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Abstract—We conduct a detailed simulation study to examine
the impact of localizing P2P traffic within network boundaries
on an ISP’s profitability. A distinguishing aspect of our work
is the focus on Internet-wide implications, i.e., how adoption of
localization within an ISP affects both itself and other ISPs. Our
simulations are based on detailed models of inter-AS P2P traffic
and inter-AS routing, localization models that can predict the
extent to which P2P traffic is reduced, and pricing models to
predict the impact of changes in traffic on an ISP’s profit. To
evaluate our models we use a large-scale crawl of BitTorrent
involving over 138 million users sharing 2.75 million files. Our
results show that the benefits of localization must not be taken
for granted. Some of our key findings include: (i) residential
ISPs can actually lose money when localization is employed and
some will not see increased profitability until other ISPs employ
localization; (ii) the reduction in costs due to localization will be
limited for small ISPs and tends to grow only logarithmically
with client population; and (iii) some ISPs can better increase
profitability through alternate strategies to localization by taking
advantage of the business relationships they have with others.

I. INTRODUCTION

The last decade has seen a rapid growth in popularity

of peer-to-peer (P2P) systems, spanning diverse applications

such as content distribution (e.g., BitTorrent, eMule, Gnutella),

video streaming (e.g., PPLive, Coolstreaming), and audio

conferencing (e.g., Skype). However, the success of these

applications and the consequent growth in P2P traffic has

raised concerns among Internet Service Providers (ISPs),

which have to pay a high cost for carrying traffic while

receiving little revenue. While there is evidence that P2P traffic

is decreasing [1], it is still today a significant fraction of the

Internet traffic (more than 18% according to [1] and more than

50% in some of our datasets) and it is perceived as wasteful

of network resources, and in particular, of expensive peering

link bandwidth. In order to reduce these costs, different P2P

localization techniques have been proposed [2]–[8]. The key

idea behind these techniques is to limit the amount of traffic

entering the ISP by enforcing a preference in exchanging

content among peers in the same ISP.

Several works have shown the benefits of localization for

both users and providers [2, 4], while other works question the

possible benefits for users [9]. However, all previous studies

consider a partial view of the problem, e.g., by showing the

benefits for a single Autonomous System (AS)/Internet Service

Provider (ISP) or running a limited set of experiments involv-

ing different ASes. Therefore, it is unclear whether localization

is necessarily beneficial to all ASes, how the adoption of

localization by one AS impacts other ASes, and how the traffic

carried by various ASes is altered as localization techniques

are widely adopted.

Evaluating the impact of localization policies when applied

on an Internet-wide scale is a challenging task given the

complexity of the Internet. As ASes play various roles from a

business point of view, they may experience different effects

from the use of localization policies. For example, some ASes

(referred to as residential ASes), provide Internet service to

end-users, and P2P clients are found in these ASes. Other ASes

(referred to as transit ASes) provide the service of connecting

other residential and transit ASes together. However, many

transit ASes also provide residential services, and a clean

separation between the two types does not exist today. From

a business point of view, ASes form “customer-provider”

relationships, where a customer AS will pay for the service

a provider AS offers, or “peering” relationships, where two

ASes will agree to carry each others traffic for free.

Given the current structure of the Internet, localization of

traffic is intuitively beneficial for purely residential ASes, and

it will have a negative impact on the revenues of purely transit

ASes. However, we have found that over 1,200 residential

ASes also provide transit service to at least one other AS.

Thus, for many ASes it is not obvious how localization may

impact them. In addition, as the ultimate goal of ASes is

cutting costs and increasing revenue, there are alternatives to

the simple localization of traffic inside an AS that have not

been explored in previous work. For example, to avoid paying

for traffic, ASes could prefer to exchange traffic with peering

ASes. Furthermore, to increase revenue, ASes could prefer to

push traffic to customers’ ASes and avoid providers’ ASes.

In this paper, our goal is to gain deeper insights into such

Internet-wide implications of P2P traffic localization on ISP

profits, and develop simulation methodologies to systemati-

cally explore the issues. We explicitly focus our work on the

benefits and drawbacks for ISPs, though we note that the use of

localization can also impact user performance. Our simulations

are based on detailed models of (i) inter-AS P2P traffic; (ii)

inter-AS routing models; (iii) models that can predict the

extent to which P2P traffic gets localized; and (iv) pricing

models to predict the impact of changes in traffic on ISP profit.

To model inter-AS P2P traffic, we leverage [10]. This is

perhaps the only inter-AS traffic model that is available today,

in contrast to intra-AS traffic which is widely studied. We

present refinements to the model presented in [10], which

we show can result in better model accuracy, and employ
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the refined model in our simulations. The model requires

the knowledge of the P2P population in each AS as input,

which we estimate considering BitTorrent, one of the most

popular and widely used P2P systems. Our estimation is based

on crawls of a popular tracker from which we gathered a

dataset of over 138 million BitTorrent peers participating in

2.75 million torrents. While our evaluations are based on

BitTorrent, our methodologies are general, and apply to other

P2P systems as well.

Conducting our simulation study requires models that can

predict the reduction in P2P traffic entering/exiting an ISP

when localization techniques are employed. The possible traf-

fic reduction depends on a wide range of factors including (i)

the population of peers inside an AS, (ii) the extent to which

peers download similar content, and (iii) the upload capacities

of peers inside the ISP relative to those outside [11]. Rather

than focusing on a specific localization model, we conduct a

sensitivity analysis to a range of models.

As a last step, translating a change in traffic volumes

into a change in profits for the ISP is a challenge. Typical

pricing models in ISPs are based on the 95th percentile of

traffic volumes [12], with the price per Mbps itself showing

significant geographical variation. Further, the pricing models

depend on total volumes (of traffic across all applications)

rather than P2P traffic volume alone, which is unavailable

to us. Therefore, we consider multiple pricing models and

develop conservative and optimistic predictions of the change

in profits for an ISP.

Armed with these models, we seek to answer several ques-

tions such as: (i) Do ASes necessarily benefit by employing

localization? How significant are the benefits? (ii) How is the

profitability of various ASes impacted if localization policies

are adopted by an increasing fraction of ASes at the same

time? What is the impact of global adoption of such policies?

(iii) Are there any better policies that can be more profitable

to some ASes than a simple localization policy? Given the

complexity of the real-world factors that our models seek to

capture, there are unavoidable simplifications that must be

made. Thus, rather than “absolute” answers to these questions

for specific “point-models”, our focus is on understanding the

sensitivity of our results, and how the trends change with

various localization and pricing models.

Our results show that the benefits of localization must not

be taken for granted. Some of our key findings include: (i)

residential ISPs can actually lose money when localization is

employed and some will not see increased profitability until

other ISPs employ localization; (ii) the reduction in costs due

to localization will be limited for small ISPs and tends to grow

only logarithmically with client population; and (iii) some ISPs

can better increase profitability through alternate strategies to

localization by taking advantage of the business relationships

they have with other ISPs. Overall, we believe our findings

have important implications for ASes, and both our findings,

as well as the methodologies and models that we develop in

this paper are important contributions in their own right.

The remainder of the paper is organized as follows: Sec-

tion II introduces our P2P inter-AS traffic model and its vali-

dation. Section III and Section IV discuss different localization

policies and the pricing models we use in the paper. Section V

and VI show our findings under different localization sce-

narios. We review related work in Section VII. Finally, main

findings of the paper are summarized in Section VIII.

II. MODELING INTER-AS P2P TRAFFIC

The first building block needed for our methodology is a

model describing an inter-AS P2P traffic matrix. In the past,

the gravity model has been used to model both intra-AS [13,

14] and inter-AS [10] traffic matrix estimation. Below we first

review the model in [10], which we refer to as the Gravity

model, then propose a new refinement to improve P2P traffic

prediction accuracy, which we refer to as the Affinity model.

A. The Gravity Model

Inter-AS traffic demand has been modeled only once before

in the work by Chang et al. [10]. Chang builds on previous

work by applying the well-established gravity model to an

inter-AS setting. To separately account for P2P and web traffic,

their model was split accordingly into two different gravity

models, of which we will only focus on the P2P model. In

the Gravity model, the traffic Xij sent from AS i to AS j is

defined as follows:

Xij =
f(RRA(i))f(RRA(j))

RBA(i, j)β
, (1)

where f is the monotonically decreasing function f(x) = 1/x,

RRA(i) is the rank of AS i in the list of ASes sorted by

decreasing peer population, and RBA(i, j) is the rank of the

bottleneck AS between i and j in the sorted list of ASes by

capacity (the bottleneck AS is the smallest transit AS that is

on the AS path between i and j). This model stems from

the intuition that the higher the population of peers in an

AS (i.e., the higher is its rank), the larger the aggregate of

traffic the AS exchanges. In addition, if the path between

two ASes has little capacity, then the amount of traffic will

be consequently reduced. β is a parameter that is used to

better weight the effect of bottlenecks along the path. In [10]

β = 0.1 is suggested, which makes the bottleneck bias almost

negligible. This implicitly suggests that the volume of P2P

traffic exchanged between ASes is mainly driven by the peer

population of each AS.

B. The Affinity Model

Given the world-wide nature of the Internet and its diversity

of users and available content, intuition suggests that P2P

traffic will be driven not only by the population size of ASes,

but also by the cultural and linguistic makeup of the users

inside the ASes, or the “affinity” between ASes. Thus, if peers

of two ASes are not interested in the same content, the traffic

exchanged among them will be marginal, even if the number

of peers they have is large. For example, if AS-1 and AS-2 are

located in Italy, and AS-3 is located in China, it is expected

that large traffic will be exchanged between AS-1 and AS-2,

while little traffic will flow between AS-3 and AS-1, AS-2.

We estimate the affinity between ASes using the cosine

similarity distance [15]. The cosine similarity results in a value
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between 0 (no similarity) and 1 (perfect similarity) that is the

cosine of the angle between two vectors V̄i and V̄j , i.e.,

Cos(i, j) =
V̄i · V̄j

‖V̄i‖‖V̄j‖
. (2)

In our case, each vector V̄i represents the “content distribution”

in AS i, whose components report the number of peers

interested in a given content that are present in AS i. Thus, if

two ASes have many peers interested in the same content, then

they will have high affinity. Completing the previous example,

consider as content an Italian movie, a Chinese song, and an

English book. Assuming V̄1 = (10, 1, 3), V̄2 = (100, 2, 30)
and V̄3 = (0, 10, 3), we have Cos(1, 2) = 0.997 while

Cos(1, 3) = 0.173, which reflects the intuition that Italian

ASes prefer to exchange traffic among themselves rather than

with the Chinese AS.

Once we have calculated the affinity between two ASes we

can combine that with the peer population in each AS to form a

gravity model. Thus, we define our Affinity model as follows:

Xij = P (i)P (j)Cos(i, j), (3)

where P (i) and P (j) are the population of AS i and AS j.

While the Affinity model could include a preference related

to the upload capacity of peers, we chose to include only the

affinity among ASes due to client’s interest in the same con-

tent. We superpose a bias in peer selection due to performance

as part of the locality models in Section III-B.

C. Model Validation

In this section we first describe the datasets we use as input

to the Affinity model and also use throughout the paper. We

then present results that compare our model with the Gravity

model.

1) Datasets:

BitTorrent crawl snapshots: The Affinity model requires as

input the peer population P (i) and the content distribution

vectors V̄i. To estimate them, we rely on active measurements

obtained by crawling a very popular BitTorrent tracker named

“OpenBitTorrent” [16]. As the tracker is not associated with a

particular torrent publishing web site and it provides an easy

way for users to publish content, it attracts users from all over

the world.

We took snapshots of BitTorrent activity every hour for a

period of 8 days during May 2010. A total of 192 differ-

ent snapshots have then been collected, which will be used

throughout this paper. In each snapshot, we crawled all torrents

that had at least one active downloader and for every torrent

we requested peers from the tracker until we received at least

95% of all participating peers. Since many users are behind

NATs, we consider a peer to consist of a unique (IP, port)

combination. This allows us to obtain information about which

peers are actually participating in which torrent, i.e., the peer

population by content. To obtain the peer population per AS,

we map IP addresses to the corresponding AS by using the

service provided by Team Cymru [17]. At the end, for every

snapshot we obtain for each AS i the population P (i) and

content distribution V̄i, which allow us to compute 192 global

AS level traffic matrices.

While a detailed characterization of these BitTorrent

datasets is out of the scope of this paper, we briefly summarize

their size which reflects their generality. A normal snapshot

consists of over 5 million peers, 154 countries, 12,000 ASes,

and 1 million torrents. Over the 8 days, we saw more than

138 million distinct peers in over 2.75 million torrents. One

interesting finding about the dataset which will be instrumental

later is the fact that each torrent population size follows a

heavy tailed distribution with a small portion of very large

torrents, but also a large number of torrents with less than

100 peers. Peer distribution over ASes is instead more biased

toward larger ASes which host most of the peers, e.g., the

largest 1,600 ASes account for 97% of peers.

Inter-AS topology and routing: The knowledge of the AS

paths is instrumental to predict the volume of traffic on individ-

ual inter-AS links. Besides, they are also necessary to compute

RBA(i) for the Gravity model. First, we need a map of the AS

topology which includes the business relationships between

ASes. We use CAIDA’s AS map [18] augmented with peering

edges from recent research on mapping Internet Exchange

Points (IXPs) [19]. Second, we need to know the AS-level

routing. To this end, we use the algorithm proposed by Qiu

et al. [20] to determine valley-free paths between residential

ASes. Qiu et al.’s algorithm uses Routing Information Bases

(RIBs) alongside the AS topology to determine the most likely

route between ASes. We use RIBs provided by the Oregon’s

RouteViews Project [21] that are from the LINX, KIXP, PAIX,

and Equinix Ashburn IXPs. This set of routing table dumps

represents over 329,000 prefixes from 33,910 ASes.

Leveraging on the fact that the top 1,600 ASes alone account

for 97% of all the P2P traffic that is generated by the Affinity

model, we limit our evaluation to only the subset of top 1,600

residential ASes according to peer population as seen in our

BitTorrent crawl. We also include all the transit ASes that

belong on any AS path between these residential ASes, for

a total of 2,067 ASes. In this paper, we define a residential

AS as having at least one peer in the BitTorrent crawl and a

transit AS as having at least one customer AS in the CAIDA

map. Thus, an AS could be both a residential and a transit

AS. More details about the ASes are deferred to Sec.V.

Packet traces from large ISP datasets: To verify the ac-

curacy of the Affinity model traffic prediction, we compare

its output against packet-level traces from six vantage points

scattered in the US and across three different European coun-

tries. Each vantage point monitors several thousands of users.

For convenience, we name the vantage points ISP-1 to ISP-

6. For each ISP, all packets going to and coming from all the

hosts in the Points of Presence (PoP) were passively monitored

for several months. An advanced traffic classification tool

based on deep packet inspection and advanced statistical

classifiers [22] was used to produce the per-application volume

of traffic sent by hosts in the PoP to each different AS, i.e.,

an actual row of the traffic matrix for each given application.

2) Comparing Models: In Fig. 1, we focus on a one-day

long trace from ISP-1 and a one-hour long trace from ISP-2.

We use the BitTorrent snapshots that refer to the same time of
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(c) eMule dataset from ISP-1.

Fig. 1. Affinity and Gravity models compared against real measurements.
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(c) eMule dataset from ISP-1.

Fig. 2. Relative error for Affinity and Gravity models

day that the ISP traces are from. Similar results were obtained

for the rest of the traces and are not shown due to space

constraints. For each graph, we report the volume of traffic

sorted in decreasing order, considering actual measurements

(solid line), the Gravity model prediction (small dot line),

and the Affinity model prediction (large dot line). As both

the Gravity and Affinity models produce unit-less output, we

scale them and the ISPs’ measured traffic volumes so they are

comparable, to a standard unit-less metric by minimizing the

mean square error. To also demonstrate how good the results

are, we show the corresponding relative error values of both

models in Fig. 2.

Fig. 1(a) refers to BitTorrent traffic as seen from ISP-1. The

Gravity and Affinity models are very similar until rank 300,

at which point the Gravity model severely overestimates the

traffic demand, while the Affinity model better captures the

sudden decrease of traffic sent by ISP-1 clients to the smaller

ASes. Similarly, we compare BitTorrent traffic seen from ISP-

2 in Fig. 1(b). Again, the Affinity model is able to better match

the traffic demand trend for most ASes, while the Gravity

model shows a much more regular slope, clearly missing the

content bias induced on exchanged traffic. For the relative error

values in Fig. 2(a) and 2(b), the Gravity model is only very

accurate for 50% of ASes, while the Affinity model is accurate

for 70% and 60% of ASes, respectively.

Finally, to show that the Affinity model is not specific to

BitTorrent but can be generally applied to other P2P protocols,

Fig. 1(c) shows results considering traffic volumes sent by

ISP-1 clients, but using eMule as the P2P application. The

same cosine similarity values as obtained from the BitTorrent

snapshots are used, since the cosine similarity values catch the

cultural and linguistic interests of peers, and are not expected

to change across different P2P systems. The per AS eMule

population has been estimated from the eMule traffic in ISP-1

instead. Also in this case, results show that the Gravity model

overestimates the actual traffic sent to each AS, while the

Affinity model closely matches the traffic demand even up

to high ranking values. This difference is seen in Fig. 2(c),

where the Gravity model is only very accurate for 30% of

ASes, but the Affinity model is accurate for 60% of ASes.

We have conducted other experiments to verify the goodness

of the Affinity model, considering different times of the day,

different days, transmitted and received traffic, different P2P

systems and different crawls from different trackers. In all

cases, the Affinity model provided more accurate estimates

than the Gravity model. Moreover, the cosine similarity proved

to be very robust, so that it can be used to model several P2P

applications like BitTorrent or eMule.

III. MODELING P2P LOCALIZATION

In this section we present models to predict the reduction in

P2P traffic exchanged by an ISP when localization techniques

are employed. A single model may not be sufficient because

P2P traffic reduction depends on a variety of factors such as (i)

the population of peers inside an AS, (ii) the extent to which

peers download similar content, and (iii) the upload capacities

of peers inside the ISP relative to those outside [11]. Hence,

we consider a set of locality models and show sensitivity to

them. Validation of these models is a difficult task, since this

requires measuring P2P traffic aggregates from a large number

of ISPs around the world, from different ISP categories (e.g.,

residential and transit), and with different upload capacities of

clients. Instead, in later sections, we show trends of the impact

that P2P localization may have on ISPs and perform extensive

sensitivity analysis to the various localization policies.

We determine the ratio of traffic received by an AS j
after localization versus before localization, which we call

αj . In other words, αj is the fraction of leftover traffic after

localization that still will be received by peers in AS j.

Intuitively, a good localization policy will result in a small
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αj value. The traffic Lij sent by peers in AS i to peers in AS

j after localization is then simply:

Lij = αjXij . (4)

As we have multiple snapshots from which we generate

traffic matrices, we also calculate αj for each snapshot. For

simplicity though, we drop the explicit notation on time in the

following.

A. System Architecture Assumptions

We assume that there is a localization technique in place

that allows peers to find other peers that are in the same

AS. For example, peers contact an “oracle” which allows

them to obtain an ordered and possibly filtered list of peers

interested in the same content. Peers then start exchanging

data with the suggested peers according to the P2P trading

algorithm. Individual ASes can impose localization of traffic

independently of what other ASes do, e.g., some may deploy

an oracle, others may not. This scenario is compatible with

both the P4P iTracker [2] and the IETF ALTO [23] proposals.

We further assume that an AS cannot influence peers outside

of its own AS, so that external peers can still connect to and

download from internal peers, i.e., an AS cannot stop external

peers from downloading content from peers within the AS.

This implies that transit ASes do not deploy traffic shaping on

traffic that does not originate from their own AS, but only rely

on the oracle to enforce localization policies. Furthermore, this

implies there is some altruism in the system, so that clients in

an AS that do not localize traffic can still receive the content,

even if every other AS does localize traffic. Therefore, for an

AS that does localize, its outgoing P2P traffic can be greater

than its incoming traffic.

B. Locality Models

• Single(no history): This is a pessimistic scenario where

for every crawl, the file must be downloaded again by every

peer from outside the AS. That is, there are no internal

seeds available. The model computes the leftover traffic

assuming only one single copy of the content will need to

be downloaded from outside the AS. Once the initial copy

has entered the AS, content will be exchanged only among

local peers. For example, assume there are Pj(k) = 10 peers

from AS j downloading content k; when localization is used,

only one copy would need to be downloaded, resulting in

1/Pj(k) = 0.1 leftover traffic. Thus, the more popular a piece

of content is, the less leftover traffic there will be. Given a

snapshot, for every AS j that has clients in Nj distinct torrents,

we estimate αj as follows:

αj = Nj

1
∑Nj

k=1
Pj(k)

. (5)

• Single(history): This is a more realistic model where we

consider that the first time a peer appears in a torrent in our

crawls, it is considered a leecher, and if it appears again in that

torrent in our crawls we consider it to be a seeder. To find out

how sensitive αj actually is to content availability, we simply

keep track of what peers have been in which torrents over

time. For a given torrent, consider a peer that has been seen

at time slot t for the first time. When it reappears in time slot

t′ > t, it is considered a seed. That is, if the peer has been in

a torrent in the past, it is marked as a seed in future time slots.

Formally, for a snapshot t and AS j, let Sj(k) be the number

of seeds in torrent k and let Tj be the number of torrents that

have some seed in them. We can then calculate αj with the

following equation:

αj =
Nj − Tj∑Nj

k=1
(Pj(k)− Sj(k))

. (6)

• Single(persistent): This is an optimistic scenario, where

once a single peer inside an AS download a file, then no other

peer inside the AS will need to download from outside the AS

again, since the initial peer remains as a seeder for everyone

else. it has been downloaded once from the outside at time

slot t in which the first peer is interested in the content k. We

use Equation 6 to calculate αj for this model, but assume at

least one seed is always present for each time slot t′ > t. This

results in an optimistic localization scenario.

• Perf(no history): As peers might prefer to download from

nodes with a higher upload capacity than those inside its AS

we extend the previous policies to include a performance bias.

A peer prefers to download content from peers in its own AS,

unless there exists external peers with much higher upload

capacity. A similar policy has been examined in [11]. We

compute E(j, k), the expected number of copies of content

k downloaded from outside AS j.

E(j, k) = Pj(k)
U(j, k)

P (k)
, (7)

where P (k) =
∑

j Pj(k) is the total number of peers inter-

ested in content k, and U(j, k) is the number of external peers

interested in content k that have an average upload capacity X
times higher than peers in AS j. By averaging over all content

in which AS j participates we have:

αj =

∑Nj

k=1
max(E(j, k), 1)

∑Nj

k=1
Pj(k)

, (8)

where max(E(j, k), 1) states that at least one copy must be

downloaded.

For the evaluation of this scheme, we use the iPlane [24]

dataset, which provides an estimate of the access bandwidth

of several tens of thousands of /24 networks in the Internet. To

account for factors that could make the real and the estimated

capacities differ, such as congestion of intermediate links, we

select a remote peer over a local peer only if the access

bandwidth of the remote peer is 10 at least times higher than

the bandwidth of the local peer. Further, any remote peer for

which we do not have access bandwidth information will not

be preferred over a local peer.

• Perf(history): Similar to the previous model, if an internal

seed exists at time t, then peers do not need to download

anything from outside the AS. The following equations are

used to calculate αj :

E(j, k) = (Pj(k)− Sj(k))
U(j, k)

P (k)
(9)
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αj =

∑Tj

k=1
E(j, k) +

∑Nj

k=Tj+1
max(E(j, k), 1)

∑Nj

k=1
(Pj(k)− Sj(k))

, (10)

• Perf(persistent): We again assume that content persists

forever after being downloaded once from outside the AS. We

use Equation 10 to calculate αj for this scenario, but assume

a seed always persists after downloading.

IV. MEASURING ISP PROFITABILITY

The total profitability of an ISP depends on many factors.

In this paper we focus on the portion of the profit/expenses

that are related to money gained/paid by carrying P2P traffic

only. We define our ideal metric for achieving this goal and

describe how we evaluate it using our pricing models.

A. An Ideal Metric for ISP Profitability

A customer ISP i typically gets charged by a provider ISP j
based on the 95th percentile (P95) volume of traffic exchanged

on an individual link [12]. This is done by sampling the

inbound and outbound volume of traffic every 5 minutes for

the duration of a billing period, which is usually 30 days.

Let Vij(t) and Vji(t) respectively denote the outbound and

inbound volumes for ISP i at time instant t. After sorting these

values, P95 is chosen from both the outbound and inbound

traffic; let these terms be denoted as P95(Vij) and P95(Vji).
Let CVij be the charging volume, which is the actual volume

that charges are computed on. Typically, CVij is determined

by taking the maximum of the inbound and outbound P95s:

CVij = max(P95(Vij), P95(Vji)). (11)

However, in some cases it is determined by taking the average:

CVij = (P95(Vij) + P95(Vji))/2. (12)

CVij is then used as input to a pricing function, which

is typically non-decreasing, the output of which is a dollar

amount that the customer owes the provider. Assuming a linear

pricing function (see Sec IV-C for more details), let pij be the

price per Mbps for the link between i and j, then the amount

that ISP i owes ISP j is pijCVij .

Let Pi and Ci denote the set of providers and customers

of ISP i, respectively. Then, the profit of the ISP i prior to

localization is
∑

k∈Ci
pikCVik −

∑
k∈Pi

pikCVik .

Thus far we have considered the profit with respect to

a certain set of traffic volumes. However, if these traffic

volumes change due to P2P localization policies, we can also

calculate the increase in profits after this occurs. Formally, let

δ(x) denote the change in a variable x when localization is

employed. Then,

δ(profit) =
∑

k∈Ci

pikδ(CVik)−
∑

k∈Pi

pikδ(CVik). (13)

To study how localization affects profit due to P2P traffic,

we normalize δ(profit) to the profit before localization that

is attributed to P2P traffic (profitp2p,before), i.e., profit is

computed exactly as before, except only the portion of traffic

that is P2P is considered. Thus, we have:

profit increase =
δ(profit)

profitp2p,before
. (14)

Finally, if profitp2p,before is negative (i.e., the ISP is

originally losing due to P2P traffic), we simply normalize

by the loss instead of the profit. Thus, if lossp2p,before =

−profitp2p,before, we have:

loss reduction =
δ(profit)

lossp2p,before
. (15)

B. Approximating ISP Profitability

Ideally, Equation 13 should be evaluated considering the

total amount of traffic flowing across links. Unfortunately,

modeling total inter-AS traffic is a hard problem. To the best

of our knowledge, only [10] addressed this problem. However,

that model is not easily applicable to our context as it assumes

the ratio of P2P to other traffic is known for all ASes which

varies widely and is difficult to ascertain.

To handle this, we approximate the ideal metric by as-

suming that the change in P95s of total traffic volume on

localization is the same as the change in P95 of P2P traffic

volumes on localization, in each of the inbound and outbound

directions. Formally, let Vp2p,ij(t) and Vp2p,ji(t) respectively

denote the inbound and outbound volumes of P2P traffic

that ISP i sends to or receives from ISP j at time instant

t. Then, we assume that δ(P95(Vij)) = δ(P95(Vp2p,ij)),
and δ(P95(Vji)) = δ(P95(Vp2p,ji)). With this assumption,

the approximate change in charging volume on localization

is simply computed as follows: (i) if charging volumes are

computed based on the maximum, as in Equation 11, then

δ(CVij) = δ(P95(Vp2p,ij)) or δ(P95(Vp2p,ji)), depending on

whether the AS is inbound dominated or outbound dominated;

and (ii) if charging volumes are computed based on the aver-

age, as in Equation 12, then δ(CVij) = (δ(P95(Vp2p,ij)) +
δ(P95(Vp2p,ji)))/2.

Intuition suggests that the daily traffic periodicity is due

to human habits. During the day, more users are connected

to the Internet and traffic grows. There is thus a correlation

between the time at which the P95 happen and the time at

which most users are online. For P2P traffic, users runs P2P

applications when they are online. It is thus likely that the P95

of total traffic happens closely to when the P95 of P2P traffic

is reached. Table I compares the P95 on the inbound traffic

observed on the different ISP traces described in Sec. II-C1

over a one-week long period of time. The second column

shows the actual P95 of total traffic while the third column

shows the total traffic observed at the time when the P95

of P2P traffic occurs. The fourth column reports the relative

error and the fifth column reports the percentage of P2P traffic

from the total traffic. As can be seen, the relative error ranges

between 2% to 13% depending on the ISP link. Further,

the larger the fraction of P2P traffic in the monitored ISP,

the smaller the relative error. We repeated the analysis for

outbound traffic. The relative error was even smaller since
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Trace Real Approximation Relative P2P
[Mbps] [Mbps] Error [%] Traffic [%]

ISP-1 1221.8 1247.5 2.10 48.6

ISP-2 1782.7 1660.9 6.83 45.1

ISP-3 1053.1 1029.6 2.23 53.02

ISP-4 1845.6 1765.3 4.35 42.5

ISP-5 1385.7 1347.1 2.79 50.4

ISP-6 1350.6 1173.6 13.1 6.5

TABLE I
APPROXIMATING THE 95TH PERCENTILE FOR INCOMING TRAFFIC

Geographic Location $ per Mbps

North America 10

Europe 14

Australia 34

Asia 38

South America 76

TABLE II
PRICING FUNCTIONS

outbound P2P traffic fraction was higher than 80% for all ISPs

and thus the P2P traffic dominates the P95.

Second, as we have seen that P2P traffic volumes prior to

localization tend to be correlated to total traffic volumes, we

now argue that the trend will continue after localization. We

have found in our datasets that the ratio of P2P traffic after

localization to P2P traffic before localization does not vary

much over time for all links, and locality models. Thus, it is

reasonable to assume that the time the P95 occurs after local-

ization does not shift. For instance, when the Single(history)

locality model is used, for all links, the standard deviation of

the ratio across various time snapshots (σ) is very small. In

particular, 58% of links have σ < .05 and 90% have σ < 0.1.

Overall, the discussion above suggests that the errors intro-

duced due to our approximations will be limited in practice,

and our prediction of the impact of localization on ISP

profitablity will be reasonable.

C. Pricing Models

We now discuss the models we use to compute the pricing

function, and charging volumes. While pricing functions are

often non-decreasing piece-wise linear [12] they are specific

to each provider and require the total volume of traffic to be

known. To facilitate our evaluation we assume ASes use linear

pricing functions where the charging volume is multiplied

by the unit traffic volume price. Linear pricing functions

are a good first step towards finding the actual costs and

have also been used in determining transit costs for content

providers [25]. Linear pricing is a valid approximation in our

case because the reduction/increase of traffic that is experi-

enced due to localization policies is not so large to trigger

an economy of scale range change in the pricing. Moreover,

assuming linear pricing corresponds to evaluating an upper

bound on the possible saving an AS can achieve given the

sublinear effect induced by economy of scale. The price per

Mbps is known to vary widely due to geographic location [26]

therefore we gather data from Telegeography Research [27]

(summarized in Table II) to determine how customer ASes

are charged.

We next discuss our models for charging volume, using

Fig. 3 to aid our discussion. Assume that ASes B, C, D,

and E are all residential ASes. The P95s of P2P traffic for all

links before and after localization are reported in the figure.

AS B

American

AS C

Australian

AS D

Japanese

AS E

American

AS A

P95BC In    Out

Before  300  250 

After     130  100

P95BD In    Out

Before  120  200 

After     60    20

P95BE In    Out

Before  400  375 

After     80    75

P95AB In    Out

Before  600  450 

After     150  100

Fig. 3. Example topology illustrating our pricing model. P95 refer to P2P
traffic.

For instance, on the link between A and B, the P95 of the P2P

traffic inbound to B is 600 Mbps and 150 Mbps, before and

after localization respectively. Likewise, the P95 of the P2P

traffic outbound from B is 450 Mbps and 100 Mbps, before

and after localization respectively.

We now summarize the various pricing models we use:

• Average: For the charging volume we calculate the average

of the inbound P95 (P95IN ) and outbound P95 (P95OUT )

for each link as in Equation 12. The change in charging

volume on localization may be approximated as in Sec. IV-B.

For instance, in Fig. 3, the charging volume on the link

between B and A would decrease from (600 + 450)/2 Mbps

to (150 + 100)/2 Mbps, a reduction of 400 Mbps. Con-

sidering traffic prices from Table II, AS B is charged $10

per Mbps by A. Thus, localization will reduce B’s costs by

$4, 000. However, the charging volume will also reduce on

links from B to each of its customers, resulting in revenue

reductions. The revenue reduction is 34 ∗ (300 + 250)/2 −
34 ∗ (130 + 100)/2 = $5, 440 from customer C, 38 ∗ (120 +
200)/2− 38 ∗ (60 + 20)/2 = $4, 560 from customer D, and

10∗(400+375)/2−10∗(80+75)/2 = $3, 100 for customer E.

The δ(profit) for B is then −$9, 100 and the profit increase is

δ(profit)/profitp2p,before = −$9, 100/$14, 055 = −0.65,

indicating that 65% of profits on P2P traffic were lost.

• Upper and Lower Bounds: In contrast to the average case,

computing changes in charging volume is more complicated

if the pricing scheme is based on the maximum of P95IN

and P95OUT , as in Equation 11. Using such pricing schemes

requires us to know whether the total traffic volume is higher

in the inbound or outbound direction. However, we only

have information regarding P2P traffic volumes. It is possible

P2P traffic volumes are higher in the inbound (outbound)

direction, while total traffic volumes are higher in the outbound

(inbound) direction. To deal with this, we instead compute an

upper and lower bound of the benefits that localization could

have on each ISP.

Consider again the link between A and B in Fig. 3.

Depending on whether B is charged based on inbound or

outbound traffic prior to localization, and allowing for a

change in the direction of charging volume after localiza-

tion, the reduction in charging volume may range between

450 − 150 = 300 Mbps, and 600 − 100 = 500 Mbps.

While precise determination of the change in traffic volume is

difficult, the best possible scenario for B is a reduction of 500
Mbps, while the worst scenario is a reduction of 300 Mbps.
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More generally, for a customer, the best possible case is ob-

tained assuming max(P95IN , P95OUT ) before localization,

and min(P95IN , P95OUT ) after localization. For a provider

the opposite set of choices provides the best scenario. We also

observe that on any link, the best scenario for the provider

is the worst scenario for the customer, and vice versa. To

compute the upper (lower) bound in terms of benefits for an

AS when localization policies are applied, we assume the best

(worst) case for each of its links.

We now illustrate the lower and upper bound computation

for B. In the worst case scenario, the decrease in costs on

provider links on localization is 10 ∗ (450 − 150) = $3, 000,

while the decrease in revenue from customers is 34 ∗ (300−
100)+38∗ (200−20)+10∗ (400−75) = $16, 890. Thus, the

lower bound on δ(profit) is −$13, 890 and profit decrease is

80%. However, in the best case scenario for B, the decrease

in costs on provider links on localization is 10∗(600−100) =
$5, 000, while the decrease in revenue from customers is 34 ∗
(250 − 130) + 38 ∗ (120 − 60) + 10 ∗ (375 − 80) = $9, 310.

Thus, the upper bound on δ(profit) is −$4, 310 and the profit

decrease is 37%.

• Class: Since knowing if an AS link is inbound or outbound

dominated for all links is practically impossible, we consider

a scenario that we build to be as realistic as possible. We

start by considering PeeringDB [28] information, which is a

database where network operators document information in

hope of attracting other ASes to peer with. The database

contains over 1,900 ASes that provide the ground truth by

labeling themselves as having traffic ratios that are dominated

by inbound, outbound, or are balanced. About 500 ASes

are in our dataset and for them we explicitly consider this

information.

For the remaining ASes, we hypothesize that the ratio of

P2P client to web server populations has a large impact on

the amount of traffic entering and leaving an AS. This is

because we would expect a residential AS with many P2P

clients to have a large number of users consuming content;

hence a large amount of inbound traffic. On the other hand,

we would expect an AS hosting many web servers to have

large outbound traffic. To discover the server population per

AS we use a methodology similar to that used in [10] and find

1 million servers in 19,000 ASes. We use then PeeringDB as

ground truth to calibrate the threshold ratio to classify ASes.

Indeed, we do find a strong correlation between dominating

traffic direction and the ratio of population sizes. Considering

the unclassified ASes, we find 95% have population ratios

clearly indicating they are inbound dominated (and we label as

such in this scenario); this is unsurprising as we would expect

most ASes in our dataset to be residential ASes and not content

providers. Given each AS classification, the corresponding P95

of incoming or outgoing traffic will be used as the charging

volume for every provider link the AS has.

To complete the example, let ASes B, C, D and E be

classified inbound dominated. Then, the decrease in costs for

AS B is 10 ∗ (600 − 150) = $4, 500, while the decrease in

revenue is 34∗(300−130)+38∗(120−60)+10∗(400−80) =
$11, 260. This translates to a δ(profit) of −$6, 760 and a

profit decrease of 68%.

AS Type # Profiting (%) # Losing (%)

All ASes 322 (16%) 1745 (84%)

Stub 60 (5%) 1140 (95%)

Small ISP 115 (20%) 458 (80%)

Large ISP 139 (49%) 147 (51%)

Tier-1 8 (100%) 0 (0%)

TABLE III
ASES PROFITING OR LOSING BY CATEGORY (NO LOCALIZATION)

V. IMPACT OF LOCALIZATION POLICIES

In this section, we evaluate the profitability of ISPs accord-

ing to the P2P traffic that they carry today and how localization

affects this. We consider scenarios where a different fraction of

ASes localize traffic as ISPs may implement locality policies

independent of one another. We also perform sensitivity to

locality models and pricing models.

Using the Affinity model and the BitTorrent crawl, we

consider, for each locality model, a set of 168 traffic matrices

derived from the last 7 days of the 8 day long crawl. The first

day is not considered to discard initial transient conditions for

the history and persistent locality models. For each matrix,

traffic is then routed on the AS level topology using the AS

paths inferred as described in Section II-C1. Finally, for each

customer-provider link, the P95 of P2P traffic is computed

considering the 168 samples.

So far we have classified ISPs based on their customer-

provider relationship as transit or residential to allow us to

clarify the implication of the pricing model. However, this

classification does not capture the implication of the AS size

on the ISP’s profitability, therefore we also categorize each

AS according to how many downstream customers it has as

proposed by the Internet Topology Collection [29]. There are

four categories: Stub, Small ISP, Large ISP and Tier-1, which

intuitively state how big a transit AS is. Stubs have less than 5

downstream customers, Small ISPs have 5 or greater, but less

than 50, and Large ISPs have 50 or greater. Tier-1 ISPs are

those who have no or very few providers and are the same as

those identified by [29]. In our dataset there are 1200 Stubs,

573 Small ISPs, 286 Large ISPs, and 8 Tier-1 ISPs.

A. Profitability Before Localization

We first consider the scenario where there is no localization

used on the Internet. We determine for each category of AS,

the number of ASes that are profiting or losing from carrying

P2P traffic. We present results only for the Class pricing model

since results for Average are similar and Upper and Lower can

be calculated only when localization occurs. Table III reports

the results. As expected, the vast majority of ASes lose money

because of P2P traffic (see the first line summary). However,

as the number of downstream AS customers increases, there

are ASes that profit due to P2P traffic. Indeed, 322 ASes (16%)

today are profitable overall, of which 266 ASes are residential.

This indicates that not all ASes may want to limit P2P traffic,

and only ASes that have few customers have the most incentive

to limit external P2P traffic.

Considering ASes that have losses due to P2P traffic, over

51% of of them are purely residential serving end users but

not carrying traffic for other ASes. Surprisingly, several ASes

that have more than 500 downstream customers still suffer
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Value Loss Reduction Profit Increase

less than -1 more loss turned to loss

between -1 and 0 more loss less profit

between 0 and 1 less loss more profit

greater than 1 turned profitable more profit

(a) Interpreting metric results
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Fig. 4. Individual AS deploys localization with Single(history) locality model. Sensitivity to pricing models.

losses. Investigating further, we found that their relationship

to Tier-1 ASes largely determines whether they profit or lose.

Being a customer of a Tier-1 AS makes the AS lose money,

while those that have peering agreements made a profit.
A closer look reveals that some ASes are still profitable,

in spite of having few provider agreements with Tier-1. For

example, the 13th largest profitable AS (AS-12956, Telefon-

ica) has few agreements with Tier-1 ASes but more than 500

downstream customers, most of which are in Spanish speaking

regions. By carrying mostly traffic that is exchanged among

South American and other Spanish ASes, it takes advantage

of the cultural and linguistic characteristics of P2P inter-

AS traffic to send high volumes of profitable traffic between

customer ASes and very little costly traffic to Tier-1 providers.
Insight #1: Transit ASes that have customer ASes with

similar cultural and linguistic makeups benefit more from

carrying P2P traffic than those whose customer ASes are

dissimilar. A transit AS with such customer ASes sends more

traffic to customers than to providers which increases its

revenue.

B. Localization Deployed by Individual ASes

We seek to understand if localization is beneficial for an

individual AS, independent of what other ASes do. Specifi-

cally, we investigate what is the expected benefit for an AS

that deploys a localization policy alone. We consider only

residential ASes since pure transit ASes have no benefits in

localizing traffic (having no clients).
Sensitivity to pricing model: We fix the locality policy

to Single(history) and calculate the charging volumes as

described in Section IV-C. We use the metrics defined by

Equation 14 and 15. Fig. 4(a) summarizes what the values

of these metrics mean for different ranges. Positive values

indicate that the AS is benefiting from the locality policy.

Negative values indicate that the AS is doing worse than before

the policy is applied. For example, a profit increase larger

than 0 means more profit, while a profit increase between

0 and -1 means less profit. Profit goes to 0 when profit

increase takes the values of -1. Finally, for values smaller

than -1 the localization policy turns profit into loss. We show

results in two different graphs: Fig. 4(b) plots the Cumulative

Distribution Function (CDF) of loss reduction for ASes who

have losses before localization, and Fig. 4(c) plots the CDF

of profit increase for ASes who profit before localization.
In Fig. 4(b), the Lower bound (i.e., the vertical curve at x=0)

shows that no profit is gained. This is because the localization

of P2P traffic will result in internal P2P clients reducing con-

tent downloaded from the outside, but in the pessimistic case

this will not necessarily reduce content uploaded to other ISPs.

However, for the worst case, the AS is charged on outbound

traffic which has not changed. As Class reveals though, most

residential ASes do get charged for their incoming traffic and

thus localization is beneficial to them. Benefits are somewhat

limited, with a loss reduction smaller than 30% for more than

50% of ASes. Note that a few residential ASes are outgoing

dominated and thus are unaffected by localization also for

Class. In our dataset we find 40 ASes that belong to this

category. For those, loss reduction is equal to 0, as shown

by vertical segment of the Class curve close to x=0.

For Average, less benefit is obtained than for Class because

Average considers both directions of traffic but the cost

associated with outbound traffic remains the same. Finally,

Upper bound provides optimistic predictions that are unlikely

in practice. Surprisingly even in this case the loss reduction is

limited, i.e., only 40% of ASes see reductions over 60%.

We now turn our attention to profitable ASes in Fig. 4(c),

a total of 16 residential ASes for which most P2P traffic

traverses customer links. We see that in Class, 63% of these

ASes show a profit reduction. This is due to these residential

ASes also being transit ASes. For example, the AS that suffers

the most is AS-209 Qwest Communications, a Tier-1 provider

who we found to have over 360,000 clients. This is due to

almost all of the P2P traffic that clients in AS-209 generate

being sent and received through customer links.

Insight #2: Some residential ASes will actually lose profit

when they localize traffic. This is due to these ASes also

being transit providers for other residential ASes. For these

ASes, P2P traffic that was previously downloaded from clients

in customer ASes decreases due to localization and in turn

revenue decreases. Therefore, they have little incentive to

localize traffic.

There are a few ASes that are able to increase profit due

to localization. This is due to the fact that many AS paths are

asymmetric. Specifically, outgoing traffic is sent on customer

links and since outgoing traffic does not decrease when one AS

localizes, revenue remains the same. However, some incoming

traffic is received on provider links, hence a reduction in costs

and an increase in profit. This underlines the complexity of

possible impacts of P2P traffic localization policies.

Sensitivity to locality model: Now we fix the pricing

model to Class and vary the locality model. As expected,

Fig. 5(a) shows that most ASes that were suffering losses due
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Fig. 5. Individual AS deploys localization with Class pricing model. Sensitivity to locality models.
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Fig. 6. All ASes deploy localization with Class pricing model. Sensitivity to locality models.

to the P2P traffic are reducing their loss due to localization

policies. However, the reduction is not as large as one could

hope. Under Perf(no history), the most pessimistic locality

policy, for 75% of ASes the reduction is less than 25%. Even

under Single(history), the most realistic locality policy, the loss

reduction is still small, with less than 48% reduction for 75%

of ASes. This is due to the small number of clients interested

in the same content, which therefore tends to “disappear” as

clients leave the torrent. Indeed, under the Single(persistent)

policy the results are much improved: even 50% of ASes

reduce their losses by 70%. In some cases, the AS is able to

vastly improve profitability. For example, some small residen-

tial AS would be able to increase its loss reduction from 13%

under Single(history) to 82% under Single(persistent). This

is due to the optimistic assumption that content is available

forever once it enters an AS.
Insight #3: Content availability plays a crucial role in

determining the effectiveness of localization. Due to churn,

peers will often need to redownload content from outside the

AS. However, when assuming persistent content, most ASes

can reduce losses twice as much.

C. Internet-wide Localization Deployed

We now consider the scenario when all ASes deploy local-

ization at the same time and thus we also include ASes who

are purely transit in our results. We show results on sensitivity

to locality models, but not on results concerning sensitivity to

pricing models as the trends are similar to those already seen.
As before, we fix the pricing model to Class and plot results

separately for ASes that normally lose or profit due to P2P

traffic. Fig. 6(a) plots the loss reduction and shows results

similar to when individual ASes localize. This is because an

AS will reduce its incoming traffic only if it localizes its

own traffic. Thus, as most ASes are inbound dominated they

can unilaterally localize traffic and receive the full benefits.

However, an AS will reduce its outgoing traffic only if other

ASes localize their traffic. Therefore, ASes that are outbound

dominated will not see benefit until other ASes start localizing

traffic. In this scenario indeed, all ASes that were facing loss

reduce costs (loss reduction greater than 0 for all ASes).

Insight #4: The benefits of localization will be limited for

some ASes unless all ASes start to localize traffic. Localization,

if adopted by a single AS, only reduces traffic received by

internal peers, but it may not affect traffic sent. Hence,

individual ASes that are outbound traffic dominated or are

charged based on the average of the inbound and outbound

P95s will not receive all the possible benefits. This reduced

benefit may slow down the adoption of localization policies.

To investigate which ASes benefit more we show in

Fig. 6(b) the loss reduction versus population size, considering

the Single(history) locality policy. As can be seen, there is

a trend that the larger the population, the more the AS can

localize. For example, the Taiwanese AS-3462 where we found

over 1.5 million clients, is able to get a reduction of 91%.

However, more than 50% of ASes achieve gains smaller than

30% as the limited number of peers interested in the same

content inside an ISP limits the benefits of localization.

Insight #5: The reduction in traffic due to localization

only grows logarithmically with client population (notice the

log-linear scale). Furthermore, we find that for all locality

models the values of αj , the leftover traffic, also follow a

similar logarithmic trend with respect to AS population sizes.

This is due to torrent popularity following a Zipf-distribution,

which has been shown to limit the effectiveness of caching. In

particular, [30] demonstrates through analysis that a similar

effect occurs considering web caching.

Moving to ASes that were already profitable, Fig. 6(c)

shows a significant decrease in the amount of profit; in a

pessimistic case – Single(no history) policy – 50% of ASes

lose over 25% of their profits. In an optimistic case – Sin-



11

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1  1.2

F
ra

ct
io

n
 o

f 
A

S
es

Loss Reduction

Lower
Average

Class
Upper

(a) Largest 100 localize.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1  1.2

F
ra

ct
io

n
 o

f 
A

S
es

Loss Reduction

Top 10
Top 25
Top 50

Top 100
Top 200
Top 500

All ASes

(b) Class pricing model.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1  1.2

F
ra

ct
io

n
 o

f 
A

S
es

Loss Reduction

Top 10
Top 25
Top 50

Top 100
Top 200
Top 500

All ASes

(c) Average pricing model.

Fig. 7. Largest ASes deploy localization with Single(history) locality model. Sensitivity to pricing models.

gle(persistent) policy – 80% lose at least 60% in profit. Thus,

while localization is beneficial for many residential ASes, over

300 transit ASes lose profit. Further investigation shows that

the larger the transit AS is, the more likely it will suffer heavier

losses in profit.
Insight #6: Transit ASes lose significant amounts of profit

when ASes localize. We found that all Tier-1 ISPs will lose

over 56% of profits on P2P traffic under Single(history) when

all ASes localize. We note though that the reduction in P2P

traffic may enable transit ISPs to use the bandwidth for other

types of revenue generating traffic, thus offsetting losses.

Some ASes turn from being profitable to actually losing

money (profit increase smaller than -1). For example, this

happens for the AS-3786, who is a transit provider for the AS-

17858. As AS-17858 is larger than AS-3786, it can reduce its

traffic more than AS-3786 can. Therefore, AS-3786’s customer

traffic is reduced more than its provider traffic and hence it

starts to lose money. Interestingly, there are a few ASes that

are able to increase their profits due to localization. These

transit ASes are providers for many small residential ASes.

As small ASes achieve very small reductions, the transit ASes

are able to increase their profits by reducing their costs more

than their customers can.
Insight #7: Small residential ASes have small reductions

in traffic due to the logarithmic trend of localization. Hence

transit ASes who carry traffic for many small ASes fare better

than those who carry traffic for a few large ASes.

D. Localization Deployed by Large ASes

Besides the extreme cases when a single AS or all ASes

deploy localization, we also investigate the scenario when

ASes with larger populations will implement localization.

We consider the Single(history) locality model and conduct

sensitivity to pricing models. Results for sensitivity to locality

models are similar.
We first consider when only the 100 largest ASes by client

population size localize traffic, i.e., 6% of residential ASes in

our dataset. As the largest ASes send and receive a very large

amount of P2P traffic, we expect the localization to impact

many other ASes as well. Fig. 7(a) shows the loss reduction

results. In Class, the 100 ASes that localize receive the full

benefits while 87% of ASes do not practically benefit. This

is because many ASes are inbound dominated, but only a

decrease of outbound traffic could be induced in this scenario.

Indeed, the 40 ASes that are outbound dominated benefit

of a loss reduction of 30% or greater. The Lower curve

corroborates this result by showing that most of ASes cannot

get any benefit. The Average pricing model allows more ASes

to benefit from the localization deployment of few ASes, while

the Upper Bound provides over-optimistic prediction.

Insight #8: Pricing scheme has a large impact on the ef-

fectiveness of savings. As the maximum pricing model ignores

one direction of traffic, reduction in the other direction does

not result in a reduction of cost. The average pricing model

does consider both inbound and outbound traffic and thus an

AS could benefit both if it or some other AS localizes traffic.

We now compare the two most realistic pricing models,

Class and Average, when a varying number of ASes localize

traffic. We only focus on loss reduction graphs as we wish to

highlight the effects the maximum and average pricing models

have on costs. Fig. 7(b) shows Class and demonstrates that

those who localize are generally the only ones who see benefit.

This is in contrast to the Average pricing model, which we

show in Fig. 7(c). Interestingly, in Average, almost all ASes

that do not localize see increasing benefits as more ASes

localize. For example, when 200 ASes localize, most ASes

have over a 20% loss reduction, which is over 50% of the

benefits possible when all ASes localize.

Insight #9: Contrary to the average pricing model, for

the maximum pricing model it is not sufficient that few ASes

localize traffic to reduce cost. Even if the largest Ases start

deploying localization schemes, overall loss reduction will be

very limited.

VI. IMPACT OF BUSINESS-RELATIONSHIP POLICIES

In this section we explore alternative ways to increase

profitability of carrying P2P traffic. In particular, we explore

business-relationship based peer selection policies where ASes

aim to improve their profit by making internal peers select

external peers located in customer or peer ASes, while trying

to avoid peers hosted in provider ASes. AS is not trying to

reduce the traffic peers will download, but rather it is interested

in carefully selecting the source ASes to download from.

Clearly, the generalized use of these policies could have

significant impact on existing peering agreements. As traffic

exchange ratios [31] are often used to determine if an AS

should be a peer or customer, a change in traffic may lead

to a renegotiation of agreements. In this paper, we do not

consider such events.
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Fig. 8. Individual AS deploys Business, Single(history) or Hybrid, with Class pricing model.
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Fig. 9. All ASes deploy Business, Single(history), Hybrid or Individual Best, with Class pricing model.

A. Modeling Business-Relationship Based Policies

To model this preferential peer selection, we define θij as

a preference bias index given by AS j to remote AS i. If the

path from i to j traverses a customer link of j, the preference

will be the highest (θij = 1); if the path from i to j traverses a

peering link of j, a middle preference will be assigned (θij =
wp, 0 < wp ≤ 1); finally, if the path from i to j traverses a

provider link of j, the preference will be the lowest (θij =
wq, 0 < wq ≤ wp). Then, the volume of P2P traffic sent from

AS i to AS j is:

X ′
ij = XijθijB(j), (16)

where Xij is computed based on the Affinity model as in

Equation 3, and B(j) is a normalization factor that ensures the

aggregate traffic downloaded by peers in AS j from external

peers remains the same before and after the policy is applied.

B(j) =

∑Dj

i=1
Xij∑Dj

i=1
(Xijθij)

, (17)

where Dj is the total number of ASes from which j downloads

content. We refer to this model as the Business model.

We have performed a sensitivity study to wp and wq , to

understand how these parameters affect the loss reduction and

the profit increase of ASes. Intuitively, ISPs should make wp

and wq as small as possible to obtain the most benefits out of

Business. In the extreme, if we make wq = 0, all the traffic

from an AS will be directed to customer or peering links.

However, in practice this may not be possible since customer

or peer ASes of an ISP may not have the content or may

not have enough clients to support the demand. Hence, we

pick a very small value of wq , in particular we use wq =1E-

10. For wp, the main requirement is that it is larger than wq;

we choose wp =1E-03. We note that Business is an extreme

version of such a scheme that we use to illustrate its potential.

In reality, other practical considerations should be made, such

as considering user performance and inter-AS link capacities.
Intuition suggests we can improve the performance of the

Business and Single policies by merging them. We call the new

policy Hybrid and we model it by substituting Lij from Equa-

tion 4 into both Equation 16 and 17 , i.e., X ′
ij = LijθijB(j).

This represents the policy for selecting peers outside an AS to

obtain content that is not already present inside the AS. We

use wp =1E-03 and wq =1E-10 as before.

B. Best Strategy for Individual ASes

The goal of this section is to study what strategy individual

ASes should adopt to have the best impact on ISP profitability.

We start by considering the case in which individual ASes

deploy one of Business, Hybrid or Single(history). We fix

the pricing model to Class. Fig. 8(a) shows a comparison

between the three possible strategies reporting loss reduction.

Interestingly, the Business policy is ineffective for more than

75% of ASes, while Single(history) has proved to reduce

the loss for most ASes. The Hybrid policy is providing

the best loss reduction for most of the ASes. Indeed, only

for the top 25% of ASes, which are mostly transit ASes,

Business performs better than Single(history) and similar to

Hybrid. This is because transit ASes can benefit more from

the Business policy by having internal peers download traffic

from customer ASes rather than provider ASes. In fact, the

top 11% of ASes actually turn profitable, i.e., loss reduction

becomes greater than 1.
Fig. 8(b) shows the profit increase for the 16 residential

ASes that are already profitable before localization. The figure

shows that Business is the most beneficial policy, i.e., more

than 30% of the ASes improve their profit by more than 100%.

The other two policies can instead cause a profit reduction,

as already seen in Fig. 5. Recall indeed that transit ASes will

increase their profit if more traffic is pushed to customer ASes.
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Based on these results, we aim to study the strategy that

gives the most benefits to ASes. Towards this goal, we plot

Fig. 8(c). In this figure, we consider all ASes and group them

according to the categories described in Sec. V. Then, we find

for each AS, which policy gives the most benefits. Finally,

we aggregate the best policies per category of AS. For each

type of AS there is a stacked bar, where each section of the

bar represents a fraction of ASes that performs the best with

a given policy. Note that besides the Business and Hybrid

policies, there is Single(history) = Hybrid, which accounts

for the cases in which both Single(history) and Hybrid are the

best policies. Single(history) is never better than Business or

Hybrid, so it is not shown in the picture.
There are several points to take away from Fig. 8(c). First,

we observe that for around 90% of stub ASes, the best policy

is Single(history) or Hybrid. This is because stub ASes receive

considerable benefits from localization. ASes in the Small

ISP category follow a similar trend with more than 60%

of them benefiting the most from Single(history) or Hybrid.

Second, all Tier-1 ASes on the contrary will get the most

benefits out of the Business policy. This is because Tier-1 ASes

will benefit from an increment in the traffic sent or received

from customers. Finally, Hybrid is better for the Large ISP

category, since these ISPs benefit both from directing traffic

to customers and from localizing their own P2P traffic.
Insight #10: Many ASes will achieve more profits through

preferentially directing traffic to customers and peers rather

than localizing traffic. Therefore, P2P traffic localization is

not always the best choice for all ASes.

C. Internet Impact of Business-Relationship Based Policies

In the previous section, we have seen how different strate-

gies will benefit ASes if individual ASes adopt them. But

what happens when all ASes adopt the same policy at the

same time or when all ASes adopt their local best policy at

the same time? Both P4P and ALTO indeed allow each AS

to run their own “oracle” and chose a different policy. To

answer these questions, we consider the scenarios in which

all ASes adopt Business, Single(history), and Hybrid policies.

In addition, we consider the scenario in which each AS applies

its best local strategy, according to Fig. 8(c), which we have

called ”Individual Best”. We fix the pricing model to Class.
Fig. 9(a) shows the loss reduction. For about 10% of

the ASes, Business causes them to lose considerably more.

These are mostly stub ASes that will be “victims” of their

providers that increase the amount of traffic they exchange

with customer ASes. On the contrary, Single(history) almost

never causes higher loss. Hybrid performs marginally better

than Single(history) for large ASes, but slightly worse than

Single(history) for small ASes.
Fig. 9(b) shows the profit increase. Business performs better

than Single(history) and Hybrid. When Business alone is

considered, more than 70% of ASes either profit more or earn

the same amount as before. For Single(history), over 90% of

the ASes start losing profit due to localization. This is because

many of the transit ASes that were profiting before will receive

more benefit from Business since they will now select peers

in customer ASes and direct more traffic to them.

We note that for both loss reduction and profit increase,

Individual Best closely follows Single(history) and Hybrid.

In particular, ASes that profit from P2P traffic (e.g. Tier-1

ASes and a few Large ISPs), which benefit more from locally

implementing Business, lose because of policies implemented

by their customers.

Insight #11:While business-relationship based policies may

locally be the best strategy for some ASes, they can have a

negative external impact on other ASes. Furthermore, as the

best local strategy of an individual AS is chosen in isolation

of others it does not turn to be the best possible choice when

all ASes deploy their own best local strategy.

VII. RELATED WORK

Much work on modeling traffic on the Internet has been

done in the context of intra-AS traffic matrix estimation [13,

14]. Our work though focuses on inter-AS P2P traffic matrix

estimation, of which the only related paper is [10], which we

extensively discussed in Sec. II.

The effects of P2P systems on ASes has also been studied

by Rasti et al. [32] who shows the effects of the Gnutella

P2P system on the AS topology. Rather than focusing on

localization, they instead study how the load on ASes due

to Gnutella clients has changed over time due to the evolution

of both the AS topology and the Gnutella system.

Many recent works have focused on how to implement

P2P localization [2]–[8, 23]. However, we evaluate the impact

localization will have on all ASes and on their profitability.

Complementary to our work is that done by Cuevas et

al. [11]. Their focus is on understanding the extent to which

localization helps improve the performance of users and reduce

the amount of P2P traffic residential ASes exchange with their

providers. Similarly, Blond et al. [33] focus on how much

traffic can be reduced due to localization using experiments

driven by a BitTorrent crawl. In contrast, our goal is to

understand the implications of localization on the global

Internet, particularly, which ASes will benefit and which will

lose. In addition, our analysis not only considers residential

ASes but also study how localization may affect pure-transit

ASes, which may not have any internal peers.

Piatek et al. [9] question the effectiveness of localization

on peers performance and ISP traffic reduction. Specifically,

they perform experiments showing that client-only localization

policies will have limited benefits and the tracker will need

to be involved to receive full benefits. They also evaluate

the amount of traffic reduction possible for a crawl of one

thousand torrents. In contrast, we consider a very large dataset

including millions of torrents and also use realistic pricing

models to understand how traffic reductions translate into

impact on profit for ISPs.

VIII. CONCLUSION

In this paper, we developed a detailed methodology for

evaluating the profitability of an ISP and how it will change

due to P2P localization. We first proposed the Affinity model, a

refinement of the Gravity model, for generating realistic inter-

AS P2P traffic. We then devised several locality models to
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describe the reduction of P2P traffic under different scenarios.

Coupling these models with realistic inter-AS paths inferred

from BGP and IXP data, and pricing models based on the 95th

percentile and geographic pricing, we calculate the impact of

localization policies on ISP profits. We believe that the results

we presented enhance the understanding and implications

of P2P traffic localization schemes on the Internet, and in

particular from the perspective of ISPs.
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