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Abstract—This paper studies the problem of distributed com-
putation over a network of wireless sensors. While this prokem
applies to many emerging applications, to keep our discussn
concrete, we will focus on sensor networks used for structul
health monitoring. Within this context, the heaviest compuation
is to determine the singular value decomposition (SVD) to dract
mode shapes (eigenvectors) of a structure. Compared to cediting
raw vibration data and performing SVD at a central location,
computing SVD within the network can result in significantly
lower energy consumption and delay. Using recent results on
decomposing SVD, a well-known centralized operation, we s& to
determine a near-optimal communication structure that endles
the distribution of this computation and the reassembly of he
final results, with the objective of minimizing energy consmption
subject to a computational delay constraint. We show that tis
reduces to a generalized clustering problem, and establisthat it
is NP-hard. By relaxing the delay constraint, we derive a lower
bound. We then propose an integer linear program (ILP) to
solve the constrained problem exactly as well as an approxiate
algorithm with a proven approximation ratio. We further pre sent
a distributed version of the approximate algorithm. We present
both simulation and experimentation results to demonstrag¢ the
effectiveness of these algorithms.

Index Terms—Networked Computing, Wireless Sensor Net-
works, Structural Health Monitoring, Clustering, Degree-
Constrained Data Collection Tree, Singular Value Decompason.

I. INTRODUCTION

represent the complex computational requirements dendande
by many practical engineering applications. Results onemor
general functions, e.g., the family afymmetric functions
studied in [8]-[10], are often in the form of delivery equiv-
alent representation of the data rather than a communicatio
structure that would allow the in-network computation of th
function. (A more extensive discussion on related work is
presented in Section VII.)

This study is motivated by critical in-network computatidbn
needs that arise in structural health monitoring (SHM). SHM
is a rapidly growing application area for wireless sensor
network technologies [11]-[13] and cyber-physical system
approaches [13] because of (i) the increasing need to pro-
vide low-cost and timely monitoring and inspection of the
deteriorating national infrastructure, and (ii) the adsesin
integrated wireless sensing technologies.

Within this context, the most common approach to monitor
fatigue or detect damage is to collect vibration data using a
set of wireless sensors in response to white/free inputeo th
structure and then compute the FFT of each individual sensed
stream; this is then followed by the procedure of singuliuea
decomposition (SVD) on these FFTs to determine a set of
modes [14]-[16]. Anodeis a combination of a frequency and
a shape (in the form of a vector); the mode shape describes the
expected curvature (or displacement) of a surface vilgadin
the corresponding modal frequency. The mode shapes convey

Over the past decade, tremendous progress has been ma@gul information as to whether the structure is behaving

in understanding and using wireless sensor networks.

particular relevance to this paper are extensive studiei®-on

network processing, e.g., finding efficient routing strasg

R¥rmally, and can thus be used to detect damage.
To obtain these modes, a straightforward way is to have all
sensor nodes transmit raw vibration data in the form of time

when data compression and aggregation are involved. Hoyéries of certain size, or the Fast Fourier Transform (FET) o
ever, many emerging applications, e.g., body area sensifis raw data, to a central controller or the base stations Thi

structural health monitoring, and various other cybersgitsl

collection can be done either via single hop communicatfion i

systems, require far more sophisticated data processingttig sensor network has a star topology surrounding the base

order to enable real-time diagnosis and control.

station, or via multi-hop communication if the network span

This leads to the question of how to perform arbitrary large area (e.g., along a highway bridge). This form of data
(and likely complex) computational tasks using a distelolit collection can be very expensive: a single 4000-point FFT
network of wireless sensors, each with limited resourcean translate into 8K bytes of data [17]. With 10s or 100s
both in energy and in processing capability. Previous tesubf sensors monitoring a large civil infrastructure, thistada
on establishing the communication structure for in-nefwokollection methodology can be a huge burden on the battery

computation mostly consider relatively simple functioie|

power of the wireless sensors. Instead, if we perform the

max, min, averages and sums, see e.g., [1]-[7] that canltyt fus\VD computation within the network, then we can potentially
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achieve a significant reduction in the amount of data thatisee
to be transmitted because the output of the SVD computation
is a set of vectors much smaller in size compared to the FFTs
(on the order of 10s of bytes [17]). It is therefore highly
desirable to be able to perform the SVD computation within
the network.



There are a number of challenges in performing a complex4) We use both simulations and testbed experiments to

matrix operation like SVD, a classical centralized proaedu
in a distributed way over a network of resource-constrained
sensors. A single sensor may be limited in its processing

evaluate our algorithms and compare our results to a
routing algorithm which does not use in-network compu-
tation as well as to a randomly generated communication

capability which in turn limits the size of the matrix opeoat structure.

In addition, the input FFTs originate from sensors at déffer the approximation algorithm, we also propose a solutioméo t
locations, Whi(_:h makes it f:ritical to find the right <_:ombiloat degree-constrained shortest path routing problem whianis
of a computation mechanism and a communication structurgnportant problem in its own right and has other application
In this paper we present a method of obtaining the optimg! \yireless sensor systems, like building a data collection
communication structure for the distributed computatidn gee to minimize interference when multiple channels are
SVD, by utilizing a functional decomposition of SVD recentl ayailable for scheduling [23]. Results for this problem are
developed by Zimmermaat al. [17]. Here optimality is de- ynown only for complete graphs whose weights satisfy the
fined with respect to minimizing energy consumption subjeﬁiiamg|e inequality [24], [25]. Hence, our result here ig first
to a computational delay constraint. We show that this nethg, propose approximation algorithms and analytically \eri
seeks to construct an optimal data forwarding and computiggir approximation factors for this problem in graphs iceld
structure, which turns out to be a certain type of tree. Tflﬁ/ a communication network.
construction of this tree structure may also be viewed as &y end this introduction with a simple example to illustrate
generalized form of clustering as we detail in Section Hl. knat gifferent computational objectives will have diffate
is worth mentioning that SVD is an essential computationghimal communication structures. We compare the optimal

need in a very broad class of signal processing algorithmgiing for data compression, and for computing SVD. As-
including classification, identification and detection]Hd[22]. ¢\, me that compression converts 2 input streams ofRiaits

So the results obtain(_ad here can _potentiaIIy be applied tymaach to an output stream &-+r wherer < R [26]. The
other signal processing applications beyond structuralthe gyvp gperator, as discussed in detail in Section IV, converts
monitoring. In this paper, to make our discussion Concree, iyt streams of siz bits each, intdk eigenvectors of size
will focus on the SHM apph_catlon. This allows us to select pits each withr < R. Consider the simple 4-node topology
system parameters, constraints and network topologiesibagt Figure 1 and the two possible communication structures,

on real systems. with node 0 being the base station and assume all links

‘While the analysis and results presented here are framgd o¢ ynit length/cost. As derived in [26], data compressio
within the context of SVD, they illustrate a general appiosc requires an exchange oR3-3r (using successive encoding)

the distributed in-network computation of complex objees. ,nq & r bits respectively for the communication structures
Under this approach, a centralized operation is first decm@o and (b). Hence, iR > 2r, then (a) is better. On the other
posed into a number of computational elements (or opeatoiS g in the case of SVD if we do not perform in-network
each operating on a set of inputs. This is then follow&gym g tation, then sending all raw data to node O results in a
by an optimization procedure to determine on which nodegst of R and &R over the two structures, respectively. If we
these elements should be placed (computed), which in tWgtorm in-network computation, then as detailed in Sectio
determines to whom a node should send its data input. Thig\s he resulting costs areR8+ 6r and R+ 3r for the two

the main novelty of our approach. By using this method angy,cqres, respectively. Hence (b) is always better feiShD
the unique features of SVD computation we can dramat'ca%mputation.

reduce the amount of data transmission required. The main
results and contributions of this paper are summarized as
follows.

1) We formally define the above networked computing
problem for SVD for the objective of minimizing energy
consumption subject to a delay constraint, and establish
that it is NP-hard.

. . b
2) We derive a lower bound on the energy consumption b . _ © _ _
. 1. In-network computation and compressed sensing aae & different

relaxmg _the ,delay constraint a,‘nd show that the opt!m timal communication structure. (a) and (b) represent tthe possible
communication and computation for the unconstrain@dmmunication structures for a simple 4-node topology.
problem has a simple structure: the communication The remainder of this paper is organized as follows. In
occurs along a shortest-path tree, where each non-I&action 1, we formally present the distributed SVD problem
node performs a local SVD operation. A lower bound and the optimal solution to the unconstrained
3) We develop an integer linear program (ILP) to solvproblem are provided in Section Ill. Section IV presents an
the constrained problem, and introduce an approximagact ILP solution for the constrained problem, a number
algorithm, along with its distributed implementationpf approximate algorithms with proven approximation ratio
with a proven approximation ratio. We also discusand a distributed implementation of one of these approx@mat
modifications to our algorithms in the presence of noisglgorithms. In Section V, we discuss various relaxationd an
sensor measurements. extensions, including alternative energy models and nioise



sensor measurement. In Section VI we evaluate our algoriti®8D matrix usingN| sets of FFT results and determifie|
through both numerical simulation and testbed experimenésgenvectors. Let another sensor node be in possessior of th
Related work is discussed in Section VII, and we conclud€T of N’ C V,|N’| > 1 sensors. It can perform a similar

the paper in Section VIII. computation to determingN’| eigenvectors. To be able to
combine results from these two computations to constriet th
Il. PROBLEM FORMULATION AND PRELIMINARIES INUN’| eigenvectors, one needs to be able to determine the

ofPpropriate scaling factors so that the common eigenwector
Jras the same constant in both and N’. This notion is
precisely given in the following.
Definition 1: Two computations are calledombinableif
o one can determine the appropriate scaling factors to cambin
A. Background on Structural Health Monitoring them. A computation or‘i\?pnoges and angther computation
During the past two decades, the SHM community has N’ nodes is combinable if and only if eithé&t N’ # @
become increasingly focused on the use of the structuredvib(that is, there is at least one common sensdX iand N’), or

tion data to identify degradation or damage within struslturthere exists another computation on a seN6éfnodes which
systems. The first step in determining if the vibration datia ¢ js combinable with botiN and N'.

lected by a set of sensors represents a healthy or an unhealth

In this section, we first give the relevant background
structural health monitoring, then present the network eho
and formally introduce the problem.

structure is to decompose the spectral density matrix irgeta

of single-degree-of-freedom systems. Assuming a broatiban FFT | FFT FFT FFT | FFT FFT C?FFT
white input to the system, this can be accomplished by first [ Fli)] [ Fuiw)] [Fotiw)] [ Faliw)] [ Futiw) | [ Fetiw) ] | Feliw) |
obtaining an estimate of the output power spectral density | ] |
(PSD) matrix for each discrete frequency by creating anyarra - s -

of frequency response functions using the Fast Fouriersfran

form (FFT) from each degree of freedom. Early studies in Wty | Bulsdy) Wil sh)

this field focused on identifying changes in modal frequesci <—|

or the eigenvalues of the PSD matrix using the peak picking

method [27] to detect damage in large structural systemis [28 Scale and Combine

More recent studies have observed that viewing changes in | {b,.9:.9,.; ,0..9s )
modal frequencies in combination with changes in mode
shape information (eigenvector of the PSD matrix) makeSFib. 2. Decomposing the computation of SVD using in-netwamknputation.
increasingly possible to both detect and locate damagénath Fi(jw) and@,0 <i <6 denote the FFTs and the eigenvectors respectively.
variety of structural types and configurations [14]-[16he®f | R denotes the size in bits required to represent the FFT
the most widely used method for mode shape estimation is {hfa sensor stream amddenotes the size in bits to represent a
frequency domain decomposition (FDD) method proposed Bygenvector, each SVD computation which combines the FFT
Brinckeret al.[29]. This method involves computing the SVDof k sensor streams reduces the number of bits fk&o kr.

of the PSD matrix to extract the eigenvectors/mode shapesyote that the size of the output stream does not deperfd on
The most common |mp|ementat|0n of the FDD method OVeIut 0n|y onr, which depends on the size of the network.

a wireless sensor network is to have each sensor send its
vibration data to a central sensor node which computes the o
SVD of the PSD matrix. This method requires significarf- Network Model and Problem Definition

computational power and memory at the central node aswith the above decomposition, the associated communica-
well as significant energy consumption in the network tgion problem may also be viewed asyaneralized clustering
communicate all this data to the central node. For exampleproblem the solution lies in determining which subset of
there are 100 sensor nodes in the network, this implementatsensors ¢luste) should send their FFTs to which common
requires the central sensor node to compute the SVD ofade ¢luster heady who then computes the SVD for this
100x 100 PSD matrix as well as having each of the 100 sensqifbset, such that these subsets have the proper overlap to
nodes send all their vibration data to one central node.  allow individual SVDs to be scaled and combined. This

Zimmermanet al. [17] proposed an alternative implemenspecific overlapping requirement makes it different fromsmo
tation by decomposing the computation of SVD (graphicalijlustering studies in the literature; see a detailed dgonsn
represented in Figure 2). Each sensor node is assumed tasketion VII.
aware of the eigenvalues of the PSD matrix (which have beenwe proceed to assume a network model of an undirected
determined using the peak-picking metfpend the FFT of graph denoted a8(V,E). Each (sensor) node W acts as both
its own sensed data stream. Denoting the entire set of no@esensor and a relay. If two nodes can successfully exchange
asV, if a sensor has the FFT dfl C V,|N| > 1 sensors messages directly with each other, there exists a weighlgel e
and all the eigenvalues, then it can compute the SVD of the E petween them, with weight denotegd > 0. Without loss

. . _ _ of generality, we take node O to be the central node or the

Peal_( picking can be done'ln a separate process p_re_cedlng\/tbe Sb . . .
calculation, and does not require transmissions of FFTénviblves only ase station. We also assume that all sensors (including the
sending peaks which can be represented in very few bytes. base station) are identical in their radio capability (aedde




have the same energy consumption per bit). This is donedessing can occur without turning on the radio, and consumes
keep the presentation simple and can be easily relaxed. much less energy by comparison. In addition, operatiores lik

Each node has a local input vibration stream. The goal B$T is required by each node no matter what communication
to evaluate the SVD of the PSD matrix formed by the inpigchemes we use. Therefore not including it in the model will
vibration streams of all the sensors. We defirmeasing cycle not affect the resulting optimal solution.
to be the time duration in which each sensor performs theWe now formally introduce the problem.
sensing task to generate a vibration stream, the SVD is therProblem P1 Find (1) the setS of sensor nodes on which
computed and the mode shapes are made known at the liheeSVD computation will take place, (2) for eask S, their
station. The length of this cycle as well as how this proceducorresponding sé¥ls of sensor nodes whose FFT will be made
may be used in practice are discussed in Section V. Cawvailable ats, and (3) a routing structure, so as to minimize
objective is to determine the optimal communication suitest E, the total energy consumed, subject to the constraint that
to minimize the energy consumption in a sensing cycle und| < ns, Vse€ S, wherens denotes the maximum cluster size
a constraint on the maximum duration of a sensing cycle. allowed at nodes that corresponds to its computational delay

The two metrics of interest, namely energy consumptiaonstraint, and that the computations on all paits, € Sare
and computational delay are precisely defined as follows. combinable.

Energy consumptiois defined as the total communication The setS will also be referred to as the set of cluster
energy consumed in the network in one sensing cycle. Uetads, and sells the cluster associated with head nosle
Erx and Ery denote the energy consumed in transmitting ard the above description we have imposed individual delay
receiving a bit of data, and denote By = Erx+ Erx. We will  constraints. Note that the computational delay of one round
assume that the energy consumed in transmitting a packebbfSVD is dominated by the largest delay among all nodes
B bits over an edge is given byw.BE,. The edge weight if the computations of successive rounds are pipelined. One
we allows us to take into account physical layer factors likeould also try to minimize the maximum computational delay
link quality, e.g., by using as weight the expected number wfith a constraint on the energy consumption. Indeed, it can
retransmissions. be shown that the dual of the linear programs we propose will

Computational delayis defined as the time it takes tooptimally solve this alternative formulation.
compute a designated function at a sensor node. As observeheorem 1:There is no polynomial time algorithm that
in [17], [30], the computational time is the chief contributo solves P1, unlesB = NP.
delay as packet sizes in sensor systems tend to be very snidlis can be shown through a reduction from set cover. The
Thus, the duration of a sensing cycle depends primarily @noofis omitted due to space constraints. The interestdere
the maximum computational delay amongst all sensor nodasreferred to [31].

A constraint on the computational delay essentially trztesl
into a constraint on the maximum number of FFT’s which can 1. AL OWERBOUND ON THE VALUE OF P1
be combined at a node. L . . . . .
X . To simplify presentation, in this section we will assume

Our algorithms and analysis do not depend on the exqﬁ%\t the weights of all edges are equal. This is not restdcti
model used for energy consumption, provided that it remains . e . ’ . o
a function of the number of bits transmitted. On the othe|d',1anals all boundg derived n this section can be ea_sny modified to

mciorporate different weights. With this assumption, thergy

the above choice of energy model does not take into accoun . .
;é)nsumed in sending data from one node to another merely

energy consumed in idle listening, which is often observe d h ber of h h hb h
to be on the same order as active receiving. The difficul yeper! .s.ont € humber of hops on the pat etweent. em.
' Definition 2: A data collection tree (DCTJor G(V,E) is

in incorporating idle listening lies in the fact that it isawdly .
dependent on the MAC layer used; a MAC protocol with goo@i 2222nsl?ftigr?i;giﬂ;hrigntir:r?u%a&efig)t:? each nod¥’ to

sleep scheduling mechanisms may consume significantly Ies%ompared t0 a minimum spanning tree (MST), a DCT is

energy in idle listening mode than another. The above ener )éhortest-path tree that offers minimum weight on each path

model thus may be interpreted as capturing an ideal MAC wi 0 the root rather than over the entire tree. Since all weight

zero idle listening. Alternatively it may also be intermétas are equal. a path of minimum weight is equivalent to that of
capturing a MAC that never puts nodes to sleep; this is becaus. qual, a p 9 d

i ) . . ) . . minimum hop count. Letlpy(v) denote the hop count of node
with active reception and idle listening consuming energy q :
. €V in the DCT.
the same order, the difference between one scheme and ano\fhxla . . -
; . .. The following lemma provides a lower bound on the mini-
becomes dominated by energy consumed in transmissign . . .
S . ; . mum energy consumption for P1 given any choicesof
which is a function of the total number of bits transmitted. T ’ . .
. ) ) . ) . Lemma 1:Consider P1 defined on graph(V,E), and a
summarize, the intention behind this energy model is so that .
. - . set of cluster headS+# ¢, then a lower bound on the optimal
we can analyze the optimal communication/routing struecadr energy consumption, denoted EYS), is given b
the network layer without having to make specific assumgtion oy ption, 159 y
on the underlying MAC layer. With this model, the total energ
consumption is effectively translated into the total numbe  E(S) > | (V[-1R+ Z/(dO(V) —Dr+[Sr)E. (1)
bits communicated. Ve
Also note that the above energy model only concerns com- Proof: For all nodesv € V\S, a message of siz&
munication but not processing. This is because in genegal p(containing the FFT) needs to be transmitted freto some



node inS. This message goes over at least one hop to reach this(T) is feasible and has an energy consumption
node, after which the size reducegtfthe eigenvector). Since
the minimum hop. count from to the base station idy(v), if  Eag(T) = <(|V| ~ 1R+ Z/(dT(V) —Dr+ |S|r> E . (3)
the message of sizZR goes over one hop, the message of size Ve
r will go over at leastly(v) — 1 hops. AsR > r, the amount of
transmission required includég| — || transmissions of size
Rand ¥\ s(do(v) — 1) transmissions of size.

In addition to the above, each of th& computations
needs to be combinable. This means thst,s, € S, either

Ns, NNs, 7 @ or there exists another node< Ssuch that the FFT to its parent, this results in a cost @¥| — 1) RE,; each

computatmn_s at nodes ano_ls\;,, as well as that at nodeg and on-leaf node computes the SVD from its children’s FFT and
sz are combinable, respectively. To understand how many ex[;ra . .

. . . IS own, and then sends the eigenvectors to the base station,
messages are needed to satisfy this constraint, we Conmwcresultin in (dr (v)— 1)r + |SIr bits. Putting everythin
following graph GS(S ES): an edge is added tBS between g1n3 ey (O ' 9 ything

) . together yields the lemma. ]
nqdessl andsp, $1,% €S, only if Ns, NNs, 7 ¢. Each edge in This lemma suggests that of all solutions given by a tree
this graph thus represents at least one common node between L .

. . structure, the one that minimizes both (v) and |S will
Ns, andNs,; each common node needs to transmit a message, | : : .
) sult in the smallest energy consumption. This motivates t

of sizeR to boths; ands,.

N construction of a DCT (which minimizedr(v)) that has a
It follows that each edge implies at least one extra transmiSinimum number of non-leaf nodes (which minimiz&s)

sRion of sizeoll?in T‘.ddit_il_on to t:le|V|_—|S| trgnsmissmg_s OE;ISiZ_f Definition 4: A minimum non-leaf node data collection
computed earlier. Two nodes &, € Sare combinable | tree, or MDCT, defined on grap&(V,E) is a DCT that has the

. . . S S
and only if there epsts a path betwesirgndSQ in G*(S,E S) smallest number of non-leaf nodes among all DCTs defined
For a path to exist between every pair of nodes(S ES) on G(V, E). We will denote this tree a%y.

netedst to hav_e gt Iea$;| _'zé edges. Th'(Sj ;neaﬂs a_t Ieﬁt—é A key property of an MDCT is that it is impossible to move
exira transmissions of sizeare required for all pairs,, s, € all the children of non-leaf nodec V on Ty to othernon-leaf

:o be gonjblnabfle._T;klngd this mtg accoulnt,t at Iebfﬁf 1 hodesof height< dr(v). This is because if this could be done
r?n§m|si|ons to tSIkZ ?n Svevis(do(v) — 1) transmissions then we can effectively reduce the number of non-leaf nodes
of sizer have 1o take place. on Tu, which is a contradiction. Figure 3 gives an example:

Finally, computed eigenvectors from nodes S each goes 4 (a) and (b) are DCTs on the same graph, but the former
through at leastlp(v) hops. Combining all of the above yieldsis nhot a MDCT while the latter is.

Proof: We first show feasibility, i.e., each pair of nodes
s1,$ € Sare combinable. Sincgconsists of all non-leaf nodes
on a tree, there exists a path between any pair of these nodes.
ThusAp,(T) is feasible.
Next since each node (except for the base station) sends its

m
%
v

<(|V|—1)R+ Z (do(v) = 1)r + zsdo(v)r> Ep

veV\S

((lVl - DR+ g(do(v)—l)lhL |5|f> By (2

An interesting observation is that the lower bound only
depends on the size &and not its membership. One way to L P B A TR = (o) Number of non-leaf nodes =3
get close to this bound is to limit the delivery of any FFT to a. . o
ingle h d te the FET and the subsequent ei enveg'::‘f_. . 3. Two data collection trees for the same network. Thie dmes
single hop ana rou q g lesent the edges of the trd is the tree in (b).

er(l)yngi\?:r(l)rttrees; Et?bﬁﬁr?ls motivates a particular solution Theorem 2:Consider P2 defined o8(V,E), and an asso-
- i . . ciated MDCTTy with cluster head se$. Under the condition
Deflr_nuon 3: Consujer a grapls(V,E) and a routmq tree o 2r, an optimal solution to P2 is given bpx(Tiv).2
T. Define a communication structube;(T) as follows: (1) Proof: From Lemma 2 we know thaa,, (Tv) matches
Al nqn-leafnodes|nT_const|t_ute the se, (2) clustes, s S exactly the lower bound given in (2). Consider any other
consists of all immediate children sfe S, and (3) each node solution with a cluster head s& such that/S| > |S|. By

sends Its own FFT to Its parent nqde “‘.‘a“d & nodse S Lemma 1E(S) > Ea,,(T) so any solution with a larger set

sends eigenvectors for itself and its children aldndo the S is no better. P2

base station. This will be referred to iee solution T Consider next any solution with a s&t such thats’| < |S.
We next consider an unconstrained version of P1, i.e., @9 Lemma 1, using’ instead ofS reduces the energy by no

removing the computational delay constraint. We refer te th, .o than(|S| — |S"]) rEp. On the other hand, consider a node

unconstrained problem 2. ve Sandv ¢ S'. By the property of the MDCTTy, there are

Lemma 2:Consider P2 defined on a gra@@{V,E), and a only three possibilities in how the children vican send their
routing tree denoted by defined on the same graph. ldat(v)

denote the hop count of nodes V in T. Then tree solution  2The conditionR > 2r is easily satisfied in SVD computation for SHM.




FFT under the new solutio8”: (1) each child ofv sends its  The ILP below solves P1 exactly, where the minimization
FFT to some node” € S’ with do(V’) = do(v) via a single is over the choice ok;j,Vi, | € V.
hop; (2) at least one child of sends its FFT to &' € S’

with do(V’) > do(V) via a single hop; (3) at least one child (ILP_P1) min Ficy jevXjEp (RWj +rWijo) ®)
of v sends its FFT over at leadt> 2 hops to reac’ € S’ s.t.
with do(V’) +d > do(v) + 1. Denote these sets ¥, V, and Y jev.izi % < i < 3 jev.jui X Vi €V (6)

V3, respectively. Note thgS = |SNS’| + |V1| + [V2 U V3.

In case (1), at least one susti € S’ cannot be inS, and Zjevx&ixi LyvieVv "
thesev”’ nodes will be distinct for different € S ¢ S’ nodes, pijk < 254 Vi jkeV 8
for otherwise it contrag/i/cts the definition of a‘;/ MDS/(/:T. Thus Gijo < Ykev Pijk. Vi, j €V 9)
for each suchv € S ¢ S’ there corresponds &' € S", ¢ S. . SETTRVAR RO
Therefore case (1) does not contribute to any reduction in C”O(‘V‘*lfcz Xi )i~ LV j eV (10)
energy consumption compare soluti8hto S. Thus,|S’| < | tijkn < <AL i jkeV,0<n< V| (11)
can only be true if either (2) or (3) is true for some S ¢ S'; Cijn < Gijn-1) + Ykev tijk(n-1), Vi, ] €V,0<n< |V| (12)
in other words|S| — || = [V.UV3|. For each such, if it falls Cin=0,Yi €V,0<n< |V| (13)
under case (2) then there is an energy increase (8¢emS’) " ’ T

YievXij <nj,VjeV (24)

of at leastrE, due to the height increase ®f overyv; if it o
falls under case (3), the energy increase is at lgRstr)Ep > Xij, Cijk, Pijko tijkn € {0,1}Vi, j,keV,0<n< V| (15)
rEy by the condition stated in the theorem. Thus the total L L . .

energy increase is at leadf,, for eachv € V, UV3; therefore The objggtlve (Ean (5) .|s.fa|rly straightforward: if the ],:F
the increase is at leaétS — |§'|)r. Hence any solution with of nodei is sent to nodg, it costsRWE,. The FFT fromi

a smaller se§’ is no better, completing the proof. produces a unique eigenvector of sizat nodej as a result

To summarize, an MDCT yields the optimal solution for Pﬁf ;lesti}[i/(?n computation, which cost$joE, to send to the

which also serves as a lower bound to the value of P1. N , , .
that in this solution the overlap between clusters is thihoug The first consFramt (Eqn (6)? sets the valuepto 1if N; #
and 0 otherwise (note thatM # ¢, then 1<y .y ;i Xji <

cluster heads; all cluster heads (except for the base istasio @, ;
a member of another cluster [V|). Eqn (7) ensures that the FFT of every sensor node is sent

to at least one node. Eqn (8) ensures that= 1 if the FFT
from nodek is sent to both nodeisand j.
IV. EXACT AND APPROXIMATE ALGORITHMS The next five constraints ensure the combinability of the
ﬁflution.by Iimiting the value ofcij,. Eqn (9) ensures that
Cjo =1 if there is at least one node commonNp and N;.
Eqgn (10) states that if bothj € S, the computations atand j
should be combinable. Eqns (11) and (12) populate the value
A. An Exact ILP for P1 of Gijn. Note thattijkn_is a temporary variaple introduced_ to
o o ) ) express the quadratic condition in Equation (4) as a linear
We first mtrodgce optlm|;at|0n vquables used in the ILP. function. Note that the presence of Eqn (10) forces Eqns (8),
The set of variables;j, i, € V define both the setSand (gy (11), and (12) to assign the maximum possible value to
Ns, Vs Sas follows.x;j := 1 if the FFT of nodé is evaluated e | HS: similarly, the presence of the latter forces (10) to
at nodej (i.e.i<N;), and 0 otherwisex;i := 1 if i« Sand 0 555ign the minimum possible value to the LHS.
otherwise. . . Eqgn (13) sets the value of;, to zero for every e V,0<n<
Pijk := 1 if the FFT of nodek is evaluated at both nodés /| This prohibits a corner case whegg, is set to 1 by setting
and j. This notation is used for convenience of presentath{i?mil) to 1 without ensuring that the computationiand j

0”|¥ as itis completely determingd by, 1, J'. eV. ~are combinable. Finally, Eqn (14) imposes the computationa
Finally, the variablesij, recursively verifies the combin- delay constraint at each sensor node.

ability relationship between two nodég € S as follows:

We next present an integer linear program (ILP) to solve
exactly and aD(log(|V|)) approximation algorithm for P1.

1 ifn=0and¥cy pik > 1, B. Degree-Constrained DCT: Problem P3
1 if0<n<|V]and

Y kev Cik(n-1)-Cik(n—1) + Cij(n-1) = 1,
0 otherwise.

Cijn = (4) In this and the next two subsections we will develop a
O(log(|V])) approximation to the optimal solution of P1.
To simplify the presentation, we will again assume that all
Thuscijo = 1 if the pairi, j € S share common nodes in theiredge weights are equal, an assumption easily relaxed withou
respective clusters;j; = 1 if the pairi, j either share common affecting the approximation ratios.
nodes directly or each shares common nodes with a commorThe basic idea is to first use a DCT to find a feasible solution
third cluster, and so on. If the pdirj € Sare combinable, we to P1. A feasible solution requires that each cluster is-size
will have Gij(v|-1 = 1. limited due to the computational delay constraint: a nede
Finally, W; denotes the sum weight of all edges along theannot have more tham, — 1 immediate children. This leads
shortest path from nodeto nodej. to the following definition.



Definition 5: A degree-constrained data collection trem The objective function minimizes the total flow, which essen
DDCT, is a treeT which minimizesy,c, dr(v) under the tially minimizes ., dr(v).
constraint that a nodec V has no more than,—1 immediate  The first two constraints ensure that each node sends a unit
children, wheren,,Vv €V are given constants. flow towards the base station. The third constraint fores
Problem P3 Find a DDCT for G(V,E), which in turn to be 0 ifxe is O, otherwise, it is redundant. Eqn (20) ensures
determines the se§, clustersNs, Vs € S, and the routing that the output has exact]y| — 1 edges. Eqns (21) and (22))
structure. ensure that there is no more than one outgoing edge per vertex
That a solution to P3 is feasible for P1 is obvious, but {other than the base station) and no more thanl incoming
may not be optimal for P1, even if it has the fewest non-leaflges into vertex. Eqns (20) and (21) together ensure that
nodes among all DDCTs because a node may no longer betl@ output is a tree and Eqn (22) ensures that a nduks no
its shortest path. more thann, — 1 immediate children.
It is worth noting that P3 is also NP-hard; it is APX-
hard even when weights on edges satisfy the triangle inequg| Algorithm LPR: an LP Rounding Approximation
ity [24]. Results on P3 are known only for complete graphs o o ,
whose weights satisfy the triangle inequality [24], [253. ffie We next present a polynomial-time approximation algorithm

best of our knowledge our work here is the first to propoé’éhiCh relaxes ILEP3 to a linear program (LP), by allowing

algorithms with proven approximation ratios for P3 in grislphO <X <1 andfe >0 to be fractional and appropriately

induced by a communication network rounding the fractional values. This algorithm is referted
We proceed as follows. We first present an ILP (IPB) as LPR_and s_howr_1 n F'gufe 4. : .

to solve P3 exactly. This ILP has much fewer variables and LPR IS an iterative algor_lthm. At e?‘?h lteration, we solve

constraints than ILFP1, and hence takes less time to solve.\/\;ﬁe fractional ILP along with the a_dd|t|0nal cpnstr_alnta.tth

then relax ILPP3 to an LP and solve it via appropriate roundt- e edges for whorme was set to 1 in the previous iteration,

ing of fractional values. This rounding algorithm, refette as rerr;]airr]]s set to 1'fAt iterr?tioh, we adhd t?e Togg‘f‘rwgi(:h will
algorithmLPR, is thus an approximation algorithm for P3, an&’e ops away from the root in the fina - mor every
ode at height— 1, if there are more than, — 1 incoming

therefore also an approximation algorithm for P1. We deriv¥

the approximation factor for LPR with respect to problem P dges W'Ih n(én-hzerxz,, cho_ose the Iargeeta—-fl ;]/alues anld seth
in Theorem 3. Finally, based on the intuition derived white g them to 1 and the remaining to zero; and if there are less than

alyzing LPR, we present a simpler, distributed approxiorati PV_ 1 shucrr]\ idges, ja all OI: the’m to 1. Also, idd the nodes
algorithm with the same asymptotic approximation factor. rom which t ese edges (whosgs were set to 1) emanate,
to the DCT at heighh.

C. An ILP for Problem P3 I'I:IVZO{O}’ NE=¢, h=0, assign hy=-1 WweV\{0} and
0 =

We define the following variables used in the ILP in findinghi | & (NV!=V) do

. . . h=h+1
a DDCT. For a givenG(V,E), define a graptG(V,E) with Sol ve fractional ILP P3 + constraint
directed edges, by replacing each undirected edde with % =1,Yee NE

For YWeNV, h,=h-1
/+ For veV, define S, to be the set of
incom ng edges at vwith x>0 */
If 1S/ >n-1

two directed edges, one in each direction. Ogtv € V denote
the set of outgoing edges from nodein E. Similarly, let
lv,v €V denote the set of incoming edges into nade E.

The set of variablege, e € E define whether an edge is on
the DCT as followsxe := 1 if edgee is on the DCT, and 0
otherwise. The variablé., e € E will be referred to as théow
value over the edges; it denotes the number of nodes using
edgee to reach the base station on the DGJ=0 if edgee
is not on the DCT.

The following ILP solves P3 exactly, where the minimiza-

S = Sort(S)

/+* Sort() will sort according to X in a
descendi ng order */

S, = Extract (§,n,—1)

/+ Extract(Sn) will extract the first n
edges fromsS */

Yee S

Xe=1
Add(NE,e) /+ Add(X,y) adds y to X */
v = Qut goi ng(e)

tion is over the choice ofe, Ve € E. /+ Qutgoing(e) returns the vertex from

whi ch edge e emanates =/

(ILP_P3) min Y gfe (16) Add(NV,v)
vl hy=h
Zeelo fe Zeeoo fe= |V| . (17) Fig. 4. Algorithm LPR: The LP rounding approximation aldbm for P3.
fe < (V|-1)xe,Vee E (19) E. The Approximation Factor of LPR
SecEXe=|V|—1 (20) Even though LPR makes no assumptions on the network,
Seco, Xe = 1, e V\{0} (21) our derivation of the approximation factor assumes thevol
ing: (1) Nmin > 3, wherengin = minyey Ny, (2) the unconstrained
Secl, Xe <My—1,WeV (22)

_ MDCT constructed ove&(V,E) has a height oD (log(|V])),
¥e € {0,1},Vec E B (23) and (3) nodes can transmit to each other if the distance
fe€{0,1,...,|V|—1},VecE (24) between them is less than a transmission raRge



To understand (1), note that ify = 2,Vv € V, then each the equality follows from the small angle approximation
node has at most 1 child and the constructed tree is thug lineagx) ~ 1 — X—22
(a chain). The problem subsequently reduces to the trayelin Thus by Lemma 3, there are no more tharckbg(|V|) non-
salesman problem. Similarly, if most nodes disallow moesth full heights. At the same time, the number of full heights is
1 child, the resulting tree will be close to linear, which istn ©(log(|V|)) by definition. Hencehgqct = © (log(|V])). [ |
a very interesting routing structure to study. Finally, andre Theorem 3:The approximation factor of LPR is
importantly, most existing sensor platforms have sufficie® (log(|V|)).
computational power to quickly combine FFT’s from at least  Proof: To derive the approximation factor, we compare
3 nodes, easily satisfying this assumption. Assumptiong2)the energy consumed in the DDCT constructed using LPR
also easily satisfied as sensor networks used for SHM are(given by Lemma 2) to the lower bound on the optimal
general not very sparse. Assumption (3) is very common$plution of P1 (given in Lemma 1). First, we note that
adopted for analytical tractability. However, our anadys IS > %ax in the optimal solution andS| = ¢; ﬁ in

_not heavily depe_ndent on this assumption (more is discussgd ppcCT (ashqge = © (log(]V|))) wherec, is a positive

in the footnote in the proof of Lemma 4) and the SaME&nstant,Nmax = MaXecyNy and Nmin = Minyeyny. Thus, the

approximation factor also holds under more realistic ptglsi Svev (dager(V)—1)+61 (7 log(V )
min S Og V ,

layer assumptions. approximation factor is< Svce o) D (2
We next derive the approximation factor of LPR with respeeiheredq ) denotes the hop count of nmSEzdn the DDCT.
to P1. The analysis is based on the observation that thige final inequality holds becauseyg < cylog(|V|) and
approximation factor is essentially the ratio between gt  hyq = czlog(|V|), for some positive constants, and cs.
of the DDCT constructed using LPR and the height of theence the approximation factor @(log(|V|)). [ ]
MDCT (discussed in more detail in the proof of Theorem 3).
Denote the height of the MDCT blyorig and the height of F. A Distributed Approximation Algorithm (DAA)
the DDCT generated by algorithm LPRqyc. Define anon-  The approximation algorithm LPR is centralized as it re-
full nodeto be a nodev at heighth < hqqct Which has less quires solving an LP globally. We now present a simpler,
thann, — 1 children. A height 1< h < hqq is defined to be distributed algorithm with the same asymptotic approxiorat
a non-full heightif there exists at least one non-full node atactor.
heighth. We then have the following lemma. The proof of Lemma 3 uses the following observation from
Lemma 3:Consider running algorithm LPR on a setmf |PR: at height, if there exists a nodewith more tham, — 1
nodes with a randomly selected base station and a topola@ighbors which are not yet a part of the tree, the algorithm
such that the maximum set of nodes that cannot transmit\{gl add n, — 1 children to it. Otherwise, all its neighbors not
each other has a size Then the resulting DDCT cannot haveyet a part of the tree will be added as its children.
more thanp non-full heights. Using this intuition, we propose a modified Dijkstra’s
Proof: We prove this by contradiction. Let there be-1  shortest path algorithm DAA in Figure 5. This algorithm
non-full heightsthy < ... <hp;1. Letv; be a non-full node at satisfies the observation made in the previous paragrapbehe
heighth;,1 <i < p+1. Then,v;,vj, 1<i < j <hp1 cannot |emma 3 holds, and so do Lemma 4 and Theorem 3. Thus, the
transmit to each other, for otherwise LPR would have |abe|%@)proximation factor for DAA is als®(log(|V|)). The tree
vj as the child ofv;. Thus none of the nodes, ..., Vi1 can s built top down from the root with each nodechoosing its
transmit to each other. However, by assumption we cann@t- 1 children arbitrarily. Hence, like any shortest path algo-
have more thamp nodes which cannot transmit to each othefjthm [35] it can be built by message exchanges only between
thus a contradiction. B neighboring nodes. We will compare this modified Dijkstra’s

Lemma 4:Under the assumption that the height of thggorithm with LPR through simulation in Section VI.
MDCT harig = O(log(]V])), the height of the DDCT con-

structed by LPR idga = O (log([V1). 2 CGenot es the number of children of - node v </
Proof: By the construction of the MDCT, the maximumyy; e (Nvi = V) do

distance of a node from the base statiorhé,agRtX3. Using /+ Define E' to be the set of edges which
geometric arguments similar to the ones used in [34], itg/eaconnect nodes

. L NV and v €V\NV and —1 %/
to show that the set of nodes none of which can transmit ;gzxi\,ea; SVANV and G <n,

to each other has a size of no more than—2L— _ < h, = mi n(h,h +1)
cos 11— 21 Vmin = ar gm ny{hy | ¥v € V\NV}
lorig Add(NV, Vimin).
2n ~ 2rclog(|V]), for some constant, where Vparent = Par ent (Vmin) _
1(1- 1 /* Parent (v) returns the parent of vin NV */
005 1~ 2eziog2(v)
CVparent = CVparent +1

3 . L hy =0, YweV\NV
Note that due to fading effects, the transmission range n@ybe a . » . , .

constant. However, there will always exist distand&sand Ry such that Fig- 5. Algorithm DAA: Modified Dijkstra’s algorithm for P3.

if two nodes are withirRy of each other, they can transmit to each other with

negligible loss, and if they are more th&t apart, they cannot exchange

packets with each other [32], [33Ry and Ry may be much smaller and V. DISCUSSION

larger respectively than the actual transmission rang#acig Rix by these . - . . .

constants appropriately allows the same argument to gaighrdor a more In_ this lseCtlon we dI§CUSS ways to include addltlonal_con'

general physical layer model. straints like accuracy if sensor measurements are noisy, as



well as the applicability of distributed SVD computation iractivate this SVD operation) to quickly check the mode skape

practice. of a structure before deciding whether and what more (manual
The model and algorithms presented here can be easilgpection is needed.

extended to include additional constraints, includinguaacy

and storage. In our decentralized SVD computation, theneige VI. SIMULATION AND EXPERIMENTATION

vectors are determined by linearly combining those contpute

locally at different sensor nodes. If the sensors are ressel

then the eigenvectors computed using this decomposititin )

exactly match the actual eigenvectors. However, the poesefigorithms.

of noise in the sensed values can lead to errors in the compu-

tation [36]. This is because in a centralized implementat® A. Simulations

least-squares effect minimizes the error due to noise seibs

eigenvectors, whereas the decentralized implementatmasa nd all simulations are done on topologies generated by

this errtordto.accumltjlate through each combination of lgcal andomly distributing nodes assuming a density of 8 nodes pe
co_lrphpule e|g(tar:1vec ori. f FET's bei bined at ]}80 square meters. The transmission range is assumed to be
€ larger the number o S being combined at €aqly ., ror each simulation parameter, we generate 100 random

sensor node, the smaller this error. Hence a desired aCEEologies and plot the average as well as error-bars sigowin

racy will impose a constram_t on the minimum clus_ter SIZ5 variance. (Note that the variance after averaging over 100
INs|,s € S. This is the opposite of the delay constraint, an

incorporating it in our models is quite straightforward ns becomes negligible leading to very small error bardlin a
) ) . . : figures.) For comparison, we also report (i) the performance
this constraint byn,, i.e., [Ns| > na,Vse S. Then in ILP_P1, g ) y port (i) P

the followi traint is addeds. x> o without in-network computation, and (ii) the performance
e following constraint is addedfiey Xj > NaX;j,Vj € V. with in-network computation over randomly generated @tsst

Similarly, n ILP_P3, we_add (1)Zee_'v)_(ez (Na—Dly, WeV, where the cluster-head for each node is chosen uniformly at
where variablé, € {0, 1} is setto 1 ifvis a non-leaf noqie, and random, and once clusters have been thus formed, FFT's are
(2) Zee!\, xe/|V| <= Jee, xe,Vv_eV, to ensure thak, IS Set. exchanged between cluster-heads to ensure combinaBility.

L only if vis a non-leaf node. Finally, the two gpproxmaﬂo erformance comparison with the method proposed in [8]-[10
algorithms, LPR and DAA, can both be easily modified t discussed in Section VII. For the SVD computation, we use

maintain the number of children of each node in the daﬁl: 8192 bytes and = 32 bytes [17]. We also assume that

collection to be g_reate_r than, — 1. _The _effect of an added_ the computational delay constraint is the same for all nodes
accuracy constraint will be examined in numerical studlc-F§ —hWevV
v — 1h .

presented in Section VI.

As the number of FFT’s being computed at a node increasggwe first examine the effect of delay constramon energy
not only the delay but also the storage required increasgs [3 hsumption by solving the optimization problem proposed

A storage constraint acts in a way very similar to the d In Section 1I-B (without incorporating the accuracy coasit
S . . §n the formulation). Figure 6(a) compares the number of
lay cor!stralnt. it essentially .bounds the maximum numb tes transmitted under the lower bound (Lemma 1), using the
.Of FFT's that.can be gomb|neq at a sensor. Therefore timal communication structures derived by solving 1PR
incorporate this constraint we simply need to upper boura ection IV-A), and using the three approximation algarigh
the value of|Ns| to be the lesser of the two, which results ir]LP P3 (Sectic,)n IV-C), LPR (Figure 4), and DAA (Figure 5),

an |de_nt|cal problem. . . Ior different values of?, with |V| = 6.
While the proposed SVD computation can run contlnuousyWe observe that the approximation algorithms perform

fi‘;‘gssgeg;n pg;‘éisfa’s'gnpra::iﬁ: zlrjgr;ec?ft?nisncliigu(lfgﬁ\tlve y close to the optimal. It takes more than one hour of
Y. g amputation to solve the ILFP1 for |[V| > 6 on a 2.99 GHz

duration of the sensing cycle depends on the size of the Fmachine with 4 GB of RAM. Hence for larger values o

and the computation capacity of the sensors), as one does not S . :
) we only compare the three approximation algorithms against
in general expect mode shapes of a structure to changeyapm

over time. Even though the task is performed infrequentl

-t::essei\f-lgg cl)ea;: do&zrifcnﬁ 'g?:gde]f’flggf;aem E]Sd%etkf; i) DAA outperforms LPR. These results also demonstrate
! ; ’ umd uncou e advantage of using the ILP3 over ILP P1; it runs much

beneficial for a sensor network to have a lifetime on the ord%rster and converges within an hour up|Xd — 40.
of months or years.

. . For even larger value d¥|, we compare the performance
One weakness common to many in-network processin . . X
) . . . OoFf DAA (as it consistently outperforms LPR) against the lowe
methods is that they typically delivesummariesor features

N o oo
of data rather than raw data itself: thus we potentially It bound in .Flgure 6(c). We observe that it is always within 2%
. . of the optimal. These results clearly demonstrate the adgen

ability to store and post-analyze the data (e.g., for arrati

different purpose than originally intended). In this serthés of in-network computation as the number of bytes transuhitte

S : oyer the network are reduced by more than a third. Finally,
type of operation is most advantageous when used in a real-

tlme-settlng concerning '_nStantaneous detectlc_)n and dsagn ) 4The values oh chosen are typical for the Narada sensor platform and the
For instance, a human inspector can use this approach (idelay constraints associated with the SHM application.

We use both simulation and experimentation on a real
wensor platform to evaluate the performance of the proposed

For simulation we use CPLEX [37] to solve the ILPs,

e lower bound, shown in Figure 6(b). We note that (i) all
pproximation algorithms are within 1% of the optimal, and
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Fig. 6. Simulation Results. Ratio of the number of bits traitted with different algorithms and the lower bound. [{@) = 6 (1.0,1.2). (b) V| =30 (15,1.5).
(c) V| =200 (31,3.1). The numbers in brackets denote the following ratiose (titio of number of bytes transmitted in the network withmuhetwork
computation and the lower bound, the ratio of number of byri@ssmitted in the network with random clustering and theelobound). Simulation Results
with an accuracy constraint. (¢¥| =5,n=>5. (h) V| =30. (i) |V| = 200.

Figure 6(c) also shows the trade-off between communicationFigure 7(b) compares the performance of 1PB3, LPR and
energy and computational delay. The more delay allowed g@AA for this tri-linear topology with |V| = 30. We again
node (larger the value af), the smaller the energy consumeabserve that these approximation schemes are within 2% of
in the network. the optimal. In this topology, the ratio of the number of bits
In Figures 6(d)-6(f) we compare the performance of ditransmitted without in-network computation and the lower
ferent approximation schemes after incorporating an aoyur bound is 56, while the same ratio with random clustering
constraint in the formulation for different values ¢f|, n and the lower bound is.3. Thus, the improvements become
and ng°. In this scenario, we observe that ILFP3 yields even more significant in this more realistic topology.
results within 2% of the optimal while DAA vyields values Our simulations have so far assumed a binary physical
within 45% of the optimal. And the advantage of using &ayer without considering the effects of shadowing and ran-
better centralized algorithm becomes more pronouncedes ttom fading which can cause packet losses. Incorporating
value ofn, increases as any sub-optimal local decision in thikese effects in our model is quite straightforward as the
scenario leads to an extra transmission of a FRDifs) and proposed algorithms allows each edge to have a different
not just an eigenvector (bits). weight. Choosing this weight to increase with the loss rate
We next evaluate the performance of the proposed alguill ensure that good links (with lower loss rates) are prefe
rithms in a tri-linear topology of Figure 7(a). This topojog over bad ones for routing data. Figure 7(c) compares the
is representative of what is deployed over a highway bridgeerformance of DAA against the lower bound for a randomly
For such structures, the sensors are attached to the whelergenerated 30 node topology assuming log-normal shadowing
of the bridge and typically the topology is such that sensoagd Rayleigh fading at the physical layer. The weight of
are placed at regular spacings along the length of the hridge edgee is set towe = 1Tl|e where |l is the loss rate
and a few such parallel lines span the width of the bridge edgee and is empirically measured. The choice of this
(typically about 2-4 traffic lanes). Such a topology woulgoal weight, which represents the expected amount of transomissi
be applicable in the monitoring of tall buildings: in expeant required per packet, ensures that edges with low loss rate ar
with model buildings, sensors are typically placed at thaesa preferred by our routing algorithms. Again, we observe that
lateral positions on each floor, resulting in a few paraleé$ approximation algorithm is within 30% of the optimal. Inghi
(vertically in a 3-D space). topology, the ratio of the number of bits transmitted withou
in-network computation and the lower bound ig,Avhile the
5The value ofn, depends on the noise level in the sensors and one neetRME ratio with random clustering and the lower bound .10
to calibrate the sensors to determine how large the cluierreeds to be. Since physical layer losses cause extra transmissiongef si
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Fig. 7. (a) The tri-linear topology. (b) Ratio of the numbdrhits transmitted with different algorithms and the lowesund in the tri-linear topology;
[V| =30. (c) Ratio of the number of bits transmitted with differehgorithms and the lower bound with a physical layer shadgvand fading;|V| = 30.

R, the improvement of using networked computation becom#i®e implementation and the experimental results verify the
more significant in this scenario. feasibility of DAA on a real SHM sensor platform.

B. Experiments VII. RELATED WORK

In this section, we review prior works most relevant to this
We next evaluate the performance of DAA on a real sens Lper, in the areas of in-network computation, clustering]

platfo_rm., the Narada Sensing unit de\{eloped at the Uniers unctional decomposition for SHM sensor networks.
of Michigan [11]. This wireless device is powered by an

Atmel ATmega 128 microprocessor. It is supplemented by _
128 KB of external SRAM and utilizes the 4-channel, 16A. In-network Computation

bit ADS8341 ADC for data acquisition. Narada's wireless prior works that study the communication structure for the
communication interface consists of Chipcon CC2420 IEEfyrpose of in-network computation generally fall into orfe o
802.15.4 compliant transceiver, which makes it an extrgmehree categories.
versatile unit for developing large-scale WSNs. This piygie 1) Delivering Equivalent Representation of Sensor Data:
is powered by a constant DC supply voltage between 7 and\fithin the first category, there is a body of literature that
volts, and has an operational life expectancy of approxiyat focuses on how to represent and deliver sensor data (in its
48 hours with 6 AA batteries, given constant communicatiaftiginal or an equivalent form) in as few bits as possible
and data analysis demands. through well designed communication structures, so that a

We use a testbed of 12 Narada sensor nodes deployed kefain function f(X1,X2,--- , X)), where x; originates from
corridor in the Electrical Engineering and Computer Sc&ngensori, may be computed (near) error-free at a central
building at the University of Michigan. Each Narada wireles|ocation, see e.g., [8]-[10]. The emphasis here is primpani
sensor is programmed with DAA algorithm, and asked t@e presentation and delivery of the set of datg, rather than
autonomously form computational clusters with varyingresl the actual computation df() within the network. For instance,
of n. The root of the tree is randomly selected in eadh [g], [9] the class ofsymmetric functions considered, i.e.,
experiment. In a manner similar to [36], the weight of an() is invariant to any permutation dfx}. It is observed that
edgee is set toWe = ;—gz5 rss O WhereRSSlis the radio due to the symmetry, for the purpose of computifig an
signal strength indicator reported by the radio amg is the equivalent representation of the data is its histogramyigeal
probability that a communication link with perfect RSSllai that x; takes values from a finite set. Specifically,Xf can
due to unforeseen circumstances and is empirically medsutgke onD different values, then representing the histogram
to be equal to @ for the Narada platform. over n sensor inputs/measuremenisxy, - - - ,X, takes a total

The objective of our experiment is to study the time it takasf Dlogn bits (as opposed to directly representing the data
to construct the data collection tree using DAA, as well &s thwhich takes a total ohlogD bits), which becomes a very
cluster sizes and the corresponding sensing cycles as @édincattractive way of delivering equivalent input ) when the
of nin a real-world setting. Figures 8(a) and 8(b) plot thaetwork (i.e.,n) is large. As a result, it is shown in [8], [9]
time it takes to construct the tree as a functiomadnd V| that the histograms can be collected at a rat ~of along
respectively. We see that this time only depends on the sizg suitably constructed tree. Similar results are also alvksl
of the network. Figure 8(c) shows the data collection tregsr sub-classes of symmetric functions, including the <lak
constructed fon = 3 andn = 5, respectively. To summarize,type-sensitive functions and type-threshold functiossyall

as when the channels are noisy [8]—-[10].
5This weight is used as Narada provides access to the RSSiniafion. An obvious advantage of the model used in the above

If the RSSI information were not available, we would have allect and : : P PP ; ;
maintain loss rates and either usg= _—1|E as before or some variant. studies lies in its generallty, it applles to any symmetric

7Since each instance of the experiment is conducted at aadifféime and TunCtion f() (intereStingly the centralized SVD _QompUtaﬂon
the environment is dynamic, the weights are recomputed doh énstance. IS @ Symmetric operation by the above definition). On the
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Fig. 8. (a) Time to construct the tree us|V| = 12. (b) Time to construct the tree Y¢|; n= 4. (c) Data collection trees far=3 andn=>5.

other hand, this approach does not actually comp(tevithin  can be applied directly on top of the communication struetur
the network (to do so one will need to exploit additionadlerived in the paper; thus the two are orthogonal. A more
features of f()). This is the main difference between ousophisticated approach can take correlation into accaunt i
approach and those cited above. As a result of this differenconstructing the data collection tree, e.g., it may be beiagfi
in our case the data that ultimately reaches the base statiorsend highly correlated FFTs to the same node for SVD
is no longer an equivalent representation of the originéh decomputation, in the hope that the computed eigenvectors may
but rather the computed output d¢f). In particular, in the also be correlated so fewer number of bits are needed to
case of SVD computation, a single measuremgnits of encode them for further transmission. Both approachesnequ
size R bits (the FFT), which can take obB = 2R possible the knowledge of the underlying correlation structure and
values. If we use the histogram approach above, then thie tasaout of the scope of the present paper; they are however
number of bits reaching the base station would Béogn interesting directions of future research.
(or nlog2R = nRif we encode directly the values and not the 3) Distributed Computation:A third class of studies fo-
histogram). In contrast, under our distributed computatiee cuses on deriving explicit, distributed computational qgero
total number of bits reaching the base statiomisr < R, dures to be performed over a network; this category is the
which is significantly less, unlessis very large compared to closest in spirit to what we presented in this paper. A prime
R (note that this is only calculating the amount delivered texample is the family of random gossip algorithms, see e.g.,
the base station; there are also savings in the amount of d&fa[5], [48] and the references therein. There are als@muar
transmitted within the network). Specifically, for netwsilike deterministic algorithms, see e.g., [1], [2] for query aama-
the ones we study in Section VI, the ratio of the number ¢ibn and processing, [6] for complexity analysis, and [#]tfte
bits transmitted over the network by the histogram approacbmputation of certain Boolean functions. A common feature
and the lower bound is more than?#¢. of these studies and the approaches developed thereintis tha
2) Information Theoretic FormulationsWithin the second in mqst cases the co.mputation is limited to relatively S.H?npl
functions like max, min, averages, and sums. These obyiousl

category, there is a rich literature on information theioret . :
. . . are not sufficient to represent the many complex computaltion
formations of in-network data processing. In many cases

the goal is to deliver an (near) equivalent representation [gquirements der_nan_ded _by practical engineering apdieati
the original data sefx} to a central location by using aII @ the one studied in this paper.

combination of data compression and communication strectu

(data collection) design, see e.g., the classical diggibu B. Clustering

source coding [38], [39] and applied to sensor networks,[26] | aqdition to the literature on in-network data processing
[40]-[45]. A typical application of these methods is theaBe gnother area very relevant to the work presented here is
struction of a field image. In other cases, the goal is to cdBPYstering. Clustering algorithms have been developedafor
a function f() over correlated meas_ur_emer{t&}, see €.9., variety of purposes, see e.g., [49], [50] for routing in ad
[46], [47]. In both cases, the emphasis is on the exploitadid ,,¢ networks, [51]-[53] for the energy efficient operationa
the correlation structure among measurements to desigh 9eQa collection in wireless sensor networks, among others;
encoders and decoders at successive sensor nodes as dafg.iS;|so a survey [54] and the references therein. Driven
being collected, and/or design good communication and d%t@ different goals, different clustering algorithms vany i
collection structures that work well with the encoding. their constructions, and we do not know of any existing
It is possible for us to also exploit correlation to further r clustering algorithm that applies to the problem considere
duce the amount of data transmitted in the SVD computatidn.this paper. This is primarily due to the combination of the
In particular, one could encode the FFTs and the computéelay constraint (which limits the size of a cluster) and the
mode shapes (eigenvectors) using fewer number of bits. Thisique combinability constraint (which requires the achust



to overlap in a specific way). Most prior work on clustering|[3]

does not explicitly require overlapping between clustesigh
the notable exception of [55]. In [55], a clustering algiomit

(4

is presented to construct overlapping clusters that coller a
nodes and where all cluster heads are connected. Howeser, tfl

overlapping condition in this case only requires that onistelr

must share a certain number of nodes wathleastanother
cluster; as a result, there need not be any overlap between tw

sets of clusters that overlap within their respective sEtss

is quite different from the overlapping condition requiried

(6]

our SVD computation, where one cluster is required to eithdfl

directly or indirectly (through a common, overlapping thir

cluster) overlap wittall other clusters. The resulting clustering [9]

structures are also quite different.

C. Functional Decomposition for SHM

[20]

Finally, the studies on distributed computation of differe [11]
SHM algorithms [12], [17], [56] focus chiefly on the cor-
rectness of the functional decomposition and do not study
the routing problem. They assume a fully connected mesh [0f]
sensor nodes and impose an arbitrary communication steuctu
to demonstrate the advantages of distributed computatio,
To our knowledge, only one, [36], studies the determination
of a routing structure for a given topology; however, the
formulation in this paper does not have a clearly definng
optimization objective and the resulting algorithm has no
performance guarantee. In contrast, our work is more génera
and systematic with a clearly defined performance objecti\}és]
and all the approximation algorithms proposed have proven

approximation factors.

VIII. CONCLUSION

[16]

[17]

This paper studies the problem of networked computation
within the context of wireless sensor networks used for

structural health monitoring. It presents centralizeddland

distributed approximation algorithms to derive optimahzo

munication structures for the distributed computation ¥DS

(18]

Both simulations and implementations are used to evalu&td
their performance. Our results demonstrate the advanthge o
in-network computation as it significantly reduces the amou(20]

of data transmitted over the network.

. 21
There are a number of open problems we are mteres{eo]
in pursuing. One concerns combining this distributed compu

tation approach with the compression of data, as discus
in Section VII. A second problem is to seek automate

35

procedures to decompose a given computational task into

elements/operators at the right level granularity. Ousené

approach relies on such a decomposition being available.
Such an automated decomposition procedure would make
the overall distribution computation framework much mor&4!

general and application-independent.
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