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Control of Wireless Networks with Secrecy
C. Emre Koksal, Ozgur Ercetin, Yunus Sarikaya

Abstract—We consider the problem of cross-layer resource
allocation in time-varying cellular wireless networks, and in-
corporate information theoretic secrecy as a Quality of Service
constraint. Specifically, each node in the network injects two types
of traffic, private and open, at rates chosen in order to maximize
a global utility function, subject to network stability and secrecy
constraints. The secrecy constraint enforces an arbitrarily low
mutual information leakage from the source to every node in
the network, except for the sink node. We first obtain the
achievable rate region for the problem for single and multi-user
systems assuming that the nodes have full CSI of their neighbors.
Then, we provide a joint flow control, scheduling and private
encoding scheme, which does not rely on the knowledge of the
prior distribution of the gain of any channel. We prove that
our scheme achieves a utility, arbitrarily close to the maximum
achievable utility. Numerical experiments are performed to verify
the analytical results, and to show the efficacy of the dynamic
control algorithm.

I. I NTRODUCTION

In recent years, there have been a number of investigations
on wireless information theoretic secrecy. These studies have
been largely confined within the boundaries of thephysical
layer in the wireless scenario and they have significantly
enhanced our understanding of the fundamental limits and
principles governing the design and analysis of secure wire-
less communication systems. For example, [1], [2], [3] have
unveiled theopportunistic secrecy principle which allows for
transforming the multi-path fading variations into a secrecy
advantage for the legitimate receiver, even when the eaves-
dropper is enjoying a higher average signal-to-noise ratio
(SNR). The fundamental role offeedback in enhancing the
secrecy capacity of point-to-point wireless communication
links was established in [4], [5], [6]. More recent works have
explored the use ofmultiple antennas to induce ambiguity
at the eavesdropper under a variety of assumptions on the
available transmitter channel state information (CSI) [7], [8],
[9], [10]. The multi-user aspect of the wireless environment
was studied in [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25] revealing the potential
gains that can be reaped from appropriately constructed user
cooperation policies. Finally, the design of practical codes
that approach the promised capacity limits was investigated
in [26], [27]. One of the most interesting outcomes of this
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body of work is the discovery of the positive impacts on
secure communications of some wireless phenomena, e.g.,
interference, which are traditionally viewed as impairments
to be overcome.

Despite the significant progress in information theoretic
secrecy, most of the work has focused on physical layer
techniques and on a single link. The area of wireless infor-
mation theoretic secrecy remains in its infancy, especially as
it relates to the design of wireless networks and its impact
on network control and protocol development. Therefore, our
understanding of the interplay between the secrecy require-
ments and the critical functionalities of wireless networks,
such asscheduling, routing, and congestion control remains
very limited.

Scheduling in wireless networks is a prominent and chal-
lenging problem which attracted significant interest from the
networking community. The challenge arises from the fact
that the capacity of wireless channel is time varying due to
multiple superimposed random effects such as mobility and
multipath fading. Optimal scheduling in wireless networks
has been extensively studied in the literature under various
assumptions [28], [29], [30], [31], [32], [33]. Starting with
the seminal work of Tassiulas and Ephremides [28] where
throughput optimality of backpressure algorithm is proven,
policies that opportunistically exploit the time varying nature
of the wireless channel to schedule users are shown to be
at least as good as static policies [29]. In principle, these
opportunistic policies schedule the user with the favorable
channel condition to increase the overall performance of the
system. However, without imposing individual performance
guarantees for each user in the system, this type of scheduling
results in unfair sharing of resources and may lead to starvation
of some users, for example, those far away from the base
station in a cellular network. Hence, in order to address
fairness issues, scheduling problem was investigated jointly
with the network utility maximization problem [34], [35], [36],
and the stochastic network optimization framework [37] was
developed.

To that end, in this paper we address the basic wireless
network control problem in order to develop a cross-layer
resource allocation solution that will incorporate information
privacy,measured by equivocation, as a QoS metric. In partic-
ular, we consider the single hop uplink setting, in which nodes
collect private and open information, store them in separate
queues and transmit them to the base station. At a given
point in time, only one node is scheduled to transmit and it
may choose to transmit some combination of open and private
information. Our objective is to achieve privacy of information
from the other legitimate nodes and we assume that there
are no external malicious eavesdroppers in the system. The
motivation to study this notion of secrecy is the following.In
some scenarios (e.g., tactical, financial, medical), privacy of
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Fig. 1. Uplink communication with private and open information.

communicated information between the nodes is necessary, so
that data intended to (or originated from) a node is not shared
by any other legitimate node.

First, we evaluate the region of achievable open and private
data rate pairs for a single node scenario with and without joint
encoding of open and private information. Then, we consider
the multi-node scenario, and introduceprivate opportunistic
scheduling. We find the achievable private information rate
regions associated with private opportunistic schedulingand
show that it achieves the maximum sum private information
rate over all joint scheduling and encoding strategies. While
private opportunistic scheduler is based on the availability of
full CSI on the uplink channels, it does not rely on information
on the instantaneous cross-channel (i.e., the channel between
different nodes) CSI. It requires merely the long-term average
rate of the cross-channel rates. To achieve privacy with this
level of CSI, private opportunistic scheduler uses an encoding
scheme that encodes private information over many packets.
Note that, in the seminal paper [38], it was shown that
opportunistic scheduling (without secrecy) maximizes thesum
rate. Our result can be viewed as a generalization of this result
to the case with secrecy. Next, we model the problem as that
of network utility maximization. We provide a dynamic joint
flow control, scheduling and private encoding scheme, which
takes into account theinstantaneous direct- and cross-channel
state information but not a priori channel state distribution.
In dynamic cross-layer control scheme private informationis
divided into a sequence of messages where each message is
encoded into anindividual packet. We prove that our scheme
achieves a utility, arbitrarily close to the maximum utility
achievable in this setting. We generalize dynamic cross-layer
control scheme to a more general case when instantaneous
cross-channel states are not known perfectly. Consequently,
we define the notions ofprivacy outage andprivacy goodput.
Finally, we numerically characterize the performance of the
dynamic control algorithm with respect to several network
parameters, and show that its performance is fairly close to
that of private opportunistic scheduler achievable with known
channel priors.

II. PROBLEM MODEL

We consider the cellular network illustrated in Fig. 1. The
network consists ofn nodes, each of which has both open
and private information to be transmitted to a single base
station over the associated uplink channel. When a node is
transmitting, every other node overhears the transmissionover
the associated cross channel. We assume every channel to
be iid block fading, with a block size ofN1 channel uses.
The entire session lasts forN2 blocks, which corresponds to a
total of N = N1N2 channel uses. We denote the instantaneous

achievable rate for the uplink channel of nodej by R j(k),
which is the maximum mutual information between output
symbols of nodej and received symbols at the base station
over blockk. Likewise, we denote the rate of the cross channel
between nodesj and i with R ji(k), which is the maximum
mutual information between output symbols of nodej and
input symbols of nodei over block k. Note that there is
no actual data transmission between any pair of nodes, but
parameterR ji(k) will be necessary, when we evaluate the
private rates between nodej and the base station.

Even though our results are general for all channel state
distributions, in numerical evaluations, we assume all channels
to beGaussian and the transmit power to be constant, identical
to P for all blocks k, 1 ≤ k ≤ N2. We represent the uplink
channel for nodej and the cross channel between nodesj and
i with a power gain (magnitude square of the channel gains)
h j(k) and h ji(k) respectively over blockk. We normalize the
power gains such that the (additive Gaussian) noise has unit
variance. Then, asN1 → ∞,

R j(k) = log(1+Ph j(k)) (1)

R ji(k) = log(1+Ph ji(k)). (2)

Each node j has a private and an open message,W priv
j ∈

{1, . . . ,2NRpriv
j } andW open

j ∈ {1, . . . ,2NRopen
j } respectively, to be

transmitted to the base station overN channel uses, whereRpriv
j

andRopen
j denote the (long-term) private and open information

rates respectively, for nodej. Let the vector of symbols
received by nodei beYi. To achieveperfect privacy, following
constraint must be satisfied by nodej: for all i 6= j,

lim
N→∞

1
N

I(W priv
j ;Yi)≤ ε (3)

for any given ε > 0. We define theinstantaneous private
information rate of node j transmitted privately from node
i over blockk as:

Rp
ji(k) = [R j(k)−R ji(k)]

+, (4)

where [·]+ = max(0, ·). It was shown in [39] that rate (4) is
achievable asN1 →∞ and [1] took it a step further and showed
that, asN1,N2 → ∞, a long-term private information rate of
E

[

Rp
ji(k)

]

is achievable.

The amount of open traffic,Ao
j(k), and private traffic,Ap

j (k),
injected in the queues at nodej (shown in Fig. 1) in blockk
are both selected by nodej at the beginning of each block.
Open and private information are stored in separate queues
with sizesQo

j(k) andQp
j (k) respectively. At any given block,

a scheduler chooses which node will transmit and the amount
of open and private information to be encoded over the block.
We use the indicator variableI j(k) to represent the scheduler
decision:

I j(k) =

{

1, private information from nodej

0, otherwise
. (5)

When we evaluate the region of achievable open and private
data rate pairs for the single node scenario, in Section III-A,
we assume that the transmitting node has perfect causal
knowledge of its uplink channel and the cross-channel at
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Fig. 2. Single user private communication scenario.

every block k. Thus, the achievable region of private and
open rates constitutes upper bound on the achievable rates
for each node, which we find subsequently for the multiuser
setting with partial CSI. For private opportunistic scheduler
in the multiuser setting, we assume that, each nodej has
perfect causal knowledge of the uplink channel rate,R j(k),
and its prior distribution. However, we assume that it only
has the long-term averages,E [R ji(k)] , i 6= j of its cross-
channel rates. To achieve privacy with this level of CSI,
private opportunistic scheduler uses an encoding scheme that
encodes private information over many packets. When we
formulate our problem as that of network utility maximization
problem, we only assume knowledge of instantaneous channel
gainswithout requiring the knowledge of prior distribution of
channel gains. Hence, private encoding is performed over a
single block length unlike the case with private opportunistic
scheduler. Additionally, we analyze a more realistic scenario
when the instantaneous channel rates are not knownperfectly,
but estimated with some random additive error. The scheduled
transmitter,j, will encode at a rate

R̂p
j (k) = [R j(k)−ρ j(k)]

+,

where ρ j(k) is the rate margin, chosen such that the esti-
mation error is taken into account. Note that whenρ j(k) <
maxi6= j R ji(k), then perfect privacy constraint (3) is violated
over blockk. In such a case, we say thatprivacy outage has
occurred. The probability of privacy outage over blockk when
user j is scheduled, is represented aspout

j (ρ j(k)). Since perfect
privacy cannot be ensured over every block, we require that
expected probability of privacy outage of each userj is below
a given thresholdγ j.

III. A CHIEVABLE RATES AND PRIVATE OPPORTUNISTIC

SCHEDULING

In this section, we evaluate the region of private and open
rates achievable by a scheduler for multiuser uplink and
downlink setting. We start with a single node transmitting,
and thus, the scheduler only chooses whether to encode
private information at any given point in time or not. We
consider the possibility of both the separate and the joint
encoding of private and open data. For multiuser transmission,
we introduce our scheme,private opportunistic scheduling,
evaluate achievable rates and show that it maximizes the sum
private information rate achievable by any scheduler. Along
with private opportunistic scheduling, we provide the asso-
ciated physical-layer private encoding scheme that encodes
information over many blocks.

A. Single User Achievable Rates

Consider the single user scenario in which the primary
user (node 1) is transmitting information over the primary

channel and a single secondary user (node 2) is overhearing the
transmission over the secondary channel as shown in Fig. 2. In
this scenario, we assume node 2 is passively listening without
transmitting information and node 1 has perfect knowledge
of instantaneous ratesR1(k) and R12(k) for all k as well as
their sample distributions. Over each blockk, the primary
user chooses the rate of private and open information to be
transmitted to the intended receiver. As discussed in [40] it is
possible to encode open information at a rateR1(k)−Rp

12(k)
over each blockk, jointly with the private information at rate
Rp

12(k). For that, one can simply replace the randomization
message of the binning strategy of the achievability scheme
with the open message, which is allowed to be decoded by
the secondary user. In the rest of the section, we analyze
both the case in which open information can and cannot be
encoded along with the private information. We find the region
of achievable private and open information rates,(Rpriv

1 ,Ropen
1 ),

over the primary channel.
1) Separate encoding of private and open messages: First

we assume that each block contains either private or open
information, but joint encoding over the same block is not
allowed. Recall thatI1(k) is the indicator variable, which
takes on a value 1, if information is encoded privately over
block k and 0 otherwise. Then, one can findRpriv

1 , associated
with the point Ropen

1 = α by solving the following integer
program:

max
{I1(k)}∈{0,1}

E
[

I1(k)R
p
12(k)

]

(6)

subject to E [(1−I1(k))R1(k)]≥ α, (7)

where the expectations are over the joint distribution of the
instantaneous ratesR1(k) and R12(k). Note that, since the
channel rates are iid, the solution,I ∗

1 (k) =I ∗
1 (R1(k),R12(k))

will be a stationary policy. Also, a necessary condition forthe
existence of a feasible solution isE [R1(k)]≥ α. Dropping the
block indexk for simplicity, the problem leads to the following
Lagrangian relaxation:

min
λ>0

max
{I1}∈{0,1}

E
[

I1Rp
12

]

+λ (E [(1−I1)R1]−α)

= min
λ>0

{

max
{I1}∈{0,1}

∫ ∞

0

∫ ∞

0

[

I1Rp
12−λ (1−I1)R1

]

p(R1,R12) dR1dR12−λ α} , (8)

wherep(R1,R12) is the joint pdf ofR1 andR12. For any given
values of the Lagrange multiplierλ and (R1,R12) pair, the
optimal policy will chooseI ∗

1 (R1,R12) = 0 if the integrant
is maximized forI1 = 0, or it will chooseI

∗
1 (R1,R12) = 1

otherwise. If bothI1 = 0 and I1 = 1 lead to an identical
value, the policy will choose one of them randomly. The
solution can be summarized as follows:

Rp
12

R1

I
∗
1 =1
R

I
∗
1 =0

λ ∗, (9)

where λ ∗ is the value ofλ for which E [(1−I ∗
1 )R1] = α,

sinceλ ∗(E [(1−I1)R1]−α)≤ 0.
For Gaussian uplink and cross channels described in Sec-

tion II, the solution can be obtained by plugging (1,2,4) in
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(9):

(1+Ph1)
1−λ ∗

I ∗
1 =1
R

I ∗
1 =0

1+Ph12. (10)

The associated solutionI ∗ is graphically illustrated on the
(h1,h12) space in Fig. 3 forP = 1. As the value ofλ
varies between 0 and 1, the optimal decision region for
I = 0 increases from the upper half of the first quadrant
represented byh12 ≥ h1 to the entire first quadrant, i.e., all
h1,h12≥ 0. In Fig. 4, the achievable pair of private and open
information rates,(Rpriv

1 ,Ropen
1 ), is illustrated for iid Rayleigh

fading Gaussian channels, i.e., the power gainsh1 and h12

have an exponential distribution. We considered two different
scenarios in which the mean power gains,(E [h1] ,E [h12]), are
(2,1) and(2,2.5), andP= 1. The associated boundaries of the
rate regions with separate encoding are illustrated with solid
curves. To plot these boundaries, we variedλ from 0 to 1 and
calculated the achievable rate pair for each point. Note that
the flat portion on the top part of the rate regions for separate
encoding corresponds to the case in which Constraint (7) is
inactive. It is also interesting to note that as demonstrated in
Fig. 4, one can achieve non-zero private information rates even
when the mean cross channel gain between node 1 and node
2 is higher than the mean uplink channel gain of node 1.

2) Joint encoding of private and open messages: With the
possibility of joint encoding of the open and private infor-
mation over the same block, the indicator variableI1(k) = 1
implies that the private and open information rates areRp

12(k)
and R1(k)−Rp

12(k) respectively over blockk simultaneously.
Otherwise, i.e., ifI1(k) = 0, open encoding is used solely
over the block. To find achievableRpriv

1 , associated with the
point Ropen

1 = α, one needs to consider a slightly different
optimization problem this time:

max
{I1(k)}∈{0,1}

E
[

I1(k)R
p
12(k)

]

(11)

subject toE
[

(1−I1(k))R1(k)+I1(k)(R1(k)−Rp
12(k))

]

≥ α,
(12)

This optimization problem can be solved in a similar way by
employing Lagrangian relaxation as the problem consideredin
Section III-A1. First, we specify two regions of parameters
for which the solution is trivial: 1) ifE [R1]< α, no solution
exists for (11,12), since the uplink channel capacity is not
sufficient to meet the desired open rate,α; 2) if E

[

R1−Rp
12

]

>
α, thenI ∗

1 = 1 for all blocks, i.e., all open information will be
encoded jointly with private information, since the remaining
capacity over that is necessary to support private information
is sufficient to serve open information at rateα. In this case,
Constraint (12) is inactive and the achieved private information
rate isRpriv

1 = E
[

Rp
12

]

.
In all other cases, i.e.,E

[

R1−Rp
12

]

≤ α ≤ E [R1], it can
be shown that the optimal solution can be achieved by the
following probabilistic scheme1: For any given block,

I
∗
1 =

{

1, w.p. pp

0, w.p. 1− pp , (13)

independently ofR1 andR12, wherepp = E[R1]−α
E[Rp

12]
. The details

of the derivation of the described optimal scheme is given
in [41]. With this solution, only a fractionpp of the blocks
contain jointly encoded private and open information, and the
remaining 1− pp fraction of the blocks contain solely open
information. Thus, for a givenα, the achieved private and
open information rates can be found asRpriv

1 = pp
E
[

Rp
12

]

=
E [R1]−α and Ropen

1 = pp
E
[

R1−Rp
12

]

+(1− pp)E [R1] = α
respectively. Rather surprisingly, it does not matter which
blocks contain only open information and which ones contain
jointly encoded private and open information, as long as
the desired open information rateα is met. Consequently, a
random scheme that chooses 1− pp fraction of blocks for open
information only and the rest for jointly encoded open and
private information suffices to achieve the optimal solution.

By the above analysis, one can conclude that the achievable
rate region with joint encoding can be summarized by the
intersection of two regions specified by: (i)(Rpriv

1 +Ropen
1 ) ≤

E [R1] and (ii) Rpriv
1 ≤ E

[

Rp
12

]

. Any point on the boundary
of the region can be achieved by the simple probabilistic
scheme described above. One can realize that this region is the
maximum achievable rate region, since in our system, the total
information rate (private and open) is upper bounded by the
capacity,E [R1], of uplink channel 1 and the achievable private
rate is upper bounded by the secrecy capacity,E

[

Rp
12

]

, of the
associated wiretap channel. Thus, there exists no other scheme
that can achieve a larger rate region than the one achieved by
the simple probabilistic scheme.

In Fig. 4, the achievable pairs of private and open infor-
mation rates,(Rpriv

1 ,Ropen
1 ) with joint encoding are illustrated

for the iid Rayleigh fading Gaussian channels with the same
parameters as the separate encoding scenario. The boundaries

1Note that the solution of Problem (11,12) is not unique and the described
probabilistic solution is just one of them.
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of the regions are specified with dashed curves, which are
plotted by varying the value ofpp from 0 to 1 and evaluating
(E

[

R1−Rp
12

]

,E
[

Rp
12

]

) pair for each value. Similar to the
separate encoding scenario, the flat portion on the top part of
the regions corresponds to the case in which Constraint (12)
is inactive.

B. Private Opportunistic Scheduling and Multiuser Achiev-
able Rates

In this section, we consider the multiuser setting described
in Fig. 1. We introduceprivate opportunistic scheduling
(POS) for the uplink scenario and prove that it achieves
the maximum achievable sum private information rate over
the set of all schedulers. POS schedules the node that has
the largest instantaneous private information rate, with respect
to the “best eavesdropper” node, which has the largest mean
cross-channel rate. Each node ensures perfect privacy from
its best eavesdropper node by using a binning strategy, which
requires only the average cross-channel rates to encode the
messages over many blocks.

We consider the multiuser uplink scenario given in Fig. 5.
We assume every nodej has perfect causal knowledge of its
uplink channel rate,R j(k) for all blocks k and the average
cross-channel rates,E [R ji(k)], for all i 6= j.

1) Private Opportunistic Scheduling for uplink: We define
the best eavesdropper of nodej asi∗( j), argmaxi6= j E [R ji(k)]
and denote its average cross-channel rate withR̄m

j ,
E
[

R ji∗( j)(k)
]

. Note thati∗( j) does not change from one block
to another. In POS, only one of the nodes is scheduled for
data transmission in any given block. In particular, in block k,
we opportunistically schedule node

jM(k), argmax
j∈{1,...,n}

[

R j(k)− R̄m
j

]

if maxj∈{1,...,n}

[

R j(k)− R̄m
j

]

> 0 and no node is scheduled for

private information transmission otherwise, i.e.,jM(k) = /0.
In case of multiple nodes achieving the same maximum
privacy rate, the tie can be broken at random. Indicator
variableI POS

j (k) takes on a value 1, if nodej is scheduled
over block k and 0 otherwise. We denote the probability
that node j be scheduled withpM

j , P
(

jM(k) = j
)

and the
associated uplink channel rate when nodej is scheduled with
R̄M

j ,E
[

R j(k)| j = jM(k)
]

, where the expectations are over the
conditional joint distribution of the instantaneous ratesof all
uplink channels, givenj = jM(k).

As will be shown shortly, private opportunistic scheduling
achieves a private information rateRpriv

j = pM
j (R̄

M
j − R̄m

j ) for all
j ∈{1, . . . ,n}. To achieve this set of rates, we use the following
private encoding strategy based on binning: To begin, node
j generates 2N pM

j (R̄
M
j −δ ) random binary sequences. Then, it

assigns each random binary sequence to one of 2NRpriv
j bins,

so that each bin contains exactly 2N pM
j (R̄

m
j −δ ) binary sequences.

We call the sequences associated with a bin, therandomization
sequences of that bin. Each bin of nodej is one-to-one

matched with a private messagew ∈ {1, . . . ,2NRpriv
j } randomly.

This selection (along with the binary sequences contained in
each bin) is revealed to the base station and all nodes before
the communication starts. Then, whenever the message to be
transmitted is selected by nodej, the stochastic encoder of that
node chooses one of the randomization sequences associated
with each bin at random2, independently and uniformly over
all randomization sequences associated with that bin. This
particular randomization message is used for the transmission
of the message and is not revealed to any of the nodes nor to
the base station.

Private opportunistic scheduler schedules nodejM(k) in
each blockk and the transmitter transmitsN1R jM(k)(k) bits
of the binary sequence associated with the message of node
jM(k) for all k ∈ {1, . . . ,N2}. Thus, asymptotically, the rate of
data transmitted by nodej over N2 blocks is identical to:

lim
N1,N2→∞

1
N

N2

∑
k=1

N1I
POS
j (k)R j(k) = lim

N1,N2→∞

1
N2

N2

∑
k=1

I
POS
j (k)R j(k)

≥ pM
j (R̄

M
j − δ ) w.p. 1 (14)

for any givenδ > 0 from strong law of large numbers. Hence,
all of N(pM

j (R̄
M
j − δ )) bits, generated by each nodej is

transmitted with probability 1.
2) Achievable uplink rates with private opportunistic

scheduling:
Theorem 1: With private opportunistic scheduling, a private

information rate ofRpriv
j = pM

j (R̄
M
j − R̄m

j ) is achievable for each
node j.

The proof of this theorem is based on an equivocation
analysis and it can be found in Appendix A. Next we show
that private opportunistic scheduling maximizes the achievable
sum private information rate among all schedulers.

Theorem 2: Among the elements of the set of all
schedulers,{I (R1, . . . ,Rn)}, private opportunistic scheduler
I POS(R1, . . . ,Rn) maximizes the sum privacy uplink rate,
Rpriv

sum,up= ∑n
j=1 Rpriv

j . Furthermore, the maximum achievable
sum privacy uplink rate is

Rpriv
sum,up=

n

∑
j=1

[

pM
j

(

R̄M
j − R̄m

j

)]

.

The proof of Theorem 2 can be found in Appendix B. There,
we also show that the individual private information rates
given in Theorem 1 are the maximum achievable individual
rates with private opportunistic scheduling. Hence the converse
of Theorem 1 also holds. Combining Theorems 1 and 2, one
can realize that private opportunistic scheduling achieves the
maximum achievable sum private information rate. Thus, one
cannot increase the individual private information rate a single
node achieves with POS by an amount∆> 0, without reducing
another node’s private information rate by more than∆.

2In case of joint encoding of private and open information, the random-
ization sequence is chosen appropriately, corresponding to the desired open
message.
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Fig. 6. Bounds on the achievable sum rate region for the multiuser uplink
scenario with iid Rayleigh block fading channels.

Next, we find the boundary of the region of achievable
sum open and sum private uplink rate pair withjoint en-
coding of private and open information. In opportunistic
scheduling [38], [29] without any privacy constraint, the user
with the best uplink channel is scheduled for all blocks
k. Hence, the associated achievable rate can be written as
Ropp

sum,up= E
[

maxj∈{1,...,n} R j(k)
]

. Since this constitutes an up-
per bound for the achievable cumulative information rate [38],
the total private and open information rate in our system
cannot exceedRopp

sum,up. Combining this with Theorem 2, we
can characterize an outer bound for the achievable rate region
for the sum rates as follows: (i)Rpriv

sum,up+Ropen
sum,up≤ Ropp

sum,up;

(ii) Rpriv
sum,up≤ ∑n

j=1

[

pM
j

(

R̄M
j − R̄m

j

)]

. Next we illustrate this
region and discuss how the entire region can be achieved by
POS along with joint encoding of private and open messages.
The boundaries of this region is illustrated in Fig. 6 for a 5-

node and a 10-node system. We assume all channels to be iid
Rayleigh fading with mean uplink channel power gainE [h j] =
2 and mean cross channel power gainE [h ji] = 1 or 2.5 in two
separate scenarios for all(i, j). Noise is additive Gaussian with
unit variance and transmit powerP = 1. In these graphs, sum
rates are normalized with respect to the number of nodes. One
can observe that, the achievable sum rate per node decreases
from 0.31 to 0.19 bits/channel use/node forE [h ji] = 1 and
from 0.2 to 0.13 bits/channel use/node forE [h ji] = 2.5 as the
number of nodes increases from 5 to 10. Also, the open rate
per node drops from 0.47 to 0.27 bits/channel use/node with
the same increase in the number of nodes.

Note that, any point on the part of the boundary specified by
(i) above (flat portion on the top part) is achievable by POS and
jointly encoding the private information with the appropriate
amount of open information used as a randomization message.
For instance, the corner point of two boundaries (intersection
of (i) and (ii)) is achieved when open information is used
completely in place of randomization messages by all nodes.
All points on the part of the boundary specified by (ii) can be
achieved by time-sharing between the corner point, and point
(

Ropp
sum,up,0

)

, which corresponds to opportunistic scheduling
(without privacy).
IV. DYNAMIC CONTROL OFPRIVATE COMMUNICATIONS

In Section III, we determined the achievable private in-
formation rate regions associated with private opportunistic
scheduling which encodes messages overmany blocks. Hence,
the delay of decoding private information may be extremely

long. Also, the private opportunistic scheduler was based on
the availability of full CSI on the uplinks, and long-term
average of cross-channel rates. In this section, we investigate a
dynamic control algorithm which does not rely on any a priori
knowledge of distributions of direct- or cross-channel rates,
and the private information is encoded overa single block.
Hence, a private message can be decoded with a maximum
delay of only a single block duration. Note that even though
by encoding over many blocks one may achieve higher private
information rates, decoding delay may be a more important
concern in many practical scenarios.

In particular, each messageW priv
j andW open

j are broken into

a sequence of messages,W priv
j (k) and W open

j (k) respectively
and each element of the sequence is encoded into an individual
packet, encoded over blockk. The delay-limited dynamic
cross-layer control algorithm opportunistically schedules the
nodes with the objective of maximizing the total expected
utility gained from each packet transmission while maintaining
the stability of private and open traffic queues. The algorithm
takes as input the queue lengths and instantaneous direct- and
cross-channel rates, and gives as output the scheduled node
and its privacy encoding rate. In the sequel, we only consider
joint encoding of private and open information as described
in Section III-A2.

Let gp
j (k) andgo

j(k) be the utilities obtained by nodej from
private and open transmissions over blockk respectively. Let
us define the instantaneous private information rate of node
j as Rp

j (k) , mini6= j Rp
ji(k), whereRp

ji(k) was defined in (4).
Also, the instantaneous open rate,Ro

j(k), is the amount of
open information nodej transmits over blockk. The utility
over blockk depends on ratesRp

j (k), and Ro
j(k). In general,

this dependence can be described asgp
j (k) = U p

j (R
p
j (k)) and

go
j(k) = Uo

j (R
o
j(k)). Assume thatU p

j (0) = 0, Uo
j (0) = 0, and

U p
j (·), U0

j (·) are concave non-decreasing functions. We also
assume that the utility of a private transmission is higher than
the utility of open transmission at the same rate. The amount
of open trafficAo

j(k), and private trafficAp
j (k) injected in the

queues at nodej have long term arrival ratesλ o
j and λ p

j
respectively. Our objective is to support a fraction of the traffic
demand to achieve a long term private and open throughput
that maximizes the sum of utilities of the nodes.

A. Perfect Knowledge of Instantaneous CSI
We first consider the case when every nodej has perfect

causal knowledge of its uplink channel rate,R j(k), and cross-
channel rates to all other nodes in the networkR ji(k), ∀ j 6= i,
for all blocksk. The dynamic control algorithm developed for
this case will then provide a basis for the algorithm that we are
going to develop for a more realistic case when cross-channel
rates are not known perfectly. We aim to find the solution of
the following optimization problem:

max
n

∑
j=1

(

E

[

gp
j (k)

]

+E
[

go
j(k)

]

)

(15)

subject to(λ o
j ,λ

p
j ) ∈ Λ (16)

The objective function in (15) calculates the total expected
utility of open and private communications where expectation
is taken over the random achievable rates (random channel
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conditions), and possibly over the randomized policy. The
constraint (16) ensures that private and open injection rates
are within the achievable rate region supported by the network
denoted byΛ. In the aforementioned optimization problem, it
is implicitly required that perfect secrecy condition given in
(3) is satisfied in each block asN1 → ∞.

The proposed cross-layer dynamic control algorithm is
based on the stochastic network optimization framework de-
veloped in [37]. This framework allows the solution of a
long-term stochastic optimization problem without requiring
explicit characterization of the achievable rate region,Λ.

We assume that there is an infinite backlog of data at the
transport layer of each node. Our proposed dynamic flow
control algorithm determines the amount of open and private
traffic injected into the queues at the network layer. The
dynamics of private and open traffic queues is given as follows:

Qp
j (k+1) =

[

Qp
j (k)−Rp

j (k)
]+

+Ap
j (k), (17)

Qo
j(k+1) =

[

Qo
j(k)−Ro

j(k)
]+

+Ao
j(k), (18)

where [x]+ = max{0,x}, and the service rates of private and
open queues are given as,

Rp
j (k) = I

p
j (k)

[

R j(k)−max
j 6=i

R ji(k)

]

, and

Ro
j(k) = I

o
j (k)R j(k)+I

p
j (k)(R j(k)−Rp

j (k)).

whereI
p
j (k) andI o

j (k) are indicator functions taking value
I

p
j (k) = 1 when transmitting jointly encoded privateand open

traffic, or I o
j (k) = 1 when transmittingonly open traffic over

block k respectively. Also note that at any blockk, ∑ j I
p
j (k)+

I o
j (k)≤ 1.

Control Algorithm: The algorithm is a simple index policy
and it executes the following steps in each blockk:
(1) Flow control: For someV > 0, each nodej injectsAp

j (k)
private andAo

j(k) open bits, where
(

Ap
j (k),A

o
j (k)

)

= argmax
Ap,Ao

{

V
[

U p
j (A

p)+Uo
j (A

o)
]

−
(

Qp
j (k)A

p +Qo
j(k)A

o
)}

(2) Scheduling:Schedule nodej and transmit jointly encoded
private and open traffic (I p

j = 1), or only open (I o
j = 1)

traffic, where
(I p

j (k),I
o
j (k)) = argmax

I p,I o

{

Qp
j (k)R

p
j (k)+Qo

j(k)R
o
j(k)

}

,

and for each nodej, encode private data over each blockk at
rate

Rp
j (k) = I

p
j (k)

[

R j(k)−max
i6= j

R ji(k)

]

,

and transmit open data at rate

Ro
j(k) = I

o
j (k)R j(k)+I

p
j (k)(R j(k)−Rp

j (k))

Optimality of Control Algorithm: The optimality of the
algorithm can be shown using the Lyapunov optimization
theorem [37]. Before restating this theorem, we define the
following parameters. LetW(k) = (W1(k), . . . ,Wn(k)) be the
queue backlog process, and let our objective be the maxi-
mization of time average of a scalar valued functionf (·) of
another processR(k) while keepingW(k) finite. Also define

∆(W(k)) = E [L(W(k+1))−L(W(k))|W(k)] as the drift of
some appropriate Lyapunov functionL(·).

Theorem 3: (Lyapunov Optimization) [37] For the scalar
valued functionf (·), if there exists positive constantsV , ε, B,
such that for all blocksk and all unfinished work vectorW(k)
the Lyapunov drift satisfies:

∆(W(k))−VE [ f (R(k))|W(k)]≤ B−V f ∗−ε
n

∑
j=1

Wj(k), (19)

then the time average utility and queue backlog satisfy:

liminf
N2→∞

1
N2

N2−1

∑
k=0

E [ f (R(k))]≥ f ∗−
B
V

(20)

limsup
N2→∞

1
N2

N2−1

∑
k=0

n

∑
j=1

E [Wj(k)]≤
B+V( f̄ − f ∗)

ε
, (21)

where f ∗ is the maximal value ofE [ f (·)] and f̄ =
limsupN2→∞

1
N2

∑N2−1
k=0 E [ f (R(k))].

For our purposes, we consider private and open unfin-
ished work vectors asQp(k) = (Qp

1(k),Q
p
2(k), . . . ,Q

p
n(k)),

and Qo(k) = (Qo
1(k),Q

o
2(k), . . . ,Q

o
n(k)). Let L(Qp,Qo) be

quadratic Lyapunov function of private and open queue back-
logs defined as:

L(Qp(k),Qo(k)) =
1
2 ∑

j

[

(Qp
j (k))

2+(Qo
j(k))

2
]

. (22)

Also consider the one-step expected Lyapunov drift,∆(k) for
the Lyapunov function (22) as:

∆(k) = E [L(Qp(k +1),Qo(k +1))

− L(Qp(k),Qo(k))
∣

∣ Qp(k),Qo(k)
]

. (23)

The following lemma provides an upper bound on∆(k).
Lemma 1:

∆(k)≤ B−∑
j
E

[

Qp
j (k)(R

p
j (k)−Ap

j (k))
∣

∣ Qp
j (k)

]

−∑
j

E
[

Qo
j(k)(R

o
j (k)−Ao

j(k))
∣

∣ Qo
j(k)

]

, (24)

whereB > 0 is a constant.
The proof of Lemma 1 is given in Appendix C. Now, we

present our main result showing that our proposed dynamic
control algorithm can achieve a performance arbitrarily close
to the optimal solution while keeping the queue backlogs
bounded.

Theorem 4: If R j(k)< ∞ for all j,k, then dynamic control
algorithm satisfies:

liminf
N2→∞

1
N2

N2−1

∑
k=0

n

∑
j=1

E

[

gp
j (k)+ go

j(k)
]

> g∗−
B
V

limsup
N2→∞

1
N2

N2−1

∑
k=0

n

∑
j=1

E

[

Qp
j (k)

]

6
B+V(ḡ− g∗)

ε1

limsup
N2→∞

1
N2

N2−1

∑
k=0

n

∑
j=1

E
[

Qo
j(k)

]

6
B+V(ḡ− g∗)

ε2
,

whereB,ε1,ε2 > 0 are constants,g∗ is the optimal solution of
(15)-(16) and ¯g is the maximum possible aggregate utility.

The proof of Theorem 4 is given in Appendix D.
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B. Imperfect Knowledge of Instantaneous CSI

In the previous section, we performed our analysis assuming
that at every blockexact instantaneous cross-channel rates
are available. However, unlike the uplink direct channel rate
which can be determined by the base station prior to the data
transmission (e.g., via pilot signal transmission), cross-channel
rates are harder to be estimated. Indeed, in a non-cooperative
network in which nodes do not exchange their CSI, the cross-
channel rates{R ji, j 6= i} can only be inferred by nodej from
the received signals over the reverse channel as nodesj 6= i
are transmitting to the base station. Hence, at a given block,
nodes only havea posteriori channel distribution. Based on
this a posteriori channel distribution, nodes may estimate CSI
of their cross-channels.

Let us denote theestimated rate of the cross-channel( j, i)
with R̂ ji(k). We also definecross-channel rate margin ρ j(k)
as the cross-channel rate a node uses when it encodes private
information. More specifically, nodej encodes its private
information at rate:

Rp
j (k) = R j(k)−ρ j(k), (25)

i.e., ρ j(k) is the rate of the randomization message nodej
uses in the random binning scheme for privacy. Note that, if
ρ j(k) < maxi6= j R ji(k), then nodej will not meet the perfect
secrecy constraint at blockk, leading to aprivacy outage. In
the event of a privacy outage, the privately encoded message
is considered as anopen message. The probability of privacy
outage over blockk for the scheduled nodej, given the
estimates of the cross channel rates is:

pout
j (ρ j(k)) = P

(

max
i6= j

R ji(k)> ρ j(k)
∣

∣

∣
{R̂ ji(k), i 6= j}

)

. (26)

Compare the aforementioned definition ofprivacy outage with
the channel outage [42] experienced in fast varying wireless
channels. In time-varying wireless channels, channel outage
occurs when received signal and interference/noise ratio drops
below a threshold necessary for correct decoding of the
transmitted signal. Hence, the largest rate of reliable commu-
nications at a given outage probability is an important measure
of channel quality. In the following, we aim to determine
utility maximizing achievable privacy and open transmission
rates for givenprivacy outage probabilities. In particular, we
consider the solution of the following optimization problem:

max
n

∑
j=1

(

E

[

gp
j (k)

]

+E
[

go
j(k)

]

)

(27)

subject to(λ o
j ,λ

p
j ) ∈ Λ, (28)

and pout
j (ρ j(k)) = γ j, (29)

whereγ j is the tolerable privacy outage probability. Aforemen-
tioned optimization problem is the same as the one given for
perfect CSI except for the last constraint. The additional con-
straint (29) requires that only a certain prescribed proportion of
private transmissions are allowed to violate the perfect privacy
constraint. Due to privacy outages we defineprivate goodput
of user j as E

[

Rp
j (k)

(

1− pout
j (ρ j(k))

)]

. Note that private
goodput only includes private messages for which perfect

privacy constraint is satisfied. All private messages for which
(3) is violated are counted as successful open transmissions.

Similar to the perfect CSI case, we argue that a dynamic
policy can be used to achieve asymptotically optimal solution.
Unlike the algorithm given in the perfect CSI case, the
algorithm for imperfect CSI first determines the private data
encoding rate so that the privacy outage constraint (29) is
satisfied in current block. Hence, the private encoding rate
at a particular block is determined by the estimated channel
rates and the privacy outage constraint.
Control Algorithm: Similar to the perfect CSI case, our
algorithm involves two steps in each blockk:
(1) Flow Control: For someV > 0, each node injectsAp

j (k)
private andAo

j(k) open bits, where
(

Ap
j (k),A

o
j(k)

)

=argmax
Ap

j ,A
o
j

V
[

U p
j (A

p
j )(1− γ j)

+Uo
j (A

o
j)(1− γ j)+Uo

j (A
o
j +Ap

j )γ j

]

−Qp
j (k)A

p
j −Qo

j(k)A
o
j . (30)

(2) Scheduling:Schedule nodej and transmit jointly encoded
private and open traffic (I p

j = 1) or only open (I o
j = 1)

traffic, where
(

I
p
j (k),I

o
j (k)

)

= argmax
I p,I o

{

Qp
j (k)R

p
j (k)+Qo

j(k)R
o
j(k)

}

.

For each nodej, encode private data over each blockk at rate

Rp
j (k) = I

p
j (k) [R j(k)−ρ j(k)] , ρ j(k) = pout−1

j (γ j),

and transmit open data at rate
Ro

j(k) = I
o
j (k)R j(k)+I

p
j (k)(R j(k)−Rp

j (k)).

Optimality of Control Algorithm: The optimality of the
control algorithm with imperfect CSI can be shown in a similar
fashion as for the control algorithm with perfect CSI. We use
the same Lyapunov function defined in (22) which results
in the same one-step Lyapunov drift function (23). Hence,
Lemma 1 also holds for the case of imperfect CSI, but with
a different constantB′ due to the fact that higher maximum
private information rates can be achieved by allowing privacy
outages.

Lyapunov Optimization Theorem suggests that a good con-
trol strategy is the one that minimizes the following:

∆U(k) = ∆(k)−VE

[

∑
j
(gp

j (k)+ go
j(k))

∣

∣

∣
Qp(k),Qo(k)

]

(31)

In (31), expectation is over all possible channel states. The
expected utility for private and open transmissions are respec-
tively given as:

E

[

gp
j (k)

]

= E

[

gp
j (k)|I

p
j (k),ρ j(k)

]

= (1− γ j)E
[

U p
j

(

Ap
j (k)

)]

, (32)

E
[

go
j(k)

]

= E

[

go
j(k)|I

p
j (k),I

o
j (k),ρ j(k)

]

= γ jE

[

Uo
j (A

p
j (k)+Ao

j(k))
]

+(1− γ j)E
[

Uo
j (A

o
j(k))

]

. (33)

Note that (32)-(33) are obtained due to Constraint (29). By
combining Lemma 1 with (32)-(33) we may obtain an upper
bound for (31), as follows:
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∆U(k) <B′−∑
j

E

[

Qp
j (k)[R

p
j (k)−Ap

j (k)]
]

−∑
j
E
[

Qo
j(k)[R

o
j(k)−Ao

j(k)]
]

−VE

[

∑
j
(1− γ j)U

p
j

(

Ap
j (k)

)

+∑
j

γ jU
o
j (A

p
j (k)+Ao

j(k))+ (1− γ j)U
o
j (A

o
j(k))

]

. (34)

Now, it is clear that the proposed dynamic control algorithm
minimizes the right hand side of (34). The steps of proving
the optimality of the dynamic control algorithm are exactly
the same as those given in Theorem 4, and hence, we skip the
details.

Theorem 5: If R j(k)< ∞, for all j,k then dynamic control
algorithm satisfies:

liminf
N2→∞

1
N2

N2−1

∑
k=0

n

∑
j=1

E[gp
j (k)+ go

j(k)]≥ g′∗−
B′

V
(35)

limsup
N2→∞

1
N2

N2−1

∑
k=0

n

∑
j=1

E[Qp
j (k)]≤

B′+V (ḡ′− g′∗)
ε ′2

limsup
N2→∞

1
N2

N2−1

∑
k=0

n

∑
j=1

E[Qo
j(k)]≤

B′+V (ḡ′− g′∗)
ε ′1

,

whereB′,ε ′1,ε ′2 > 0 are constants,g′∗ is the optimal solution
of (27)-(29) andḡ′ is the maximum possible aggregate utility.

V. NUMERICAL RESULTS

In our numerical experiments, we considered a network
consisting of ten nodes and a single base station. The direct
channel between a node and the base station, and the cross-
channels between pairs of nodes are modeled as iid Rayleigh
fading Gaussian channels. Thus, direct-channel and cross-
channel power gains are exponentially distributed with means
chosen uniformly randomly in the intervals[2,8], and [0,1],
respectively. The noise normalized power isP = 1. In our
simulations, we consider both of the cases when perfect in-
stantaneous CSI is available, and when instantaneous CSI can
only be estimated with some error. Unless otherwise indicated,
in the case of imperfect CSI, we take the tolerable privacy
outage probability as 0.1. We assumed the use of an unbiased
estimator for the cross-channel power gains and modeled the
associated estimation error with a Gaussian random variable:

ĥ ji(k) = h ji(k)+ e ji(k),

wheree ji(k) ∼ N (0,σ2) for all k. Gaussian estimation error
can be justified as discussed in [43] or by the use of a recursive
ML estimator as in [44]. Unless otherwise stated, we take
σ = 0.5, i.e., the estimation error is rather significant relative
to the mean cross-channel gain. Note that, in this section, we
choose the marginρ j(k) such that

P

(

ρ j(k)< max
i6= j

[log(1+Ph ji)]

∣

∣

∣

∣

{ĥ ji, i 6= j}

)

≤ γ j.

We consider logarithmic private and open utility functions
where the private utility isκ times more than open utility at
the same rate. More specifically, we take for a scheduled node
j, U p

j (k) = κ · log(1+Rp
j (k)), andUo

j (k) = log(1+Ro
j(k)). We

takeκ = 5 in all the experiments except for the one inspecting
the effect ofκ . The rates depicted in the graphs are per node
arrival or service rates calculated as the total arrival or service
rates achieved by the network divided by the number of nodes,
i.e., the unit of the plotted rates is bits/channel use/node.
Finally, for perfect CSI, we only plot the service rates since
arrival and service rates are identical.

In Fig. 7a-7b, we investigate the effect of system parameter
V in our dynamic control algorithm. Fig. 7a shows that for
V > 4, long-term utilities converge to their optimal values
fairly closely. It is also observed that CSI estimation error
results in a reduction of approximately 25% in aggregate
utility. Fig. 7b depicts the well-known relationship between
V and queue backlogs, where queue backlogs increase when
V is increased.

In Fig. 8a-8b, the effect of increasing number of nodes
on the achievable private and open rates obtained with the
proposed dynamic control algorithm is shown. In both figures,
the private information rate achieved by POS algorithm given
in Section III is also depicted. From Fig. 8a, we first notice
that by using the dynamic control algorithm which is based
only on the instantaneous CSI, the private service rate is
reduced by more than 25% as compared to the maximum
private information rate achieved by POS which uses a priori
CSI to encode over many blocks. This difference increases
with increasing number of nodes. However, for both POS
and dynamic control algorithms, the achievable rates decrease
with increasing number of nodes since more nodes overhear
ongoing transmissions. Meanwhile, open service rate also
decreases due to the fact that there is a smaller number of
transmission opportunities per node with increasing number of
nodes. Fig. 8b depicts that private service rate has decreased
by approximately 50% due to CSI estimation errors. It is
also interesting to note that private arrival rate is higherthan
the private service rate, since all private messages for which
perfect privacy constraint cannot be satisfied are considered
as successful open messages. Hence, open service rate is
observed to be higher than the open arrival rate.

We next analyze the effect ofκ , which can also be inter-
preted as the ratio of utility of private and open transmissions
taking place at the same rate. We call this ratioprivate utility
gain. Fig. 9a shows that when private utility gain is greater
than 5, then the private and open service rates converge to
their respective limits. These limits depend on the channel
characteristics, and their sum is approximately equal to the
maximum achievable rate of the channel. However, when
there is CSI estimation error, Fig. 9b shows that although
an identical qualitative relationship between arrival rates and
private utility gain is still observed, private service rate is lower
than the private arrival rate by a fraction ofγ almost uniformly
in the range ofκ .

In Fig. 10a, we investigate the effect of the tolerable
privacy outage probability. It is interesting to note that private
service rate increases initially with increasing tolerable outage
probability. This is because for lowγ values, in order to
satisfy the tight privacy outage constraint, a low instantaneous
private information rate is chosen. However, whenγ is high
more privacy outages are experienced at the expense of higher
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Fig. 7. Numerical results with respect to optimization parameterV .
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Fig. 8. Private and open rates with respect to number of nodes
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Fig. 9. Private and open rates with respect to increasing amount of private utility gain.

instantaneous private information rates. This is also the rea-
son why we observe that the difference between the private
service and arrival rates is increasing. We note that when CSI
estimation error is present, the highest private service rate is
obtained whenγ is approximately equal to 0.1. The highest
private service rate with CSI estimation error is approximately
30% lower than the private service rate with the perfect CSI.

We finally investigate the effect of the quality of CSI
estimator in Fig. 10b. For this purpose, we vary the standard
deviation of the Gaussian random variable modeling the es-
timation error. As expected the highest private service rate
is obtained whenσ = 0. However, it is important to note
that this value is still lower than the private service rate with
perfect CSI, since privacy outages are still permitted in 10%
of private transmissions. We have also investigated the perfor-

mance of the dynamic control algorithm when a posteriori CSI
distribution is not available. In this case, scheduling andflow
control decisions are based only on the mean cross channel
gains. When only mean cross channel gains are available, the
achieved private service rate per node is approximately equal
to 0.16 bits per channel use, which is significantly lower than
the private service rate with perfect CSI. In particular, itis
only when the standard deviation of the estimation error is 0.7
that the private service rate with noisy channel estimator has
the same private service rate achievable utilizing only mean
channel gains. VI. CONCLUSIONS

In this paper, we studied the achievable private and open
information rate regions of single- and multi-user wireless net-
works with node scheduling. We introduce private opportunis-
tic scheduling along with a private encoding strategy, and show
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Fig. 10. Private and open rates with respect to tolerable privacy outage probability.

that it maximizes the sum private information rate for both
multiuser uplink communication when perfect CSI is available
for only the main uplink channels. Then, we described a cross-
layer dynamic algorithm that works without prior distribution
of channel states. We prove that our algorithm, which is based
on simple index policies, achieves utility arbitrarily close to
achievable optimal utility. The simulation results also verify
the efficacy of the algorithm.

As a future direction, we will investigate the cooperation
among nodes, e.g., intelligent jamming from cooperating
nodes, as a means to improve the achievable private informa-
tion rates. We will also investigate an extension of the dynamic
control policy for imperfect CSI, where the optimal privacy
outage probability is also determined by the algorithm.
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APPENDIX A
PROOF OFTHEOREM 1

Let us further introduce the following notation:
W rand

j : randomization sequence associated with messageW priv
j ,

X(k): transmitted vector of (N1) symbols over blockk,
X j = {X(k)|I POS

j (k) = 1}: the transmitted signal over block
k, wheneverI POS

j (k) = 1 (i.e., nodej is the active transmitter)
Yi(k): the received vector of symbols at nodei (Yb(k) for the
base station) over blockk,
Y j

i = {Yi(k)|I POS
j (k) = 1}: the received signal at nodei over

block k, wheneverI POS
j (k) = 1 (i.e., node j is the active

transmitter). We useY j
j for the received signal by the base

station.
The equivocation analysis follows directly for the described

privacy scheme: For any given nodej, we have

H(W priv
j |Y j

i )≥ H(W priv
j |Y j

i∗( j)) (36)

= I(W priv
j ;Y j

1, . . . ,Y
j
n|Y

j
i∗( j))+H(Wpriv

j |Y j
1, . . . ,Y

j
n)

≥ I(W priv
j ;Y j

1, . . . ,Y
j
n|Y

j
i∗( j))

= I(W priv
j ,W rand

j ;Y j
1, . . . ,Y

j
n|Y

j
i∗( j))

− I(W rand
j ;Y j

1, . . . ,Y
j
n|Y

j
i∗( j),W

priv
j ) (37)

= I(W priv
j ,W rand

j ;Y j
1, . . . ,Y

j
n|Y

j
i∗( j))

−H(W rand
j |Y j

i∗( j),W
priv
j )

+H(W rand
j |Y j

1, . . . ,Y
j
n,W

priv
j )

≥ I(W priv
j ,W rand

j ;Y j
1, . . . ,Y

j
n|Y

j
i∗( j))

−H(W rand
j |Y j

i∗( j),W
priv
j )

≥ I(W priv
j ,W rand

j ;Y j
1, . . . ,Y

j
n|Y

j
i∗( j))−Nε1 (38)

= I(X j;Y
j
1, . . . ,Y

j
n|Y

j
i∗( j))

− I(X j;Y
j
1, . . . ,Y

j
n|Y

j
i∗( j),W

priv
j ,W rand

j )−Nε1

(39)

≥ I(X j;Y
j
1, . . . ,Y

j
n|Y

j
i∗( j))−N(ε1+ ε2) (40)

= I(X j;Y
j
1, . . . ,Y

j
n)− I(X j;Y

j
i∗( j))−N(ε1+ ε2)

(41)

≥ I(X j;Y
j
j)− I(X j;Y

j
i∗( j))−N(ε1+ ε2) (42)

= ∑
k:I POS

j (k)=1

[

I(X(k);Y j(k))− I(X(k);Yi∗( j)(k))
]

−N(ε1+ ε2) (43)

≥ N
[

pM
j

(

(R̄M
j − δ )− R̄m

j

)

− (ε1+ ε2+ ε3)
]

(44)

with probability 1, for any positive(ε1,ε2,ε3) triplet and
arbitrarily smallδ , asN1,N2 go to∞. Here, (36) follows since
i∗( j) = argmaxi∈{1,...,n} I(W priv

j ;Y j
i ) (W priv

j ↔ X j ↔ Y j
i∗( j) ↔

Y j
i forms a Markov chain for alli and data processing inequal-

ity), (37) is by the chain rule, (38) follows from the application
of Fano’s inequality (as we choose the rate of the randomiza-
tion sequence to beN(R̄m

j −δ )< I(W rand
j ;Y j

i∗( j)), which allows
for the randomization message to be decoded at nodei∗( j),
given the bin index), (39) follows from the chain rule and that
(W priv

j ,W rand
j ) ↔ X j ↔ (Y j

1, . . . ,Y
j
n) forms a Markov chain,

(40) holds sinceI(X j;Y
j
1, . . . ,Y

j
n|Y

j
i∗( j),W

priv
j ,W rand

j )≤ Nε2 as
the transmitted symbol sequenceX j is determined w.p.1 given
(Y j

i∗( j),W
priv
j ,W rand

j ), (41) follows from the chain rule, (42)

holds sinceY j
j(k) is an entry of vector[Y j

1(k), . . . ,Y
j
n(k)], (43)

holds because the fading processes are iid, and finally (44)
follows from strong law of large numbers.

Thus, with the described privacy scheme, the perfect privacy
constraint is satisfied for all nodes, since for anyj ∈ {1, . . . ,n},
we have

1
N

I(W priv
j ;Y j

i ) =
1
N
(H(W priv

j )−H(Wpriv
j |Y j

i ))

≤ Rpriv
j − [pM

j

(

(R̄M
j − δ )− R̄m

j

)

− (ε1+ ε2+ ε3)]

≤ ε, (45)

for any given ε > 0. We just showed that, with private
opportunistic scheduling, a private information rate ofRpriv

j =

pM
j (R̄

M
j − R̄m

j ) is achievable for any given nodej.

APPENDIX B
PROOF OFTHEOREM 2

The proof uses the notation introduced in the first
paragraph of Appendix A. To meet the perfect secrecy
constraint, it is necessary and sufficient to guarantee
limN→∞

1
N I(W priv

j ;Y j
i∗( j))≤ ε for all nodesj ∈ {1, . . . ,n}. Since

n < ∞, one can write an equivalent condition on the sum
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mutual information over each node:

ε ′ ≥
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∑
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with probability 1, for any positiveε ′ and (ε4,ε5,ε6) triplet
as N1,N2 go to ∞. Here, (46) follows from the definition
of Rpriv

sum and that 1
N H(W priv

j ) = Rpriv
j ; (47) follows from the

chain rule and Fano’s inequality (asH(W priv
j |Y j

1, . . . ,Y
j
n) ≤

H(W priv
j ,W rand

j |Y j
1, . . . ,Y

j
n) ≤ Nε4 since the message pair

(W priv
j ,W rand

j ) can be decoded with arbitrarily low proba-

bility of error given (Y j
1, . . . ,Y

j
n)); (48) is from the data

processing inequality as(W priv
j ,W rand

j ) ↔ X j ↔ (Y j
1, . . . ,Y

j
n)

forms a Markov chain; (49) and (50) follow from the chain
rule; (51) follows from the data processing inequality; (52)
follows since nodej decodes messageW priv

j with arbitrarily
low probability of errorε5; (53) holds since the fading pro-
cesses are iid; (54) holds because private opportunistic sched-
uler choosesI

POS
j (k) = argmaxI j(k)[R j(k) − R ji∗( j)(k)] =

argmaxI j(k)

[

I(X(k);Yb(k))− I(X(k);Yi∗( j)(k))
]

for all k; and
finally (55) follows by an application of the strong law of large
numbers. The above derivation leads to the desired result:

Rpriv
sum≤

n

∑
j=1

[

pM
j

(

R̄M
j − R̄m

j

)]

. (56)

We complete the proof noting that the above sum rate is
achievable by private opportunistic scheduling as shown in
(44).

Note that, from the above steps, we can also see that
the individual private information rates given in Theorem 1
are the maximum achievable individual rates with private
opportunistic scheduling. This is due to the fact that, for
any nodej, with private opportunistic scheduling, the above
derivation lead to:

1
N

H(W priv
j |Y j

i∗( j))≤ pM
j

(

R̄M
j − R̄m

j

)

+ ε (57)

for any ε > 0 as N → ∞. Consequently, with private oppor-
tunistic scheduling, no node can achieve any individual privacy
rate above that given in (57), hence the converse of Theorem 1
also holds.

APPENDIX C
PROOF OFLEMMA 1

Proof: Since the maximum transmission power is fi-
nite, in any interference-limited system transmission rates are
bounded. LetRp,max

j and Ro,max
j be the maximum private and

open rates for userj, which depends on the channel states.
Also assume that the arrival rates are bounded, i.e.,Ap,max

j
andAo,max

i be the maximum number of private and open bits
that may arrive in a block for each user. Hence, the following
inequalities can be obtained for each private queue:

(Qp
j (k+1))2− (Qp

j (k))
2

=

(

[

Qp
j (k)−Rp

j (k)
]+

+Ap
j (k)

)2

− (Qp
j (k))

2

≤ (Qp
j (k))

2+(Ap
j (k))

2+(Rp
j (k))

2

−2Qp
j (k)

[

Rp
j (k)−Ap

j (k)
]

− (Qp
j (k))

2

≤ (Rp
j (k))

2+(Ap
j (k))

2−2Qp
j (k)[R

p
j (k)−Ap

j (k)]

≤ B1−2Qp
j (k)[R

p
j (k)−Ap

j (k)] (58)
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whereB1 = (Rp,max
j )2+(Ap,max

j )2. The same line of derivation
can be performed for open queues to obtain:

(Qo
j(k+1))2− (Qo

j(k))
2

=
(

[

Qo
j(k)−Ro

j(k)
]+

+Ao
j(k)

)2
− (Qo

j(k))
2

≤ B2−2Qo
j(k)[R

o
j (k)−Ao

j(k)] (59)

whereB2 = (Ro,max
j )2+(Ao,max

j )2 .
Hence, by taking expectation, multiplying by12, and sum-

ming (58)-(59) over allj = 1, . . . ,n, we obtain the upper bound
on ∆(k) as given in the Lemma, whereB = n(B1+B2)/2.

APPENDIX D
PROOF OFTHEOREM 4

Proof: Lyapunov Optimization Theorem [37] suggests
that a good control strategy is the one that minimizes the
following:

∆U(k) = ∆(k)−VE

[

∑
j

(

gp
j (k)+ go

j(k)
) ∣

∣

∣
Qp(k),Qo(k)

]

(60)
By using (24), we may obtain an upper bound for (60), as

follows:

∆U(k)< B−∑
j
E

[

Qp
j (k)[R

p
j (k)−Ap

j (k)]
∣

∣ Qp
j (k)

]

−∑
j

E
[

Qo
j(k)[R

o
j (k)−Ao

j(k)]
∣

∣ Qo
j(k)

]

−VE

[

∑
j

U p
j (A

p
j (k))+∑

j
Uo

j (A
o
j(k))

]

(61)

By rearranging the terms in (61) it is easy to observe that
our proposed dynamic network control algorithm minimizes
the right hand side of (61).

If the private and open arrival rates are in the feasible region,
it has been shown in [45] that there must exist a stationary
scheduling and rate control policy that chooses the users and
their transmission rates independent of queue backlogs and
only with respect to the channel statistics. In particular,the
optimal stationary policy can be found as the solution of a
deterministic policy if a priori channel statistics are known.

Let U∗ be the optimal value of the objective function of the
problem (15)-(16) obtained by the aforementioned stationary
policy. Also let λ p

j
∗ and λ o

j
∗ be optimal private and open

traffic arrival rates found as the solution of the same problem.
In particular, the optimal input ratesλ p

j
∗ and λ o

j
∗ could

in principle be achieved by the simple backlog-independent
admission control algorithm of including all new arrivals
(Ap

j (k),A
o
j (k)) for a given nodej in block k independently

with probability(ζ p
j ,ζ o

j ) = (λ p
j
∗
/λ p

j ,λ o
j
∗/λ o

j ). Then, the right
hand side (RHS) of (61) can be rewritten as

B−∑
j
E

[

Qp
j (k)

]

E

[

Rp
j (k)−Ap

j (k)
]

−∑
j

E
[

Qo
j(k)

]

E
[

Ro
j(k)−Ao

j(k)
]

−VU∗. (62)

Also, since(λ p
j
∗
,λ o

j
∗)∈Λ, i.e., arrival rates are strictly interior

of the rate region, there must exist a stationary schedulingand

rate allocation policy that is independent of queue backlogs
and satisfies the following:

E

[

Rp
j

∣

∣ Qp
]

≥ λ p
j
∗
+ ε1 (63)

E
[

Ro
j

∣

∣ Qo]≥ λ o
j
∗+ ε2 (64)

Clearly, any stationary policy should satisfy (61). Recall
that our proposed policy minimizes RHS of (61), and hence,
any other stationary policy (including the optimal policy)has
a higher RHS value than the one attained by our policy. In
particular, the stationary policy that satisfies (63)-(64), and
implements aforementioned probabilistic admission control
can be used to obtain an upper bound for the RHS of our
proposed policy. Inserting (63)-(64) into (62), we obtain the
following upper bound for our policy:

RHS < B−∑
j

ε1E[Q
p
j (k)]−∑

j

ε2E[Q
o
j(k)]−VU∗. (65)

This is exactly in the form of Lyapunov Optimization Theorem
given in Theorem 3, and hence, we can obtain bounds on the
performance of the proposed policy and the sizes of queue
backlogs as given in Theorem 4.

C. Emre Koksal C. Emre Koksal received the B.S.
degree in electrical engineering from the Middle East
Technical University, Ankara, Turkey, in 1996, and
the S.M. and Ph.D. degrees from the Massachusetts
Institute of Technology (MIT), Cambridge, in 1998
and 2002, respectively, in electrical engineering and
computer science. He was a Postdoctoral Fellow in
the Networks and Mobile Systems Group in the
Computer Science and Artificial Intelligence Lab-
oratory, MIT and a Senior Researcher jointly in the
Laboratory for Computer Communications and the

Laboratory for Information Theory at EPFL, Lausanne, Switzerland. Since
2006, he has been an Assistant Professor in the Electrical and Computer
Engineering Department, Ohio State University, Columbus,Ohio. His general
areas of interest are wireless communication, communication networks, infor-
mation theory, stochastic processes, and financial economics.

He is the recipient of the National Science Foundation CAREER Award
(2011), the OSU College of Engineering Lumley Research Award (2011), and
the co-recipient of an HP Labs - Innovation Research Award. The paper he
co-authored was a best student paper candidate in MOBICOM 2005.

Ozgur Ercetin received the BS degree in electrical
and electronics engineering from the Middle East
Technical University, Ankara, Turkey, in 1995 and
the MS and PhD degrees in electrical engineering
from the University of Maryland, College Park, in
1998 and 2002, respectively. Since 2002, he has
been with the Faculty of Engineering and Natural
Sciences, Sabanci University, Istanbul. He was also
a visiting researcher at HRL Labs, Malibu, CA,
Docomo USA Labs, CA, and The Ohio State Uni-
versity, OH. His research interests are in the field

of computer and communication networks with emphasis on fundamental
mathematical models, architectures and protocols of wireless systems, and
stochastic optimization.

Yunus Sarikaya received the BS and MS degrees
in telecommunications engineering from Sabanci
University, Istanbul, Turkey, in 2006 and 2008, re-
spectively. He is currently PhD student in electrical
engineering at Sabanci University.

His research interests include optimal control of
wireless networks, stochastic optimization and infor-
mation theoretical security.


	I Introduction
	II Problem Model
	III Achievable Rates and Private Opportunistic Scheduling
	III-A Single User Achievable Rates
	III-A1 Separate encoding of private and open messages
	III-A2 Joint encoding of private and open messages

	III-B Private Opportunistic Scheduling and Multiuser Achievable Rates
	III-B1 Private Opportunistic Scheduling for uplink
	III-B2 Achievable uplink rates with private opportunistic scheduling


	IV Dynamic Control of Private Communications
	IV-A Perfect Knowledge of Instantaneous CSI
	IV-B Imperfect Knowledge of Instantaneous CSI

	V Numerical Results
	VI Conclusions
	References
	Appendix A: Proof of Theorem 1
	Appendix B: Proof of Theorem 2
	Appendix C: Proof of Lemma 1
	Appendix D: Proof of Theorem 4
	Biographies
	C. Emre Koksal
	Ozgur Ercetin
	Yunus Sarikaya


