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Abstract—We investigate the asymptotic behavior of the
steady-state queue length distribution under generalizednax-
weight scheduling in the presence of heavy-tailed traffic. \&
consider a system consisting of two parallel queues, serveuy
a single server. One of the queues receives heavy-tailed ffia,
and the other receives light-tailed traffic. We study the clas
of throughput optimal max-weight-« scheduling policies, and
derive an exact asymptotic characterization of the steadgtate
queue length distributions. In particular, we show that the
tail of the light queue distribution is at least as heavy as a
power-law curve, whose tail coefficient we obtain explicitt. Our
asymptotic characterization also shows that the celebrate max-
weight scheduling policy leads to thevorst possible tail coefficient
of the light queue distribution, among all non-idling policies.

Motivated by the above negative result regarding the max-
weight-a policy, we analyze a log-max-weight (LMW) scheduling
policy. We show that the LMW policy guarantees an expo-
nentially decaying light queue tail, while still being throughput
optimal.

. INTRODUCTION

Many of the early queueing theoretic results for heavyethil
traffic were obtained for the single server queue; see [3], [6
[23] for surveys of these results. In [7], the authors stuuly t
tail behavior of the waiting time in an M/G/2 system, when
one of the service time distributions is heavy-tailed, amel t
other is exponential.

It turns out that the service discipline plays an important
role in the delay experienced in a queue, when the traffic
is heavy-tailed. For example, it was shown in [1] that any
non-preemptive service discipline leads to infinite exedct
delay, when the traffic is sufficiently heavy-tailed. Furttibe
asymptotic behavior of delay under various service digogsl
such as first-come-first-served (FCFS) and processor gharin
(PS), is markedly different under light-tailed and heaaijed
scenarios [5], [28]. This is important, for example, in the
context of scheduling jobs in server farms [14].

In the context of communication networks, a subset of
the traffic flows may be well modeled using heavy-tailed
processes, and the rest better modeled as light-taile@gses.

Traditionally, traffic in telecommunication networks ha§or example, an internet user might generate occasional file

been modeled using Poisson and Markov-modulated p@awnload requests with highly variable file sizes, whiletioel
cesses. These simple traffic models exhibit ‘local randasine Webpage loading, email and twitter traffic are likely to be fa
in the sense that much of the variability occurs in shol@ss variable. In such a scenario, there are relatively fedies
time scales, and only an average behavior is perceived0&the problem of schedulingetweerthe different flows, and
longer time scales. With the spectacular growth of packdhe ensuing nature of interaction between the heavy-taitetl
switched networks such as the internet during the last eoupht-tailed traffic. An important paper in this category[#],

of decades, these traditional traffic models have been showhere the interaction between light and heavy-tailed traffi
to be inadequate. This is because the traffic in packetiz8@s under generalized processor sharing (GPS) is studied.
data networks is intrinsically more ‘bursty’, and exhibitdn that paper, the authors derive the asymptotic workload
correlations over longer time scales than can be modeled lghavior of the light-tailed flow, when its GPS weight is
any finite-state Markovian point process. Empirical evitien greater than its traffic intensity. In a related paper [3f th
such as the famous Bellcore study on self-similarity angjfonauthors obtain the asymptotic work-load behavior under a
range dependence in ethernet traffic [18] led to increas@@ineral coupled-queues framework, which includes GPS as
interest in traffic models with high variability. a special case.

Heavy-tailed distributions, which have long been used to One of the key considerations in the design of a scheduling
model high variability and risk in finance and insurance,aveiPolicy for a queueing network iroughput optimalitywhich
considered as viable candidates to model traffic in data nis-the ability to support the largest set of traffic rates tisat
works. Further, theoretical work such as [15], linking hgav Supportable by a given queueing network. Queue length based
tails to long-range dependence (LRD) lent weight to thedfelischeduling policies, such as max-weight scheduling [25]] [
that extreme variability in the internet file sizes is ultielg and its many variants, are known to be throughput optimal in

responsible for the LRD traffic patterns reported in [18] an@d 9eneral queueing network. For this reason, the max-weight
elsewhere. family of scheduling policies has received much attention i

various networking contexts, including switches [20]edges
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policy has not been adequately studied in the context ofyjreav —_ H
tailed traffic. Specifically, a question arises as to whatledr Heavy-Tailed
we can expect due to the interaction of heavy and lightdaile
flows, when a throughput optimal max-weight-like schedulin
policy is employed. Our present work is aimed at addressing Light-Tailed
this basic question.

In a recent paper [19], a special case of the proble'ﬁQ- 1. A system of two parallel queues, with one of them fethwieavy-

. . . - . tailed traffic.

considered here is studied. Specifically, it was shown that
when the heavy-tailed traffic has an infinite variance, the
light-tailed traffic experiences an infinite expected delagder _ ] ]
max-weight scheduling. Further, it was shown that the maffiroughput optimal log-max-weight (LMW) scheduling pol-
weight policy can be tweaked to favor the light-tailed taffi I€Y: which gives S|gn|f|cantl3_/ more importance to the light
so as to make the expected delay of the light-tailed trafffll€ue compared to max-weightscheduling. We analyze the
finite. In the present paper, we considerably generalizeeth&@Symptotic behavior of the LMW policy and show that the
results by providing a precise asymptotic characteripatip 19Nt queue occupancy distribution decays exponentialz
the occupancy distributions under the max-weight schegulialso obta}ln the exact Iarg_e deV|at|on_ exponent of the I|ght
family, for a large class of heavy-tailed traffic distrilaris, ~ 9ueue tail under a regularity assumption on the heavyetaile

We study a system consisting of two parallel queues, ser/8gut: Thus, the LMW policy has both desirable attributes — i
by a single server. One of the queues is fed by a heavy-tail§dnroughput optimal, and ensures an exponentially degayi
arrival process, while the other is fed by light-tailed fiaf (@il for the light queue distribution. _
We refer to these queues as the ‘heavy’ and ‘light queues,Th_e remainder of_ this paper is organized as fpllows. In
respectively. In this setting, we analyze the asymptotic pe>ection Il, we describe the system model. In Section IIl, we
formance of max-weight scheduling, which is a generalizecPresent t_he relevant def_lnltlons and mathematical p_rehmln
version of max-weight scheduling. Specifically, while max€S- Section IV deals with the queue length behavior under
weight scheduling makes scheduling decisions by compariRfiority scheduling. Sections V and VIl respectively canta
the queue lengths in the system, the max-weigpblicy uses 4" asyrr_1ptot|c results for max—weghtschgduhng, and the
different powers of the queue lengths to make schedulit)!W policy. We conclude the paper in Section VIII. A shorter
decisions. Under this policywe derive an asymptotic char-Version of this work appeared in [17].
acterization of the light queue occupancy distributiand
specify all the bounded moments of the queue lengths Il. SYSTEM MODEL

A surprising outcome of our asymptotic characterization Our system consists of two parallel queuBsand L, served
is that the ‘plain” max-weight scheduling policy induce® thpy a single server, as depicted in Fig. 1. Time is slotted, and
worst possible decay rate on the light queue tail distrévuti stochastic arrivals of packet bursts occur to each queuadh e
We also show that by a choice of parameters in the maxot. The server is capable of serving one packet per tinte slo
weight« policy that increases the preference afforded $om only one of the queues according to a scheduling policy.
the light queue, the tail behavior of the light queue can hest f7(¢) and L(t) denote the number of packets that arrive
improved. Ultimately however, the tail of the light queugjuring slott to H and L respectively. Although we postpone
distribution is lower bounded by a power-law-like curver fothe precise assumptions on the traffic to Section 1lI-B, &t u
any scheduling parameters used in the max-weiglsthedul- |oosely say that the inpuf() is light-tailed, andH (t) is
ing policy. Intuitively, the reason max-weight-scheduling heavy-tailed. In the sequel, we will sometimes refer to the
induces a power-law-like decay on the light queue disti@ut cojlection of packets that arrive at a given time abuast
is that the light queue has to compete with an often largeyheage will refer to the queue# and L as the heavy and light
queue for service. qgueues, respectively. The queues are assumed to be always
The simplest way to guarantee a good asymptotic behavi@nnected to the server. Let; () and ¢, (), respectively,
for the light queue distribution is to give the light queugenote the number of packets i and L at the beginning of
complete priority over the heavy queue, so that it does ngbt¢ (j.e., before the slot arrivals) and ley; andg;, denote
have to compete with the heavy queue for service. We sh@ie steady-state queue lengths, when they exist. Our aim is t
that under priority for the light queue, the tail distrilmrts of characterize the behavior &{q;, > b} andP {qy > b} asb

both queues are asymptotically as good as they can possiBcomes large, under various scheduling policies.
be under any policy. Be that as it may, giving priority to the

light queue has an important shortcoming — it is not throughp m

optimal for a general constrained queueing system. . S
We therefore find ourselves in a situation where on the offe Heavy-tailed distributions

hand, the throughput optimal max-weightscheduling leads  We begin by defining some properties of tail distributions

to poor asymptotic performance for the light queue. On thed non-negative random variables.

other hand, giving priority to the light queue leads to good Definition 1: A random variableX is said to bdight-tailed

asymptotic behavior for both queues, but is not throughpifitthere existsd > 0 for which E [exp(6X)] < co. A random

optimal in general. To remedy this situation, we propose\ariable isheavy-tailedif it is not light-tailed.

D EFINITIONS AND MATHEMATICAL PRELIMINARIES



In other words, a light-tailed random variable is one tha ha Definition 3: 1) Thelower orderof F(z) is defined by
a well defined moment generating function in a neighborhood _
of the origin. The complementary distribution function of a ¢F) = hminf_logF(I).
light-tailed random variable decays at least exponegtfalit. =00 logx
Heavy-tailed random variables are those which have com-
plementary distribution functions that decay slower thag a
exponential. This class is often too general to study, se sub _ ) log F(z)

classes of heavy-tailed distributions, such as sub-exyi@ie p(F) = hffogp_m'

have been defined and studied in the past [25]. We now

review some definitions and existing results on some retevan !t can be shown that for regularly varying distributionse th
classes of heavy-tailed distributions. In the remaindethes UPPer and lower orders coincide with the indext also turns
section, X will denote a non-negative random variable, wittput that both orders are finite for the claSsR, as asserted
complementary distribution functioRi(z) = P{X > z}. For below.

2) Theupper orderof F'(z) is defined by

the most part, we adhere to the terminology in [2], [9]. Proposition 1: p(}) < oo for every I € OR.
Notation: If f(x) and g(z) are positive functions defined Proof: Follows from Theorem 2.1.7 & Proposition 2.2.5 in [2].
on [0, 00), we write f(x) ~ g(z) to mean The following result, which is a consequence of Proposition
) 1, states that every’ € OR is asymptotically heavier than a
lim —=% =1. power-law curve.
oo g(x) Proposition 2: Let F € OR. Then, for eacty > p(F), we
Similarly, f(x) > g(z) means haver =" = o(F(z)) asx — oo.
L f@) Proof: See Equation (2.4) in [24].
11IIT_1>1£f @ > 1. Definitions 2 and 3 deal with asymptotic tail probabilities

o . _ _ of a random variable. Next, we introduce the notion of tall
Definition 2: 1) F(z) has aregularly varying tail of coefficient, which is anomentproperty.

index v, denoted byF' € R(v), if Definition 4: Thetail coefficientof a random variabléX is
il defined by
i ZF2) _ kY, Y k> 0.
emo0 F(x) Cx =sup{c >0 | E[X‘] < oo}.

2) F(z) is extended-regularly varyingdenoted byF <

R, i for some reale.d > 0, andl’ > 1, In other words, the tail coefficient is the threshold where th

power moment of a random variable starts to blow up. Note
Tk ik that the tail coefficient of a light-tailed random variabke i
k=% < liminf # < lim sup Elhkr) <k™° Vk € [1,T]. infinite. On the other hand, the tail coefficient of a heavijeth

e v aoe F(z random variable may be infinite (e.g., log-normal) or finite
3) F(x) is intermediate-regularly varyingdenoted by €  (e.g., Pareto). The next result shows that the tail coefficie
IR, if and order are, in fact, closely related parameters.
= = Proposition 3: 1 The tail coefficient ofX is equal to the
F(k F(k =
lim lim inf _( 2) = lim lim sup _( ?) =1 lower order of F'(z).

kit eooe F(z) R osoo F(z) Proof: Suppose first that the lower order is infinite, so that for

4) F(z) is order-regularly varying denoted byF' € OR, anys > 0, we can find anr large enough such that

if for someT > 1, logP{X >z} -
_—_ S.

lminf 28 S 0 vE e LT, logz

T—00 (x)

Thus, for large enough, we have
It is easy to see from the definitions tHatC ER C TR C
OR. In fact, the containments are proper, as shown in [9]. P{X >z} <a2™® Vs>0.
Intuitively, R is the class of distributions with tails that decayl_
according to a power-law with parameterindeed, it can be i ) .
coefficient of X is also infinite.

shown [11] that — . .
Next suppose thaf(F') € [0,00). We will show that (i)
FeR(v) < F(z)=U(x)x™", E[X°] < oo for all ¢ < &£(F), and (i) E[X¢] = oo for all
c > £(F). Regarding (i), we note that there is nothing to be
shown if ¢(F) = 0. If £(F) > 0, we argue as above that for

his impliesE [X¢] < co for all ¢ > 0. Therefore, the tall

whereU (x) is aslowly varyingfunction, i.e, a function that
SatIS.erSU(k.:C) U(x), Yk > 0. The other three cIassesIa ge enoughr, we haveP {X > 2} < o, whens < £(F).
are increasingly more general, but as we shall see, they all — .
AN ) . us,E[X°] < oo for all ¢ < &(F). To show (i), let us
correspond to distributions that are asymptotically hewathian ; = -
cansider some such thatc > s > £(F’). By the definition of
some power-law curve. In what follows, a statement such as

X €IR ShOUI(.j be construed to meﬂh{X - x} € IR' . . IThe first author is grateful to Jayakrishnan Nair (Caltear) duggesting
Next, we define the lower and upper orders of a distributioq proof of Proposition 3 via a personal communication.



£(F) there exists a sequenée; } that increases to infinity as the renewal process, in steady state [AZhe joint distribution

i — 00, such that of the residual and the age can be derived using basic renewal
—W <s, Vi, ie,P{X>ux}>a,° Vi theory: PIH. —kal
Thereforeg, l PiHp =k Ha=1} = %’ @
E[X9] = /OOO APy (z) > /;O 2°dFy (z) c];rf B{é,ge.r.i\.léalfreoiqo,(i,); ..}. The marginals offz and H 4
> oiP{X > a;} > zjx;®, Vi, P{H, >k}

P{Hr =k} = BT , ke{l,2,...}. (2)
from which it follows thatE [X¢] = co. Therefore, the tail [H]
coefficient of X is equal to&(F). O P{H, >k}
We remark that Proposition 3 holds fanyrandom variable, P{Hs =k} = W
;%la(;cijslﬁt?ugg*t?ng’)e%u:]aerggsgg?ﬁ;E:;.aﬁilrr:ii‘g%’a;,lviose?f?gg\tNeXt’ let us invoke a useful result from the literature.
" Lemma 1:If H(-) € OR, thenHg € ER, and

Proposition 4:1f X € OR, then X has a finite tail

, ke {0,1,...}. 3)

coefficient. B sup nP{H, >n} < . @)
Proof: From Proposition 1, the upper order is finitgF') < n P{Hg>n}
oc. Thus, the lower orde¢(F) is also finite. Since the lower p corresponding result also holds for the af.
order equals the tail coefficient (Proposition 3), the resuybroof: See [9, Lemma 4.2(i)]. O
follows. s Using the above, we prove the important result that the
residual distribution isone order heavierthan the original
B. Assumptions on the arrival processes distribution.

We are now ready to state the precise assumptions on thEToposition 5:1f H(:) € OR has tail coefficient equal to
arrivals processes. Cy, thenHp gnd H 4 have tail coefficient equal t6'y — 1.
1) The arrival processes to the two queues are independgmm' According to (4), we have, for alt and some rea,
of each other. Furthermoré](¢) and L(t) are indepen- —logP{Hpr > a} < —loga —logP{H+ > a} + x.
dent of the past history until time

2) H(#) is independent and identically distributed (ii.d.J€" US NOW consider the lower order &y :

from slot-to-slot. lim i _logP{HR > a} -

3) L(t) is i.i.d. from slot-to-slot. a—»00 loga -

5) H(-) € OR with tail coefficient C, > 1, and lim inf log @ =Cn—1
E[H(t)] = A

i In the last step above, we have used the tail coefficie of
We also assume thal, + Ay < 1, so that the input rate doeSg;n e the lower order off p equals its tail coefficient (Propo-

not overwhglm trg service rate. T.he_n, It can be shown thgfig, 3), the above relation shows that the tail coefficieht
the system is stabtaunder any non-idling policy, and that theHR is at mostCy — 1.

steady-state queue lengtiig andq;, exist. Next, to show the opposite inequality, let us consider the
duration random variable, defined as

C. Residual and Age distributions
g Hp =Hr+ Hjy.

Here, we define the residual and age distributions for the
heavy-tailed input process, which will be useful later.sEir Using the joint distribution (1), we can obtain the margiogl
we note thatf (-) necessarily has a non zero probability masdp as
at zero, since\y < 1. We defineH, as a random variable kP{H, =k}
distributed according to the conditional distribution &f(t), P{Hp =k} = T E[H,]

given thatA () > 0. Specifically, Thus, for anye > 0, the Cy — 1 — e moment of Hp, is finite:

, ke {1,2,...}.

B _ P{H() =m} B Cr—e
P{H,=m}= [—P{H() =0}’ m=1,2,.... . [HgH’l’ﬂ _ Z KCH=P {H, = k} _ E [H+H } .
Note that H, has tail coefficient equal t6'y, and inherits k>1 E[H:] E[H]
any regularity property ofd(-). Since Hg is stochastically dominated b/ p, it is immediate
Now C(.)nsider. a.discrete-time renewal process with intefatR Hnglfe < 0o. Therefore, the tail coefficient df
renewal times distributed a3, Let Hy € {1,2,...} denote ¢ ot leastCy — 1, and the proposition is proved. O

the residual random variable, afify € {0,1,...} the age of

SWe define the residual time and age so that if a renewal ocdues a
2The notion of stability used here is the positive recurreabéne system particular time slot, the age at that time slot is zero, ardrésidual time is
occupancy Markov chain. equal to the length of the upcoming renewal interval.



IV. PRIORITY POLICIES When the distribution of{(+) is regularly varying, the lower

In this section, we study the two ‘extreme’ schedulin%ound (6) takes on a power-law form that agrees with the upper
policies, namely priority fo, and priority for . Our analysis Pound (5).
helps us arrive at the important conclusion that the taihef t Corollary 1: If H() € R(Cy), then
hequ queue is asymptoticglly insensitive to the sc_hegulin P{qy > b} > U(b)bf(cHﬂ)’ v b,
policy. In other words, there is not much we can do to improve . _ _
or hurt the tail distribution off by the choice of a schedulingwhereU(-) is some slowly varying function.
policy. Further, we show that giving priority to the lighteue  Since priority for i affords the most favorable treatment to

ensures the best possible asymptotic decaybfath queue the heavy queue, it follows that the asymptotic behavioHof
length distributions. can be no better than the above undey policy.

Proposition 6: Under any scheduling policyy is heavy-
S tailed with tail coefficient at most’y — 1. That is, Equation
A. Priority for H . e

! . Y ) ) . . (8) holds for all scheduling policies.

In this pthy,H receives service V\_/henever it is non-emptyo oo The queue occupanay; under any policy stochasti-
and L receives service only whefl is empty. It should be 41y dominates the queue occupancy under priority for
intuitively clear at the outset that this policy is bound tavéa Therefore, the lower bounds (6) and (8) hold for all policies
undesirable impact on the light queue. The reason we analyze
this policy is that it gives us a best case scenario for th&yhea Interestingly, under priority forf, the steady-state light
queue. queue occupancy; is also heavy-tailed with theametail

Our first result shows that the steady-state heavy queYsfficient asyy. This should not be surprising, since the light
occupancy is one order heavier than its input distribution. queue has to wait for the entire heavy queue to clear, before

Theorem 1:Under priority scheduling forfl, the steady-  receives any service.

state queue occupancy distribution of the heavy queudisatis Theorem 2:Under priority for H, ¢; is heavy-tailed with

the following bounds. _ tail coefficient C; — 1. Furthermore, the tail distribution
1) For everye > 0, there exists aiy () such that P {q;, > b} satisfies the following asymptotic bounds.
P{qu > b} < ku(e)b™ (o179 v, (5) 1) For everye > 0, there exists a1 (¢) such that
2) P{qr, > b} < rr(e)b(Cr=179), 9)
P{qy > b} > AgP{HR > b}, Vb. ®)  2) If H(:) € OR, then
Further,qy is a heavy-tailed random variable with tail coeffi- b
cient equal toC;; — 1. That is, for everye > 0, we have P{qr > b} 2 AP {HA > E} (10)
E [qfﬁ**e} < 00, (7) Proof: The upper bound (9) is a special case of Theorem 4
given in the next section. Let us show (10). Notice first that
and the lower bound (10) is asymptotic, unlike (6) which is exact
E Cpy—1+e = 00 (8) . . .
9 : As before, let us consider a timeat steady-state, and write

Proof: Equation (7) can be shown using a straightforwardsing Little’s law
Lyapunov argument, along the lines of [19, Proposition 6]. P{qr(t) > b} > P{qr(t) > b | qu(t) > 0} P{qu(t) > 0}
Equation (5) follows from (7) and the Markov inequality. =AuP{qr(t) > b|qu(t) > 0}.

Next, to show (6), we consider a time instanat steady-

state, and write Let us denote byA(t) the number of slots that the current

head-of-line burst has been in service. Clearly thehas not
Plan(t) >0} = Plgn(t)>b[qu(t) > 03P {gu(t) >0}  received any service in the interva- A(#), ], and has kept all
= AaP{qu(t) >b|qu(t) > 0}. the arrivals that occurred during the interval. Thus, ctaded

We have used Little's law at steady-state to writ8" H being non-emptyg; (1) = Zt<f:tﬂ‘¥(t) L(o). Next, it
P{qu(t) >0} = Ag. Let us now lower bound the termcan be seen that in steady-stafé¢) is distributed as the age
P{qu(t) > b | qu(t) > 0}. Conditioned onH being non- variableH 4. Putting everything together, we can write
empty, denote byf?(t) the number of packets that belong to the
burst in service that are still in queue at timeThen, clearly, ~ © 14z > b} = AuP{qr(t) > b ] qu(t) > 0}
qu(t) > B(t), from which P{qx(t) > b|qu(t) >0} > Ha
]P’{B(t) > b}. Now, since theH queue receives service Z AP {ZL(Z) - b} - (1D
whenever it is non-empty, it is clear that the time spent at _ ) Z:_l
the head-of-line by a burst squalto its size. It can therefore Next, sincef(-) € OR, Lemma 1 implies that{, € ER C
be shown that in steady-statB(t) is distributed according to ZR- We can therefore invoke Lemma 4 in the appendix to
the residual variablé . Thus,P {qy(t) > b | qu(t) > 0} > Wrte Ha
P{Hg > b}, and (6) follows. Finally, (8) follows from (6) P {Z L(i) > b} ~P {HA > i} (12)
and Proposition 5. O — AL



Finally, (10) follows from (11) and (12). O P{gy > b} satisfies bounds of the form (5) and (6) under all
When H (-) is regularly varying, the lower bound (10) takesion-idling policies.

on a power-law form that matches the upper bound (9). Therefore, it is not possible to either improve or hurt
the heavy queue’s asymptotic behavior, by the choice of a
B. Priority for L scheduling policy.

It is evident that the light queue has the best possible
asymptotic behavior under priority fok. Although priority
{or L is non-idling, and therefore throughput-optimal in this
simple setting, we are ultimately interested in studyingeno

We now study the policy that servdswhenever it is non-
empty, and serveH only if L is empty. This policy affords the
best possible treatment 0 and the worst possible treatmen

itg g)'m?):g?er:g c?tljli\?ig:sldtlé)n?hsogféesse.ngemé;r i;hltshgoslclecrie sophisticated network models, where priority fbrmay not _
: : . : ' b(ei throughput optimal. We therefore analyze the asymptotic
that it receives service whenever it has a packet to be serv Shavior of general throughput optimal policies belonging
Therefore,L behaves like a discrete time G/D/1 queue, WitﬁIe max-weight family
light-tailed inputs. Classical large deviation bounds dan '
derived for such a queue; see [13] for example.
Recall that sincel(-) is light-tailed, the log moment gen- V- QUEUELENGTHASYMPTOTICS FORMAX-WEIGHT-a
erating function SCHEDULING
- oL() In this section, we analyze the asymptotic tail behavior of
Ar(0) = logE {e } the light queue distribution under max-weightscheduling.
For fixed parameteray > 0 anday, > 0, the max-weightx

exists for some > 0. Define _ _ )
policy operates as follows: During each time stotperform

Ep =sup{f | Ar(0) — 0 < 0}. (13) the comparison
Proposition 7: Under priority for L, ¢, satisfies the large qu(t)™ 2an ()™,
deviation principle (LDP) and serve one packet from the queue that wins the comparison.

Ties can be broken arbitrarily, but we break them in favor of
the light queue for the sake of definiteness. Note that=

ay corresponds to the usual max-weight policy, which serves
the longest queue in each slot. The case wheréay > 1
corresponds to emphasizing the light queue over the heavy

1
lim ——logP{qr > b} = Ef, (14)
b—o0 b

In words, the above proposition asserts that the taifofs
asymptotically exponential, with rate functiofi,. We will
refer to F, as theintrinsic exponenof the light queue. An

equivalent expression for the intrinsic exponent that iemf 44€Ue: anq vice-versa. o .
used in the literature is We provide an asymptotic characterization of the light queu

1 occupancy distribution under max-weightscheduling by de-
E; = inf —A7 (1 +a), (15) riving matching upper and lower bounds. Our characteopati
a>0a shows that the light queue occupancy is heavy-tailed under
whereA7 (-) is the Fenchel-Legendre transform [13]/0£ ().  max-weighter scheduling for all values of the parameterg
It is clear that the priority policy forL gives the best and ;. Furthermore, our distributional bounds on the light
possible asymptotic behavior for the light queue, and thestvoqueue occupancy shed further light and refine the moment

possible treatment for the heavy queue. Perhaps surgisingsults derived in [19] for max-weight-scheduling.
however, the heavy queue tail under priority foris asymp-

totically no worse than that under priority fdf.

Proposition 8: Under priority for L, ¢ is heavy-tailed with A. Upper bound

tail coefficientCy — 1. In this section, we derive two different upper bounds on
Proof: This is a special case of Theorem 4, given in the netlie overflow probability? {¢;, > b} (Theorems 4 and 6) that
section. o both hold under max-weight-scheduling. Depending on the

The above result also implies that the tail coefficient ofalues ofay anday, either bound can be the tighter one. The
H cannot be worse tha@y — 1 under any other schedulingfirst upper bound holds for all non-idling policies, incladi
policy. max weighter scheduling.

Proposition 9: Under any non-idling scheduling policy;; ~ Theorem 4:Underany non-idling policy, and for every >
has a tail coefficient of at least;; — 1. That is, Equation (7) 0, there exists a constant (¢) > 0, such that
holds for all non-idling scheduling policies. Crlc
Proof: The queue occupancyy under any other policy E {qL } <0 (16)
is_st_(:ct}astz:ally dominated by the queue occupancyDun(%ﬁ.[d
priority for L. —(Cu—1—¢)

Propositions 6 and 9 together imply the insensitivity of the Plaw > b} < rafe)d ' (7
heavy queue’s tail distribution to the scheduling policye WProof: Let us combine the two queues into one, and consider
state this important result in the following theorem. the sum input proces$l(t) + L(t) feeding the composite

Theorem 3:Underany non-idling scheduling policyyy is queue. The server serves one packet from the composite queue
heavy-tailed with tail coefficient equal t6'y — 1. Further, in each slot. Under any non-idling policy in the original



system, the occupancy of the composite queue is given Byy < Cy —1, Theorem 5 applies, and we ha‘ﬂe{qgu} =
¢ = qu +qr- Lemma 2 in the appendix shows that the comg (1= _ o, which proves (19). Finally, (20) can be proved

bined ir_1put has tail coefficient equal @H.. The cpmpos?tg using (19) and the Markov inequality. 0
queue is therefore a G/D/1 queue with input tail coefficient The apove theorem asserts that the tail coefficientof
C. For such a queue, it can be shown that is at leasty under the max weight- policy. We remark
E [qu—l—e} < oo. (18) that The_oren_1 4 and Theorem 6 both hold for max-wet_ght-
scheduling with any parameters. However, one of them yields
This is, in fact, a direct consequence of Theorem 1. stronger bound than the other, depending onctiparameters.
Thus, in terms of the queue lengths in the original systepecifically, we have the following two cases:
we have () ar/ag <1:Thisis the regime where the light queue is
E [(QH + QL)CH%*E] < 00, given lesser priority, when compared to the heavy queue.

f hich it is | di h Cr—1—c Thi In this case, Theorem 4 yields a stronger bound.
rom which It Is iImmediate thalt |g; < 00 '_S (i) ar/ag > 1: This is the regime where the light queue
proves (16). To show (17), we use the Markov inequality t0 " g given more priority compared to the heavy queue. In

write this case, Theorem 6 gives the stronger bound.
E [qu—l—e} Remark 1:The upper bounds in this section hold whenever
L . . . . . .
P{qr > b} = ]}D{ng—l—e S bchpe} <t H(.)is r_leavy-talled with tail coeff|C|enCH. We need thg
beu assumptionH (-) € OR only to derive the lower bounds in
< ()b~ (O, the next subsection.

O

The above result asserts that the tail coefficiengofs at B. Low.er bour-ld )
leastC'; — 1 under any non-idling policy, and that{q;, > b} I_n this secuo_n, we state our main Ic_)wer b0L_md result,
is uniformly upper bounded by a power-law curve. Our se(‘f‘-’_h'c_h a_sym_ptoncally lower b(_)unds the tgll of the _I|ght geeu
ond upper bound is specific to max-weightscheduling. It distribution in terms of the tail of the residual var|at}|§3.
hinges on a simple observation regarding the scaling ofithe Theor_em 7:_Let H() € OR. Then, under T“aX'W?'gmf
parameters, in addition to a theorem in [19]. We first make gﬁhe_dullng with parametersy _an_d ar, the d|sfcr|but|on of _
elementary but useful observation. the light queue occupancy satisfies the following asymptoti
Observation:(Scaling of o parameters) Letiy; and a;, be OWer bounds:
given parameters of a max-weightpolicy, and let3 > 0 1) Ifar/an <1,
be arbitrary. Then, the max-weight-policy that uses the b
parameterga; andpa, for the queued andL respectively, Plar = b} 2 AnP {HR 2 E}
is identical to the original policy. That is, in each time slot, 2) If apjag =1
the two policies make the same scheduling decision. ’

Next, let us invoke an important result from [19], which is P{q, > b} > AgP {HR >b (1 + i)} (22)
proved therein using a suitable Lyapynov function. - B AL

Theorem 5:1f max-weight« scheduling is performed with  3) |f ar/ag > 1,
0 < ag < Cy —1, then, forany oz, > 0, we haveE [¢}*] <
.
Thus, by choosing a large enough, any moment of the light zg 5 gpecial case of the above theorem, whe) is regularly
queue length can be made finite, as long@as< Cr —1. OUr \a1ing with indexCy, the lower bounds take on a more

second upper bound, which we state next, holds regardles% asing power-law form that matches the upper bounds (17)

(21)

P{a >0} 2 AnP {Hr =0/ L. (23)

how the« parameters are chosen. and (20).
Theorem 6:Define Corollary 2: Suppose thatd(-) € R(Cy). Then, under
N = O‘_L(OH —1). max-weighter scheduling with parametersy and oy, the
oH distribution of the light queue satisfies the following agym
Under max weightr scheduling, and for every > 0, there totic lower bounds:
exists a constants(e) > 0, such that 1) If ar/ag <1,
E[q ] <0 (19) P{qs > b} 2 U(b)p~ Y (24)
and 2) If CYL/04H>17
P{qL > b} < ra(e)b™ 79, (20) P{q > b} > UMD, (25)
whereU(-) is some slowly varying function.
Proof: Givene > 0, let us choos&8 = (Cy —1)/an —¢/ay, Corollary 2 follows from Theorem 7 together with Kara-

and perform max-weight- scheduling with parameterdo;  mata’s theorem for regularly varying functions [2, Sectlo@].
and Say. According to our earlier observation, this policy It takes several steps to prove Theorem 7; we start by
is identical to the original max-weight-policy. Next, since defining and studying a related fictitious queueing system.



C. Fictitious system that still remain in queud? at timet. Similarly, denote by

We introduce a fictitious system that consists of two queued(t) the number of packets from the head-of-line (HoL) burst
fed by thesame input processekat feed the original system. that have already been served by timeSince H is served
In the fictitious system, let us call the queues fed by heavijt every time slot.A(t) also denotes the number of time slots
tailed and light-tailed traffid7 and L, respectively. The ficti- that the HoL burst has been in servicerat .
tious system operates under the following service diguipli ' "€ remainder of the proof shows tht(t) stochastically

Service for the fictitious systenThe queueH receives domlnqtes a particular heavy-tallgd_ rgndom variable. édde
service in every time slot. The queue receives service at &t the instant, there are two possibilities:
time ¢ if and only if ¢; (£)** > qz(t)**. (@) qp(t)*r > B(t)*", or

Note that if L receives service and is non-emptytwo  (0) q; ()™ < B(t)*".
packets are served from the fictitious system. AKds justa Let us take a closer look at case (b) in the following proposi-
discrete timeG'/D/1 queue, since it receives service at evertjon.
time slot. We now show a simple result which asserts thatProposition 11: Suppose that
the light queue in the original system is ‘longer’ than in the g; (1) < B(t)™
fictitious system. ) - ) .

Proposition 10: Suppose that we drive both the original an&€t @ < ¢ be the instant before that L, last received service.
the fictitious system with a common sample path of the arriva'€n the head-of-line burst at timein A arrived after the
processes. Theny; (t) < q.(t), for all ¢. In particular, for NStanto.
everyb > 0, we have Proof: We have

]P){QL > b} > P{CI£ > b}. Qﬁ(a)aH < QE(U)QL < Q§(t)aL < B(t)aH'
. ) The first inequality holds becaudereceived service at, the

Proof: We will assume the contrary and arrive at a contrasy.onq inequality is true sinde does not receive service be-
diction. Suppose thaf; (0) = ¢z(0), and that. for some time 4 veens andt, and the final inequality is from the hypothesis.
t >0, gi(t) > _qL(t). Let 7 > 0 be the first time when " \ya have shown thag; (o) < B(t), and hence the Hol
q;(7) > qr(7). Itis then necessary thaf (7—1) = 4r(7—1),  pyrst could not have arrived by the time stot O
since no more than one packet is served from a queue in eackhe apove proposition implies that if case (b) holfishas
slot. Next,g; (7 —1) = gz (7—1),andg; (1) > q1(7) together o received service ever since the HolL burst arrivediat
imply that L received service at time — 1, but L did not. | particular,  has not received service fof(t) time slots,
This is possible only ifgr (1 — 1) < ¢jz(7 — 1), which is & gpqg it accumulates all arrivals that occur during the irgerv

contradiction, sincef/ receives service in each slot. O, _ j(#),¢]. Let us denote the number of arrivals foduring
Next, we show that the distribution of satisfies the lower ihis interval as

bounds in Equations (21)-(23). Theorem 7 then follows, in t
light of Proposition 10. Si= Y. L.
Theorem 8:In the fictitious system, the distribution qf i=t—A(t)
is asymptotically lower bounded as follows. In this notation, our argument above implies that if case (b)
1) If ap/ag <1, holds, theng; (t) > S;. Putting this together with case (a),
b we can conclude that
Plo =0 2P {Hez - @) N
L g7 (t) > min(B(t)*#/* S 7). (29)
2) fapfon =1, Therefore,
Plo =0 2P {ezo (14 )b @) Bl 202 e (B 2 S5 20). @0
3) If az/ag > 1, Recall now that in steady-statBt) is distributed asf, and

A(t) is distributed as{ 4. Therefore, the above bound can be
P{gr > b} 2 AuP {HR > b“”“”} (28) written as

H
Proof: Consider the fictitious system in steady state, and P{g; > b} > ApP {H;H/(ML > b, ZA:L(z') > b} . (31
let us fix a particular time. Since the heavy queue in the Pt

fictitious system receives service in each slot, the steawéxt’ Lemma 5 (in the Appendix) shows that

state distribution satisfieB {¢q; > 0} = Ay by Little's law.

Therefore, we have the lower bound . {H Ha }

P{q; > b} > AgP{q; > blqgz > 0}.

In the rest of the proof, we will lower bound the above PyHgr > %} oL <1,

conditional probability. 3 P {HR >ha L} ap _
Indeed, conditioned op; > 0, denote as before byp(t) . /22 o '

the number of packets that belong to the head-of-line burst ]P{HR 2 b } an > 1



Notice that the assumptiof/ (-) € OR is used in the proof

o

of Lemma 5.
Theorem 8 now follows from the above asymptotic relation 35
and (31). O o
Proof of Theorem 7The result follows from Theorem 8 and S|
Proposition 10. O S 2s
ol
VI. TAIL COEFFICIENT OFqy, Hei
<
In this section, we characterize the exact tail coefficidnt o =3 te
the light queue distribution under max-weightscheduling. =l
In particular, we show that the upper bound (16) is tight if
ar/og < 1, and (19) is tight ifay /oy > 1. i
Theorem 9:The tail coefficient of the steady-state queue o5 o 0 - . os
lengthg;, of the light queue is given by o
(I) Cy—1 if OLL/OzH < 1, and
(ii) v = (OH _ 1)06L/04H if OéL/OéH > 1. Fig. 2. The tail coefficient ofy;, under max-weighta. scheduling, as a

. g function of ay, /oy, for Cy = 2.5.
Proof: Consider first the caser,/ay < 1. The lower order

(Definition 3) of gz, can be upper bounded using (21) or (22)

as follows
Remark 2:If the heavy-tailed input has infinite variance

log P {qr, > b} 1og)\H]P’{HR > %} (Cu < 2), then it follows from Theorem 9 that the expected

lim inf — < liminf — delay in the light queue is infinite under max-weight schedul
b—00 logb b—o0 logb . . A
logP {Hn > ing. Thus, our result can be viewed as a generalization gf [19
iminf 08P AR = a} Cy —1.  Proposition 5].
a—00 loga
The last step is from Proposition 5. The above equation shows VII. LoG-MAX-WEIGHT SCHEDULING

that the tail coefficient of;;, is at mostC'y — 1. However, it
is evident from (16) that the tail coefficient qf, is at least
Cy — 1. Therefore, the tail coefficient of, equalsCy — 1
for =& < 1. This proves case (i) of the theorem.

Neit, suppose that, /oy > 1. Using (23), we can upper
bound the lower order of;, as

We showed in Theorem 9 that the light queue occupancy
distribution is necessarily heavy-tailed with a finite tedef-
ficient, under max-weight- scheduling. On the other hand,
the priority for L policy which ensures the best possible
asymptotic behavior for both queues, suffers from possible
instability effects in more general queueing networks.

. f_logJP’{qL >0 _ s f_logP{HR > b“L/“H} In thi; sectipn, we analyze the_ Iog-max-we?gh_t (L_MW)
min T logb 1m 1m log b §ch_edu|m_g policy. We show that tﬂ[g]ht_queue distribution
ap .. . . —logP{Hr >a} is light-tailed undgr LMW §chedul|ng, ie., .tth {ar > b}
= o minf T Toga decays exponentially fast in. However, unlike the priority
ar for L policy, LMW scheduling can be shown to be throughput
= —(Cgp-1) (32) . . ; .
oy optimal in very general settings [10]. For our simple system

Equation (32) shows that the tail coefficientqf is at most Model, we define the LMW policy as follows:

~. However, it is evident from (19) that the tail coefficient of !N €ach time slot, the log-max-weight policy compares

qr is at least~. Therefore, the tail coefficient of;, equals

v=(Cyg—1)ar/ag if ar/ayg > 1. This proves case (i) of ai(t) 2 log(1 + 4 (1)),

the theorem. O and serves one packet from the queue that wins the compari-
In Figure 2, we show the tail coefficient gf as a function son. Ties are broken in favor of the light queue.

of the ratioa, /ayy. The tail coefficient stays constant at the The main idea in the LMW policy is to give preference to

value Cy — 1 as ar/ay varies from 0 to 1. Recall thatthe light queue to a far greater extent than any max-weight-

ar/ag = 1 corresponds to max-weight scheduling, whil@olicy. Specifically, forar, /ag > 1, the max-weighix policy

ar/ag | 0 corresponds to priority for. Thus, the tail compares;;, to a power ofgy that is smaller than 1. On the

coefficient of g, under max-weight scheduling is the samether hand, LMW scheduling comparegs to a logarithmic

as the tail coefficient under priority foff. In other words, function of ¢z, leading to a significant preference for the

max-weight scheduling leads to thrst possibleasymptotic light queue. It turns out that this significant de-emphagis o

behavior for the light queue among all non-idling policias, the heavy queue with respect to the light queue is sufficient

the sense that it leads to the smallest possible tail cosffici to ensure an exponentially decaying tail for the distribotof

for qr. However, the tail coefficient of;, begins to improve ¢, in our setting.

in proportion to the ratiev;, /.y in the regime where the light  Furthermore, the LMW policy has another useful property

gueue is given more importance. when the heavy queue gets overwhelmingly large. Although



the LMW policy significantly de-emphasizes the heavy queue,
it does notignoreit, unlike the policy that gives priority td..
That is, if the H queue occupancy gets overwhelmingly large
compared toL, the LMW policy will serve theH queue.

In contrast, the priority forL policy will ignore any build-

up in H, as long asL is non-empty. This property turns
out to be crucial in more complex queueing models, where
throughput optimality is non-trivial to obtain. For exarapl
when the queues have time-varying connectivity to the sgerve
the LMW policy will stabilize both queues for all traffic rate
within the rate region, whereas priority férleads to a strictly
smaller stability region [16].

Our main result in this section shows that under the LMW
policy, P {q;, > b} decays exponentially fast iy unlike under
max-weighter scheduling.

Theorem 10:Under log-max-weight scheduling, is light-
tailed. Specifically,

1
libminf—zlog]P’{qL > b} > min(EL, Cy—1), (33)
—00

where I/, is the intrinsic exponent, given by (13), (15).
Proof: Fix a small§ > 0. We first write the equality

P{qr >b} = P{qr >0, log(l +qm) < db}

(i)
+ P{q>b, (1—206)b>log(l+qm)> b}
(i)
+ P{qr >0, log(l+qu) >
(ii1)

(1-6)b} (34)

We will next upper bound each of the above three terms on
the right.

() P{qr >b, log(1+ qx) < b} : Intuitively, this event
corresponds to an overflow of the light queue, when
the heavy queue is not ‘exponentially large’ ini.e.,
qu < exp(db) — 1. Suppose without loss of generality
that this event happens at tinte Denote by—7 < 0
the last instant when the heavy queue received service.
Since H has not received service sineer, it is clear
thatlog(1 + qu (—7)) < 6b. Thus,qr(—7) < db.

In the time interval[—7 + 1, 0] the light queue receives
service in each slot. In spite of receiving all the service,
it grows from less thamb to overflow at time0. This
implies that every time the event in (i) occurs, there
necessarily exists-u < 0 satisfying

0

> (L()—1) > (1.

i=—u+1

Therefore,
P{qr > b, log(1 + qm) < b} <

0
]P’{Euz() > (L(i)—1)>(1—6)b}.

1=—u+1

10

Letting S, = 3.7

i——us1 L(i), the above inequality can
be written as

P{qr, > b, log(1 + qr) < db} <

P {sup (Su—u)> (11— 5)b} . (35)
u>0

The right hand side of (35) is precisely the probability

of a single server queue fed by the procégs reaching

the level (1 — §)b. Standard large deviation bounds are

known for such an event. Specifically, from [13, Lemma

1.5], we get

1iminf—% logP {sup (Sy —u)>(1- 5)b}

b—o0 u>0

1 —
> inf uAj (1 + —6)
u>0 u

= inf

inf ——Aj(1+a) = (1-9)Ey.

(36)

From (35) and (36), we see that for every> 0 there
exists a positivex3 (in our notation, we suppress the
dependence of3 on ¢), such that for all large enough

P{qr > b, log(1+ qu) < 6b} < ke PA=NEFL=e),
(37)

(i) Let us deal with the term (iii) before (ii). This is the

regime where the overflow of occurs, along with”
becoming exponentially large ih We have

P{qr > b,log(1 +qu) > (1 —0)b} =
P{aw >b,gu > e =1} <P{ap+gu > 07"}
We have shown earlier, in the proof of Theorem 4, that
for any non-idling policy and any > 0,
P{q +qu > M} < ryM~(Cr=1=¢)
for and somes; > 0. Therefore,

P{qr >0, log(1+qm) > (1 —86)b} <

k1exp(—(1—=0)b(Cy—1—¢)), Ye>0. (38)

(i) We now deal with the second term in (34). Let us call

this event€,. Suppose this event occurs at time 0. Denote
by —7 < 0 the last time during the current busy period
that H received service, and define

n =log(1+qu(-7)). (39)

If H never received service during the current busy
period, we taker to be equal to the last instant that
the system was empty, angl = 0. We can deduce
thatn < (1 — 0)b, becauseH receives no service in
[-7 4+ 1,0]. Since H received service at time-r, it
follows from (39) thatq,(—7) < n. Therefore, during
the time interval[—7 + 1,0], the queue length ofL
grows from at mosty to more thanb, in spite of
receiving all the service. Additionally, it is evident from
(39) that g (—7) + qr.(—7) > " — 1. The last two
statements imply that every time the evefit occurs,
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P{&} < P{3E<(1-0)b, 3u>0suchthats, —u>b—¢ qu(—u)+qr(—u) > e —1} (40)

(1-8)b
< Z ZP{Su—u>b—§, qr(—u) + qr(—u) > e —1}. (41)
£=0 u>0
there necessarily existsu < 0 and¢ > 0 such that Since the above is true for evetyand o, we get
Sy —u>b—¢andqy(—u) + qr(—u) > ef — 1. This )
leads to the bound in (40), which can be further upper 1igninf—g logP{qr, > b} > Ey. (47)
—00

bounded using a union bound, as shown in (41). Notice
now that for everyu > 0, the eventS, —u > b —¢ 2) If Cy — 1< Ep, we get from (37), (38), and (46),
is independent of the value @f;(—u) + ¢r(—u), since

these are determined by arrivals in disjoint intervals. P{qr > b} < e t(=9(Cr—1=9)
Therefore, the right-hand side of (41) equals . [536_((1_6)1,(&_@1,“)) PR 4
P{S, —u>b—&}PJqu(—u)+qr(—u) >e* —1
; { } from which it is immediate that
(1-8)b . 1
< Z ZP{Su—u>b—{}lﬂei(chlis)i (42) hgg.gf—glogp{QLZb}2(1—5)(CH—1—5)-
£=0 u>0
(1-6)b Since the above is true for eveeyandd, we get
< Z ng*(EL*6)(b*€)K16*(CH*1*6)§. (43) o 1
£=0 hbmlnf -3 logP{qr, > b} > Cy — 1. (48)
— 00
Equation (42) follows from Theorem 4, and (43) is a
classical large deviation bound that follows, for exampld,heorem 10 now follows from (47) and (48). O

from [13, Lemma 1.5]. (These inequalities are valid for Thus, the light queue tail is upper bounded by an expo-

all ¢ > 0 and for somex; and x5 that depend or). nential term, whose rate of decay is given by the smaller
Thus, for everye > 0, of the intrinsic exponenE, and Cy — 1. We remark that

Theorem 10 utilizes only the light-tailed nature bf-), and

(1-9)b ; . -
_ 1 —) (b the tail coefficient ofH(-). Specifically, we do not need to
(Cu—1-e)¢+(EL—e)(b-8)]
P{&} < ) winse - (44 assume any regularity property such H¢.) € OR for the
5%0- _ result to hold. However, if we assume that the tailfof-) is
Let us now distinguish two cases: regularly varying, we can obtain a large deviation lowertbu
(@ Cig —1 > Er : In this case, we can bound thethat matches the upper bound in Theorem 10.
probability in (44) as follows. Theorem 11:Suppose that?(-) € R(Cg). Then, under
(1-8)b LMW scheduling, the tail distribution of; satisfies an LDP
P{&} < kikge "EL—O) Z e~ (Cr—1-EL)¢ with rate function given by
£=0 . 1 .
< K1K3 o—b(EL—e) blggo 7 loglP{gr > b} = min(EL, Cy —1).
1 _ e_(CH_l_EL)
= ke PFL=9) e > 0, (45) Proof: In light of Theorem 10, it is enough to prove that
wherex > 0 is some constant that dependson lim sup 1 logP {qr, > b} < min(Er, Cy —1).
(b) Cx —1 < Er : Manipulating similar to case (a), we bsoo b

et
d Let us denote b)g(Lp) the length of the light queue, when it

—b(Cr—1—e)(1—6)
P{&} < ke " , Ve> 0. (46) s given complete priority ovef{. Note thatP {q(Lp) > b} is

Let us now put together the bounds on terms (i), (ii) anal lower bound on the overflow probability undany policy,
(iii) into Equation (34). including LMW. Therefore, for allb > 0, P{q;, > b} >

1) If Cy — 1 > EL, we get from (37), (38), and (45), P {qu> > b} . This implies

P{qy > b} < e b= (Er=c) ] Lo e
. [,% 4 e (1=0b(Cr-1-Br)) | ,{é} , HaSsup Ty 08 {ar 20} <

. 1
from which it is immediate that lim sup ~3 log P {Q(Lp) > b} =FEp, (49)

b— o0

. 1
liminf -2 logP {gr > b} 2 (1~ 8)(EL —¢). where the last step is from (14).
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close to the leveb even if the heavy queue were absent. This

N

mode of overflow is more likely for larger values df, which
18 explains the diminishing exponent in this regime.
Ler The flat portion of the curve in Figure 3 corresponds to
141 a second overflow mode. In this regime, the overflow of the
hEr light queue occurs due to extreme misbehavior on the part of
TfI Wt the heavy-tailed input. Specifically, the heavy queue besom
e larger thane® after receiving a very large burst. After this
£ 08 instant, the heavy queue takes over the server, and the light
0.6 gueue gets starved until it gradually builds up to the lével
0.4 In this regime, the light queue input behaves typically, and
02 plays no role in the overflow of.. That is, the exponent
is independent of\;, being equal to a constar®y — 1.
% 02 0.4 06 0.8 1 The exponent is determined entirely by the ‘burstinesshef t
A heavy-tailed traffic, as reflected in the tail coefficient.

Fig. 3. The large deviation exponent fgf, under LMW scheduling, as a
function of \z,. The light queue is fed by Poisson bursts, aiig = 2.5. VIIl. CONCLUDING REMARKS

We considered a system of parallel queues fed by a
mix of heavy-tailed and light-tailed traffic, and served by
Next, we can show, following the arguments in the proofs single server. We studied the asymptotic behavior of the
of Proposition 10 and Theorem 8 that queue size distributions under various scheduling palidide
Ha showed that the occupancy distribution of the heavy queue is
P{gr > b} > AyP {HR >eb 1, Z L(i) > b} ) asymptotically insensitive to the scheduling policy usadd
i=1 inevitably heavy-tailed. In contrast, the light queue quamcy
Arguing as in the proof of Lemma 5, we can show that distribution can bg heavy-tailed or light-tailed depemgdon
i tht?rrs]chedghng polygy._ . e derva f
b , b e major contribution of the paper is in the derivation o
P {HR ze —1 ZL(Z) 2 b} ~F {HR 2e - 1} ' an asymptotic characterization of the light queue occupanc
distribution, under max-weight-scheduling. We showed that
, the light queue distribution is heavy-tailed with a finitel ta
P{lor 2 b} 2 P {HR ze - 1} : coefficient under max-weight-scheduling, for any values of

Next, sinceH (-) is regularly varying with tail coefficient’y, the scheduling parameters. However, the tail coefficient ca

Hp is also regularly varying with tail coefficierd® — 1, so be improved by choosing the scheduling parameters to favor
that]P’{HR > b _ 1} = U(eb)etC€u=1) Finally, we can the light queue. We also observed that ‘plain’ max-weight

=1
Thus,

write scheduling leads to the worst possible tail coefficient & th
1 light queue distribution, among all non-idling policies.
1imsup—510g]P’{qL > b} Another main contribution of the paper is the log-max-
boo 1 weight policy, and the corresponding asymptotic analysis.
< limsup——log]P{HR > el — 1} We showed that the light queue occupancy distribution is
booo b light-tailed under LMW scheduling, and explicitly deriveth
— Cy —1— limsup log U(e") exponentially decaying upper bound on the tail of the light

bsoo b ' gueue distribution. Additionally, the LMW policy also hdset
The final limit supremum is shown to be zero in Lemma @esirable property of being throughput optimal in a general
in the appendix, using a representation theorem for slowfiy€ueing network.

varying functions. Thus, Although we focused on a very simple queueing network in
1 this paper, we believe that the insights obtained are véduab
limsup —— logP {q;, > b} < Oy — 1. (50) in much more general settings. For instance, in a general
bsoo b gueueing network with a mix of light-tailed and heavy-tdile
Equations (49) and (50) imply the theorem. O traffic flows, we expect that the celebrated max-weight polic

Figure 3 shows the large deviation exponent given by Theloas the tendency to ‘infect’ competing light-tailed flowstwi
rem 11 as a function of;, for Cy = 2.5, and Poisson inputs heavy-tailed asymptotics. A similar effect was also noted i
feeding the light queue. There are two distinct regimes @ tli19], in the context of expected delays. Regarding the asymp
plot, corresponding to two fundamentally different modés dotic distribution of the steady-state delays, we can tivielly
overflow. For relatively large values af,, the exponent for the expect similar behavior to that of the respective queuetheng
LMW policy equalsEy, the intrinsic exponent. In this regime,as long as the queues are served in a first-come-first-served
the light queue overflows entirely due to atypical behavior i(FCFS) fashion. However, when the queueing discipline ts no
the input procesd.(-). In other wordsg;, would have grown FCFS, the delay asymptotics could be more complex. Further,
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results analogous to the ones derived in this paper are aldext, we write a lower bound:
expected to hold in continuous time.

We also believe that the LMW policy occupies a unlqug{SN >0} 2 PASn>b N >b(1+0)}
‘sweet spot’ in the context of scheduling light-tailed fiaf = P{N>b(1+0)}-P{Sy <bN>b(1+8)}
in the presence of heavy-tailed traffic. This is because the > P{N>0b(1+0)} —P{Spass <b}. (52)
LMW policy deemphasizes the heavy-tailed flow sufficiently
to maintain good light queue asymptotics, while also emguri
network-wide stability.

For future work, we propose the extension of the results
this paper to more general single-hop and multi-hop netsjor
and time-varying channel models.

Since the X; have a well defined moment generating
function, their sample average satisfies an exponentialezon
ma\tlon inequality around the mean. Specifically, we canasho
psing the Chernoff bound that there exist positive constant

k,n such that

]P){S\_b(l—(i)j > b} < ke b,
APPENDIXA
TECHNICAL LEMMATA Thus,

Lemma 2:The tail coefficient ofH(-) + L(-) is Cg. P {Sip1-s)) > b} = o(P{N > b}) (53)
Proof: Clearly, E [(H + L)“#*°] > E[H“" ] = oo, for
every$ > 0. We next need to show that [(H + L)“# %] <
0, for_ everyd > 0. For a random variabléX and eventE, P {SLb(lJré)j < b} =o(P{N > b}). (54)
let us introduce the notatioR [X; F] = E[X1g|, wherelg
is the indicator ofE. (Thus, for examplel [X] = E [X; E] + Next, getting back to (51),

asb — oo. Similarly,

E[X; E<]). Now,
E[(H + L)% =E[(H + L)% H > L] limsup BN >0 i o PRS00 > b}
+E[(H+L)°" % H<IL] booo PN >0} 7 e P{N > b}
Cu—6 Cu—6 . P{N >0b(1-4)}
<E[(2H)“" % H>L|+E[(2L)“" ° H < L] lim sup (55)

b—00 ]P){N > b}

The first term on the right hand side is zero in view of (53),
where the last step follows from the tail coefficient/éf-), so that for alls, we have

<200 {E [HO ] + E[L9" ]} < o,

and the light-tailed nature af(-). O
Lemma 3:P{Hr >m, Hy >n} =P{Hr >m+n} lim sup P{Sx > b} < limsup PN >b(1 — 5)}
Proof: Using (1) and (2), booo P{N >b} b—soo P{N > b}
Taking the limit asd | 0
P {H+ =k+1} )
P{Hpr > Hy > = i S AR §
U zm, Haznp= 3 [H]  P{Sy > b} P{N > b(1 —5)}
k2>m 1Zn limsup ——— < hm lim sup
o) bh—s 00 ]P){N > b} 010 poo P{N > b}
P {H+ = p} (56)
=> > = > P{Hp=k+n} N
Fm phin S The final limit is unity, by the definition of the clasgR.

Similarly, we can show using (52), (54), and the intermesdiat

=P{Hr > . ., !
{Hr = m+n} regular variation of the tail ofV that

O

Lemma 4:Let N € ZR be a non-negative integer valued lim1i fi{i]]\] >bb} > 1. (57)
random variable. LetX;,7 > 1 be i.i.d. non-negative light- boe P }
tailed random variables, with mean, independent ofN. Equations (56) and (57) imply the result. O
Define N The above lemma can be proved under more general as-

Gy — ZX_ sumptions than stated here, see [24].
N o Lemma 5:1f H(-) € OR, we have
Then o /o Ha
P{Sy > b} ~P{N > b/u}. PQ Hp > 0°/08, 3 L) > b
=1
Proof: For notational ease, we will prove the result foe= 1, PlHR > %}7 if 2L <1,
- L aH

although the result and its proof technique remain valid for

. X ~ > b if &L —
any p > 0. First, for a fixedd > 0, we have Py\Hr 20+ 57 }’ i L (58)

PlHg > baL/aH}, if 2L > 1.
Pl =)= f In this proof, | k f | simpl
Proof: In this proof, let us take\;, = 1 for notational simplic-
< — _
P{Sv > b, N <b(1=0)} + P{Sy > b, N >b(1 —0)} ity, although the same proof works without this assumption.
<P {SLb(lfé)J > b} +P{N>b1-0)}. (51) DenoteS,, 2121 L(i).
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We first get an upper bound. For every- 0, we have To justify the final step, recall that according to Lemma 1,
H(-) € OR implies Hp € ER. SinceER C IR, the final

ar, /o
P{HR 2 bR, iy 2 b} limit in (63) is unity, by the definition of intermediate-relgr

—_Pp {HR > pOL/OH Sy > b Ha < b(1 — 5)} variation (Definition 2).
o /o Along similar lines, we can use (60), (62), and the fact that
+P{HR2b HEL SHa 2 b, HA>b(1—5)} Hp € TR to show that
<P{Su, >b, Ha <b(1l-9)}
P{Hp > br/*m Sy, >b}
P{Hp > bOL/H [y >b(1—6 imi = P PHA =
+ { R > A ( )} thgggf F{Hn> 0]

< P{Sy, >b, Ha <b(l—08)} -
arfan oy > limliminf LR 2 00+ 20 gy
+P<HRr>b +b(1 —0) (59) 510 b—oo P{Hg > b}
< P{Spaay > b} +P{HR > 0/ 1 b(1-6)}. Equations (63) and (64) imply that
In (59), we have utilized Lemma 3. ar/a N
Next, let us derive a lower bound. P{HR 2 bR, Shy = b} P{Hp = b},
IP’{HR > pOE/OH | Sy > b} which implies Lemma 5 forv; /oy < 1, andAp, = 1.

Case (ii): ar,/ag = 1. The proof is similar to the previous

arp/a
> P {Hp > 00/, Sy, > b, Ha > b(1+6)} case. Here, we get

_ ar/a
= B Hr > b0, H > b1+ 0)} P{Hgp>b, Sy, > b} ~P{Hg > 2b}.

_ ar/apg
P{HR > 0/, Sy <b, Ha > b0 +0)] Case (iii): az Jan > 1.

> ]P{HR > b/ H > b(1 4 5)} For the upper bound, we have from (59) and (61),

—P{Si, <b, Ha>b(1+0)} P{Hp > br/on, Sy, > b}

> P{Hr > b/ £ b(1+8)} ~P{Spray <b}. (60) ~ HMSUD—— (Hn = brejon ]
Equation (60) uses Lemma 3. Now, observe that the terms ) P{HR > por/en 4 p(1 — 5)}
P {Sp1_s) > b} in (59) andP {Spy1 s < b} in (60) de- < limsup =
= b o0 ]P’{HR > baL/aH}

cay exponentially fast a8 — oo, for anyé > 0. This'is

becausd.(-) is light-tailed, and its sample average satisfies dpimilarly, for the lower bound, we have from (60) and (62),
exponential concentration inequality around the meantyuni S par/an >

More precisely, a Chernoff bound can be used to show that 1im inf P {HR 20  SHa 2 b}

b—s00 ]P’{HR > bOtL/aH}
P{Sia s = b} =0 (P{Hr= 0"/ +0}),  (6D) P{Hp > b:/2n 4 b(1 + 5)}

> liminf
and b—00 P {HR > por/an }
P {Snaen <0} =0 (B{Hr>b"/"" +b}). (62) > i LR Z VAL O} e
T b—oo P{HRZbaL/aH} ’

Case (i):ar/ag < 1. Using (59), we write

Thus,
I < P {Hp > bor/on, >
e P{Hr > b} = lm inf TR i, 2 b)
]P’{H > peL/eH +b(1 5)} e P {HR =z baL/aH}
s PASpa-9) 2 b} "= 7 . P{Hp>brlon(144)}
P{HRr > b} P{Hr > b} > lim lim inf =1

. , 310 b—oo P{Hp > bor/on} ’
where we have used ‘Is’ to abbrevidtei sup,_, . . The first

term on the right is zero in view of (61). Sinee, /oy < 1, where the last limit is unity due to the intermediate-regula

variation of Hg. Therefore, forar, /ay > 1, we can conclude
P Hg > b2L/oH Sy, > b} that
lim sup

boroo P{Hr > b}

ar /o ~ ar/a
P {Hn > b(1 - )} p{tn = b0, Sy 2 b~ P {2 b0 ]

< lim sup , Vo > 0.
broo P{Hr = b} Lemma 5 is now proved. O
Thus, Lemma 6:For any slowly varying functior/(-),
P{Hp > b>r/*1 Sy >1b
lim sup { = 4 = } lim M =0.
boroc P{Hg > b} amoo loga

< lim lim sup P{HR 2 b(1—9)} =1. (63) Proof: We use the representation theorem for slowly varying
010 poo P{HR > b} functions derived in [11]. For every slowly varying funatio




U(-), there exists & > 0 such that for al: > B, the function

can be written as
U(x) = exp (vu) [ %dy) |

wherev(z) converges to a finite constant, agfk) — 0 as
x — oo. Therefore,

. logU(a) )+ fa C(y) s #dy
lim ———- = hm = By =
a—oo  loga a—o0 loga a—oo  loga

[19]

[20]

[21]

[22]

(23]

where the last step is becausg:) converges to a constant.[24]

Next, given anye > 0, chooseC(¢) such that|¢(a)]

€, V.a > C(e). Then, we have
C(e) a

. ‘ ¢ dy’ S5 gy 4 pa Ll
lim < lim

a— 00 loga a— 00 loga

elog =~
< lim _ 20 _
a—oco  loga

Since the above is true for eveey> 0, the result follows.O
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