by all stations in a WLAN (via carrier-
sense, see for example [17]) and (ii) algorithms such as AIMD
can be used to ensure stations converge to using the same
parametery(c), see for example [7].

C. Degree of sub-optimality

Using any non-zero value of1/p̄ necessarily comes at the
cost of a reduction in throughput. To see this note that when
only a single station is active in a WLAN, and so no collisions
are possible, then we ought to select the attempt probability
equal to 1 (i.e. y(c)→∞) in order to maximise the through-
out, in which case any value of1/p̄ greater than zero must
reduce throughput below its maximum value. Nevertheless, the
throughput loss is generally small. For example, Figure 3 il-
lustrates the throughput cost of selectingp̄ to ensure operation
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Fig. 3. Cost of operating onPidle = 1+ a−
√
2a constraint vs number of

stations in WLAN.a = 1/100, each station carries a single saturated flow.

on thePidle(c) = 1/p̄(c) constraint. The figure plots the ratio
of the throughput whenPidle(c) = 1/p̄(c) = 1 + a −

√
2a

to the maximum possible throughput when there is noPidle

constraint. It can be seen that the throughput efficiency is
remarkably high, with a throughput reduction of less the
0.5% (compared to the maximum possible throughput) even
when only a single station is active. This is similar to the
observation made in [7]. In return for this small cost we gain
the advantage of a fully decentralised implementation withno
message-passing. The final choice of whether the additional
network capacity to be gained by message-passing warrants
the additional complexity lies with the network designer.

VI. SIMULATION RESULTS

We illustrate the foregoing analysis vians2 packet-level
simulations. We begin by considering a mesh network with the
topology shown in Figure 4(a). Mesh points (MP) are marked
by circles and client stations by triangles. Each WLAN oper-
ates on an orthogonal channel and MP0, MP1 are equipped
with two radios to allow relaying of traffic between WLANs.
Flows 0-2 travel one hop to MP0, flow 3 travels two hops to
MP3, flows 4-7 travel one hop to MP1, flow 7 travels two
hops to MP3. Flow 8 travels one hop from station 8 to MP2.

In the simulations all flows are long-lived TCP traffic and so
are bidirectional (i.e. consisting of TCP data and TCP ACK
packets). Following [13], TCP ACKs are prioritised so that
their loss rate is negligible (link asymmetry leading to exces-
sive loss of TCP ACKs is well known to induce unfairness due
to disruption of ACK clocking and repeated TCP timeouts).
The TCP ACK transmit time (including MAC ACKetc) is
lumped in with the TCP DATA transmit time to obtain the
Ts value for throughput formula (1). See [12] for a more
detailed discussion of the accuracy of this approximation,but
we note here the good agreement in Figure 4(b) between the
theory values derived using this assumption and the simulation
measured throughputs.

The stations in each WLAN measure the idle probability
Pidle using their carrier-sense functionality (e.g.see [17]) and
run a local AIMD algorithm to adjust theirCWmin to satisfy
the constraintPidle ≥ 1/p̄ = 1 + a −

√
2a, see Algorithm



8

VI for details. Due to the use of the AIMD algorithm the
station CWmin’s vary over time in a sawtooth pattern and
do not settle on a constant value, see Figure 5(a). Moreover,
CWmin is restricted to take integer values thereby introducing
further granularity. By adjusting the AIMDβ parameter the
amplitude of theCWmin sawtooth can be changed. Decreasing
β reduces the size of theCWmin fluctuations, but this comes
at the cost of slower convergence to steady-state operation,
e.g. see [23] for a detailed analysis of AIMD dynamics. We
chooseβ = 0.25 as a compromise between fast convergence
and reasonably small fluctuations inCWmin. Due to these
implementation issues, as can be seen from Figure 5(b),
the WLANs do not operate exactly on thePidle = 1/p̄
constraint as assumed in the calculation of the theoretical
throughput values shown in Figure 4(b). Nevertheless, as can
be seen from Figure 3 the throughput efficiency is relatively
insensitive toPidle fluctuations around the optimum value and
this is reflected in the good agreement between the theory and
simulation throughputs in Figure 4(b) .

Other simulation parameters used are detailed in Table I.
Figure 4(b) compares the theoretical max-min fair throughout
allocation with the measured simulation throughputs. It can
be seen that they agree remarkably well. We can investigate
the structure of the throughput allocation in the simulations
in more detail. By inspection of the topology in Figure 4(a)
we expect that the max-min throughput allocation has flows
0-3 bottlenecked at the left-hand WLAN, flows 4-7 at the
right-hand WLAN and flow 8 at the centre WLAN. Figure
6 plots the flow throughputs in each WLAN, from which it
can be seen that flows 0-3 are indeed the maximal throughput
flows in the left-hand WLAN and similarly for flows 4-7 and
flow 8 in the right-hand and centre WLANs respectively. By
inspection of the station queue occupancies (not plotted here),
we can also confirm that flows 0-3 are saturated in the left-
hand WLAN, and similarly for flows 4-7 and flow 8 at their
respective bottlenecks, in accordance with Theorem 3.

Figure 7 shows simulations results for a second topology.
An additional WLAN has been added containing station 8
and MP0 now carries two flows, namely flow 3 and flow 8.
Flow 8 is bottlenecked at the link between MP0 and MP3
while flow 3 is not, and simulations confirm that flow 8 is
saturated at MP3 while flow 3 is not as per Theorem 3. Also
note that in this modified topology the one-hop flow 8 is
allocated a slightly higher throughput than in Fig 4 because
there are now fewer collisions in the centre channel which is
the bottleneck for this flow – MP0 and MP1 are transmitting
data packets and MP3 transmitting TCP ACK packets, while
in Fig 4 we additionally have traffic between station 8 and
MP2 in this channel. Once again, observe that the simulation
measurements agree extremely well with the theoretical max-
min throughput allocation.

VII. T IME-BASED MAX-MIN FAIRNESS

We can readily extend the foregoing analysis to encompass
weighted max-min fairness,i.e. where rather than max-min
fairness of the flow throughputss(p), p ∈ P we require max-
min fairness of the weighted flow throughputss(p)/w(p), p ∈
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Fig. 4. Example 1. The measured simulation throughputs are compared
against the theoretical max-min fair throughput values in the lower plot. The
lower valued lines are the throughputs for flows 0-7, while the upper valued
lines are for flow 8. The measurement points plotted are averages over 50s
time windows. The theory values for the bottlenecks are 0.92127Mbps and
1.8479Mbps respectively (indicated by the dashed red linesand also marked
on y-axis by circles). It can be seen that the simulation values are in good
agreement with theory.

Algorithm 1 AIMD algorithm used at each station to adjust
its CWmin value.

1: for Every T secondsdo
2: Check the measured idle probabilityPidle

3: if Pidle > 1/p̄ then
4: CWmin ← CWmin + α
5: else
6: CWmin ← CWmin × (1− β)
7: end if
8: end for

P for specified weightsw(p) > 0. This is of particular interest
when we relax Assumption 4 that stations within a WLAN
use the same PHY rate. When flows can use different PHY
rates, max-min throughput fairness leads to flows with a low
PHY rate grabbing bandwidth from higher PHY rate flows,
potentially leading to a large reduction in network capacity.

PHY rate (Mbps) 11
NIC Buffer (Packets) 50
Packet Length (Bytes) 1000

α 4
β 0.25

T(s) 1
1/p̄ 0.8412

TABLE I
SIMULATION PARAMETERS
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Fig. 5. CWmin and WLAN Pidle time histories for the source station of
flow 0 in the topology of Figure 4(a). These are representative of the time
histories for other stations and illustrate the AIMD adjustment ofCWmin.
The dashed line in the lower plot indicates the idealPidle constraint value.
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Fig. 6. Histogram of flow throughputs in each WLAN in topologyFigure
4(a). WLAN 1 refers to the left-hand WLAN, WLAN 2 to the right-hand
WLAN and WLAN 3 to the centre WLAN in Figure 4(a).

Time-based fairness is therefore typically of greater interest
than throughout fairness in multi-rate networks,e.g. see [7],
[26], [8] and references therein. LetR(p) denote the PHY
rate used by flowp, which for simplicity we assume is the
same at every hop along the flow router(p). The airtime used
by flow p is then given byt(p) = s(p)/R(p) and so time-
based fairness corresponds to weighted max-min fairness with
weightsw(p) = R(p).

Since the airtime is just a rescaling of the throughput it
follows that the feasible set of times is log-convex and a unique
max-min time allocation exists. Retaining Assumptions 5-7
(for the moment), step 3 of the water-filling algorithm becomes
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Fig. 7. Example 2. As before, the measured simulation throughputs and
theoretical max-min fair throughput values (indicated by dashed red lines and
also marked on y-axis by circles) are compared in the lower plot.

max
x,Tn

T n

s.t. t(p) = T n ∀ p ∈ Pn

t(p) ≤ xk(c)

X(c)
, ∀ p ∈ P , (k, •, c) ∈ r(p)

∑

p:(k,•,c)∈r(p)

t(p) =
Nkxk(c))

X(c)

x ≥ 0
∏

k

(1 + xk) ≤ p̄(c)

An identical argument to that used in the proof of Theorem 3
can be applied (sinceL/Tc(c) is just a constant scaling in the
expressions used in the proof) to obtain

Theorem 4:Under Assumptions 1-3,5-7, the max-min fair
time allocation within each WLAN possesses the following
properties:

1) The attempt rate design parametery(c) ≥ x̄(c) in each
WLAN where x̄(c) is the attempt rate that maximises
the throughput of saturated flows.

2) Flows bottlenecked at the WLAN send one frame at
every successful transmission made by the station. When
y(c) = x̄(c), all bottlenecked flows are saturated. When
y(c) > x̄(c) they are unsaturated.

3) Non-bottlenecked flows are always unsaturated.

It can be seen that the properties of the max-min time
allocation areidenticalto those of the max-min fair throughput
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allocation with a single PHY rate and so the same network
configuration (together with ideal congestion control) canbe
used to realise the max-min time allocationi.e.

1) Stations in a WLAN all use the same attempt rate
parametery(c).

2) Stations use per flow queueing and at each transmission
opportunity send one frame from the head of each non-
empty queue (recall that by Assumption 2 that all frames
are of equal duration, regardless of the PHY rate used).

3) Parametery(c) is selected to maximise the throughput
of saturated flows in WLANc.

A. Simulation results

We revisit the previous simulation example in Figure 4, but
now extend consideration to a multi-rate situation where flow 0
in the left-hand WLAN uses a PHY rate of 5.5 Mbps while all
other flows in the mesh network use a PHY rate of 11 Mbps.
Figure 8 compares simulation measurements with theoretical
values for a max-min fair time allocation. It can be seen from
Figure 8(a) that flow 0 (the flow with lower PHY rate) is
now allocated a lower throughput than the other flows in the
left-hand WLAN. This ensures that all flows in the left-hand
WLAN are allocated the same air-time for transmitting their
payloads, see Figure 8(b). Observe that the flows in the right-
hand WLAN achieve slightly higher throughput and air-time
than those in the the left-hand WLAN due to the difference
in frame overheads at different PHY rates.

VIII. A SSUMPTIONS

In this section we review the assumptions used in our
analysis, and in particular try to identify those assumptions
that can be readily relaxed and those that cannot. Assumption
1 (non-collision losses negligible) can be removed, but see
the detailed discussion below. Assumption 2 (homogeneous
frame transmission duration) can be readily relaxed to the
requirement that stations have the samemeanframe duration.
Removing this assumption altogether should be possible but
requires modifying the denominator (2) of the throughput
formula to take account of the fact that the duration of a
collision now depends on the specific set of stations involved
in a collision and so on the attempt ratesxi. Assumption 3
(throughput model) is the fundamental assumption used in our
analysis. This assumption might be weakened in various ways,
but is not straightforward to remove. As discussed in Section
VII, it is trivial to remove Assumption 4 (homogeneous PHY
rates) and so accommodate multi-rate operation and time-
based fairness. Assumptions 5 and 6 can be removed, but
similarly to Assumption 1 this is at the cost of a considerable
increase in the practical difficulty of realising a max-min
allocation. See the following sections for a detailed discussion,
but we note here that perhaps the most notable casualty is
that by relaxing these assumptions we lose the equivalence
between bottlenecked flows and saturated flows. This means
that standard flow congestion control algorithms (which work
by developing a queue backlog) can no longer be relied upon
to guarantee flows are bottlenecked. As already commented
upon already, Assumption 7 can be replaced by a variety of

0 500 1000 1500 2000
0

0.5

1

1.5

2

Time(s)

T
hr

ou
gh

pu
t(

M
bp

s)

flow 4-7

flow 1-3

flow 8

flow 0

(a) Throughput Allocation

0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

Time(s)

U
sa

ge
 T

im
e 

R
at

io flow 8

flow 0-3

flow 4-7

(b) Time Allocation

Fig. 8. Multi-rate variant of Example 1. Flow 0 uses PHY rate of 5.5Mbps,
other flows a rate of 11Mpbs. Plots compare simulation measurements and
theoretical values (indicated by dashed red lines and also marked on y-axis
by circles) of a max-min fair time allocation. The measurement points plotted
are averages over 50s time windows.

alternative constraints provided we retain log-convexityof the
network rate region.

Lastly, we note that while we have assumed that stations
have sufficient arriving traffic to be able to make full use of
the max-min fair throughput allocation, our analysis carries
over essentially unchanged to situations where the rate of
traffic arrivals at stations is itself constrained. The upper bound
on throughput created by the finite traffic load introduces an
additional convex constraint, and this constraint becomesthe
bottleneck when it is less than the max-min fair allocation in
the absence of the finite-load constraint.

A. Relaxing Assumption 1: non-collision losses negligible

In this section we consider in more detail what is involved
in relaxing Assumption 1. The main non-collision sources of
loss are channel noise losses, packet discards after too many
retries and queue overflow losses. We begin by noting that
excessive channel noise losses can be avoided by appropriate
choice of modulation/coding rate, discard losses by use of an
appropriate retry limit (the standard value of 11 retries requires
a combined channel-noise/collision loss rate exceeding 65%
for the discard probability to exceed 1%) and queue overflow
losses by provisioning links with sufficient buffering. That is,
Assumption 1 can often be satisfied by appropriate network
design. When such losses cannot be neglected, more effort is
required. Assume use of a block ACK so that TXOP burst
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transmissions do not terminate early on detecting a corrupted
packet (as they would with per packet ACKing). This ensures
that the duration of TXOP burst transmissions is independent
of the specific packet loss pattern experienced by each burst–
the analysis could be extended to include such dependence,
but at the cost of a considerable increase in complexity.
TXOP transmissions may consist of multiple blocks destined
to different receivers which undergo losses dependent on the
receiver. Under such a model we can use the formulation from
[25]. Let s(p) now denote the goodput of flowp, i.e., the rate
received correctly at the destination. LetAi,ps(p) denote the
rate at which stationi has to send packets from flowp in
order to ensures(p) goodput is received at the destination
after undergoing losses at intermediate hops along the route
r(p) to the destination. The scaling termAi,p ≥ 1 is equal to1
if and only if there are no losses along the route from stationi
to the destination of flowp. Log-convexity of the goodput rate
region still holds and in equations (7) and (8) we now need
to replaces(p) with Ai,ps(p) to obtain a revised water-filling
algorithm that includes the effect of noise losses.

To maintain equal throughput for flows bottlenecked at the
same WLAN the station attempt ratesxk have to be adjusted
taking into account the termAi,p. WhenAi,p is not the same
for all stations then with per flow burst constraints those bottle-
necked flows with smaller values ofAi,p will be unsaturated
i.e. we will lose the equivalence between bottlenecked and
saturated flows. We illustrate this with an example. Consider
the network in Figure 9 where the capacities and the loss
rates on the links are chosen such that all of the flows are
bottlenecked in WLAN A. With the restriction that every flow
has a maximum burst-size of1 (Assumption 5), it is easy to
see that at the max-min fair solution flow 2 is bottlenecked in
clique A but is unsaturated. This is despite the fact that allthree
flows get the same goodput. As noted above, fortunately such
difficulties can be avoided by the simple expedient of selecting
a modulation/PHY rate and retry limit such that losses can be
neglected.

Fig. 9. Example network with losses to illustrate nature of max-min fair
solution.

B. Relaxing Assumption 5: per flow burst-size constraint

We now consider in more detail removing Assumption 5.
This removes constraint (7) from the water-filling algorithm
and the relaxed optimisation in the proof of Theorem 3

becomes

max
xk,x̄,Nk,nk

x̄(c)

X(c)

L

Tc(c)

s.t. x̄(c) ≤ nkxk(c) ∀k ∈ VB(c)
∑

q/∈B(c):i(q,c)=k

s(q)

≤ Nkxk(c)− |B(c) ∩ Pk(c)|x̄(c)
X(c)

L

Tc(c)
∀k

1 ≤ Nk(c) ≤ N̄k ∀ k

xk(c) ≤ y(c) ∀k
∏

k

(1 + xk) ≤ p̄(c), xk(c) ≥ 0, x̄ ≥ 0 ∀k

where nk is the burst size used by bottlenecked flows at
stationk (which must be the same for all bottlenecked flows
carried by stationk since these flows have the same throughput
(nkxk/X(c)) (L/Tc)). Using similar arguments as those in the
proof of Theorem 3, the first three constraints will be tight
at the optimum. That is, the burst sizenk will be such that
Nk = N̄k (i.e. the maximum admissible value) and the station
attempt rate is correspondingly adjusted to maintainx̄ = nkxk.
In general, the burst sizenk and attempt ratexk will therefore
now be different for every station carrying bottlenecked flows
(depending on both the number of bottlenecked flows carried
by a station and the load imposed by non-bottlenecked flows).
The WLAN attempt rate parametery(c) ≥ maxk x̄/nk.
Due to the maximisation overk needed here, we may have
xk < y(c) for some stations carrying bottlenecked flowsi.e.
there can exist bottlenecked flows which are unsaturated forall
admissible values ofy(c) and we lose the equivalence between
bottlenecked and saturated flows. Moreover, it seems clear that
stations will generally need to communicate in order to agree
the value ofx̄ and enforce constraint̄x = nkxk (equality of
bottleneck flow throughputs). In particular, the selectionof x̄
is no longer amenable to the decentralisedPidle optimisation
approach used previously.

C. Relaxing Assumption 6: homogeneous station attempt rate
parameters

Removing Assumption 6 removes constraint (17) from the
relaxed optimisation in the proof of Theorem 3. For stations
carrying bottlenecked flows this change has little effect –
all such stations must still use the same attempt ratex̄. In
contrast, for stations which carry no bottlenecked flows the
attempt rate design parameter can now be selected equal to
xk in which case some of the non-bottlenecked flows will be
saturated. That is, once again we lose the equivalence between
bottlenecked and saturated flows.

IX. T HE HIDDEN TERMINAL ISSUE

Perhaps the most significant omission from our analysis is
hidden terminals. The basic difficulty here is that we currently
lack simple, accurate, generally applicable throughput models
when hidden terminals are present, and so we lack the basic
tool needed for any max-min fairness analysis. The modelling
difficulty arises from the fact that hidden terminals can start
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transmitting even when a transmission by another station has
already been in progress for some time. The class of slotted-
time models pioneered by Bianchi for 802.11 is therefore no
longer valid, since these require all transmissions to occur on
well-defined MAC slot boundaries, and indeed this suggests
that a fundamental change in modelling paradigm is required.
The development of throughput models in the presence of
hidden terminals continues to be the subject of an active
research effort, and so in this paper we consider it prudent
to leave consideration of utility fairness with hidden terminals
to future work.

It is perhaps also worth noting here that the prevalence of
severe hidden terminals in real network deployments presently
remains unclear. While it is relatively easy to construct hidden
terminal configurations in the lab that exhibit gross unfairness,
it may well be that such configurations are uncommon in prac-
tical deployments. For example, recent measurement studies
report that severe hidden terminal effects typically affect only
a relatively small subset of stations in the WLAN deployments
considered,e.g. see [4], [20]. In mesh network deployments
it additionally seems likely that network designers will pro-
actively seek to avoid (or at least minimise) creating hidden
terminals thereby further reducing their impact. In addition to
appropriate placement of mesh points, hidden terminals canbe
avoided/mitigated by judicious radio channel assignment and
power control (e.g.see [14] and references therein). Looking
to the future, the latter solutions are facilitated by the trend in
next generation networks towards multi-radio architectures and
the use of the 5GHz band for mesh backhaul (with its greater
number of orthogonal channels compared to the 2.4GHz band).

Setting the hidden terminal issue to one side for the moment
therefore, we stress that the class of mesh networks considered
here is a substantial step beyond Aloha, previously the state of
the art in wireless utility-fair analysis. In contrast to Aloha, this
class is indeed sufficiently powerful and general to encompass
at least some real 802.11 mesh network implementations. As
support for this we comment that we have already imple-
mented one of the max-min fair approaches derived here in
an experimental 802.11 testbed using standard hardware and
we will report our experimental measurements in due course.

X. CONCLUSIONS

In this paper we characterise, for the first-time, max-min
fair rate allocations for a large class of 802.11 mesh networks.
To our knowledge, this is also the first work to extend max-
min fair mesh network analysis beyond Aloha networks. The
class of 802.11 mesh networks considered is large enough
to cover realistic network architectures and, by exploiting the
features of the 802.11e/n MAC (in particular TXOP packet
bursting), we are able to use this characterisation to establish
a simple class of network configurations for achieving max-
min throughput fairness. We demonstrate the efficacy of this
approach using detailed packet-level simulations and establish
that the approach can be readily extended to encompass time-
based fairness in multi-rate 802.11 mesh networks.
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APPENDIX A
APPENDIX – PROOF OFTHEOREM 3

We proceed by analysing the optimisation (5)-(10) at step
3 of the water-filling algorithm. Letc denote a WLAN which
becomes a bottleneck at iterationn of the algorithm. When
considering bottlenecked flows at WLANc we can ignore the
constraints at other WLANs since these constraints must be
either loose (or else that WLAN would be the flow bottleneck)
or equivalent to the constraints at WLANc (in the case of a
flow having multiple bottlenecks). Flows which are not bot-
tlenecked at WLANc must be bottlenecked at other WLANs
and the constraints at these WLANs determine the throughput
of these flows. LetB(c) denote the set of flows bottlenecked
at WLAN c and VB(c) = {j ∈ V : p ∈ B(c), p ∈ Pj(c)}
denote the set of stations carrying one or more bottlenecked
flows. For bottlenecked flows we have that

s(p) = s(q) = T n =
x̄(c)

X(c)

L

Tc(c)
∀p, q ∈ B(c)

for somex̄ ≤ xi ∀i ∈ VB(c). This bottleneck flow throughput
is strictly greater than the throughputs of non-bottlenecked
flows traversing the WLAN. By Assumptions 2-5 all flows
q satisfy s(q) ≤ xk(c)

X(c)
L

Tc(c)
. Let us relax, for the moment,

equality in (4) and replace it by the RHS upper bounding
the LHS. By Assumption 6 all stations use the same attempt
probability design parametery(c) andxk(c) ≤ y(c) for every
stationk. Combining these observations, leads us to consider
the following relaxed optimisation problem,

max
xk,x̄,Nk

x̄(c)

X(c)

L

Tc(c)
(12)

s.t. x̄(c) ≤ xk(c) ∀k ∈ VB(c) (13)

s(q) ≤ xk(c)

X(c)

L

Tc(c)
∀q ∈ {p /∈ B(c) : i(p, c) = k}, ∀ k

(14)
∑

q/∈B(c):i(q,c)=k

s(q)

≤ Nkxk(c)− |B(c) ∩ Pk(c)|x̄(c)
X(c)

L

Tc(c)
∀k (15)

1 ≤ Nk(c) ≤ |Pk(c)| ∀ k (16)

xk(c) ≤ y(c) ∀k (17)
∏

k

(1 + xk) ≤ p̄(c), xk(c) ≥ 0, x̄ ≥ 0 ∀k (18)

where i(p, c) denotes the access point relaying flowp on
channelc. It can be verified that this relaxed optimisation can
be transformed into a convex problem and so has a unique
solution4.

4Change variables tolog xk, logNk and log x̄. X is a posynomial and so
when expressed in terms of these transformed variableslogX is the log sum
of exponentials and convex.
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Consider the following constraints on stationk ∈ VB(c)
carrying at least one bottlenecked flow,

x̄(c) ≤ xk(c) (19)

s(q) ≤ xk(c)

X(c)

L

Tc(c)
∀q ∈ {p /∈ B(c) : i(p, c) = k} (20)

xk(c) ≤ y(c) (21)

The last constraint is satisfied providedy(c) ≥ x̄ – we return
to the choice ofy(c) shortly. It can be verified (e.g. by
inspecting derivatives with respect toxk) that xk andxk/X
are strictly increasing inxk, while 1/X is strictly decreasing
in xk. Hence, if inequalities (19) and (20) are both loose
then decreasingxk(c) decreases the RHS while improving the
cost function and making the other inequalities looser, which
leads to a contradiction. Hence we may must have equality in
either/both (19) and (20) (for at least oneq). Recalling that for
non-bottlenecked flowss(q) < x̄

X(c)
L

Tc(c)
≤ xk

X(c)
L

Tc(c)
, it can

be seen that constraint (19) will always become tight before
constraint (20). Hence, we must have equality in (19). That is,
xk = x̄ for all stations carrying a bottlenecked flow and for any
bottlenecked flow the burst-size used is exactly one frame per
successful transmission by the station. For non-bottlenecked
flows the average burst size per successful transmission by
the station must be strictly less than one frame, which implies
that these flows are unsaturated.

Turning now to stationk /∈ VB(c) that carries no bot-
tlenecked flows, constraint (19) no longer applies but (21)
and (20) are still in force. Since all flows on the station
are, by assumption, non-bottlenecked they have throughput
strictly less than x̄

X(c)
L

Tc(c)
. Hence, if we have equality in

(20) for one or more flows thenxk(c) < x̄. But from (21)
and the discussion in the foregoing paragraphy(c) ≥ x̄ and
soxk(c) < x̄ ≤ y. Sincexk < y the station is unsaturated and
therefore also every flow is unsaturated. If we have inequality
in (20) for all flows then the average flow burst size must
be strictly less than one frame per successful transmission
by the station which implies that, once again, every flow is
unsaturated.

To gain insight into the burst sizeNk, we need to consider
constraint (15). SinceNkxk/X is increasing inNk and
1/X is decreasing, using a similar contradiction argument as
previously we must have equality in (15) for all stations.

Consider now the value ofy(c). It can be seen thatxk(c)
is invariant iny(c) ≥ x̄. Hence anyy(c) ≥ x̄ is an admissible
solution and yields the same allocation ofxk ’s andNk ’s. Since
we have equality in (15), these solutions to the relaxed opti-
misation are also feasible for the true/unrelaxed constraints.
Observe, however, that wheny > x̄ no flow is saturated (for
stationsk ∈ VB(c), xk = rk(y) = x̄ < y and so the stations
are unsaturated and thus every flow must be unsaturated,
for stationsk /∈ VB(c) we already have that every flow is
unsaturated). Wheny = x̄ we have that all bottlenecked flows
are saturated and all non-bottlenecked flows are unsaturated
(for stationsk ∈ VB(c), xk = rk(y) = x̄ = y and so the
station is saturated plus bottlenecked flows send one packet
at every successful transmission by a station and so are
also saturated since a flow cannot know in advance which

transmissions will be successful, for all stations we already
have that non-bottlenecked flows are unsaturated). Observe
also that while we have some freedom in the choice ofy, since
the max-min allocation for the original problem is unique the
values of thexk ’s andNk’s (which are invariant iny ≥ x̄) are
unique.
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