POLITECNICO DI TORINO
Repository ISTITUZIONALE

Network-level access control policy analysis and transformation

Original

Network-level access control policy analysis and transformation / Basile, Cataldo; Cappadonia, Alberto; Lioy, Antonio. -
In: IEEE-ACM TRANSACTIONS ON NETWORKING. - ISSN 1063-6692. - STAMPA. - 20:4(2012), pp. 985-998.
[10.1109/TNET.2011.2178431]

Availability:
This version is available at: 11583/2379363 since:

Publisher:
IEEE-ACM

Published
DOI:10.1109/TNET.2011.2178431

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

24 April 2024

Network-Level Access Control Policy Analysis
and Transformation

Cataldo Basile, Alberto Cappadonia, and Antonio Lioy, Member, IEEE

Abstract—Network-level access control policies are often speci-
fied by various people (network, application, and security adminis-
trators), and this may result in conflicts or suboptimal policies. We
have defined a new formal model for policy representation that is
independent of the actual enforcement elements, along with a pro-
cedure that allows the easy identification and removal of inconsis-
tencies and anomalies. Additionally, the policy can be translated to
the model used by the target access control element to prepare it
for actual deployment. In particular, we show that every policy can
be translated into one that uses the “First Matching Rule” resolu-
tion strategy. Our policy model and optimization procedure have
been implemented in a tool that experimentally demonstrates its
applicability to real-life cases.

Index Terms—TFirewall configuration, policy anomalies, policy
conflict, policy transformation, policy translation.

I. INTRODUCTION

HE CURRENT landscape for network-level access con-

trol is quite complex as it can be implemented in several
physical and logical elements: firewalls, routers, and proxies, in
addition to the application servers that have the required capa-
bilities. However, while traditionally controls were performed
in a single place (border or central firewall), nowadays the de-
fence-in-depth approach implies the use of security controls at
multiple places and different levels. Therefore, configuring all
these elements in a consistent way is a rather complex matter
due to both technical and administrative issues. Examples of
the former are the different semantics of access control rules,
while the latter are typically related to the different manage-
ment domains involved in the process (network, security, and
application administrators). It is therefore highly desirable to
have a formal way of specifying access controls and verifying
their consistency across different elements and management do-
mains. Automatic translation to the formats used for the actual
enforcement would be a bonus.

The IEEE has formalized the access control model through
the concept of policy-based management [1], where a policy
is defined as “a definite goal, course or method of action to
guide and determine present and future decisions.” This is en-
forced through various elements, the most relevant ones being
the policy enforcement point (PEP) and the policy decision
point (PDP) that collectively intercept the access request, check
which part of the policy it matches, and finally enforce the

The authors are with the Dipartimento di Automatica ed Informatica,
Politecnico di Torino, Turin 10129, Italy (e-mail: cataldo.basile@polito.it;
alberto.cappadonia@polito.it; antonio.lioy@polito.it).

corresponding action (permit, deny, encrypt, ...). Commonly,
this model is not implemented in two separate elements, but
in one single block (e.g., a firewall) that acts as PEP/PDP and
stores the policy locally in a manufacturer-specific format. We
will therefore use hereafter the term “enforcement element” (or
block or device) for the integrated PEP/PDP case.

When using policies for access control in a large multidomain
networked computer system, conflicts may arise, as an access
request may match more than one part of the policy. This is be-
cause these parts have been written by different administrators
(based on different requirements) or simply as the result of a
mistake. The PDP typically solves conflicts by applying a reso-
lution strategy.

The most common strategies are First/Last Matching
Rule (FMR/LMR) that respectively select the action from the
first/last applicable rule in an ordered list, and Allow/Deny
Takes Precedence (ATP/DTP) that enforce Allow or Deny in the
case of contradicting actions simultaneously activated. Access
control for Database Management System (DBMS) some-
times uses Most Specific Takes Precedence (MSTP), which
enforces the action of the rule which has the most specific
condition. Alternatively, the opposite strategy Least Specific
Takes Precedence (LSTP) may be adopted. Automatic conflict
resolution strategies are potentially very dangerous because
they actually hide mistakes and conflicting requirements that,
on the contrary, should be identified and explicitly addressed.
Moreover, if different administrators specify policies using
different strategies, their direct comparison and integration is
simply not possible.

It should be noted that conflicts are only one special case of
policy anomalies. Duplicate or redundant rules may exist, and
they should also be identified in order to optimize the policy
before enforcement in an individual element.

This paper addresses these problems by introducing a formal
model for the general definition of a policy expressed as a set of
rules. By using our model, administrators are no longer forced
to specify rules according to the resolution strategy used by the
target enforcement devices, and they may choose their favorite
strategy, even creating an ad hoc one. Additionally, our model is
able to support different rule types, thereby extending existing
techniques to fields other than those typically used for packet
filtering.

Policies written according to our model can be analyzed to
classify, detect, and resolve anomalies. We generalized one of
the most important works in firewall conflict management, that
by Al-Shaer et al. [2]-[4]. Moreover, we have included the case
of anomalies involving more than two rules, which is useful for
policy optimization.

Furthermore, we introduce the definition of morphism,
a transformation of the policy rules between different

representations while keeping the policy semantics unchanged.
We will show how, inside our model, it is possible to translate
between different representations of policies. As an example,
we present the transformation of a generic policy into one suit-
able for devices using the FMR or LMR strategy. The correctness
of the translation process is formally proven.

The effectiveness of our theoretical results has also been ver-
ified experimentally, as we developed a tool based on our model
and used it with large policies. Results confirm that our approach
is feasible and usable in practice.

The rest of the paper is organized as follows. Section 11 sum-
marizes the existing works about firewall policy analysis, while
Section IIT outlines the main contributions of this paper. The
proposed policy model is described in Section IV, where a gen-
eral anomaly classification is also defined. Following that, in
Section V, the translation process is introduced, and Section VI
presents the tool that implements the model, together with the
experimental results. Section VII draws conclusions and pro-
vides hints for future works. The Appendix provides the formal
proof of the proposed translation process.

This paper is an extension of [5] and [6]. The main idea was
developed inside the Positif project (EC contract IST-002314)
and has been improved in the PoSecCo one (EC contract
IST-257129).

II. BACKGROUND

The most relevant work in the field of firewall rule anal-
ysis is that of by Al-Shaer ef al. [2], along with its extension
to a distributed scenario [3] and to IPsec [4]. The work in [2]
is focused on the packet filtering scenario and considers rules
(corresponding to rows of a firewall table) composed by five
fields (conditions): IP source and destination addresses, TCP
source and destination ports, and the Protocol Type field of the
IP header. Al-Shaer et al. introduce the concept of anomaly, de-
fined as “the existence of two or more filtering rules that may
match the same packet or the existence of a rule that can never
match any packet.” They consider rule pairs in ordered lists
(where conflicts are solved using the FMR strategy) and iden-
tify four possible anomalies that depend on rule priorities and
enforced actions. Given two rules r; and ro, where r; is the
higher priority rule, Al-Shaer et al. define the following.

1) Shadowing anomaly: rs is shadowed if r; matches all the

packets that ro matches, ro will never be activated;

2) Correlation anomaly: r1 and ro are correlated if: a) they
enforce different actions; b) packets matching both rules
exist; and c) packets matching only r; (or r2) exist;

3) Generalization anomaly: 1o is a generalization of ry if:
a) they enforce different actions; and b) all the packets
matching r; also match r2, but not the contrary;

4) Redundancy anomaly: ro is redundant if 71 matches the
same packets and enforces the same action as r», so the
removal of 7, will not change the policy behavior.

A further anomaly is defined: the irrelevance anomaly. A rule is
irrelevant if it does not match any packet that could pass through
the firewall. It does not concern relations between rules, but
rather those between a rule and the enforcing device. Moreover,
they propose an algorithm to discover anomalies in rule sets and
another one to identify the anomalies originated by the insertion

of a new rule into an existing rule list. The resolution of anom-
alies is delegated to the administrator.

The approach of Al-Shaer et al. has three major limitations:
It deals only with the packet filtering scenario, it works only
if the FMR strategy is used, and it considers only anomalies in
rule pairs without taking into account anomalies involving more
than two rules.

Some of these limitations apply also to other works that ex-
tend the approach of Al-Shaer et al. or reformulate it with a dif-
ferent formalism. In [7], the authors extend the work in [2] to
support different firewall rule formats, using a model based on
mathematical relations between rule fields. The approach pro-
posed in [8] transforms rules into bit vectors to efficiently detect
and classify the anomalies presented in [2]. Furthermore, the bit
vectors permit the usage of additional condition fields. In [9],
the authors present a minor extension of anomalies in [2] (pre-
and post-redundancy), introduce an algorithm to automatically
resolve conflicts, and prove the existence of a solution. Anoma-
lies involving more than two rules have been introduced in [6].
An algorithm to detect them only in elements using the FMR is
presented in [10].

Other works deal with IPsec policies. Their analysis focuses
on a single scenario and is not as general as our approach.
Zao et al. [11] introduced the idea of combining conditions
of IPsec rules belonging to different fields (e.g., source or
destination ports) by using the Cartesian product. This idea was
used in [12] to detect and solve [Psec conflicts when translating
abstract requirements to implementable rule sets. In [13], an
IPsec policy is seen as Access Control List (ACL) and Encrypt
List (EL). The authors classify anomalies for ACL and EL in
intra- and interdevice scenarios and propose an algorithm to
classify conflicts, but they do not address the resolution phase.
Moreover, a model for anomaly classification was presented
also for IP Differentiated Services policies [14].

An important area of policy analysis concerns the conflicts re-
lated to higher levels of specification. Works from Sloman et al.
model policies as objects [15] and classify inconsistencies of
policy for the management of distributed systems, together with
the techniques to solve them [16]-[19]. In [20] and [21], the au-
thors propose a solution combining deontic logic with temporal
operators. Conflicts are classified under four categories, and the
detection is analyzed in two cases: static conflict, incongruence
found during an offline initialization phase, and dynamic con-
Aicts, unpredictable conflicts that may result from a runtime ac-
tion. Despite the fact that the model is very interesting, the anal-
ysis is only partial, and a small number of conflicts remain to be
resolved at runtime.

III. IMPROVEMENT

Considering the packet filter scenario, our approach extends
some aspects of the work of Al-Shaer et al. We introduce a new
formalism that expresses a general formulation of a policy as
a rule set. This formulation is suitable for use in different sce-
narios where the security policy can be represented by means
of a set of rules and allows the use of ad hoc resolution strate-
gies. Therefore, the model allows an easy policy specification
(Section 1V).

We also generalize and extend the anomaly classification
in [2] and [3], to make its formulation independent of the

51

Fig. 1. Unnecessary rule example: r4 will never be activated.

resolution strategies. In fact, our classification is valid for
every resolution strategy and not only for FMR (Section IV-D).
It should be noted that our work is independent of specific
resolution strategies in the sense that our theory and algorithms
are general and do not need to be modified for each possible
resolution strategy. However, the specific resolution strategy
is explicitly used for classification purposes and by translation
algorithms, as will be evident in the rest of the paper.

Furthermore, we introduce two new anomaly classes that
may occur when more than two rules are considered: the gen-
eral redundancy anomaly and the general shadowing anomaly
(Section IV-D). These are effective in finding out if a rule is
unnecessary for the policy representation—for example, a rule
could not be shadowed by a single rule in the rule set, but it may
be shadowed by the union of two or more rules. Referring to
Fig. 1, we assume that according to a given resolution strategy,
rules r1, 2, and r3 prevail over ry4, so all the packets that match
74 will be matched also by another rule. Additionally, identi-
fying and removing more anomalies permits better optimization
of rule sets. This further reduction strongly depends on how
the rules set is made. If an experienced administrator wrote an
anomaly-free rule list, then the reduction would not be possible,
but often shadowed or equivalent rules are present, according
to statistical data [2]. On average, our approach allows a better
reduction than existing techniques, as it removes more types of
anomalies. However, this reduction cannot be easily quantified.
Our model does not apply to scenarios where conflicts may be
detected only at runtime (such as access control models using
the separation of duties) or contexts where a decision depends
on previous ones (as for the maximum number of allowed
connections or flows).

Our model permits the construction of semantically equiv-
alent representations of a policy, i.e., they enforce the same
actions on the same packets (Section V). Our solution makes
use of an algebraic structure: the semi-lattice [22]. Through the
semi-lattice, we have a representation very effective for policy
manipulation because it eliminates the differences between the
various resolution strategies. We call this representation canon-
ical form (Section V-A). Moreover the canonical form is im-
portant because it is an intermediate policy representation that
permits to translate a policy, which uses whatever resolution
strategy, into one that uses another strategy (e.g., specific of
a certain target device, Section V-B). By using the canonical
form, we are able to prove that every policy representable using
our model can be translated to an equivalent policy that uses
the FMR or LMR strategy. From an implementation point of
view, administrators could use only FMR-based devices while,
at the same time, they could specify policies using more general
strategies.

Finally, a minor improvement of our model, anyway useful
for practical applications, is its ability to support different rule

types, with the constraint that for each type of condition (e.g.,
source IP addresses, source port) there exists the intersection
operation, which corresponds to the logical conjunction. This is
not a limitation since the intersection operator is usually defined
for most rule fields in currently available filtering devices. For
example, we support all the filter entries of the DMTF CIM
policy model [23].

IV. RULE AND POLICY MODEL

The model presented here focuses on three factors: anomaly
detection, anomaly resolution, and the default action. It im-
proves the model of rules in [5] and policies in [6].

Definition 1 (Rule Model): According to RFC-3198 [1], we
model a rule in the format “if condition then action” that consists
of a condition clause and an action clause. The available actions
are all well known and organized into an action set A.

Possible actions are Accept and Deny, i.e., A = {A, D}.

Definition 2 (Condition): A condition s in a particular
selector S (e.g., a field, such as the IP source address) is asso-
ciated with the subset of values for which it evaluates to true.

The selector represents the set of all possible values that a
field may take (e.g., the values 0...65 535 for TCP ports). To
express that a condition concerns a selector, we write s C S.
Conditions in different selectors cannot be linked together di-
rectly because they belong to different types and different deci-
sion spaces (e.g., source IP address, destination port). It is there-
fore necessary to expand the decision space. We use the Carte-
sian product to link different selectors together. This in turn gen-
erates the following definitions

Definition 3 (Selection Space): The selection space is the set
G = 51 x 89 x -+ - x 8, with m being the number of available
selectors.

Definition 4 (Condition Clause): A condition clause ¢ is a
subset of a given selection space, ¢ = $1 X $9 X -+ X sy C
Sy xSy x--x 8, =6.

In our model, a condition clause is a hyper-rectangle. There-
fore, even if & represents the totality of the packets, not all the
subsets of & are valid condition clauses, only the hyper-rect-
angles created as in Definition 4. This restriction is an intrinsic
constraint of the policy languages used at network level, where
the rules are specified by defining a condition for each selector
(see Section IV-A).

Definition 5 (Rule): Given Definitions 1-4, a rule can be ex-
pressed as r = (¢, a), where ¢ C & and a € A.

This rule model allows to ease the detection of when two or
more rules can be activated simultaneously. This occurrence is
identified as the nonempty intersection of rule condition clauses.
Therefore, all the anomalies (see Section IV-D) can be identified
by analyzing the result of the intersection of condition clauses.

In this paper, a policy is seen as a “set of rules to administer,
manage, and control access to network resources” rather than “a
definite goal, course or method of action” [1]. We refer to poli-
cies that satisfies the first definition as rule-based policies—that
is, a policy specified by means of a set of rules I?

R={r; = (ci,a;)}i,i € [L,n]

where 7 is the number of rules in 2.

S1
3 —> {rs}
{Tl} 71,2,3 | 71,3
T2 -1 {rlv T3}
T1| ras {T17T27T3}
rs —f—> {r2}
S

Fig. 2. matchp function: an example.

However, this preliminary definition of policy is incomplete
because it does not take into account two special cases. The first
is which behavior the system must have when conflicting rules
exist, and the second is what to do when no rule applies. The
decision of the action to be applied in the case of conflict is
abstracted by means of the resolution strategy

m:28 - A

that decides which action the system must perform.! Given a set
of rules representing a policy, the resolution function maps all
the possible groups of rules to an action @ € \A. In other words,
if a packet matches more than one rule, first the matching rules
are identified, then the resolution strategy chooses the action to
be enforced between the matching ones.

Since every rule determines the behavior of the system within
the limits of its condition clause, it is necessary to set the be-
havior of the system when no rules apply to a packet. This pur-
pose is achieved by the introduction of a default action d € A
to enforce in this particular case.

We will now proceed to model a policy as functionp : & —
A that connects each point of the selection space to an action
taken from the action set A according to the rules in 2. For
instance, for the packet filter scenario, a point in the selection
space is a packet, and the policy decides which action to apply
to it. A policy p can thus be formally modeled as

d, ifmatchg(z) =0
ple) = ¢ a;, ifmatchg(z) = {r;}
R{{ri,rm,...}), ifmatchg(z) = {rirm,...}

where matchp is a function returning the subset M C It of
rules whose conditions match =, formally defined as

matchp: & — 2F

zr+— M ={r; € Rlz € ¢;}.

By defining R(#) = d and](r;) = a; (see Fig. 2), the policy p
may be rewritten as

p(z) = R(matchp(z)).

Resolution strategies may base their decision not only on in-
trinsic rule data (e.g., condition clause and action clause), but
also on “external data” related to each rule, such as priorities,
identity of the creator, and creation time. These attributes are
useful to model not only simple resolution strategies, such as
the FMR, but also more complex and expressive strategies cre-
ated to meet the specific needs of an information system (see

'We use the notation of the power set of a set . If K is a finite set with
| K| = k elements, the power set of K has |2%| = 2* elements.

Section IV-B). In these cases, the resolution strategy works in
two steps: First, the rules are related to the external data, then
the action to be enforced is selected according to a function that
operates both on the rules and the external data.

Formally, every rule r; is extended through a function e so
that the rule turns into

ep(ri) = (ri, fr(ri), fa(ri), fa(ri), - .)

where £ = {f; : R — X}, is a set of functions mapping
rules to a specific set of external attributes X ;. Therefore, the
resolution strategy R is the composition between the extension
function g, and a resolution function Rg that works on the
rule extensions, thatis R = Rpoep

R: {’r‘l,’rm,...}}a—E» {ee(r).ee(rm), ...}

Rp
— a.

It is clear that a policy is entirely specified by means of a set
of rules, a resolution strategy (made up of an extension function
and a resolution function), and a default action. Therefore, we
say here that the 4-tuple (R, REg, F,d) is a representation of
the policy p. This definition is independent of the resolution
strategy and allows the use of a generic one. If the resolution
strategy does not use external data, then the set £ is empty and
the policy will be represented as (R, R, #, d) since gy is the
identity function in R.

We say that two policy representations (R1,Rg,, E1,d1)
and (Ra, REg,, Fa, da) are equivalent if

Vz € 6, Ri(matchpg, (£)) = Ra(matchp,(z))

where R; = R, ocg, and Ry = R, oep,. In the rest of the
paper, for ease of notation, when we mention the policy p, we
assume that it is represented as (R, R g, F, d) and the resolution
strategy is R = Rg o e . We also assume that a generic rule
has condition clause ¢ and action clause a and that a rule r; has
condition clause ¢; and action clause «¢;.

A. Set Operations Between Conditions and Condition Clauses

As our approach requires many operations between clauses,
some discussion about their efficiency is needed. If we repre-
sent a condition over a specific selector S as a subset, then log-
ical operations between conditions map onto set operations. i.e.,
conjunction maps to intersection (1 A s3 — 81 M $2), disjunc-
tion to union (81 V s — $1 U s2) and complement to set dif-
ference (—s — S\ s). These operations on conditions over a
single selector return a set condition, and their computational
complexity is low. However, these results do not hold for con-
dition clauses because in our model they are Cartesian prod-
ucts of conditions, that is, hyper-rectangles, and set operations
on a Cartesian product do not necessarily generate a Cartesian
product. In turn, this may create some problems. As an example,
let ¢; and ¢o be two condition clauses (with m selectors) defined
as follows:

€1 =811 X812 X X S1m

Cz = 821 X 822 X+ X 83 4.

Now consider the following operations.

S

CQ |

5
| Cl

: S

Fig. 3. Representation of set-based operations among hyper-rectangles.

= W N

* The intersection returns a condition clause, obtained by in-
tersecting single conditions in each selector, such as rec-
tangle 3 in Fig. 3

cn=c1Ney=151,1MN821 X S12M 822 X0+ X 81 4 82 4m.

* The union ¢, = ¢1 Ucy is not in general a condition clause,
and its representation with hyper-rectangles may require
up to m -+ 1 condition clauses—for instance, a possible but
not unique representation may use rectangles 1 and 2 and
the entire condition clause ¢; in Fig. 3.

* The set difference ¢ = ¢1 \ ¢z is not in general a condition
clause, and its representation may require up to m condi-
tion clauses—e.g., a possible but not unique representation
may use rectangles 1 and 2 in Fig. 3.

Intersection aside, the other operations may therefore generate
a much higher number of rules than that of the operands, and
this number increases with the selector number. We have there-
fore developed an approach mainly based on intersection op-
erations (Section V-A). Moreover, for those cases where the
use of another operation (namely the union) is unavoidable, we
have defined an algorithm that uses it only for simple cases
(Section V-C), thereby limiting the computational complexity
of our approach.

B. Examples of Resolution Strategies

Let us first consider the existing FMR resolution strategy. In
this case, the priority is an external data associated to each rule
for conflict resolution purposes. Formally, we model the assign-
ment of priority to rules via a function = mapping each rule to
an integer: The smaller the integer, the higher the priority. Pri-
orities are normally implicit as FMR typically uses an ordered
list, with high-priority rules listed first and the constraint that
two rules cannot be assigned the same priority.

A policy p defined using the rule set R and the FMR strategy
can be formally expressed as (R, FMR, {w }, D), where DI is the
“Deny” action and

FMR: {(ri,7(r1)), (rm, (), ..} — ax
where ¢y, is the action of the rule rj, with the maximum priority,
that is, the minimum value of 7

min
rE{T, e)

w(ry) = {m(r)}-

Likewise we can model a policy that uses the Last Matching
Rule strategy as (R, LMR, {x}, D) that is analogous to FMR, but
it selects the action from the 7 with the minimum priority

{=(r)}.

max

7T(7"k) - re{r;r }

Priorities in FMR and LMR are the simplest way to define the
precedence between rules, but this could be a limitation.

As another example, let us consider the resolution process in a
scenario different from packet filtering—for instance, the access
control conflicts at a target in IBM Lotus Domino [24]. In this
environment, rules are definded by two selectors: the scope and
the subject. The resolution strategy consists of maximum three
steps.

1) Scope specificity: Select rules with the highest scope speci-
ficity (according to: all < this container and all descen-
dants < this container). If one rule has been selected, then
enforce its action, else go to 2

2) Subject specificity: Select, among rules with the same
scope, the rules with the highest subject specificity (ac-
cording to: default < wildcard < group < self < individual
user/server). If just one rule has been selected, then en-
force its action, else go to 3

3) Combined rules: “Deny access takes precedence over
Allow access” (i.e., DTP), that is, enforce Deny if at least
one action clause of the selected rules is Deny.

In this case, the precedence between rules is complex and in-
volves different external information, therefore anomaly detec-
tion would need an ad hoc method. To model the Domino res-
olution strategy, we introduce two extension functions ¢ and
1. The former relates a rule to the scope specificity, while the
latter to the subject specificity. Furthermore, we use two selec-
tion functions o, and oy, that select, respectively, rules with the
most specific scope and the most specific subject in a set of rules,
that is (K = matchp(x))

O, 28 — 2t

KCR — K,={r€Klp(r;)=max,cx p(z)}
fo 2R — 2

KCR — K,={r€Kl¢(r)=maxex ¥(x)}.

The Deny Takes Precedence strategy is modeled as

DTP : 2 — A

D./ if 3 rr € {7'177'7717"'}
such thatay, = D

A, otherwise.

{ri,rm....}

Finally, the resolution strategy is Rdomino = DTPo0, 00y, and
the policy may be described as (R, Rdomino: {©, ¥}, D)
Another scenario where our model may be helpful is in the
composition of independently specified rule sets. For instance,
consider the case of a company where there are several network
managers, each one responsible for a specific portion of the net-
work, and a single security administrator, in charge of the global
security of the network and the actual configuration of the cen-
tral firewall. Each network manager specifies the policy as a
rule set for his subnetwork according to his preferred resolution
strategy. We name these rule sets M1, Mo, ... and M = Ui M;.
The security administrator is in charge of defining the policy
for the sensitive part of the network, and the interarea services.
For ease of specification, the administrator may write distinct
rule sets for different security needs, e.g., the server policy, the
DMZ policy. These rule sets are divided into high-priority rule
sets (Hy, Ho,... and H = |J; H;) and low-priority rule sets
(L1, Lo,...and L = Ui L;), each one with its own resolution

strategy. The security administrator wants to implement the fol-
lowing global resolution strategy.

 First select the matching rules from the high-level priority
rule sets; if none, then take those from the managers’ rule
sets; if none, then take the ones from the low-priority rule
set;

* Divide selected rules according to the rule set to which
they belong and use its own resolution strategy to derive
an action from each rule set;

» Ifactions are contradictory, Deny takes precedence.

This resolution strategy can be modeled by resorting to these

functions.

o 2% — 2 that selects the rules from the highest priority
rule sets, formally

KnH, ifKNH#?

pw:KCR— ¢ KnNM, ifKNM#Z)AKNH=
KnlL, ifKNM=0AKNH=.

s {¢n,,dm,,...} : 2% — Ais a family of functions that

selects the rules belonging to a given rule set [{; and uses
the internal resolution strategy to derive an action, that is

Ry, (KNH,), ifKNH; #0
- CR : ’
om; : K C R~ { a, otherwise.

e In the same way, we define {¢as,Pas,...} and
{¢L13¢L27 e }

« @& : 28 — 24 performs the union of the results of the ¢
functions, formally

P:KCR— U(/)H% UU(/)M;, UU(/)Li

« §: 24 — Areturns D if a least one action is Deny, A
otherwise.
The resolution function is then R, : 28 — A = § o0 ® o p.
Every policy defined according to 93, may be analyzed using
the techniques in Section IV-D and translated to the firewall
configuration using the morphisms as in Section V without the
need for ad hoc algorithms.

C. Defining Custom Resolution Strategies

Defining new resolution strategies is a sensitive task. All the
examples presented in the previous section use ordered sets, and
this is not by chance: A well-formed resolution strategy is al-
ways designed so that a partial order is defined over the data
used for conflict resolution. For instance, DTP uses actions and
imposes D > A, while FMR uses integers as priorities (see [25]
for further details). A simple test to understand if a resolution
strategy is sound is to consider rules having the same (generic)
condition clause and see if the strategy is able to find the action
to apply, then repeating the test for rules having the same ex-
ternal data, one field at a time.

D. Anomaly Classification

The formalism in Section I'V allows the anomalies defined in
[2] for FMR to be redefined in a more general way, so that they
can be detected independently of the used resolution strategy
and easily applied to different contexts. We first introduce an
abstract definition of a policy containing anomalies, and then

we show how to detect anomalies in rule sets. We distinguish
two cases.
* Conflict anomaly: A policy p is conflictual if there exists a
ruler = (¢,a) € R and 3z € ¢ such that p(x) # a.
* Suboptimality: A policy p is suboptimal if it contains a
hidden rule r € R such that its removal from the rule
set does not affect the policy function; in other words, p
is suboptimal if there exists » € I? such that

(R\ {r},RE, F,d) is equivalent to (R, R, E. d).

Note that these anomalies do not exclude each other. For in-
stance, a policy may be conflicting and suboptimal at the same
time. In fact, a hidden rule may also be conflicting. Redundancy
anomaly in [2] is an example of suboptimality. The generaliza-
tion and correlation anomaly are examples of conflict anoma-
lies, while the shadowing anomaly is simultaneously a subopti-
mality and conflict anomaly.

These two types of anomaly highlight different policy spec-
ification issues: Suboptimal policies contain rules that do not
give any contribution to the policy function, yet affect the per-
formance of the PEP/PDP, while conflicting rules provide evi-
dence of errors in policy specification and need to be carefully
examined by the administrators.

Once anomalies are defined in theory, it is necessary to iden-
tify them in practice. In particular, we are interested in detecting
anomalies in rule sets independently from the used resolution
strategy. An analysis of rule pairs is sufficient to manage the
conflict anomaly. In fact, if two rules are activated simultane-
ously but they enforce different actions, at the end, one action
will be overridden. On the other hand, suboptimality cannot be
treated correctly by considering rule pairs only. The effective
contribution of a rule to the policy depends on all the other rules
in the rule set. In fact, the condition clause of a hidden rule may
not be completely covered by the condition clause of a single
rule.

Conflicting rules can be classified according to the following.

» Correlation anomaly: Rules r; and r; are correlated if

Ciﬂcz,‘;éw A H,i;é(),j.

* Generalization anomaly: A particular case of correlation
anomaly, a rule 7; is a generalization of a rule r; if

¢ Cei A ag #a; NR{r,rih) = a4

Although the presence of correlated rules may be detected by
analyzing only rule pairs, the whole rule set must be considered
when evaluating the action that they actually enforce. For in-
stance, in Fig. 2, rules r1 and ry are correlated, but the action
to enforce within their intersection also depends on r3. We will
deal with this issue in Section V-A.

Sometimes it is possible to find cases of suboptimality in-
volving only two rules (such as redundant and shadowed rules
in [2]), but in general this does not cover all possible cases. For
instance, in the case of Fig. 4(b) and (c), the rule r4 is hidden.
Additionally, the case in Fig. 4(d) is not detectable by using ex-
isting methods: r4 is redundant even if it has the highest priority.

Our model identifies two cases of suboptimality that may
occur when more than two rules are involved: the general

Sl Sl

offy () #0
1

(a) (b)

S 2 S, 2
() ()

Fig. 4. Graphical representation of eff,, and general anomalies. (a) eff, function. (b) General shadowing anomaly. (c) General redundancy anomaly. (d) General
redundancy anomaly. In (a), only the gray part of r; contributes to the policy. In (b)—(d), r, is unnecessary and can be removed from the rule set.

redundancy anomaly and the general shadowing anomaly. Let
us start with the example in Fig. 4(a): If three rules 1, 79,
and r3 intersect each other and the r» and r3 prevail over r;
(according to a given resolution strategy), then the part of ¢y
that contributes to the policy is only ¢; \ (¢2 U ¢3). Considering
this example, in general terms, we need to “subtract” all the
boxes where the rule is unnecessary for the policy representa-
tion from the condition clause. By rephrasing the definition of
suboptimality, a rule r is hidden if for all z € ¢

R(matchr(z)) = R(matchp (y(x))
= R(matchgr(x) \ {r}).

This formula states that a rule is unnecessary if the decision
of the action to apply may be taken without considering it, for
every point of its condition clause. To this purpose, introduce
the cff,, () function that returns the portion of the rule that “ef-
fectively” contributes to the policy p, formally

eff,: R — 26
r +— € ¢such that P(matchp(z)) #
R(matchg () \ {r}).

If eff,,(r) = @, we can infer that r is unnecessary to p. The ex-
plicit calculation of this function does not require all the points
in ¢ to be taken into consideration. It is enough to consider
the different hyper-rectangles originated by the intersection of
rules, whose condition clause has nonempty intersection with c.
For instance, in Fig. 4(a), the regions that concern rule 1 are
c1Nes, ¢1Neg and ¢q \ (¢1 Nea Ues). By using cff,, the general
anomalies are formally defined as the following.

 General redundancy anomaly: A rule r = (¢, a) is redun-

dant if

eff ,(r)=0 A Ve €, plz) =a.

 General shadowing anomaly: A rule r = (c,a) is shad-

owed if
cff,(r) =0 A Jz € ¢, p(z) # a.

A special case of the general shadowing anomaly is the total
shadowing anomaly, which is a rule covered by rules that all
enforce an action that is different from the total-shadowed one.
Formally, a rule » = (¢, @) is total-shadowed if

eff ,(r) =0 A V& € c,p(z) #a.

The classification presented here is general and covers all the
possible cases of anomaly that can arise in rule sets. In fact,
it includes all the pairwise anomalies in [2] plus the case of
general anomalies. Identification of general anomalies relies on

eff,, and thus it presents the problem of set union and difference
calculation. Thus, to evaluate their contribution to the policy, it
is necessary to resort to alternative methods, such as the canon-
ical form for policy representation (Section V-A).

V. THE SEMANTICS-PRESERVING MORPHISM

For the purpose of policy manipulation, it is useful to intro-
duce the concept of semantics-preserving policy morphism or
simply morphism: a transformation of the policy representation
that keeps the policy unchanged. This is very important when
administrators specify a policy with high-level techniques, but
following that, rules must be translated into a format that real
enforcement elements can accept. Anomalies can be analyzed
independently of the resolution strategy used by the adminis-
trators (by using the techniques in Section IV-D), and the re-
maining step is just to translate the policy to a format that uses
the resolution strategy available at the enforcement element.

Our aim is to identify an approach to change the resolu-
tion strategy of a policy while leaving its semantics intact.
In other words, given (R, Rg, £, d), the objective is to find
an equivalent policy (R', R, E’,d"). The target resolution
strategy R’ = R, o egr will use external data from the sets
of attributes { X7, X»,...}. Thus, a procedure that implements
a morphism must generate: 1) the rule set I¥’; and 2) the
assignments of rules in R’ to the external data through the
functionsin £/ = {f; : R' = X, /2 : " — X5,...}. For
example, given a filtering policy (R, Rg, F, d) expressed via a
generic resolution strategy, an administrator may be interested
in enforcing it by using a device that only provides FMR (e.g.,
a packet filter). Thus, a morphism is needed to find the rules
Rppp to enforce and their priorities 7 : Rypyg — N.

In general, a morphism is needed for each pair of resolution
strategies. The cost of defining new conflict resolution methods
would become too high if in the end a translator were needed
for every target resolution strategy. In the next sections, we will
present an alternative approach to the translation process. The
approach is based on the idea of splitting the process into two
steps: The former translates any policy to the same intermediate
representation, which is in turn used by the latter step to create
device-specific rules. We shall name the intermediate represen-
tation canonical form. Section V-A demonstrates that a mor-
phism exists from any policy (expressed by means of whatever
resolution strategy) to its canonical form and presents a proce-
dure that allows the canonical form to be constructed from every
policy. The second step requires the definition of a transforma-
tion process from the canonical form to any target resolution
strategy. While the high-level resolution strategies are bounded
only by the imagination and the needs of policy editors, the
number of target resolution strategies is low, as it corresponds to

those strategies implemented by actual enforcement elements.
Section V-B, shows the translation of a policy in canonical form
into one using the FMR or LMR.

In the next section, only morphisms between policies
using the same default action are presented. Morphisms
that also change the default action—from (R,Rg, E,d) to
(R'.R%,, E',d')—may be treated in the same way by adding
a dummy rule into the original rule set, which is valid for the
whole selection space r; = (&, d) and has the “lowest possible
priority” (e.g., “Deny all” or “Allow all”), that is

(R SREaE/d) — (Rlﬂ /E/7E/7d,)
N /
(RU{rq},Rp, E.d)

A. Set-Based Policy Representation: The Canonical Form

The canonical form is a policy representation relying only on
set operations to solve conflicts and is very helpful for policy
manipulation. Before defining it, we need to introduce some el-
ements of the set theory and an algebraic structure, the semi-lat-
tice [22], with some of its mathematical properties.

Definition 6 (Partially Ordered Set): A partially ordered set
is a system consisting of a set S and a relation “<” such that
Ya, b, ¢ € S therelation “<” is reflexive (a < a), antisymmetric
(a <bAb<a= a=0),and transitive (a <b A b<c =
a < ¢).

Definition 7 (Upper Bound): Given a partially ordered set .S,
an element u € S is an upper bound for X C S ifa < u for all
a € X.

Definition 8 (Least Upper Bound): An element u € S is a
least upper bound (lub) of X C S if it is an upper bound of X
and, for all upper bounds v of X, the relation % < v holds.

Definition 9 (Finite Semi-Lattice): A finite semi-lattice is a
finite and partially ordered set (S, <), and for each pair of el-
ements z,y € 9, there exists the lub of the set {x,y}, and it
belongs to S. In the following, we will use the term “semi-lat-
tice” to refer to a finite semi-lattice.

We are now in the position to introduce a binary composition
induced by the resolution strategy into the rule set, such that the
result: 1) applies where two rules overlap (i.e., at the intersection
of their condition clauses); and 2) enforces the action resulting
by the application of the resolution strategy.

Formally, given a policy p, we write the composition

Rx R — 26 x A
rij =iy = (e 0c, R,

[T3R2]

as

We can extend the composition to more than two rules

Tigh =T Tj Tk ...

((3,‘ Ne;Neg M., 9‘1({73,@,7}, .. })

The closure R with respect to the composition is the set of all
the possible compositions of rules in R

VreR=>reRAVr,raeR=>r r€R.

Every element in the closure I? can be univocally written as a
composition of rules in 2 [26]. 12 may contain rules with the

same condition clause that do not contribute to the policy. Fig. 2
presents a policy with rule set & = {ry, r2, 73}, whererq 2, 72 3,
and rq » 3 have the same condition clause. In this case, matchg
will never return {r1,r2} or {79, r3}. Indeed, if a packet x is in
c1Neg = caNeg = epNeaNes, thenmatchp () = {ry, 19, 13}
By grouping rules that share the same condition clause, we build
a new rule set R* C R defined according to the following al-
gorithm: If a group contains only one rule, that rule will be in-
cluded in I?*; if a group contains more than one rule, then only
the composition of all the rules in the group will be included in
R*.InFig. 2, the groups of rules with the same condition clause
in R are {{7‘1}, {7"2},7{7’3}, {7"173}, {TLQ, 7‘2’3, 7"17273}}. There-
fore, R* will include {7‘1, 12,713,713, 7‘1:2’3}, but not 71,2, 72,3.

The following properties hold.

< Distinct rules in I2* have distinct condition clauses, that is,
ry o = ¢ #F .

» Givenry, o € R*, there exists one and only one rule in R*
whose condition clause is the intersection of the condition
clauses of r; and ro—that is, there exists a rule such that
its condition clause is ¢; N ¢y (closure with respect to the
intersection).

We define in R* the order relation “<”

1,72 € R* 1y <19 < ¢ D co.

(R*, <) is thus a semi-lattice since it is a partially ordered set
with respect to <, and the least upper bound of {r1, r2}, which
is the rule with condition clause ¢ N ¢y, is contained in R* due
to the closure.

Our next step is to introduce CAN, the resolution strategy in
I?* | that takes the action from the least upper bound rule

CAN: 2F 4

{71, "m+. ..} — a suchthatr = (e, a)

= 1}%p{rl, Trrs -}

The policy (R*,CAN,#,d) is the canonical form of
(R,REg, E,d). In Appendix-A, we prove that (R*, CAN,), d)
is equivalent to (R, g, E.d) (Theorem 1). Since the con-
struction of I2* presented before is possible for every policy,
we conclude that there exists a morphism from every policy
(expressed by means of whatever resolution strategy) to its
canonical form. Therefore, the canonical form is preferable
because it is semantically equivalent to the original policy and
permits easy processing. With respect to the original policy,
the canonical form has a larger number of rules, but offers
the advantage that all the possible cases of conflicting rules
have been precomputed with the resolution strategy *R. Thus,
any algorithm working on CAN need not to consider the
original strategy ‘R because the differences between resolution
strategies have been eliminated. Furthermore, CAN is a simple
resolution function, as it needs only to identify the least upper
bound rule, and lub computation is independent of the original
resolution strategy. Additionally, the canonical form has the
advantage of connecting different worlds. In fact, thanks to the
canonical form, problems concerning the policy may be solved
by resorting to techniques from algebra and graph theory.

The following section illustrates how the semi-lattice repre-
sentation of the canonical form can be used to translate a policy

into canonical form to a policy that is suitable for implementa-
tion in real devices, thus permitting the use of any type of ad hoc
resolution strategy in the specification phase.

B. FMR and LMR Policy Morphisms

This section introduces a morphism to transform a policy in
canonical form into one using FMR. The same algorithm also
works for LMR by simply reversing the priorities.

As previously seen, if (R*,CAN,(,d) is the canonical
form of a policy p, the FMR-morphism must provide a set of
rules Rpnr, and the priority assignment 7 @ Rppyr — N.

The FMR-morphism will use the cover graph, a common
mapping of partially ordered sets to graphs.

Definition 10 (Cover Graph): Given two distinct elements
a,b € 8, bis acover ofa (written @ < b) ifand only ifa < b
and no element v such that w # @ and » # b satisfiesa < u < b.
The cover graph of a partially ordered set (S, <) is a directed
acyclic graph whose vertices are the elements in S and edges
are given by the cover relation, i.e., there is an edge between
vertices a and b if and only if @ < b holds.

Therefore, every policy is representable as a cover graph
through its canonical form. That is, given a policy p, we will
indicate as G(p) the cover graph associated to (R*,<). As a
consequence of being a semi-lattice, (R*, <) contains a top
element 7' that is greater than all the others. Formally

T= Tleull?l)*{r} =71Tyc... Th

=(c1NeaN--Nep, R{r,ra, ..., })

where 7 is the number of rules in F. Note that B* will contain a
top element T’ even if ¢y NeaN- - -Ne,, = Y. The graph represen-
tation is necessary to find an optimized procedure that selects the
rules to be included in [Zr)\g and to assign them priorities. To
understand how to assign priorities, let us consider two distinct
conflicting rules v, r, in &£* such that v, < r,. This implies
that CAN{r,,r,} = a,; that is, CAN selects the action from
7y. Therefore, an equivalent policy using FMR, which chooses
the action from the rule having the greatest priority, must assign
a higher priority to r,. In general, greatest rules according to the
order in I2* will have greatest priority, for instance, in case of
least upper bounds

W(lgb{7‘1,7‘2}) < 7w(r) A 77(1}?}1){7'1, ro}) < w(re).

The proposed algorithm relies on a modified breadth-first
backward traversal in G(p) to analyze and discard all the rules
that are unnecessary for an FMR representation. The rules to
discard are selected on the base that the condition clause of
a rule in the semi-lattice is strictly included in the condition
clause of its parents and ancestors. However, some caution
is needed. Let us introduce in G(p) the concept of maximal
domain M(r) associated to a rule », named the base rule.

Definition 11 (Maximal Domain): Given the base rule » €
G(p), the maximal domain M(r) is the set built according to
the following recursive procedure.

1) (base clause) r € M(r);

2) (inductive clause) if '’ € G(p) and +' € M(r) are such

that 7/ < 7/, a,» = a, and all the rules in every path

between 7" and 7 enforce the same action a,., then r”/ €

M(r).
The inductive clause states that an ancestor can substitute
r only if it enforces the same action and all its paths to r
include only rules with the same action can substitute r. These
ancestors are suitable because they are never overridden by
covering rules that enforce a different action. A maximal do-
main is therefore a subgraph of G(p). The proposed algorithm
starts from the top element of G(p) and continues building
the maximal domains in the portion of G(p) not yet included
in some maximal domain. Finally, it outputs a sequence of
maximal domains ¢ = (Mj, Ms,..., M,). Fig. 5(a) shows
a geometric representation of a policy whose canonical form
semi-lattice is presented in Fig. 5(b) with maximal domains
represented using Venn diagrams. The algorithm starts from
the top element rj 234 and builds the maximal domain
M, = M(T1,2,3,4) = {7"1,2,377"1,2,477”1,2,“,377“1,4,7’3}~
The rule r4 has not been included as it enforces a dif-
ferent action. The next base rule is 74, the only rule not yet
processed, and its maximal domain includes only r4, i.e.,
My = M(ry) = {r4}. Considering the case in Fig. 5(d) and
(e), the algorithm starts in 7 2,34 and builds the maximal
domain M; = M(r1234) = {7123.71,24,71,2:71,3,73}.
The rules 71 4 and 74 have not been included as they en-
force a different action, and »; is not in M; because the
path (r1,r14,7124,71234) includes r;4. The next base
rule is 71 4, therefore My = M(r14) = {r4,r14}. Finally,
M3 = M(r1) = {r1}. We name reduced maximal domain
the subset AM* C M that contains the rules whose ancestors,
according to the order defined in R*, are not in M. The rules
in M* are the minimum ones. The important property of rules
in a reduced maximal domain is that all the condition clauses
of other rules in M are subsets of at least one of them. For
instance, in Fig. 5(b), the rules in the reduced maximal do-
mains (represented with a thick border) are My = {ry,rs},
and M5 = {r.}, while in Fig. 5(¢) are My = {r3,r12},
M3y = {r4}, and M = {r1}. The rule set Rpyr will be
generated as the union of all the rules in the reduced maximal
domains obtained from o

RFMRZAMTUM;U”'UM:.

Priorities are then assigned according to the order in &. In
practice, we have that Vr; € M and Vr; € M}, i < j im-
plies that 7(r;) < =(r;) (see Appendix B). Since all rules in
a reduced maximal domain enforce the same action, the rela-
tive priorities are not important. In Fig. 5(e), the assignments
7(r3) = 1 and viceversa are both valid. Tables 5(c) and (f) show
the equivalent FMR policy obtained from the example policies.

Algorithm 1 formally presents the FMR-morphism. It first
empties the processed structure, used to store the rules that have
already been included in some maximal domain (line 1). The
algorithm starts from the top vertex 7' to calculate the maximal
domain M; = M(T). If T has an empty condition clause, it
will never match a packet, therefore the algorithm selects all its
parents and starts calculating the maximal domains. This is done
by initializing the ready structure that contains the rules in R*
for which it is allowed to calculate the maximal domain

10

Sy [deny
71,79,
T tre, 72,73} [allow
{T‘1.Tj;}
. r1,72,73, 74}
i e {ry,ra, 4}
To 7 ; 1 1,72,74
i“,‘/‘l"/,‘/’ T2 Rule | Priority
! 71 w(r) =1
{TLT’4} T3 7T(’f’3> =2
S T4 7T(7"4) =3
(a) ()
So [] deny
T1,T2,7¢
= 2 5 allow
{7‘14,7‘:;}
r1,72, 173,74}
T1 S
R P {r3,ra e} Rule | Priority
e T riz | m(rip) =1
77777777 I T3 m(rs) =2
{ri,ra} T4 7(ry) =3
Sl 71 71'(7'1) =4
@ ()

Fig. 5. Use of the proposed FMR-morphism to two sample policies. (a) Example policy 1: graphical representation and results of match function. (b) Example
policy 1: the cover graph. (c) Example policy 1: exported rules. (d) Example policy 2: graphical representation and results of match function. (¢) Example policy 2:

the cover graph. (f) Example policy 2: exported rules.

Algorithm 1: The FMR-morphism

processed «— ()

if the condition clause of T' is not empty then
ready «— T

else
ready «— parent 0f(T)

end if

priority «— 1

while ready # § do

9: r « selectFrom(ready)

10: M < maxdom(r)

11: M* — reduce(M)

12: RFMR — M*

13: forallz € M~ do

AN A e

14: s (@, priority)

15: priority «— priority + 1
16: end for

17: processed 244 ap

18: update(ready, processed)
19: end while
20: return Rgyg and 7

(lines 2—6). The main cycle iterates over the elements in
ready (line 8). The next rule r to process is selected using
selectFrom() (line 9). This can be a random choice as all the
rules in ready are selectable since the algorithm guarantees that
the composition of rules in ready have been already included
in a previously calculated maximal domain.

The function maxdom() (line 10) implements the recursive
function presented in Definition 11. It calculates and returns the
maximal domain M associated to r. The reduce() function
(line 11) returns the reduced maximal domain AM™ by walking
in the subgraph M of G(p) to identify rules whose ancestors
are not in M. Rules in M* are then included in the target rule
set ’pyp (line 12). All rules in the current M ™ are associated
to priorities using 7, a hash map that associates rules to in-
tegers (line 14). The next priority to assign is managed using
the variable priority (line 7 and line 15). Afterwards, both
processed (line 17) and ready must be updated resorting to the
update () function that selects all the rules whose covers are
all in processed (line 18). The algorithm terminates when all
the rules in £* have been included in processed.

The LMR-morphism uses the FMR-morphism to calculate the
Ipyp and 7. Then, it is necessary to reassign the priorities. If
N is the cardinality of Epyg, the new assignment is

for all r € RFMR do
m(r) « N —=x(r)+1
end for

Afterwards, 7 maps the relations such that (Rgpyg, LMR, {7}, d)
is equivalent to the initial canonical form.

In Appendix-B, we prove the correctness of the FMR-mor-
phism (Theorem 2), and we sketch also the proof of termination
of the Algorithm 1. Thus, we can state that a morphism from a
policy expressed in canonical form to a policy described using
the FMR or LMR strategy exists. Moreover, since every policy
can be represented in canonical form, we can infer that every
policy defined using our model can be represented through an-
other policy using the FMR or LMR strategy.

1"

SQ SQ
BEE 5a e
4]5|6] 45]6
7189 789
’7‘1‘ T | - ’7‘1‘ 5
i S1 i S1
(b) ()

Fig. 6. Graphical representation of the techniques resorting to the canonical form to evaluate the function eff ,. (a) Simple verification: eff ,(r) # 0. S, and S
are not fully covered. (b) Full verification: eff ,(r) # @, the rule is necessary because of box number 8. (c) Full verification:eff ,(r) = 0.

C. Using the Canonical Form to Detect the General Anomalies

The semi-lattice and its representation as a cover graph en-
able calculation of eff,, without resorting to set union. Using
the semi-lattice, eff ,(r) can be evaluated only considering the
covers of r, formally, if ' = (¢/,a’)

effl,(r) =0 = U dNe=ec.

r<r!

The verification of this condition is done in two steps: the
simple and the full verification. The simple verification consists
in calculating the union of the conditions of covering rules in
each selector. If at least one union is not equal to the corre-
sponding condition in 7, then we deduce that cff,,(r) # @ [see
Fig. 6(a)]; otherwise we use the full verification.

The full verification consists in enumerating all the boxes ob-
tained from the intersection of the condition clause of + with the
condition clauses of its covers. For each box, we verify the sub-
optimality property, that is, R(matchp(z)) = R(matchp(z)\
{r}) [see Fig. 6(c) and (b)]. To this purpose, it is enough to take
all the compositions of r, that is the sub-semi-lattice {r' € R* |
r < r’}, whose elements can be written as r - (r; - 7, - .. .), and
to check whether R({r} U {r;, 7m,...}) = R{r1.rm,...}) is
satisfied or not. If for at least one composition the previous prop-
erty is not satisfied, then r is necessary; otherwise, is hidden.
The type of general anomaly (redundant or shadow) depends on
the action clause of the rules in the sub-semi-lattice as shown in
Section IV-D.

VI. IMPLEMENTATION

The policy model, anomaly detection, and translation process
have been implemented in an extensible and modular tool whose
purpose is to guide administrators in analyzing, validating, and
exporting rule-based policies. The tool is written in Java, and
its architecture is shown in Fig. 7. The Policy Model module
permits the definition of generic policies expressed according
to our model. It includes the classes that represent policy, rules,
actions, condition clauses and selectors, and the logic for per-
forming set-based operations on condition clauses. Addition-
ally, it provides the resolution mechanisms and the means to
define and associate external data.

The Format Translator module loads the policy and instan-
tiates the model. By using a modular architecture, the policy
can be specified using an implementable language or an ad hoc
syntax, thanks to specific parsers able to instantiate the policy
model. Additionally, policies can be exported to different lan-
guages for direct use by enforcement devices.

Anomaly
Management

T— 1

1
Input Format Policy Model [
Policy Translator |_|

[Poliey |

Output Policy Translator| [Canonical Form Anomaly
Policy (morphism) Management Report
— —

Fig. 7. Tool’s architecture.

The Canonical Form Management module translates the
policy into canonical form and generates the associated
semi-lattice. Both the policy and semi-lattice of its canonical
form are used by the anomaly detection and classification
functionalities provided by the Anomaly Management module.
The anomalies are reported to a file. The Policy Translator
transforms the policy according to the desired target policy
parameters, that is, the default action, resolution strategy, and
necessary external data.

The tool already includes the most used resolution strate-
gies and the ones presented in this paper. A custom resolution
strategy can be written by implementing the following interface:

public interface ResolutionStrategy (T extends Rule) {
public T composeRules(T r1, T r2);
public Action composeActions(T rl, T r2);
public T composeRules(Collection {T) rules);
public Action composeActions(Collection (T) rules);
public ResolutionStrategy (T} cloneResolutionStrategy();

}

The design and testing of the tool required careful planning
since, theoretically, the worst case for the number of rules of
the canonical form can be exponential in the number of rules
(due to the cardinality of the closure R). Thus, the focus was
on the design of optimized data structures for fast rule lookup
and composition. However, while the worst case is independent
of the actual rule sets, real cases are strongly dependent on the
way rules are specified. Statistical considerations and the anal-
ysis of existing rule sets confirmed that practical cases are very
far from the worst-case scenario that occurs if all the rules in-
tersect with each other. Moreover, in the worst case, many com-
positions would have the same condition clause and would be
removed from the canonical form. Therefore, further studies are
needed to evaluate the maximum number of rules in a canonical
form where rules with the same condition clause are eliminated.

Taylor and Lunteren [27]-[29] have shown how far the typ-
ical firewall scenarios are from the worst-case one.

* The maximum number of rules that a packet can match is

very small, typically less than five.

100 H [Can. form creation
2 { Semilattice gen.
@ |Multi rule analysis
o XXX FMR-Morphism
g 50|
—

500 1000

1500

2000
rules
(@)

12

8000 1 A 1000 rules .
- * 1500 rules
@ 6000 162000 rules
2
[, 4000
Q
2000 |- W i
|
1 2 3
wildcards

(®

Fig. 8. Tool performance: testing results. (a) Elaboration time depending on the size of the rule set. (b) Canonical form rules depending on wildcards.

» The protocol field is restricted to a small set of values: TCP,
UDP, ICMP, (E)IGRP, GRE, or any protocol. Moreover
TCP, UDP, and “any” cover almost all cases.

* TCP ports are usually specified as wildcard, high range
(> 1024), low range (< 1024), or exact matching. The
value distribution depends on the field type, i.e., source
ports are seldom part of the condition, and when they are,
they rarely require a fixed specific value.

* The distribution of wildcards depends on the field (e.g., IP
source addresses contain more wildcards than the destina-
tion ones).

This suggests that the closure will rarely contain rules composed
of more than five rules. Therefore, the depth of G(p) will be
close to five, independently of the rule number. Additionally,
Al-Shaer et al. analyzed man-written rule sets and noticed that,
in the worst case (a beginner administrator), at most 25% of the
rules present anomalies [2]. In our model, this means that no
more than 25% of the rules have at least one (nonempty) com-
position, while 75% of the rules do not generate compositions. It
should be noted that the anomaly percentage strongly decreases
to 8% in the case of expert administrators. Consequently, the
percentage of compositions involving three or more rules will be
very limited. This information also confirms that, in real cases,
the closure calculation stops after a few compositions since the
majority of condition clauses do not intersect. Our experiments
confirmed that the number of rules in R* rises in the same way
as a (low-degree) polynomial. The default action also impacts
over the specification as it is common to write rules only for
those parts of the selection space where an action different from
the default one is desired. This practice increases the chance of
unnecessary rules.

We tested our implementation in four steps: random genera-
tion of 5-tuple rules according to statistical information, canon-
ical form generation, anomaly report, and translation. The tests
used a standard PC (Intel Core Duo 2.33 GHz with 2 GB of
RAM).

Rule sets were generated according to Taylor’s statistical
data, with policies ranging from 50 to 2000 rules, in steps of
50. To reduce statistical deviation, we generated 100 rule sets
for each size. A resolution strategy was then selected among
the available ones. The default action was fixed to Deny.

Additionally, another parameter was varied: the average
number of wildcards per rule (from 1 to 3 by 0.2 on a total
of five fields). The usage of wildcards affects the average
number of intersecting rules, while Taylor’s statistical data is
preserved: The more the wildcards, the more the intersections.

This increases the number of rules in the canonical form and
therefore the computational time.

The tool performance was satisfactory: In the worst case, it
took only 120 s to elaborate 2000 rules and to translate them
using the FMR-morphism. Therefore, it is suitable for real cases.
We noticed that the performance was independent of the res-
olution strategy, that is, the cost of resolution did not consid-
erably affect the computation. There were less exported rules
than the original ones. As mentioned before, this reduction is
strongly dependent on the rule set. The results of these tests are
presented in Fig. 8(a), which plots the average computing time,
and Fig. 8(b), which shows the average number of rules in the
canonical form.

VII. CONCLUSION AND FUTURE WORK

The work presented here focuses on access control network-
level policies, providing optimization and conflict resolution via
set-based representation and manipulation through special pro-
cedures (the morphisms). The model and procedure have been
implemented in a tool used to give an experimental demonstra-
tion of its applicability to real cases. Our ambition is to develop
an integrated development environment (IDE) for defining and
verifying policies, also providing a language to define the res-
olution strategies, which currently need to be written as Java
classes.

We are confident that this work can be applied equally well
to other access-control scenarios, as long as they respect some
principles: 1) they are rule-based 2) their conditions and actions
have a finite set of values; and 3) selectors permit the use of in-
tersection. These principles apply to some important cases such
as identity- and role-based access control at application and OS
level. By removing the limitation of the condition clause being
a hyper-rectangle, we aim at extending our approach to sup-
port even more complex scenarios arising at higher abstraction
levels. Moreover, we aim to extend our model to support con-
texts where a history-based analysis is necessary to identify dy-
namic conflicts.

The model can also be proficiently used in other scenarios.
We are currently exploring two areas: rule number optimization
and analysis of distributed scenarios. The present version of the
anomaly discovery tool deals with rules written by the admin-
istrators, which is in a human-readable form. This is useful for
showing the anomalies in a user-friendly way, but unnecessary
when translating them to machine-readable form. More com-
pact and optimized representation of rule-based policies can be
obtained if rules can be freely manipulated without links to their

original form. However, our preliminary study shows that this
task is computationally heavy and thus feasible only for offline
policy optimization. Finally, by considering also topological in-
formation, we aim to detect anomalies and optimize policies in
distributed systems.

APPENDIX

A. Equivalence of the Canonical Form

In this section, we first prove Theorem 1 stating that the
canonical form obtained using the construction in Section V-A
is equivalent to the original policy.

Lemma 1: Letry,ro € R*, then the following holds:

111?11){741,7"2} =7r1-1r9=(c1MNcg,a12).

NOE that a1 » depends not only on 'y, 72, but also on all the rules
in R with the same condition clause (see Section V-A). First
of all, ** contains (by construction) a rule with the condition
clause ¢; Neg, thus 71 - 19 € R*. Since ¢1 Ney = héb{cl, e},
from the definition of the order relation in R*, we derive 119 =
l}%lb{rl, T9}.

Lemma 2: For all z, matchpg- () is an R* sub-semi-lattice.

Let r1,72 € matchg«(z) € R*, according to Lemma 1,
1}1?11'){7“1,7’2} = 711 -re = (1 N cg,a1,2). Additionally, since
z €c andx € ¢2, we have that € ¢y N o, thus rq - 19 €
matchg-(2). This proves the closure and the lemma and en-
ables the usage of the lub for the rules selected by matchg-.

Lemma 3: If matchp(xz) = {r;,rm,..., v}, then riy, =
l}l%b{matchm(m)} =T .. Ts.

This is evident because

LT oo T = (N ey, N N ey, Rmatchp(2)))

and ¢; N ¢y, N -+ N e, is the least upper bound in & of condi-
tions {¢, €m, - - ., ¢, }. Additionally, by construction, any other
composition in TR with the condition clause ¢; N ¢y N -+ N cs,
has been excluded from R*.
Theorem 1: (R*,CAN,), d) is equivalent to (R, R, E, d).
Proof: 1t is enough to show that

Vi, R(matchg(z)) = CAN(match g (2)).

By combining the definitions of CAN and Lemma 3, we obtain
that (v is the function returning the action clause)

CAN{(matchp-(z))
=a <l}1?1l){1'natchp (1[7)}) =alry rm--reors)
=al(aNem N Neg, R(matchg(x))))
= R(matchp(x))

and this proves Theorem 1.

B. Correctness of the FMR-Morphism

In this section, we prove Theorem 2 stating that the policy ob-
tained by means of the FMR-morphism in Section V-B is equiv-
alent to the canonical form from which it was derived.

Lemma 4: matchp,,{(z) C matchg-(z).

13

This is evident because the algorithm selects a subset of the
rules in I?*. Thus, by means of Lemma 2 and the existence of a
top element, all the matching rules in I?pyir, when considered
in R*, are less than or equal to 7y}, = lll?lp{match r-{2)}.

Lemma 5: Let M{ = M*(r1) and M5 = M*(r) be two
disjoint reduced maximal domains associated to rules 1 and
such that r; < 7. Then, for any t; € M7 and ¢ty € M3, we
have w(11) > w(t2).

The FMR-morphism selects M3 before M7, and this implies
that Vry; € My and Vry; € My their priorities are ordered
as m(r1;) > w(re;). A simple extension of Lemma 5 is the
following lemma.

Lemma 6: Lett € R*. All the rules r < ¢ belong to the same
maximal domain of ¢ or maximal domains with base rule t’ such
that ¢’ < ¢.

Lemma 7: Letry,rs be two rules in R* such that r; < ro. If
both are also in RpMmp, then w(rq) > w(rs).

The proof'is simple. First, since 71,72 € Epyg, 71 and 72 do
not belong to the same maximal domain because the FMR-mor-
phism would only have selected the minimum when calculating
the reduced maximal domain. Then, let M = M™*(+1) and
My = M*(rq). If r1 € My and ro € Ms and M; # M>, then
m(r1) > w(r2) holds due to Lemma 5.

Lemma 8: Let matchg-(z) = {ri,r7m....,7r} and
Tlap = 111?1*b{match r{z)}. If My, is maximal domain con-
taining rran, and 1, the corresponding reduced maximal
domain, then rules in » € matchg,,,, (z) N M, (that is,
the rules in the maximal domain containing r,, selected
by the FMR-morphism) have higher priority than rules in
matchpy, () \ My, (that is, the rules selected by the
FMR-morphism that are not in the maximal domain containing
7'lub)-

In other words, rules in the maximal domain containing 71,
selected by the FMR-morphism have higher priority than rules
selected by the FMR-morphism that are not in the maximal
domain containing ry,. This lemma is proved by combining
Lemmas 6 and 7. In fact, rules with greater priority are those
in the same maximal domain as 7, because every rule in
matchg,.,,, (x) is less than 7y,y,.

Theorem 2: (Rpyr, FMR, {7}, d) obtained by executing
the FMR-morphism is equivalent to (R*, CAN, @), d).

Proof: Theorem 2 is proved if we show that

(FMR o e4}) (matchp,,, (z)) = aup
= (lgp{match}gx (L)}) = CAN(matchg- (x)).

If riq € Rpur, then Lemma 7 guarantees that all rules + in
matchp,,, . () have greater priority than ry,y,, thatis 7 (7, <
m(r). Thus, the FMR o/} strategy will select the action from
Plub- If71ub € Rryig, by Lemma 8 the rules with greater priority
are the ones in the same maximal domain as rj,},. Due to the
property that rules in the same maximal domain have the same
action clause, even in this case the FMR o e/ strategy will se-
lect the action from 71}, . This completes the proof of Theorem 2.

We outline here the proof that the FMR-algorithm terminates
only when all the rules in R* have been processed. This is true
if ready # @ unless all the rules in R* have been processed.
In general, after every iteration of the main cycle, processed

is a connected subgraph of G(p) (including T), therefore also
its complement 12" \ processed is connected. If W is the set
of all the elements not in processed with at least one cover in
processed and ready is the set of the elements not in processed
having all the covers in processed

W ={re R |3 r<r" Ar' e processed}
ready = {r € R* | Vr',7 < 7' Ar’ € processed}.

It is evident that ready C W, we must prove that ready #)
unless all the rules have been processed. Since (R*\ processed)
is connected, a maximal element z in W exists. Additionally,
',z < ' A v’ € processed, but since z is maximal, all its
covers are not in W, thus they are in processed. This proves
that z € W N ready, thus z € ready.

REFERENCES

[1] A. Westerinen, “Terminology for policy-based management,” RFC-
3198, Nov. 2001.

[2] E. Al-Shaer and H. Hamed, “Modeling and management of firewall
policies,” IEEE Trans. Netw. Service Manage., vol. 1, no. 1, pp. 2-10,
Apr. 2004.

[3] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan, “Conflict classifi-
cation and analysis of distributed firewall policies,” IEEE J. Sel. Areas
Commun., vol. 23, no. 10, pp. 2069-2084, Oct. 2005.

[4] H.Hamed and E. Al-Shaer, “Taxonomy of conflicts in network security
policies,” IEEE Commun. Mag., vol. 44, no. 3, pp. 134—141, Mar. 2006.

[5] C.Basile and A. Lioy, “Towards an algebraic approach to solve policy
conflicts,” in Proc. WOLFASI, Turku, Finland, July 2004, pp. 319-338.

[6] C. Basile, A. Cappadonia, and A. Lioy, “Geometric interpretation of
policy specification,” in Proc. IEEE Policy, New York, NY, Jun. 2008,
pp. 78-81.

[7] M. Benelbahri and A. Bouhoula, “Tuple based approach for anomalies
detection within firewall filtering rules,” in Proc. IEEE ISCC, Aveiro,
Portugal, Jul. 2007, pp. 63-70.

[8] S. Thanasegaran, Y. Yin, Y. Tateiwa, Y. Katayama, and N. Takahashi,
“A topological approach to detect conflicts in firewall policies,” in
Proc. IEEE IPDPS, Rome, Italy, May 2009, pp. 1-7.

[9] S. Ferraresi, S. Pesic, L. Trazza, and A. Baiocchi, “Automatic con-
flict analysis and resolution of traffic filtering policy for firewall and
security gateway,” in Proc. IEEE ICC, Glasgow, Scotland, 2007, pp.
1304-1310.

[10] M. Rezvani and R. Aryan, “Analyzing and resolving anomalies in fire-
wall security policies based on propositional logic,” in Proc. IEEE
INMIC, Islamabad, Pakistan, 2009, pp. 1-7.

[11] J. Zao, “Semantic model for IPSec policy interaction,” Internet Draft,
Mar. 2000.

[12] Z. Fu, S. F. Wu, H. Huang, K. Loh, F. Gong, I. Baldine, and C. Xu,
“IPSec/VPN security policy: Correctness, conflict detection and reso-
lution,” in Proc. IEEE Policy, Bristol, UK., 2001, pp. 39-56.

[13] Z. Li, X. Cui, and L. Chen, “Analysis and classification of IPSec se-
curity policy conflicts,” in Proc. FCST, Aizu, Japan, Nov. 2006, pp.
83-88.

[14] A.K.Bandara, E. C. Lupu, A. Russo, N. Dulay, M. Sloman, P. Flegkas,
M. Charalambides, and G. Pavlou, “Policy refinement for IP differenti-
ated services quality of service management,” IEEE Trans. Netw. Ser-
vice Manage., vol. 3, no. 2, pp. 2—13, Apr. 2006.

[15] J. D. Moftett and M. S. Sloman, “The representation of policies as
system objects,” in Proc. SIGOILS, Atlanta, GA, 1991, pp. 171-184.

[16] J. D. Moffett and M. S. Sloman, “Policy hierarchies for distributed
system management,” /EEE J. Sel. Areas Commun., vol. 11, no. 9, pp.
1404-1414, Nov. 1993.

[17] J. D. Moffett and M. S. Sloman, “Policy conflict analysis in distributed
system management,” J. Org. Comput., vol. 4, no. 1, pp. 1-22, 1993.

[18] E. Lupu and M. Sloman, “Conflicts in policy-based distributed system
management,” I[EEE Trans. Softw. Eng., vol. 25, no. 6, pp. 852-869,
Nov. 1999.

14

[19] M. Sloman, “Policy driven management for distributed systems,” J.
Netw. Syst. Manage., vol. 2, no. 4, pp. 333-360, 1994.

[20] N. Dunlop, J. Indulska, and K. A. Raymond, “Dynamic policy model
for large evolving enterprises,” in Proc. EDOC, Seattle, WA, Sep.
2001, pp. 193-197.

[21] K. A.R.N. Dunlop and J. Indulska, “A formal specification of conflicts
in dynamic policy-based management system,” CRC for Enterprise
Distributed Systems, Univ. Queensland, Brisbane, Australia, DSTC
Tech. Rep., Aug. 2001.

[22] G. Szasz, Introduction to Lattice Theory. New York: Academic,
1963.

[23] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen, “Policy core
information model,” RFC 3060, Feb. 2001.

[24] “Precedence rules used to resolve access conflicts at a target,”
IBM Lotus Domino and Notes Information Centre, 2011 [Online].
Available: http://publib.boulder.ibm.com/infocenter/domhelp/v8r0/
index.jsp

[25] C.Basile, A. Cappadonia, and A. Lioy, “Algebraic models to detect and
solve policy conflicts,” in Proc. MMM-ACNS, St. Petersburg, Russia,
2007, pp. 242-247.

[26] G. Birkhoff, Lattice Theory. Providence, RI: Amer. Math. Soc.,
1967.

[27] D. Taylor and J. Turner, “Scalable packet classification using dis-
tributed crossproducting of field labels,” Dept. Comput. Sci. Eng.,
Washington Univ., Washington, DC, Tech. Rep. WUCSE-2004-38,
2004.

[28] D. Taylor, “Survey and taxonomy of packet classification techniques,”
Comput. Surveys, vol. 37, no. 3, pp. 238-275, 2005.

[29] J. van Lunteren and T. Engbersen, “Fast and scalable packet classifica-
tion,” IEEE J. Sel. Areas Commun., vol. 21, no. 4, pp. 560-571, May
2003.

Cataldo Basile received the M.Sc. (summa cum
laude) and Ph.D. degrees in computer engineering
from Politecnico di Torino, Turin, Italy, in 2001 and
2005, respectively.

He is currently a Research Assistant with Po-
litecnico di Torino. His research is concerned with
policy-based management of security in networked
environments, policy refinement, general models for
detection, resolution and reconciliation of specifica-
tion conflicts, and software security.

Alberto Cappadonia received the M.Sc. degree in
telematics engineering and Ph.D. degree in computer
engineering from Politecnico di Torino, Turin, Italy,
in 2006 and 2011, respectively.

His research interests are in network security and
policy-based management systems, automatic refine-
ment and translation of policy for devices, and gen-
eral models for policy analysis and debug.

Antonio Lioy (M’89) received the M.Sc. degree
in electronic engineering (summa cum laude) and
the Ph.D. degree in computer engineering from
Politecnico di Torino, Turin, Italy, in 1982 and 1987,
respectively.

He is a Full Professor with Politecnico di Torino,
where he leads the TORSEC research group active
in information system security. His research inter-
ests include network security, public-key infrastrac-
ture (PKI), and policy-based system protection.

