
ar
X

iv
:1

00
4.

47
09

v4
 [

cs
.N

I]
 1

7
A

ug
 2

01
1

Optimal Content Placement for Peer-to-Peer
Video-on-Demand Systems1

Bo (Rambo) Tan
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

Email: botan2@illinois.edu

Laurent Massoulié
Technicolor Paris Research Lab

Issy-les-Moulineaux Cedex 92648, France
Email: laurent.massoulie@technicolor.com

Abstract—In this paper, we address the problem of content
placement in peer-to-peer systems, with the objective of maxi-
mizing the utilization of peers’ uplink bandwidth resources. We
consider system performance under a many-user asymptotic.We
distinguish two scenarios, namely “Distributed Server Networks”
(DSN) for which requests are exogenous to the system, and “Pure
P2P Networks” (PP2PN) for which requests emanate from the
peers themselves. For both scenarios, we consider aloss network
model of performance, and determine asymptotically optimal
content placement strategies in the case of a limited content
catalogue. We then turn to an alternative “large catalogue”
scaling where the catalogue size scales with the peer population.
Under this scaling, we establish that storage space per peer
must necessarily grow unboundedly if bandwidth utilization is
to be maximized. Relating the system performance to properties
of a specific random graph model, we then identify a content
placement strategy and a request acceptance policy which jointly
maximize bandwidth utilization, provided storage space per peer
grows unboundedly, although arbitrarily slowly, with system size.

I. I NTRODUCTION

The amount of multimedia traffic accessed via the Internet,
already of the order of exabytes (1018) per month, is expected
to grow steadily in the coming years. A peer-to-peer (P2P)
architecture, whereby peers contribute resources to support
service of such traffic, holds the promise to support such
growth more cheaply than by scaling up the size of data
centers. More precisely, a large-scale P2P system based on
resources of individual users can absorb part of the load that
would otherwise need to be served by data centers.

In the present work we address specifically the Video-on-
Demand (VoD) application, for which the critical resources
at the peers are storage space and uplink bandwidth. Our
objective is to ensure that the largest fraction of traffic is
supported by the P2P system. More precisely, we look for
content placement strategies that enable content downloaders
to maximally use the peers’ uplink bandwidth, and hence max-
imally offload the servers in the data centers. Such strategies
must adjust to the distinct popularity of video contents, asa
more popular content should be replicated more frequently.

We consider the following mode of operation: Video re-
quests are first submitted to the P2P system; if they are

1Part of the results developed in this paper have made the object of a “brief
announcement” in [12] and further shown in more detail in [13].

(a) Distributed Server Network (b) Pure Peer-to-Peer Network

Fig. 1: Two architectures of P2P VoD systems

accepted, uplink bandwidth is used to serve them at the
video streaming rate (potentially via parallel substreamsfrom
different peers). They are rejected if their acceptance would
require disruption of an ongoing request service. Rejected
requests are then handled by the data center. Alternative modes
of operation could be envisioned (e.g., enqueueing of requests,
service at rates distinct from the streaming rate, joint service
by peers and data center,...). However the proposed model is
appealing for the following reasons. It ensures zero waiting
time for requests, which is desirable for VoD application;
analysis is facilitated, since the system can be modeled as
a loss network[7], for which powerful theoretical results are
available; and finally, as our results show, simple placement
strategies ensure optimal operation in the present model.

In the P2P system we are considering, there are two kinds
of peers: boxes and pure users. Their difference is that boxes
do contribute resources (storage space and uplink bandwidth)
to the system, while pure users do not. This paper focuses on
the following two architectures (illustrated in Figure 1):

• Distributed Server Network (DSN): Requests to down-
load contents come only from pure users, and can be
regarded as external requests.

• Pure P2P Network (PP2PN):There are no pure users
in the system, and boxes do generate content requests,
which can be regarded as “internal”.

The rest of the paper is organized as follows: We review
related work in Section II and introduce our system model in
Section III. For the Distributed Server Network scenario, the

http://arxiv.org/abs/1004.4709v4

2

so-called “proportional-to-product” content placement strategy
is introduced and shown to be optimal in a large system limit
in Section IV, where extensive simulation results are also pro-
vided. For the Pure P2P Network scenario, a distinct placement
strategy is introduced and proved optimal in Section V. These
results apply for a catalogue of contents of limited size. An
alternative model in which catalogue size grows with the user
population is introduced in Section VI, where it is shown
that the “proportional-to-product” placement strategy remains
optimal in the DSN scenario in this large catalogue setting,
for a suitably modified request management technique.

II. RELATED WORK

The number and location of replicas of distinct content
objects in a P2P system have a strong impact on such system’s
performance. Indeed, together with the strategy for handling
incoming requests, they determine whether such requests
must either be delayed, or served from an alternative, more
expensive source such as a remote data center. Requests which
cannot start service at once can either be enqueued (we then
speak of a waiting model) or redirected (we then speak of a
loss model).

Previous investigations of content placement for P2P VoD
systems were conducted by Suh et al. [11]. The problem tack-
led in [11] differs from our current perspective, in particular no
optimization of placement with respect to content popularity
was attempted in this work. Performance analysis of both
queueing and loss models are considered in [11]. Valancius
et al. [17] considered content placement dependent on content
popularity, based on a heuristic linear program, and validated
this heuristic’s performance in a loss model via simulations.

Tewari and Kleinrock [14], [15] advocated to tune the
number of replicas in proportion to the request rate of the
corresponding content, based on a simple queueing formula,
for a waiting model, and also from the standpoint of the load
on network links. They further established via simulationsthat
Least Recently Used (LRU) storage management policies at
peers emulated rather well their proposed allocation.

Wu et al. [18] considered a loss model, and a specific time-
slotted mode of operation whereby requests are submitted
to randomly selected peers, who accommodate a randomly
selected request. They showed that in this setup the optimal
cache update strategy can be expressed as a dynamic program.
Through experiments, they established that simple mecha-
nisms such as LRU or Least Frequently Used (LFU) perform
close to the optimal strategy they had previously characterized.

Kangasharju et al. [6] addressed file replication in an envi-
ronment where peers are intermittently available, with theaim
of maximizing the probability of a requested file being present
at an available peer. This differs from our present focus in that
the bandwidth limitation of peers is not taken into account,
while the emphasis is on their intermittent presence. They
established optimality of content replication in proportion to
the logarithmof its popularity, and identified simple heuristics
approaching this.

Boufkhad et al. [3] considered P2P VoD from yet another
viewpoint, looking at the number of contents that can be
simultaneously served by a collection of peers.

Content placement problem has also been addressed towards
other different optimization objectives. For example, Almeida
et al. [1] aim at minimizing total delivery cost in the network,
and Zhou et al. [19] target jointly maximizing the average
encoding bit rate and average number of content replicas
as well as minimizing the communication load imbalance of
video servers.

Cache dimensioning problem is considered in [9], where
Laoutaris et al. optimized the storage capacity allocation
for content distribution networks under a limited total cache
storage budget, so as to reduce average fetch distance for
the request contents with consideration of load balancing and
workload constraints on a given node. Our paper takes a
different perspective, focusing on many-user asymptoticsso
the results show that the finite storage capacity per node is
never a bottleneck (even in the “large catalogue model”, it
also scales to infinity more slowly than the system size).

There are obvious similarities between our present objective
and the above works. However, none of these identifies explicit
content placement strategies at the level of the individualpeers,
which lead to minimal fraction of redirected (lost) requests in
a setup with dynamic arrivals of requests.

Finally, there is a rich literature on loss networks (see in
particular Kelly [7]); however our present concern of optimiz-
ing placement to minimize the amount of rejected traffic in a
corresponding loss network appears new.

III. M ODEL DESCRIPTION

We now introduce our mathematical model and related
notations. Denote the set of all boxes asB. Let |B| = B and
index the boxes from1 to B. Box b has a local cacheJb that
can store up toM contents, all boxes having the same storage
spaceM . We further assume that each box can simultaneously
serveU concurrent requests, whereU is an integer, i.e., each
box has an uplink bandwidth equal toU times the video
streaming rate. In particular we assume identical streaming
rates for all contents.

The set of available contents is defined asC. Let |C| = C
and index contents from1 to C. Thus a given boxb will be
able to serve requests for contentc for all c ∈ Jb.

In a Pure P2P Network, when boxb has a request for
a certain contentc, which is coincidentally already in its
cache, a “local service” is provided and no download service
is needed, hence the service to this request consumes no
bandwidth resource. The effect of local service on deriving
an optimal content placement strategy will be discussed in
detail in Section V.

In a Distributed Server Network, however, local service will
never occur since all the requests are external with respectto

3

the system resources2.
For a new request that needs a download service, an

attempt is made to serve this request by some box holding
content c, while ensuring that previously accepted requests
can themselves be assigned to adequate boxes, given the cache
content and bandwidth resources of all boxes. This potentially
involves “repacking” of requests, i.e., reallocation of all the
bandwidth resources in the system (“box-serving-request”
mapping) to accommodate this new download demand pattern.
If such repacking can be found, then the request is accepted;
otherwise, it is rejected from the P2P system.

It will be useful in the sequel to characterize the concurrent
numbers of requests that are amenable to such repacking. Let
n = {nc}c∈C be the vector of numbersnc of requests per
contentc. Clearly, a matching of these requests to server boxes
is feasible if and only if there exist nonnegative integerszcb
(number of concurrent downloads of contentc from box b)
such that

∑

b:c∈Jb

zcb = nc, ∀ c ∈ C;
∑

c:c∈Jb

zcb ≤ U, ∀ b ∈ B. (1)

A more compact characterization of feasibility follows by an
application of Hall’s theorem [2] (detailed in Appendix B),
giving thatn is feasible if and only if:

∀ S ⊆ C,
∑

c∈S

nc ≤ U |{b ∈ B : S ∩ Jb 6= ∅}| . (2)

We now introduce statistical assumptions on request arrivals
and durations. New requests for contentc occur at the instants
of a Poisson process with rateνc. We assume that the video
streaming rate is normalized to1, and is the same for all
contents. We further assume that all videos have the same
duration, again normalized at 1. Under these assumptions, the
amount of work per time unit brought into the system by
contentc equalsνc.

With the above assumptions at hand, assuming fixed cache
contents, the vectorn of requests under service is a particular
instance of a general stochastic process known as a loss
network model. Loss networks were introduced to represent
ongoing calls in telephone networks, and exhibit rich structure.
In particular, the corresponding stochastic process is reversible,
and admits a closed-form stationary distribution. For the
Distributed Server Network model, the stationary distribution
reads:

π(n) =
1

Z

∏

c∈C

νnc
c

nc!
I{n is feasible}. (3)

In words, the numbers of requestsnc are independent Poisson
random variables with parameterνc, conditioned on feasibility
of the whole vectorn.

2In fact the external users issuing requests could keep localcopies of
previously accessed content, and hence experience “local service” upon re-
accessing the same content. But we do not need consider this as this happens
outside the perimeter of our system.

Our objective is then to determine content placement strate-
gies so that in the corresponding loss network model, the
fraction of rejected requests is minimal. The difficulty in doing
this analysis resides in the fact that the normalizing constantZ
is cumbersome to evaluate. Nevertheless, simplifications occur
under large system asymptotics, which we will exploit in the
next sections.

We conclude this section by the following remark. For sim-
plicity we assumed in the above description that a particular
content is either fully replicated at a peer, or not present at
all, and that a request is served from only one peer. It should
however be noted that we can equally assume that contents
are split into sub-units, which can be placed onto distinct
peers, and downloaded from such distinct peers in parallel
sub-streams in order to satisfy a request. This extension is
detailed in Appendix F.

IV. OPTIMAL CONTENT PLACEMENT IN DISTRIBUTED

SERVER NETWORKS

We first describe a simple adaptive cache update strategy
driven by demand, and show why it converges to a “prede-
termined” content placement called “proportional-to-product”
strategy. We then establish the optimality of this “proportional-
to-product” placement in a large system asymptotic regime.

A. The Proportional-to-Product Placement Strategy

A simple method to adaptively update the caches at boxes
driven by demand is described as follows:

Demand-Driven Cache Update

Whenever a new request comes, with probabilityǫB (ǫ is
chosen such thatǫB ≤ 1), the server picks a boxb uniformly at
random, and attempts to push contentc into this box’s cache. If
c is already in there, do nothing; otherwise, remove a content
selected uniformly at random from the cache.

Since external demands for contentc are according to a
Poisson process with rateνc, we find that under the above
simple strategy, contentc is pushed at rateǫνc into a particular
box which is not caching contentc. Recall that each box
storesM distinct contents, and letj denote a candidate “cache
state”, which is a sizeM subset of the full content setC. For
convenience, letJ denote the collection of all suchj.

With the above strategy, the caches at each box evolve
independently according to a continuous-time Markov process.
The rate at which cache statej is changed toj′, where
j′ = j + {c} \ {d} for some contentsd ∈ j, c /∈ j, which
we denote byq(j, j′), is easily seen to beq(j, j′) = ǫνc/M .
Indeed, contentd is evicted with probability1/M , while
contentc is introduced at rateǫνc.

It is easy to verify that the distributionp(·) given by

p(j) =
1

Z

∏

c∈j

νc, j ∈ J , (4)

4

for some suitable normalizing constantZ, verifies the follwing
equation:

p(j)q(j, j′) = p(j′)q(j′, j), j, j′ ∈ J . (5)

The latter relations, known as the local balance equations,
readily imply thatp(·) is a stationary distribution for the above
Markov process; since the process is irreducible, this is the
unique stationary distribution.

Thus, we can conclude that under this cache update
strategy, the random cache state at any box eventually follows
this stationary distribution. This is what we refer to as the
“proportional-to-product” placement strategy , and it is the
one we advocate in the Distributed Server Network scenario.

Remark 1:The customized parameterǫ should not be too
large, otherwise the burden on the server will be increased due
to use of “push”. Neither should it be too small, otherwise the
Markov chain will converge too slowly to the steady state.⋄

Under the cache update strategy, the distribution of cache
contents needs time to converge to the steady state. However,
if we have a priori information about content popularity, we
can use a sampling strategy as an alternative way to directly
generate proportional-to-product content placement in one go.
One method works as follows:

Sampling-Based Preallocation

Select successivelyM contents at random in an i.i.d. fash-
ion, according to the probability distribution{ν̂c}, where
ν̂c = νc/

∑

c′∈C νc′ is the normalized popularity. If there are
duplicate selections of some content, re-run the procedure.
It is readily seen that this yields a sample with the desired
distribution.

An alternative sampling strategy which can be faster than
the one described above when very popular items are present
is given in the Appendix C.

B. A Loss Network Under Many-User Asymptotics

We now consider the asymptotic regime called“many user–
fixed catalogue” scaling: The number of boxesB goes to
infinity. The system load, defined as

ρ ,

∑

c∈C νc

BU
, (6)

is assumed to remain fixed, which is achieved in the present
section by assuming that the content collectionC is kept fixed,
while the individual rates{νc} scale linearly withB. We also
assume that the normalized content popularities{ν̂c} remain
fixed asB increases. It thus holds thatνc = ν̂cρBU for all
c ∈ C. Note that although boxes are pure resources rather than
users, scaling of{νc} with B to infinity actually indicates a
“many-user” scenario.

To analyze the performance of our proposed proportional-
to-product strategy, we require that the cache contents aresam-
pled at random according to this strategy and are subsequently

kept fixed. This can either reflect the situation where we use
the previously introduced sampling strategy, or alternatively
the situation where the cache update strategy has already made
the distribution of cache states converge to the steady state, and
occurs at a slower time scale than that at which new requests
arise and complete.

Note that, asB grows large, the right-hand side in the
feasibility constraint (2) verifies, by the strong law of large
numbers,

|{b ∈ B : S ∩ Jb 6= ∅}| ∼ B
∑

j:j∩S 6=∅

mj . (7)

Here, {mj} corresponds to a particular content placement
strategy, under which each box holds a sizeM content set
j with probability mj , and this happens independently over
boxes. Specifically,mj = 1

Z

∏

c∈j ν̂c (where Z is a nor-
malizing constant) corresponds to our proportional-to-product
placement strategy.

We now establish a sequence of loss networks indexed by
a large parameterB. For theBth loss network, requests for
contentc ∈ C (regarded as “calls of typec”) arrive at rate
ν(B)
c = (ρUν̂c) · B, each “virtual link” S ⊆ C has a capacity

W (B)

S , (U
∑

j:j∩S 6=∅

mj) · B, (8)

andc ∈ S represents that virtual linkS is part of the “route”
which serves call of typec.3 This particular setup has been
identified as the “large capacity network scaling” in Kelly [7].
There, it is shown that the loss probabilities in the limiting
regime whereB → ∞ can be characterized via the analysis
of an associated variational problem.

We now describe the corresponding results in [7]
relevant to our present purpose. For theBth loss
network, consider the problem of finding the mode of
the stationary distribution (3), which corresponds to
maximizing

∑

c∈C(n
(B)
c log ν(B)

c − logn(B)
c !) over feasiblen(B) .

Then, approximatelogn(B)
c ! by n(B)

c logn(B)
c − n(B)

c according
to Stirling’s formula and replace the integer vectorn(B)

by a real-valued vectorx(B) . This leads to the following
optimization problem:

[OPT 1]

max
x(B)

∑

c∈C

(x(B)
c log ν(B)

c − x(B)
c log x(B)

c + x(B)
c) (9)

s.t. ∀ S ⊆ C,
∑

c∈S

x(B)
c ≤ W (B)

S (10)

over x(B) ≥ 0.

3Note that this construction in fact admits a form of fixed routing which is
equivalently transformed from a dynamic routing model where each particular
box is regarded as a link and calls of typec can use any single-link route
corresponding to a box holding contentc. This equivalent transform is based
on the assumption that repacking is allowed (cf. Section 3.3. in [7]). We have
already found this equivalent transform by converting feasibility condition (1)
to (2) in Section III.

5

The corresponding Lagrangian is given by:

L(x(B) ,y(B)) =
∑

c∈C

(x(B)
c log ν(B)

c − x(B)
c log x(B)

c + x(B)
c)

+
∑

S⊆C

y(B)

S
(W (B)

S −
∑

c∈S

x(B)
c),

where{y(B)

S }
S⊆C

are Lagrangian multipliers. The KKT con-
ditions for this convex optimization problem comprise the
original constraints and the following ones:

ȳ(B)

S
(W (B)

S −
∑

c∈S

x̄(B)
c) = 0, ȳ(B)

S
≥ 0, ∀ S ⊆ C,

∂L(x̄(B) , ȳ(B))

∂x(B)
c

= log ν(B)
c − log x̄(B)

c −
∑

S:c∈S

ȳ(B)

S
= 0, ∀ c ∈ C

(11)
where (x̄(B) , ȳ(B)) is a solution to the optimization problem.
From equation (11), we further get

x̄(B)
c = ν(B)

c exp(−
∑

S:c∈S

ȳ(B)
S
), ∀ c ∈ C. (12)

Then the result that we will need from Kelly [7] is the fol-
lowing: for theBth loss network, the steady state probability
of accepting request forc, denoted byA(B)

c , verifies

A(B)
c = exp

(

−
∑

S:c∈S

ȳ(B)

S

)

+O
(

B− 1
2

)

, ∀ c ∈ C, (13)

where ȳ(B)

S are the Lagrangian multipliers of the previous
optimization problem.

C. Optimality of Proportional-to-Product Content Placement

Note that the global acceptance probability, denoted by
Asys, which also readsAsys =

∑

c∈C ν̂cAc, cannot exceed
min(1, 1/ρ). Indeed, it is clearly no larger than 1. It cannot
exceed1/ρ either, otherwise the system would treat more
requests than its available resources.

We now prove that the proportional-to-product content
placement not only achieves the optimal global acceptance
probability Asys = min(1, 1/ρ), but also achieves fair
individual acceptance probabilities, i.e.,Ac = Asys for all c.
More precisely, we have the following theorem:

Theorem 1:By using mj =
∏

c∈j ν̂c/Z for all j ⊆ C
s.t. |j| = M , whereZ is the normalizing constant, we have
limB→∞ A(B)

c = min{1, 1/ρ}, ∀c ∈ C, for fixed ρ andC. ⋄

Before giving the proof, we comment on the result. One
point to note is that because of (7), the above optimal
acceptance rate is achieved with probability one under
any random sampling which follows the proportional-to-
product scheme. Secondly, the optimality of the asymptotic
acceptance probability does not depend onM , as long as
M ≥ 1. Thus for this particular scaling regime, storage space
is not a bottleneck. As we shall see in the next two sections,
increasing M does improve performance if either local
services occur, as in the Pure P2P Network scenario (Section

4), or if the catalogue sizeC scales with the box population
sizeB, a case not covered by the classical literature on loss
networks, and to which we turn in Section VI-B.

Proof: First, we considerρ ≥ 1. Letting

exp

(

−
∑

S:c∈S

ȳ(B)

S

)

= 1/ρ, ∀c ∈ C, (14)

we have
∀c ∈ C,

∑

S:c∈S

ȳ(B)

S
= log ρ. (15)

Putting equation (15) into (12) leads to

∀c ∈ C, x̄(B)
c = ν(B)

c /ρ.

Thus, inequality (10) in OPT 1 becomes

∀S ⊆ C,
∑

c∈S

ν(B)
c ≤ ρ

∑

j:j∩S6=∅

mjBU. (16)

Since ν(B)
c = ρBU · ν̂c and

∑

c∈C
ν̂c = 1, inequality (16)

further becomes, upon explicitly writing out the normalization
constantZ:

∀S ⊆ C,
∑

c∈S

ν̂c ·
∑

G: G⊆C
|G|=M

∏

c∈G

ν̂c ≤
∑

c∈C

ν̂c ·
∑

G: G∩S6=∅
G⊆C
|G|=M

∏

c∈G

ν̂c. (17)

Two types of product terms (mapped to subsetsK ⊆ C) appear
on both sides:

I.
∏

c∈K ν̂c: |K| = M + 1, K ∩ S 6= ∅.
II. (

∏

c∈K ν̂c) · ν̂c′ : c′ ∈ K ∩ S, |K| = M .

To show whether inequality (17) hold, we only have to prove
that given anyS ⊆ C, for each product term (related to aK)
which appears in one inequality corresponding to a certainS,
its multiplicity on the left hand side is no more than that on
the right hand side.

1. For a product term of Type I:
• On the LHS: Since

∏

c∈K ν̂c =
∏

c∈G ν̂c · ν̂c′ for
someG ⊆ C and c′ ∈ S ∩ K, whereG is a sizeM
content set,c′ 6∈ G, andK = G + {c′}. It is easy to
see that we have|S ∩ K| different choice ofc′ in
a K, so the multiplicity of this product term on the
LHS equals|S ∩ K|.

• On the RHS: When|S ∩ K| ≥ 2, for any c′ ∈ K,
K\{c′} is a sizeM content set of which the intersect
with S is not empty, hence the multiplicity equals
|K| (= M+1). When|S ∩K| = 1, the exception to
the above case is that ifc′ ∈ S ∩K, thenK\{c′} is
a sizeM content set which has no intersect withS
and is actually impossible to appear in the second
summation term (over all sizeM content setsG s.t.
G∩S 6= ∅) in inequality (17). Thus, the multiplicity
equals|K| − 1 (= M).

From above, we can see that the multiplicity of the
product term on the LHS is always no more than that
on the RHS.

6

2. For a product term of Type II:
K is actually already a sizeM content setG s.t.G∩C 6=
∅. Therefore, it is easy to see that on both sides, the
multiplicities of this product term are both1.

Now we can conclude that inequality (17) holds for allS ⊆ C,
and continue to check the complementary slackness. Given
ρ ≥ 1, one simple solution to equation (15) reads:

∀ S ⊆ C, ȳ(B)

S
= log ρ · I

{S=C}
. (18)

Besides, inequality (17) is tight forS = C (we even do not
need to check this whenρ = 1). Therefore, complementary
slackness is always satisfied with solution (18).

So far we have proved that the KKT condition holds when
ρ ≥ 1. Whenρ < 1, we modify (14) by letting

exp

(

−
∑

S:c∈S

ȳ(B)

S

)

= 1, ∀c ∈ C, (19)

and hence there is an additional factor1/ρ > 1 on the RHS
of inequality (17). Since the old version of inequalities (17) is
proved to hold, the new version automatically holds, but none
of them is tight now. However, from (19) we havēy(B)

S =
0, ∀ S ⊆ C, which means complementary slackness is always
satisfied (similar toρ = 1).

Therefore, according to equation (13), it can be concluded
that by usingmj =

∏

c∈j ν̂c/Z for all j, we can achieve

A(B)
c = min{1, 1/ρ}+O

(

B− 1
2

)

, ∀c ∈ C,

so limB→∞ A(B)
c = min{1, 1/ρ}.

D. Simulation Results

In this subsection, we use extensive simulations to evaluate
the performances of the two implementable schemes proposed
in Subsection IV-A which follow the “proportional-to-product”
placement strategy, namely the sampling-based preallocation
scheme and the demand-driven cache update (labeled as
“SAMP” and “CU” , respectively).

We compare the results with the theoretical optimum (i.e.,
loss rate for each content equals(1 − 1/ρ)+; the curves
are labeled as“Optimal”) and a uniform placement strategy
(labeled as“UNIF”) defined as the following: first, permute
all the contents uniformly at random, resulting in a content
sequence{ci}, for 1 ≤ i ≤ C; then, push theM contents
indexed by subsequence{c(j mod C)}bM+1≤j≤(b+1)M into
the cache of boxb, for 1 ≤ b ≤ B. UNIF is also used to
generate the initial content placement for CU so that the loss
rate can be reduced during the warm-up period.

If not further specified, the default parameter setting is as
follows: The popularity of contents{ν̂c} follows a zipf-like
distribution (see e.g. [4]), i.e.,

ν̂c =
(c0 + c)−α

∑

c′∈C(c0 + c′)−α
, (20)

with a decaying factorα > 0 and the shiftc0 ≥ 0. We use
α = 0.8 andc0 = 0. The content catalogue sizeC = 500 and
the number of boxesB = 4000. Each box can storeM =

0.8 1 1.2 1.4 1.6 1.8 2
0%

10%

20%

30%

40%

50%

ρ

S
ys

te
m

 L
os

s
R

at
e

SAMP

CU

UNIF

Optimal

Fig. 2: System loss rates under different traffic loads

10 contents and serve at mostU = 4 concurrent requests.
The duration of downloading each content is exponentially
distributed with mean equal to1 time unit. The parameterǫ
in the cache update algorithm is set as1/B such that upon a
request, one box will definitely be chosen for cache update.

For every algorithm, we take the average over10 indepen-
dent repetitive experiments, each of which is observed for10
time units. According to the sample path, the initial1/5 of the
whole period is regarded as a “warm-up” period and hence
ignored in the calculation of final statistics.4

Some implementation details are not captured by our theo-
retical model, but should be considered in simulations. Upon
a request arrival, the most idle box (i.e., with the largest
number of free connections) among all the boxes which hold
the requested content is chosen to provide the service, for the
purpose of load balancing. If none of them is idle, we use a
heuristic repacking algorithm which iteratively reallocates the
ongoing services among boxes, in order to handle as many
requests as possible while still respects load balancing. One
important parameter which trades off the repacking complexity
and the performance is the maximum number of iterations
tmax
r , which is set as “undefined” by default (i.e., the iterations

will continue until the algorithm terminates; theoretically there
are at mostC iterations). Other details regarding the repacking
algorithm can be found in Appendix D. We will see an
interesting observation abouttmax

r later.
Figure 2 evaluates system loss rates under different traffic

loads ρ. Our two algorithms SAMP and CU, which tar-
get the proportional-to-product placement, both match the
theoretically optimum very well.5 On the other hand, the
UNIF algorithm, which does not utilize any information about
content popularity, incurs a large loss even if the system is
underloaded (ρ < 1). The gain of proportional-to-product
placement over UNIF becomes less significant as the traffic

4We can get enough samples during each observation period of 10 time
units (for example, whenρ = 1, B = 4000 andU = 4, the average arrivals
would be160000). It has also been checked that after the warm-up period,
the distribution of cache states well approximates the proportional-to-product
placement and is kept quite stably for the remaining observation period.

5In fact, aroundρ = 1, they perform a little worse than the optimum. The
reason is thatρ = 1 is the “critical traffic load” (a separation point between
zero-loss and nonzero-loss ranges), under which the simulation results are
easier to incur deviation from the theoretical value.

7

0 0.4 0.8 1.2 1.6 2

0%

10%

20%

30%

40%

50%

60%

70%

80%

α

S
ys

te
m

 L
os

s
R

at
e

SAMP

CU

UNIF

Optimal

Fig. 3: System loss rates with differentα (ρ = 1)

0.8 1 1.2 1.4 1.6 1.8 2

0%

10%

20%

30%

40%

50%

ρ

S
ys

te
m

 L
os

s
R

at
e

(a) SAMP

t
R
max = 0

t
R
max = 1

Undefined t
R
max

Optimal

0.8 1 1.2 1.4 1.6 1.8 2

0%

10%

20%

30%

40%

50%

ρ

S
ys

te
m

 L
os

s
R

at
e

(b) CU

t
R
max = 0

t
R
max = 1

Undefined t
R
max

Optimal

Fig. 4: Effect of repacking on the system loss rate

load grows, which can be easily expected.
In Figure 3, when the decaying factorα in the zipf-

like distribution increases, the distribution of placed contents
generated by UNIF has a higher discrepancy from the real
content popularity distribution, so UNIF performs worse. On
the other hand, the two proportional-to-product strategies are
insensitive to the change of content popularity, as we expected.

Figure 4 shows the effect of repacking on the system loss
rate. In sub-figure (a), we find that under SAMP, repacking is
not necessary. In sub-figure (b) which shows the performances
of CU, whenρ is low, one iteration of repacking is sufficient
to make the performance close enough to the optimum; when
ρ is high, repacking also becomes unnecessary. The main take-
away message from this figure is that we can execute a repack-
ing procedure of very small complexity without sacrificing
much performance. The reason is that when the server picks
a box to serve a request, it already respects the rule of load
balancing.

We then explain why CU still needs one iteration of
repacking to improve the performance whenρ is low. Note
that during the cache update, it is possible that the box is
currently uploading the “to-be-kicked-out” content to some
users. If repacking is enabled, those ongoing services can be
repacked to other boxes (see details in Appendix D), but if
tmax
r = 0 (no repacking), they will be terminated and counted

as losses. Whenρ is high, however, boxes are more likely to
be busy, which leads to the failure of repacking, so repacking

125 250 500 1000 2000 4000

0%

5%

10%

15%

20%

25%

30%

Number of Boxes (B)

S
ys

te
m

 L
os

s
R

at
e

SAMP

CU

UNIF

Optimal

Fig. 5: System loss rates with different number of boxes

0 100 200 300 400 500
0%

2%

4%

6%

8%

10%

12%

14%

c

L c

B = 4000

B = 8000

SAMP

CU

Optimal

Fig. 6: Loss rate of requests for each content (ρ = 1)

makes no difference.
Recall that the proportional-to-product placement is only

optimal when the number of boxesB → ∞. Figures 5 and
6 then show the impact of a finiteB. In Figure 5, asB
decreases, the system loss rate of every algorithms increases
(compared to the two proportional-to-product strategies,UNIF
is less sensitive toB). In Figure 6, non-homogeneity in the
individual loss rates of requests for each content also reflects
a deviation from the theoretical result (whenB → ∞, the
loss rates of the requests for all the contents are proved to be
identical). As expected, increasing the number of boxes (from
4000 to 8000) makes the system closer to the limiting scenario
and the individual loss rates more homogeneous. Another
observation is that as the popularity of a content decreases(in
the figure, the contents are indexed in the descending order of
their popularity), the individual loss rate increases. However,
according to Figure 2, those less popular contents do not affect
the system loss rate much even if they incur high loss, since
their weights{ν̂c} are also lower.

In fact, if we choose a smaller content catalogue sizeC or
a larger cache sizeM , simulations show the negative impact
of a finite B will be reduced (the figures are omitted here).
This tells us that ifC scales withB rather than being fixed,
the proof of optimality under the loss network framework in
Subsection IV-B is no longer valid andM must be a bottleneck
against the performance of the optimal algorithm. We will
solve this problem by introducing a certain type of “large
catalogue model” later in Section VI.

8

V. OPTIMAL CONTENT PLACEMENT IN PURE

PEER-TO-PEER NETWORKS

In the Pure P2P Network scenario, when boxb has a request
for contentc which is currently in its own cache, a “local
service” will be provided and no download bandwidth in the
network will be consumed. To simplify our analysis, each
request for a specific content is assumed to originate from
a box chosen uniformly at random (this in particular assumes
identical tastes of all users).

This means that the effective arrival rate of the requests for
contentc which generates traffic load actually equalsν̃c ,

νc(1− m̃c), wherem̃c is defined as the fraction of boxes who
have cached contentc. Let ρc , ρν̂c denote the traffic load
generated by requests for contentc, andλc denote the fraction
of the system bandwidth resources used to serve requests for
contentc. Obviously,

∑

c∈C λc ≤ 1. The traffic load absorbed
by the P2P system either via local services or via service from
another box is then upper-bounded by

ρ̃ =
∑

c∈C

ρcm̃c + [ρc(1− m̃c)] ∧ λc, (21)

where “∧” denotes the minimum operator.
We will use this simple upper bound to identify an op-

timal placement strategy in the present Pure P2P Network
scenario. To this end, we shall establish that our candidate
placement strategy asymptotically achieves this performance
bound, namely absorbs a portionρ̃ in the limit whereB tends
to infinity.

To find the optimal strategy, we introduce a variable
xc , [ρc(1− m̃c)]∧λc for all c. Note further that the fraction
λc is necessarily bounded from above bym̃c, as only those
boxes holdingc can devote their bandwidth to servingc. It
is then easy to see that the quantityρ̃ in (21) is no larger
than the optimal value of the following linear programming
problem:

[OPT 2]

max
m̃,λ,x

∑

c∈C

(ρcm̃c + xc)

s.t. ∀ c ∈ C, 0 ≤ m̃c ≤ 1, 0 ≤ λc ≤ m̃c;

∀ c ∈ C, 0 ≤ xc ≤ λc, xc ≤ ρc(1 − m̃c);
∑

c∈C

m̃c = M,
∑

c∈C

λc ≤ 1.

The following theorem gives the structure of an optimal
solution to OPT 2, and as a result suggests an optimal
placement strategy.

Theorem 2:Assume that{ν̂c} are ranked in descending
order. The following solution solves OPT 2:

• For 1 ≤ c ≤ M − 1, m̃c = 1, λc = xc = 0.
• For M ≤ c ≤ c∗, m̃c = λc = xc = ρc/(1 + ρc), where

c∗ satisfies that
c∗
∑

c=M

ρc
1 + ρc

≤ 1, but
c∗+1
∑

c=M

ρc
1 + ρc

> 1.

• For c = c∗ + 1, m̃c = λc = xc = 1−∑c∗

c=M m̃c.
• For c∗ + 2 ≤ c ≤ C, m̃c = λc = xc = 0. ⋄
The proof consists in checking that the KKT conditions

are met for the above candidate solution. Details are given in
Appendix E.

The above optimal solution suggests the following place-
ment strategy:

“Hot-Warm-Cold” Content Placement Strategy

Divide the contents into three different classes accordingto
their popularity ranking (in descending order):

• Hot: The M − 1 most popular contents. At each box,
M − 1 cache slots are reserved for them to make sure
that requests for these contents are always met via local
service.

• Warm: The contents with indices fromM to c∗ + 1 (or
c∗ if

∑c∗

c=M m̃c = 1). For these contents, a fractioñmc

of all the boxes will store contentc in their remaining one
cache slots, where the value ofm̃c is given in Theorem 2.
All requests for these contents (exceptc∗ + 1 if it is
classified as “warm”) can be served, at the expense of all
bandwidth resources.

• Cold: The other less popular contents are not cached at
all.

Remark 2:The requests for thec∗ most popular contents
(“hot” contents and “warm” contents except contentc∗ + 1)
incur zero loss, while the requests for theC − c∗ − 1 least
popular contents incur100% loss. There is a partial loss in
the requests for contentc∗ + 1 if

∑c∗

c=M m̃c < 1.
Note that the placement for “warm” contents looks like the

“water-filling” solution in the problem of allocating transmis-
sion powers onto different OFDM channels to maximize the
overall achievable channel capacity in the context of wireless
communications [16]. ⋄

Under this placement strategy, the maximum upper bound
on the absorbed traffic load reads

ρ̃ =

c∗
∑

c=1

ρc + (ρc∗+1 + 1)

(

1−
c∗
∑

c=M

ρc
1 + ρc

)

.

We then have the following corollary:
Corollary 1: Considering the large system limitB → ∞,

with fixed catalogue and associated normalized popularities
{ν̂c} as considered in Subsection IV-B, the proposed “hot-
warm-cold” placement strategy achieves an asymptotic frac-
tion of absorbed load equal to the above upper boundρ̃, and
is hence optimal in this sense. ⋄

Proof: With the proposed placement strategy, hot (respec-
tively, cold) contents never trigger accepted requests, since all
incoming requests are handled by local service (respectively,
rejected). For warm contents, because each box holds only one

9

warm content, it can only handle requests for that particular
warm content. As a result, the processes of ongoing requests
for distinct warm contents evolve independently of one an-
other. For a given warm contentc, the corresponding number
of ongoing requests behaves as a simple one-dimensional loss
network with arrival rateνc(1 − m̃c) and service capacity
m̃cBU . For c = M, . . . , c∗, one hasm̃c = ρc/(1+ ρc) where
ρc = νc/(BU), so both the arrival rate and the capacity of
the corresponding loss network equalm̃cBU . The asymptotic
acceptance probability asB → ∞ then converges to1 and
the accepted load due to both local service and services
from other boxes converges toρc. For contentc∗ + 1 (if
m̃c∗+1 > 0), the corresponding loss network has arrival rate
νc∗+1(1−m̃c∗+1) and service capacitỹmc∗+1BU . Then, in the
limit B → ∞, the accepted load (due to both local services
and services from other boxes) readsρc∗+1m̃c∗+1 + m̃c∗+1

(which is actually smaller thanρc∗+1). Summing the accepted
loads of all contents yields the result.

VI. L ARGE CATALOGUE MODEL

Keeping the many-user asymptotic, we now consider an
alternative model of content catalogue, which we term the
“large catalogue” scenario. The set of contentsC is divided
into a fixed number of “content classes”, indexed byi ∈ I.
In classi, all the contents have the same popularity (arrival
rate) νi. The number of contents within classi is assumed
to scale in proportion to the number of boxesB, i.e., classi
containsαiB contents for some fixed scaling factorαi. We
further defineα ,

∑

i αi. With the above assumptions, the
system traffic loadρ in equation (6) reads

ρ =
1

U

∑

i∈I

αiνi. (22)

The primary motivation for this model is mathematical conve-
nience: by limiting the number of popularity values we limit
the “dimensionality” of the request distribution, even though
we now allow for a growing number of contents. It can also be
justified as an approximation, that would result from batching
into a single class all contents with a comparable popularity.
Such classes can also capture the movie type (e.g. thriller,
comedy) and age (assuming popularity decreases with content
age).

We useυ̂i to denote the normalized popularity of content
classi ∈ I and it reads

∑

i∈I υ̂i = 1. It is reasonable to regard
each υ̂i as fixed.ν̂i , υ̂i/(αiB) represents the normalized
popularity of a specific content in classi, which decreases as
the number of contents in this classαiB increases, since users
now have more choices within each class. In practice, an online
video provider company which uses the Distributed Server
Network architecture adds both boxes and available movies of
each type to attract more user traffic, under a constraint of a
maximum tolerable traffic loadρ.

Returning to the Distributed Server Network model of
Section IV, we consider the following questions: What amount
of storage is required to ensure that memory space is not a

bottleneck? Is the proportional-to-product placement strategy
still optimal under the large-catalogue scaling?

A. Necessity of Unbounded Storage

We first establish that bounded storage will strictly
constrain utilization of bandwidth resources. To this end we
need the following lemma:

Lemma 1:Consider the system under large catalogue scal-
ing, with fixed weightsαi and cache sizeM per box. Define
M ′ , ⌈2M/α⌉. Then

(i) More than half of the contents are replicated at mostM ′

times, and
(ii) For each of these contents, the loss probability is at least

E(infi νi,M
′U) > 0, whereE(·, ·) is the Erlang function [7]

defined as:

E(ν, C) ,
νC

C!

[

C
∑

n=1

νn

n!

]−1

.

⋄
Proof: We first prove part (i). Note that the total number

of content replicas in the system equalsBM . Thus, denoting
by f the fraction of contents replicated at leastM ′+1 times,
it follows that fαB(M ′ + 1) ≤ BM , which in turn yields

f ≤ M

α (⌈2M/α⌉+ 1)
≤ M

2M + α
<

1

2
,

which implies statement (i).
To prove part (ii), we establish the following general prop-

erty for a loss network (equivalent to our original system) with
call typesj ∈ J , corresponding arrival ratesνj , and capacity
(maximal number of competing calls)Cl on link ℓ for all
ℓ ∈ L. We useℓ ∈ j to indicate that the route for calls of type
j comprises linkℓ. Denoting the loss probability of calls of
type j in such a loss network aspj , we then want to prove

pj ≥ E(νj , C
′
j), (23)

whereC′
j , minℓ∈j Cℓ, i.e., the capacity of the bottleneck

link on the route for calls of typej.
Note that the RHS of the above inequality is actually the

loss probability of a loss network with only calls of typej
and capacityC′

j . Fixing indexj, we define this loss network
as an auxiliary system and consider the following coupling
construction which allows us to deduce inequality (23): LetXk

be the number of active calls of typek in the original system
for all k, and letX ′

j denote the number of active calls of type
j in the auxiliary system. Initially,Xj(0) = X ′

j(0). The non-
zero transition rates for the joint process({Xk}k∈K , X ′

j) are
given by

k 6= j : Xk → Xk + 1 at rateνk
∏

ℓ∈j

I{∑k∋ℓ Xk<Cℓ},

k 6= j : Xk → Xk − 1 at rateXk,
(Xj , X

′
j) → (Xj + 1, X ′

j + 1) at rateνbothj ,
(Xj , X

′
j) → (Xj + 1, X ′

j) at rateνorij ,
(Xj , X

′
j) → (Xj , X

′
j + 1) at rateνauxj ,

(Xj , X
′
j) → (Xj − 1, X ′

j − 1) at rateXj ,

(Xj , X
′
j) → (Xj , X

′
j − 1) at rate

[

X ′
j −Xj

]+
,

10

where

νbothj , νjI{X′
j<C′

j}
·
∏

ℓ∈j

I{∑k∋ℓ Xk<Cℓ},

νorij , νjI{X′
j=C′

j}
·
∏

ℓ∈j

I{∑k∋ℓ Xk<Cℓ},

νauxj , νjI{X′
j<C′

j}
· I{∃ℓ∈j s.t. ∑

k∈ℓ Xk=Cℓ}.

It follows from Theorem 8.4 in [5] that{Xk} is indeed a loss
network process with the original dynamics, and thatX ′

j is
a one-dimensional loss network with capacityC′

j and arrival
rateνj . From the construction, we can see that all transitions
preserve the inequalityXj(t) ≤ X ′

j(t) for all t ≥ 0, due to the
following reason: OnceXj increases by 1,X ′

j either increases
by 1 or equals the capacity limitC′

j , and for the latter case, the
corresponding transition rateνorij implies thatXj ≤ C′

j = X ′
j.

Similarly, onceX ′
j decreases by 1, eitherXj also decreases

by 1, or in the case thatXj does not decrease, it must be that
the transition rateX ′

j−Xj is strictly positive. In any case, the
above inequality is preserved.

We further letAj(t), A′
j(t) denote the number of typej

external calls,Lj(t), L′
j(t) the number of typej call rejec-

tions, andDj(t), D′
j(t) the number of typej call completions,

respectively in the original and auxiliary systems, duringtime
interval [0, t]. It follows from our construction that whenever
the service for a call of typej completes in the original
system, the service for a call of typej also completes in the
auxiliary system, henceDj(t) ≤ D′

j(t) for all t ≥ 0. Since
Xj(t) = Aj(t)−Dj(t)−Lj(t), X ′

j(t) = A′
j(t)−D′

j(t)−L′
j(t)

andAj(t) = A′
j(t), we haveLj(t) ≥ L′

j(t). Upon dividing
this inequality byA(t) and letting t tend to infinity, one
retrieves the announced inequality (23) by the ergodic theorem.

Back to the context of our P2P system, for those contents
which are replicated at mostM ′ times (i.e., the contents
considered in part (i)), the rejection rate of contentc of type
j readspj ≥ E(infi νi, C

′
j) ≥ E(inf i νi,M

′U).

The above lemma readily implies the following corollary:
Corollary 2: Under the assumptions in Lemma 1, The over-

all rejection probability is at least12E(mini νi,M
′U). Indeed,

for boundedM , M ′ is also bounded, andE(mini νi,M
′U)

is bounded away from0. ⋄
Thus, even when the system loadρ is strictly less than 1,

with boundedM there is a non-vanishing fraction of rejected
requests, hence a suboptimal use of bandwidth.

B. Efficiency of Proportional-to-Product Placement

We consider the following“Modified Proportional-to-
Product Placement”: Each of theM storage slots at a given
box b contains a randomly chosen content. The probability of
selecting one particular contentc is νi/(ρBU) if it belongs to
classi. In addition, we assume that the selections for all such
MB storage slots are done independently of one another.

Remark 3:This content placement strategy can be viewed
as a “balls-and-bins” experiment. All theMB cache slots in

the system are regarded as balls, and all the|C| (=
∑

i αiB)
contents are regarded as bins. We throw each of theMB
balls at random among all the|C| bins. Bin c (corresponding
to contentc which belongs to classi) will be chosen with
probability νi/(ρBU). Alternatively, the resulting allocation
can be viewed as a bipartite random graph connecting boxes
to contents. ⋄

Note that this strategy differs from the “proportional-to-
product” placement strategy proposed in Section IV, in that
it allows for multiple copies of the same content at the same
box. However, by the birthday paradox, we can prove the
following lemma which shows that up to a negligible fraction
of boxes, the above content placement does coincide with the
proportional-to-product strategy.

Lemma 2:By using the above content placement strategy,
at a certain box, ifM ≪

√

(mini αi)B,

Pr(all theM cached contents are different) ≈ 1. (24)

⋄
Proof: In the birthday paradox, if there arem people

andn equally possible birthdays, the probability that all the
m people have different birthdays is close to1 whenever
m ≪ √

n. Here in our problem, at a certain box, theM
cache slots are regarded as “people” and the|C| contents are
regarded as “birthdays.” Although the probability of picking
one content is non-uniform, the probability of picking one
content within a specific class is uniform. One can think of
picking a content for a cache slot as a two-step process: With
probabilityαiνi/

∑

j αjνj , a content in classi is chosen. Then
conditioned on classi, a specific content is chosen uniformly
at random among all theαiB contents in classi.

Contents from different classes are obviously different.
When M ≪ √

αiB, even if all theM cached contents are
from classi, the probability that they are different is close to
1. Thus,M ≪ √

mini αiB is sufficient for (24) to hold.

To prove that under this particular placement, inefficiency
in bandwidth utilization vanishes asM → ∞, we shall in
fact consider a slight modification of the “request repacking”
strategy considered so far for determining which contents to
accept:

Counter-Based Acceptance Rule

A parameterL > 0 is fixed. Each boxb maintains at all
times a counterZb of associated requests. For any content
c, the following procedure is used by the server whenever a
request arrives: A random set ofL distinct boxes, each of
which holds a replica of contentc, is selected. An attempt is
made to associate the newly arrived request with allL boxes,
but the request will be rejected if its acceptance would lead
any of the corresponding box counters to exceedLU .

11

Remark 4:Note that in this acceptance rule, associating a
request to a set ofL boxes does not mean that the requested
content will be downloaded from all theseL boxes. In fact,
as before, the download stream will only come from one of
the L boxes, but here we do not specify which one is to be
picked.

It is readily seen that the above rule defines a loss network.
Moreover, it is a stricter acceptance rule than the previously
considered one. Indeed, it can be verified that when all ongoing
requests have an associated set ofL boxes, whose counters
are no larger thanLU , there exist nonnegative integersZcb

such that
∑

b:c∈Jb
Zcb = Lnc, ∀ c ∈ C and

∑

c:c∈Jb
Zcb ≤

LU, ∀ b ∈ B, then feasibility condition (2) holds a fortiori.⋄

We introduce an additional assumption, needed for technical
reasons.

Assumption 1:A content which is too poorly replicated is
never served. Specifically,a content must be replicated at
least M3/4 times to be eligible for service. ⋄

Our main result in this context is the following theorem:
Theorem 3:Consider fixedM , αi, νi, and corresponding

load ρ < 1. Then for suitable choice of parameterL, with
high probability (with respect to placement) asB → ∞, the
loss network with the above “modified proportional-to-product
placement” and “counter-based acceptance rule” admits a
content rejection probabilityφ(M) for some functionφ(M)
decreasing to zero asM → ∞. ⋄

The interpretation of this theorem is as follows: The frac-
tion of lost service opportunities, for an underloaded system
(ρ < 1), vanishes asM increases. Thus, while Corollary 2
showed thatM → ∞ is necessary for optimal performance,
this theorem shows that it is also sufficient: there is no need
for a minimal speed (e.g.M ≥ logB) to ensure that the loss
rate becomes negligible.

The proof is given in Appendix A.

VII. C ONCLUSION

In peer-to-peer video-on-demand systems, the information
of content popularity can be utilized to design optimal content
placement strategies, which minimizes the fraction of rejected
requests in the system, or equivalently, maximizes the uti-
lization of peers’ uplink bandwidth resources. We focused
on P2P systems where the number of users is large. For
the limited content catalogue size scenario, we proved the
optimality of a proportional-to-product placement in the Dis-
tributed Server Network architecture, and proved optimality
of “Hot-Warm-Cold” placement in the Pure P2P Network
architecture. For the large content catalogue scenario, wealso
established that proportional-to-product placement leads to
optimal performance in the Distributed Server Network. Many
interesting questions remain. To name only two, more general
popularity distributions (e.g. Zipf) for the large catalogue
scenario could be investigated; the efficiency of adaptive cache
update rules such as the one discussed in Section IV-A, or

classical alternatives such as LRU, in conjunction with a loss
network operation, also deserves more detailed analysis.

REFERENCES

[1] J. M. Almeida, D. L. Eager, M. K. Vernon, and S. J. Wright. Minimizing
delivery cost in scalable streaming content distribution systems. IEEE
Transactions on Multimedia, 6(2):356–365, Apr. 2004.

[2] B. Bollobás. Modern Graph Theory. Springer, New York, 1998.
[3] Y. Boufkhad, F. Mathieu, F. de Montgolfier, D. Perino, andL. Viennot.

Achievable catalog size in peer-to-peer video-on-demand systems. In
Proc. of the Seventh International Workshop on Peer-to-Peer Systems
(IPTPS), 2008.

[4] L. Breslau, P. Cao, L. Fan, G. Philips, and S. Shenker. Webcaching
and zipf-like distributions: Evidence and implications. In Proc. of IEEE
INFOCOM, Mar. 1999.

[5] M. Draief and L. Massoulie. Epidemics and rumours in complex
networks. In the London Mathematical Society Lecture Note Series.
Cambridge University Press, 2010.

[6] J. Kangasharju, K. W. Ross, and D. A. Turner. Optimizing file availabil-
ity in peer-to-peer content distribution. InProc. of IEEE INFOCOM,
2007.

[7] F. Kelly. Loss networks.The Annals of Applied Probability, 1(3):319–
378, 1991.

[8] A. Klenke and L. Mattner. Stochastic ordering of classical discrete
distributions. Advances in Applied probability, 42(2):392–410, 2010.

[9] N. Laoutaris, V. Zissimopoulos, and I. Stavrakakis. On the optimiza-
tion of storage capacity allocation for content distribution. Computer
Networks, 47:409–428, 2003.

[10] M. Mitzenmacher and E. Upfal.Probability and computing: randomized
algorithms and probabilistic analysis. Cambridge University Press,
2005.

[11] K. Suh, C. Diot, J. Kurose, L. Massoulie, C. Neumann, D. Towsley,
and M. Varvello. Push-to-peer video-on-demand system: Design and
evaluation. IEEE Journal on Selected Areas in Communications,
25(9):1706–1716, 2007.

[12] B. R. Tan and L. Massoulie. Brief announcement: Adaptive content
placement for peer-to-peer video-on-demand systems. InProc. of 29th
Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC), Jul. 2010.

[13] B. R. Tan and L. Massoulie. Optimal content placement for peer-to-peer
video-on-demand systems. InProc. of IEEE INFOCOM, Apr. 2011.

[14] S. Tewari and L. Kleinrock. On fairness, optimal download performance
and proportional replication in peer-to-peer networks. InProc. of IFIP
Networking, 2005.

[15] S. Tewari and L. Kleinrock. Proportional replication in peer-to-peer
networks. InProc. of IEEE INFOCOM, 2006.

[16] D. Tse and P. Viswanath.Fundamentals of Wireless Communication.
Cambridge University Press, 2005.

[17] V. Valancius, N. Laoutaris, L. Massoulie, C. Diot, and P. Rodriguez.
Greening the internet with nano data centers. InProc. of the 5th interna-
tional conference on Emerging networking experiments and technologies
(CoNEXT), pages 37–48, 2009.

[18] J. Wu and B. Li. Keep cache replacement simple in peer-assisted VoD
systems. InProc. of IEEE INFOCOM Mini-Conference, 2009.

[19] X. Zhou and C.-Z. Xu. Efficient algorithms of video replication and
placement on a cluster of streaming servers.Journal of Network and
Computer Applications, 30(2):515–540, Apr. 2007.

APPENDIX

A. Proof of Theorem 3

The proof has five sequential stages:

1) The chance for a content to be “good”

Let Nc denote the number of replicas of contentc of class
i. Then,Nc admits a binomial distribution with parameters
(MB, νi

ρBU). We call contentc a “good” content if |Nc −
E[Nc]| < M2/3, i.e.,

∣

∣

∣

∣

Nc −
νiM

ρU

∣

∣

∣

∣

< M2/3. (25)

12

As Nc =
∑MB

i=1 Zi, whereZi ∼ Ber(p) (p , νi
ρBU) are i.i.d.,

according to the Chernoff bound,

Pr

(

Nc ≥ M2/3 +
νiM

ρU

)

≤ e−MB·I(a), (26)

where a ,

(

M2/3 + νiM
ρU

)

/MB and I(x) , supθ{xθ −
ln(E[eθZi])} is the Cramér transform of the Bernoulli random
variableZi. Instead of directly deriving the RHS of inequality
(26), which can be done but needs a lot of calculations (see
Appendix G), we upper bound it by using a much simpler
approach here: For the same deviation, a classical upper bound
on the Chernoff bound of a binomial random variable is
provided by the Chernoff bound of a Poisson random variable
which has the same mean (see e.g. [5]). Therefore, the RHS
of inequality (26) can be upper bounded by

exp

(

−νiM

ρU
· Î
(

1 +
ρU

νiM1/3

))

,

where Î(x) is the Cramér transform of a unit mean Poisson
random variable, i.e.,̂I(x) = x log x − x + 1. By Taylor’s
expansion of̂I(x) atx = 1, the exponent in the last expression
is equivalent to

−νiM

ρU
·
(

1

2

(

ρU

νiM1/3

)2

+ o
(

M−2/3
)

)

= −ρU

2νi
M1/3 + o

(

M1/3
)

= −Θ
(

M1/3
)

.

On the other hand, whenM is large,−M2/3 + νiM
ρU ≥ 0

holds, hence we have

Pr

(

Nc ≤ −M2/3 +
νiM

ρU

)

= Pr

(

MB
∑

i=1

Ẑi ≥ MB · â
)

≤ e−MB·Î(â), (27)

where(−Ẑi) ∼ Ber(p), â , M−1/3/B−p ∈ [−1, 0] whenB
is large, and it is easy to check thatÎ(â) = I(−â). Similarly
as above by upper boundinge−MB·I(−â), we can find that the
exponent of the upper bound is also−Θ

(

M1/3
)

. Therefore,

Pr(contentc is good) ≥ 1− 2e−Θ(M1/3). (28)

2) The number of “good contents” in each class

Denoting byXi the number of good contents in classi, we
want to use a corollary of Azuma-Hoeffding inequality (see
e.g. Section 12.5.1 in [10] or Corollary 6.4 in [5]) to upper
bound the chance of its deviation from its mean. This corollary
applies to a functionf of independent variablesξ1, . . . , ξn, and
states that if the function changes by an amount no more than
some constantc when only one componentξi has its value
changed, then for allt > 0,

Pr(|f(ξ)− E[f(ξ)]| ≥ t) ≤ 2e−2t2/(nc2).

Back to our problem, each independent variableξj corre-
spond to the choice of a content to be placed in a particular

memory slot at a particular box (we index a slot byj for
1 ≤ j ≤ MB), andf(ξ) corresponds to the number of good
contents in classi based on the placementξ, i.e.,Xi = f(ξ).
It is easy to see that in our casec = 1, hence we have

Pr(|Xi − E[Xi]| ≥ t) ≤ 2e−2t2/(MB), ∀t > 0.

Taking t = (MB)2/3 in the above inequality further yields

Pr
(

|Xi − E[Xi]| ≥ (MB)2/3
)

≤ 2e−2(MB)1/3 .

Thus, we have

Pr
(

Xi ≥
(

1− 2e−Θ(M1/3)
)

· αiB − (MB)2/3
)

(a)

≥ Pr
(

Xi ≥ E[Xi]− (MB)2/3
)

≥ Pr
(

|Xi − E[Xi]| < (MB)2/3
)

≥ 1− 2e−2(MB)1/3, (29)

where (a) holds since

E[Xi] = Pr(contentc is good) · αiB

≥
(

1− 2e−Θ(M1/3)
)

· αiB.

Note that in order for the lower bound onXi shown in the
above probability to beΘ(B), M ∼ o(B1/2) is a sufficient
condition.

3) The chance for a box to be “good”

We call a replica “good” if it is a replica of a good content,
and useCi to denote the number of good replicas of classi.
We also call a box “good” if the number of good replicas of
classi held by this box lies within

αiνiM

ρU
±O(M2/3).

As we did for “good contents,” we will also use the Chernoff
bound to prove that a box is good with high probability.

Let Ei represent an event that the numberXi of good
contents within classi satisfies

Xi ≥
(

1− 2e−Θ(M1/3)
)

αiB − (MB)2/3, (30)

which has a probability of at least1− 2e−Ω((MB)1/3), accord-
ing to inequality (29) whenM ∼ o(B1/2). Conditional on
Ei, according to the lower bound in inequality (25) (i.e., the
definition of “good contents”) and inequality (30), we have

Ci ≥
(

νiM

ρU
−M2/3

)(

(

1− 2e−Θ(M1/3)
)

αiB

−(MB)2/3
)

= MB · αiνi
ρU

(

1−O(M−1/3 +M2/3B−1/3)
)

.

(31)

On the other hand, from the upper bound in inequality (25)
and the factXi ≤ αiB, we obtain that

Ci ≤ MB · αiνi
ρU

(

1 +O(M−1/3)
)

. (32)

13

Conditional onEi, to constitute a box, sample without re-
placement from the determined content replicas. Denote the
number of good replicas of classi stored in a particular box
(say, boxb) by ζi, which actually represents the number of
good replicas in theM samples sampled without replacement
from all the MB replicas, among whichCi are good ones
(conditional onEi). This means that, conditional onEi, ζi
follows a hypergeometric distributionH(MB,Ci,M). It can
be found that (see e.g. Theorem 1 in [8]) conditional onEi,
Hi ≤st ζi ≤st Gi. Here, “≤st” represents stochastic ordering,
and

Gi ∼ Bin

(

M,
αiνi
ρU

(

1 +O(M−1/3)
)

)

,

Hi ∼ Bin

(

M,
αiνi
ρU

(

1−O(M−1/3 +M2/3B−1/3)
)

)

,

where the second parameters of the distributions ofGi and
Hi are determined according to inequalities (32) and (31)
respectively.

We will see why we need these two “binomial bounds” on
ζi. By definition,

Pr(box b is not good)

= Pr

(

⋃

i∈I

{
∣

∣

∣

∣

ζi −
αiνiM

ρU

∣

∣

∣

∣

≥ O(M2/3)

}

)

≤
∑

i∈I

Pr

(
∣

∣

∣

∣

ζi −
αiνiM

ρU

∣

∣

∣

∣

≥ O(M2/3)

)

, (33)

where for alli ∈ I,

Pr

(
∣

∣

∣

∣

ζi −
αiνiM

ρU

∣

∣

∣

∣

≥ O(M2/3)

)

= Pr

(∣

∣

∣

∣

ζi −
αiνiM

ρU

∣

∣

∣

∣

≥ O(M2/3), Ei
)

+Pr

(∣

∣

∣

∣

ζi −
αiνiM

ρU

∣

∣

∣

∣

≥ O(M2/3), Ec
i

)

≤ Pr

(∣

∣

∣

∣

ζi −
αiνiM

ρU

∣

∣

∣

∣

≥ O(M2/3)

∣

∣

∣

∣

Ei
)

· Pr (Ei)

+Pr (Ec
i) . (34)

By definition of stochastic ordering,

Pr

(
∣

∣

∣

∣

ζi −
αiνiM

ρU

∣

∣

∣

∣

≥ O(M2/3)

∣

∣

∣

∣

Ei
)

≤ Pr

(

Gi ≥
αiνiM

ρU
+O(M2/3)

)

+Pr

(

Hi ≤
αiνiM

ρU
−O(M2/3)

)

(a)

≤ 2e−Θ(M1/3),

where (a) can be obtained using a similar Chernoff bounding
approach as forNc in Stage 1 of this proof. Thus, continuing

from inequality (34), we further have

Pr

(
∣

∣

∣

∣

ζi −
αiνiM

ρU

∣

∣

∣

∣

≥ O(M2/3)

)

≤ 2e−Θ(M1/3) · Pr(Ei) + (1− Pr (Ei))
= 1− (1 − 2e−Θ(M1/3)) Pr (Ei)
≤ 1− (1 − 2e−Θ(M1/3))(1 − 2e−Ω((MB)1/3))

= 2e−Θ(M1/3) − 2e−Ω((MB)1/3). (35)

Putting inequality (35) back to inequality (33) immediately
results in

Pr(box b is good) ≥ 1− 2|I|e−Θ(M1/3). (36)

4) The number of “good boxes”

We use a similar approach as in Stage 2 to bound the
number of good boxes, sayY , which can be represented as a
functiong(ξ) whereξ = (ξ1, ξ2, · · · , ξMB) is the same content
placement vector defined in Stage 2. Still,g(ξ) changes by an
amount no more than1 when only one componentξi has its
value changed, then for allt > 0, Pr(|Y − E[Y]| ≥ t) ≤
2e−2t2/(MB), and takingt = (MB)2/3 further yields

Pr
(

|Y − E[Y]| ≥ (MB)2/3
)

≤ 2e−2(MB)1/3 .

Similarly as we obtain inequality (29), we finally come to

Pr
(

Y ≥ B
(

1− 2|I|e−Θ(M1/3)
))

≥ 1− 2e−2(MB)1/3 .

(37)

5) The performance of a loss network

Finally, consider the performance of the loss network
defined by the “Counter-Based Acceptance Rule.” We
introduce an auxiliary system to establish an upper bound
on the rejection rate. In the auxiliary system, upon arrival
of a request for contentc, L different requests are mapped
to L distinct boxes holding a replica ofc, but here they are
accepted or rejected individually rather than jointly. Letting
Zb (respectively,Z ′

b) denote the number of requests associated
to box b in the original (respectively, auxiliary) system, one
readily sees thatZb ≤ Z ′

b at all times and all boxes and for
each boxb, the processZ ′

b evolves as a one-dimensional loss
network. We now want to upper bound the overall arrival rate
of requests to a good box:

(a) Non-good contents
Assume that upon a request arrival, we indeed pickL

content replicas, rather thanL distinct boxes holding the
requested content (as specified in the acceptance rule). This
entails that, if two replicas of this content are present at one
box, then this box can be picked twice. However, since a
vanishing fraction of boxes will have more than one replicas
of the same content whenM ≪

√

(mini αi)B (as proved
in Lemma 2), we can strengthen the definition of a “good”
box to ensure that, on top of the previous properties, a good
box should holdM distinct replicas. It is easy to see that the

14

fraction of good boxes will still be of the same order as with
the original weaker definition.

With these modified definitions, consider one non-good
contentc of classi cached at a good box. Its unique replica
will be picked with probabilityL/Nc when the sampling of
L replicas among theNc existing ones is performed. Thus,
since we ignore requests for all contentc with Nc ≤ M3/4

(according to Assumption 1), the request rate will be at most
νiLM

−3/4.
Besides, there are at mostO(M2/3) non-good content

replicas held by one good box. The reason is as follows: By
definition, a good box holds at least

∑

i∈I

(

αiνiM

ρU
−O(M2/3)

)

= M −O(M2/3) (38)

good content replicas among all classes, so the remaining
slots, being occupied by non-good content replicas, are at most
O(M2/3). Therefore, the overall arrival rate of requests for
non-good contents to a good box is upper bounded by

νnon-good= O(M2/3 · LM−3/4) = O(LM−1/12). (39)

(b) Good contents
The rate generated by a good contentc of classi is νiL/Nc.

Now, by definition of a good content, one has:

Nc ≥
νiM

ρU
(1 −O(M−1/3)).

This entails that the rate of requests for this content is upper
bounded by

ρLU

M
(1 +O(M−1/3)).

By definition of a “good box,” there are at mostαiνiM/ρU+
O(M2/3) good content replicas of classi cached in this good
box. Therefore, the overall arrival rate of requests for good
contents to a good box is upper bounded by

νgood =
∑

i∈I

(

ρLU

M
(1 +O(M−1/3))

)

×
(

αiνiM

ρU
+O(M2/3)

)

= (ρLU)(1 +O(M−1/3)). (40)

To conclude, for any good boxb, the processZ ′
b evolves

as a one-dimensional loss network with arrival rate no larger
than

ν = νnon-good+ νgood= ρLU +O(LM−1/12),

by combining the two results in (39) and (40).

Next, we are going to upper bound the loss probability
of Z ′

b. Since ν is an upper bound on the arrival rate, the
probability thatZ ′

b = LU is upper bounded byE(ρLU +
O(LM−1/12), LU). One can actually further upper bound this
Erlang function bye−Θ(L). To see this, let us first rewrite
the loss probability (Erlang function) of a general 1-D loss

network, sayE(λ,C), as a certain conditional probability of
S ∼ Poi(λ), i.e.,

E(λ,C) = Pr(S = C|S ≤ C) =
Pr(S = C)

Pr(S ≤ C)
.

Using the Chernoff bound, we havePr(S ≥ C) ≤ e−λI(C/λ),
whereI(x) = x log x− x+ 1, hence

E(λ,C) ≤ Pr(S ≥ C)

1− Pr(S ≥ C)
≤ e−λI(C/λ)

1− e−λI(C/λ)
.

Back to the Erlang function in our problem,I(C/λ) = I((ρ+
O(M−1/12))−1), hence,

Pr(Z ′
b = LU) ≤ E(ρLU +O(LM−1/12), LU) ≤ e−Θ(L),

(41)
where the second inequality holds under the assumption that
ρ < 1 (otherwise, the exponent will become0 or +Θ(L)).

The number of good replicas in good boxes is, due to
inequality (37) and equation (38), at leastMB(1−O(M−1/3)),
with a high probability (at least1−2e−2(MB)1/3). On the other
hand, the total number of replicas of good contents is at most
MB, which is the total number of replicas (or available cache
slots).

Now pick some smallǫ ∈ (0, 1/3) and let X̃ denote the
number of good contents which have at leastM2/3+ǫ replicas
outside good boxes. Then necessarily, with a probability ofat
least1− 2e−2(MB)1/3 ,

X̃M2/3+ǫ ≤ MB −MB(1−O(M−1/3)) = O(BM2/3),

i.e., X̃ ≤ O(BM−ǫ). According to inequality (29), the total
number of good contents isΘ(B) (specifically, very close to
|C| = αB) with a probability of at least1 − 2|I|e−2(MB)1/3 ,
hence we can conclude that, with high probability, for a
fraction of at least1−O(M−ǫ) of good contents, each of them
has at least a fraction1− O(M−1/3+ǫ) of its replicas stored
in good boxes (since a good content hasνi

ρUM ± O(M2/3)

replicas in total by definition). We further usẽC to represent
the set of such contents.

Recall thatAc was defined in Subsection IV-B as the steady-
state probability of accepting a request for contentc in the
original system. For allc ∈ C̃,

Ac ≥ Pr(all theL sampled replicas are in good boxes)

×Pr(Zb < LU, ∀b s.t. box b is sampled)
(a)

≥
(

1−O(M−1/3+ǫ)
)L

×Pr(Z ′
b < LU, ∀b s.t. box b is sampled).

(b)

≥
(

1−O(M−1/3+ǫ)
)L

·
(

1− Le−Θ(L)
)

.

(42)

Here, (b) is obtained according to inequality (41). The argu-
ment why (a) holds is as follows: We haveNc ≈ νiM/(ρU)
replicas (assuming that contentc is of classi), among which
N ′

c = Nc(1 − O(M−1/3+ǫ)) are in good boxes. Then, the

15

probability thatL samples fall in the good boxes can be written
explicitly as

N ′
c(N

′
c − 1) · · · (N ′

c − L+ 1)

Nc(Nc − 1) · · · (Nc − L+ 1)
,

which can be approximated as the first part on the RHS we
write above, under the assumption thatL ≪ M . The second
part is due to the fact thatZ ′

b ≤ Zb for all box b.
It should be recalled that within this stage of proof, finally

coming to inequality (42) actually needs everything to be
conditional on the following events:

• The number of good boxes isΘ(B);
• The number of good contents isΘ(B);
• A box cachesM distinct replicas,

and asB,M → ∞ and M ≪
√

(mini αi)B, all of them
have high probabilities. Additionally,̃C p→ C asB,M → ∞.
Therefore, further lettingL → ∞ but keepingL ≪ M1/3−ǫ,
we will find that the RHS of inequality (42) is approximated
as

1−O(LM−1/3+ǫ)− Le−Θ(L) ≈ 1,

and then conclude that the requests for almost all the contents
will have near-zero loss.

B. Proof of Equivalence between Feasibility Conditions (1)
and (2)

1) Sufficiency of Condition (2):We use Hall’s theorem to
prove the sufficiency.

[Hall’s theorem] SupposeJ = {J1, J2, · · · } is a collection of
sets (not necessarily countable). A SDR (“System of Distinct
Representatives”) forJ is defined asX = {x1, x2, · · · },
where xi ∈ Ji. Then, there exists a SDR (not necessarily
unique) iff. J meets the following condition:

∀ T ⊆ J , |T | ≤ |
⋃

A∈T

A|. (43)

⋄
In our P2P VoD system, denote the content set asC =

{c1, c2, · · · , cN}. Given the ongoing download services of
each content{ni}Ni=1, we get a “distinguishable content set”

C̄ = {c(1)1 , c
(2)
1 , · · · , c(n1)

1 ; c
(1)
2 , c

(2)
2 , · · · , c(n2)

1 ; · · · ;
c
(1)
N , c

(2)
N , · · · , c(nN)

N },

wherec(k)i represents thek-th download service of contenti
for 1 ≤ k ≤ ni, and has its “potential connection set”

J
(k)
i = {l(j)b : 1 ≤ j ≤ U, ci ∈ b, b ∈ B},

i.e., the set of all the connections of those boxes which have
contentci. A collection of the “potential connection sets” for
all {c(k)i } is then

J = {J (1)
1 , J

(2)
1 , · · · , J (n1)

1 ; · · · ; J (1)
N , J

(2)
N , · · · , J (nN)

N },
and a SDR forS is

X = {x(1)
1 , x

(2)
1 , · · · , x(n1)

1 ; · · · ;x(1)
N , x

(2)
N , · · · , x(nN)

N },

s.t. x(k)
i ∈ J

(k)
i , which means eachc(k)i is affiliated with a

distinct connection (i.e., a feasible solution in our model).
Now we want to prove the existence of such a SDR, i.e.,

to prove equation (43). For∀ T ⊆ J , there is a one-to-one
mapping betweenT and a S̄ ⊆ C̄. Further, thisS̄ can be
mapped to aS ⊆ C where

S = {ci : ∃1 ≤ k ≤ ni, s.t. c
(k)
i ∈ S̄},

i.e., S is the set of all contents considered in̄S without
considering multiple services of each content. Then,∀ T ⊆ J ,

RHS = |
⋃

J
(k)
i ∈T

J
(k)
i | =

∑

b:∃ci∈S s.t. ci∈b

U

= U |{b ∈ B : S ∩ Jb 6= ∅}|

and

LHS = |T | = |S̄| ≤
∑

ci∈S

ni.

Therefore, if

∀S ⊆ C,
∑

ci∈S

ni ≤= U |{b ∈ B : S ∩ Jb 6= ∅}|

holds, then equation (43) holds. The sufficiency is proved.

2) Necessity of Condition (2):For anyS ⊆ C,

∑

c∈S

nc =
∑

c∈S

∑

b:c∈Jb

Zcb =
∑

b: ∃c∈S
s.t. c∈Jb

∑

c∈S∩Jb

Zcb

(a)

≤
∑

b: ∃c∈S s.t. c∈Jb

U = U |{b ∈ B : S ∩ Jb 6= ∅}| ,

where the inequality (a) is due to the second constraint in
condition (1). Hence, the necessity is proved.

C. Approximation to Proportional-to-Product Placement Us-
ing Bernoulli Sampling

An alternative sampling strategy to get the proportional-to-
product placement is as follows:

To push contents to boxb (1 ≤ b ≤ B), the server will

1. GenerateC independent Bernoulli random variables
Xc ∼ Ber(pc) for all c ∈ C, wherepc = βν̂c/(1+βν̂c),
ν̂c is the normalized version ofνc, andβ is a customized
constant parameter.

2. If
∑

c∈C Xc = M (which means a valid cluster of size
M is generated), push contentc to box b if Xc = 1;
Otherwise, go back to Step 1.

We now analyze why this scheme works: after generating a
valid size-M subset, the probability that this subset is a certain

16

subsetGj equals

Pr(Xc = 1, ∀c ∈ Gj ; Xc = 0, ∀c 6∈ Gj |
∑

c∈C

Xc = M)

=

∏

c∈Gj
pc ·

∏

c 6∈Gj
(1− pc)

Pr(
∑

c∈C Xc = M)

=
∏

c∈Gj

pc
1− pc

·
(

∏

c∈C pc

Pr(
∑

c∈C Xc = M)

)

=
∏

c∈Gj

ν̂c/Z,

whereZ = Pr(
∑

c∈C Xc = M)/(βM
∏

c∈C pc), which actu-
ally equals the normalizing factor for

∏

c∈Gj
ν̂c.

We then consider the computational complexity of this
approximation algorithm. Assuming that{ν̂c} is sorted in the
descending order, we have

Pr(
∑

c∈C

Xc = M) ≥
M
∏

c=1

pc ·
C
∏

c=M+1

(1− pc)

=

∏M
c=1 βν̂c

∏C
c=1(1 + βν̂c)

, P ∗.

So the computational complexity is upper bounded by
O(BC/P ∗). Note that the constant parameterβ can be
adjusted to get a higherPr(

∑

c∈C Xc = M) in order to reduce
computational complexity. To achieve this, we can just choose
a β which maximizes its lower boundP ∗, so

∂ logP ∗

∂β
=

M

β
−

C
∑

c=1

ν̂c
1 + βν̂c

= 0. (44)

The server can use any numerical methods (e.g., Newton’s
method) to seek a root of equation (44). In fact, this lower
boundP ∗ on Pr(

∑

c∈C Xc = M) is not tight, since it is just
the largest item in the sum expression. When the popularity
is close to uniformness (e.g., in a zipf-like distribution,α
is small), this largest item is no longer dominant, so the
lower boundP ∗ is quite untight, which means we actually
overestimate the computation complexity by only evaluating
its upper bound. However, this will not affect the real gain we
obtain after choosing the optimalβ according to equation (44).

Recall that we also proposed a simple sampling strategy in
Section IV-A. It is easy to see that when some contents are
much more popular than the others (e.g., zipf-likeα is large),
the probability that duplicates appear in one size-M sample
is high, hence largely increases the number of resampling.
Thus, it would be faster if we choose the Bernoulli sampling.
However, when the popularity is quite uniform, the simple
sampling works very well. An extreme case is that under the
uniform popularity distribution,

Pr{a valid size-M subset} =

(

C
M

)

·M !

CM
=

M−1
∏

i=1

(

1− i

C

)

,

which shows that whenC is large, you can get a valid sample
almost every time.

D. Detailed Implementation in the Simulations

1) A Heuristic Repacking Algorithm:We first describe the
concept of “repacking.” When the cache sizeM = 1, all the
bandwidth resources at a certain box belongs to the content
the box caches. WhenM ≥ 2, however, this is not the case:
all the contents cached in one box are actually competitors for
the bandwidth resources at that box. Let’s consider a simple
example in whichB = 2, M = 2 andU = 1: Box 1 which
caches content1 and 2 is serving a download of content2,
while box 2 which caches content2 and 3 is idle. When a
request for content1 comes, the only potential candidate to
serve it is box1, but since the only connection is already
occupied by a download of content2, the request for content
1 has to be rejected. However, if this ongoing download can be
“forwarded” to the idle box2, the new request can be satisfied
without breaking the old one. We call this type of forwarding
“repacking.”

In the the feasibility condition (1) and its equivalent form
(2), we actually allow perfect repacking to identify a feasible
{nc}. In a real system, perfect repacking needs to enumerate
all the possible serving patterns and choose the best one based
on some criterion, which is usually computationally infeasible.
We then propose a heuristic repacking algorithm which is not
so complex but can achieve similar functionality and improve
performances, although imperfect.

Several variables need to be defined before we describe the
algorithm:

• nc: the system-wide ongoing downloads of contentc,
which does not count the downloads from the server.

• Bk
c : The set of boxes which have contentc (“potential

candidate boxes”) andk free connections, for0 ≤ k ≤ U .
• Dc: number of boxes which has contentc. Dc =
∑U

k=0 |Bk
c |.

• ub: aU -dimensional vector, of which thei-th component
represents the content boxb is using itsi-th connection
to upload (a value0 represents a free connection).

• co: the “orphan content” which is affiliated with a new
request or an ongoing download but has not been assigned
with any box.

• Co: the set of contents which has once been chosen as
orphan contents.

• tR: the number of repacking already done.

Note that when choosing a box to serve a request, load bal-
ancing is already considered, which to some extent reduces the
chance of necessary repacking in later operations. However,
repacking is still needed for an incoming request for content
c as soon as∪k>0Bk

c = ∅.

Repacking Algorithm

After getting a request for contentc while ∪k>0Bk
c = ∅, the

server

1. Initialize co := c, Co := {c}, andtR := 0.
2. Let C̄ = {c′ : nc′/Dc′ > nco/Dco and c′ 6∈ Co}, i.e.,

a set of contents which haven’t become orphans during

17

this repacking process and of which the utilization factor
(may be larger than1) is larger than that of the current
orphan contentco. If C̄o = ∅, regardco as a loss and
TERMINATE.

3. Choosec∗ = argmaxc′∈C̄{nc′/Dc′}. Uniformly pick
one (box, connection) pair from

{(b, i) : b ∈ B0
c , c∗ is the i-th component ofub}.

4. Use the chosen boxb and itsi-th connection to continue
uploading the remaining part of contentco. At the
same time,c∗ which was served using that connection
becomes a new orphan, i.e.,co := c∗. Updateub and
{nc}. Set tR := tR + 1.

5. If ∪k>0Bk
co 6= ∅, i.e., there exists a free connection to

serve the newco, then use the load-balancing-based box
selection rule to select a box to continue uploading the
remaining part ofco. The repacking process is perfect
(no remaining orphan) and TERMINATE. Otherwise,

• If tR = tmax
R , a customized algorithm parameter

(0 ≤ tmax
R ≤ C), regardco as a loss and TERMI-

NATE.
• Otherwise, setCo := Co + {co}, and go to Step 2.

2) A Practical Issue in Cache Update:When a boxb is
chosen for cache update (and it does not hold the content
c corresponding to the request), it might still be uploading
contentc′ which is to be replaced. This fact is not captured by
the Markov chain model. In practice, those ongoing services
must be terminated. Since we have introduced the repacking
scheme, they become “orphans” ready for repacking. We
implement the procedure as follows:

1. Rank these orphans by their remaining service time in
the ascending order, i.e., the original download which is
sooner to be completed is given higher priority.

2. Do repacking one by one until one orphan fails to be
repacked. Note that here the repacking algorithm starts
from Step 5, since there may already be some boxes
with both contentc and free connections.

E. Proof of Theorem 2

The Lagrangian of OPT 2 is

L(m̃,λ,x;u,v,y, z,w, η, γ)

=
∑

c∈C

[

ρcm̃c + xc − uc(m̃c − 1)− vc(λc − m̃c)

−yc(xc − λc)− zc(xc − ρc + ρcm̃c) + wcλc

]

−η

(

∑

c∈C

λc − 1

)

− γ

(

∑

c∈C

m̃c −M

)

.

The KKT condition includes the feasible set defined in OPT
2 and the following:

∂L

∂xc
= 1− yc − zc = 0, ∀c;

∂L

∂m̃c
= ρc − uc + vc − ρczc − γ = 0, ∀c;
∂L

∂λc
= −vc + yc − η + wc = 0, ∀c;

uc(m̃c − 1) = 0, uc ≥ 0, ∀c;
vc(λc − m̃c) = 0, vc ≥ 0, ∀c;
yc(xc − λc) = 0, yc ≥ 0, ∀c;

zc(xc − ρc + ρcm̃c) = 0, zc ≥ 0, ∀c;
wcλc = 0, wc ≥ 0, ∀c.

We then put the solution stated in the theorem into KKT
condition to check whether the condition is satisfied. The
analysis is as follows:

• For 1 ≤ c ≤ M − 1, sincem̃c = 1 andλc = xc = 0, we
obtain thatvc = 0, yc + zc = 1, ρc(1 − zc) = uc + γ,
and yc = η − wc. Letting wc = 0, we further have:
uc = ρcη−γ, yc = η, zc = 1−η. To keepuc, yc, zc ≥ 0,
we must haveη ∈ [0, 1] andγ ≤ ρcη, for 1 ≤ c ≤ M−1.
Thus, since{ρc} are also ranked in the descending order,
we have

γ ≤ ρ
M−1

η. (45)

• For M ≤ c ≤ c∗, sincem̃c = λc = xc = ρc/(1 + ρc),
we obtain thatuc = wc = 0, yc + zc = 1, ρc(1− zc) =
γ − vc, yc = η + vc. We further have:

vc =
γ − ρcη

ρc + 1
, yc =

η + γ

ρc + 1
, zc = 1− η + γ

ρc + 1
.

To keepvc, yc, zc ≥ 0, we must haveρcη ≤ γ ≤ ρc +
1− η, for M ≤ c ≤ c∗. Thus,

ρM η ≤ γ ≤ ρc∗ + 1− η. (46)

• For c = c∗ + 1, whenmc = 0, it degenerates to the next
case. Wheñmc > 0, sincem̃c = λc = xc < ρc(1− m̃c),
we obtain thatuc = wc = zc = 0, yc = 1, ρc + vc =
γ, η + vc = 1. We further have

γ = ρc∗+1 + 1− η. (47)

• For c∗+2 ≤ c ≤ C, sincem̃c = λc = xc = 0, we obtain
thatuc = zc = 0, yc = 1, vc = γ−ρc, wc = η+vc−1 =
η + γ − ρc − 1. To keepvc, wc ≥ 0, and due to the fact
thatη ∈ [0, 1], we must haveγ ≥ ρc, for c∗+2 ≤ c ≤ C.
Thus,

γ ≥ ρc∗+2. (48)

For inequalities (45), (46), (48) and equation (47) to hold
simultaneously, we can choose aη which satisfies

ρc∗+1 + 1

ρ
M−1

+ 1
≤ η ≤ ρc∗+1 + 1

ρ
M

+ 1
,

which also satisfiesη ∈ [0, 1]. Therefore, the theorem is
proved.

18

It should be mentioned that when
∑c∗

c=M m̃c = 1, i.e.,
m̃c∗+1 = 0, the case “c = c∗ + 1” can be combined with
the next case “c∗+2 ≤ c ≤ C”, hence equation (47) does not
exist while inequality (48) is changed toγ ≥ ρc∗+1. Then, we
can just choose aη which satisfies

0 ≤ η ≤ ρc∗+1 + 1

ρ
M

+ 1
.

F. Storage of Segments and Parallel Substreaming

We have mentioned before that compared to the “storage
of complete contents and downloads by single streaming”
setting, a more widely used mechanism in practice is that
each box stores one specific segment of a video content
and a download (streaming) comprises parallel substreaming
from different boxes. To model this mechanism, we have the
following simplifying assumptions: Each content is divided
into K segments with equal length which are independently
stored. Each box can store up toM segments (actually it
does not matter if we keep the original storage space of each
box, i.e., M complete contents, which now can holdMK
segments, since the storage space is a customized parameter)
and theseM segments do not necessarily belong toM distinct
contents. The bandwidth of each box is kept asU , so now
each box can accommodateUK parallel substreaming, each
with download rate1/K (the average service duration is still
kept as1 because each segment is1/K of the original content
length). The definition of “traffic load”ρ is then the same as in
equation (6). A request for a content will be divided into sub-
requests submitted to the boxes holding those corresponding
segments of this content, generatingK parallel substreaming
flows in total (one box can serve more than one substreaming
service for this request if it caches more than one distinct
segments of this content).

Let θ represent a segment andθ ∈ c indicate thatθ is a
segment of contentc. Recall that we usenc to denote the
number of concurrent downloads (now called “streams”) of
contentc in the network. We further usenθ to denote the
number of substreams corresponding to segmentθ.

Now the original feasibility constraint (1) becomes
∑

b: θ∈Jb

zθb = nθ, ∀ θ ∈ Θ;

∑

θ: θ∈Jb

zθb ≤ UK, ∀ b ∈ B, (49)

whereΘ represents the whole set of segments andzθb denotes
the the number of concurrent substreams downloading segment
θ from boxb. It is easy to see that the equivalent version which
can be proved by Hall’s theorem becomes:

∀ S ⊆ Θ,
∑

θ∈S

nθ ≤ KU |{b ∈ B : S ∩ Jb 6= ∅}| , (50)

where with a little abuse of notation,S is used to denote a
subset ofΘ, instead ofC as before.

Since we have assumed that video duration and video
streaming rate are all the same, one naturally hasnθ = nc for
all θ ∈ c. If we let randomness exist in the service duration,

then within one stream, some substreams may complete earlier
than the others. Therefore, the above equality needs to be
added as a constraint (and used to come up with the following
result), i.e., the bandwidth for theK substreams should be
reserved until the whole streaming is completed.

Then, in the proof of the optimality of “proportional-to-
product” placement for DSN, every expression keeps the same,
except that the feasibility constraint (10) is changed to

∀ S ⊆ Θ,
∑

θ∈Θ

∑

c:θ∈c

x(B)
c ≤

∑

j:j∩S6=∅

mjBUK, (51)

and the “proportional-to-product” placement{mj} is now
with respect to each segment, i.e.,mj =

∏

θ∈j ν̂θ/Z for
all j ⊆ Θ s.t. |j| = M , where Z is the normalizing
constant and̂νθ = ν̂c if θ ∈ c. With an observation that
∑

θ∈Θ ν̂θ = K
∑

c∈C ν̂c = K, we can still come to an
inequality same with inequality (17), except thatc andC are
replaced byθ andΘ respectively. All the succeeding steps are
exactly the same in the proof of optimality.

G. Another Approach to Bound the Chance of “Good Con-
tents” in Proving Theorem 3

At the first stage of proving Theorem 3, we mentioned that
we can also directly derive the Chernoff bound on the RHS of
inequality (26) to get the result. The derivation is given below:

Recall thatI(x) = supθ{xθ − ln(E[eθZi])} is the Cramér
transform of the Bernoulli random variableZi. It is easy to
check that

I(x) =

{

a ln
(

x
p

)

+ (1− x) ln
(

1−x
1−p

)

if x ∈ [0, 1]

+∞ else

Also recall thata ,

(

M2/3 + νiM
ρU

)

/MB = M−1/3/B + p,

wherep , νi
ρBU . Since we are considering a largeB, a ∈ [0, 1]

holds. Thus, denotinḡp = 1 − p for brevity, the exponent of
RHS of inequality (26) reads

−MB · I(a)

= −(pMB +M2/3) · ln
(

1 +
1

pM1/3B

)

−(p̄MB −M2/3) · ln
(

1− 1

p̄M1/3B

)

= −pMB +M2/3

pM1/3B
+

pMB

2(pM1/3B)2

+
p̄MB −M2/3

p̄M1/3B
+

p̄MB

2(p̄M1/3B)2
+ o(M1/3)

= −M1/3

2B

(

1

p
+

1

p̄

)

+ o(M1/3)

= −M1/3

2

(

ρU

νi
+

1

B(1− νi
ρU)

)

+ o(M1/3)

= −Θ
(

M1/3
)

. (52)

With similar steps as above, we can show the exponent
exponent of the RHS of inequality (27) is also−Θ

(

M1/3
)

.
Therefore, inequality (28) is proved.

	I Introduction
	II Related Work
	III Model Description
	IV Optimal Content Placement in Distributed Server Networks
	IV-A The Proportional-to-Product Placement Strategy
	IV-B A Loss Network Under Many-User Asymptotics
	IV-C Optimality of Proportional-to-Product Content Placement
	IV-D Simulation Results

	V Optimal Content Placement in Pure Peer-to-Peer Networks
	VI Large Catalogue Model
	VI-A Necessity of Unbounded Storage
	VI-B Efficiency of Proportional-to-Product Placement

	VII Conclusion
	References
	Appendix
	A Proof of Theorem 3
	B Proof of Equivalence between Feasibility Conditions (1) and (2)
	B1 Sufficiency of Condition (2)
	B2 Necessity of Condition (2)

	C Approximation to Proportional-to-Product Placement Using Bernoulli Sampling
	D Detailed Implementation in the Simulations
	D1 A Heuristic Repacking Algorithm
	D2 A Practical Issue in Cache Update

	E Proof of Theorem 2
	F Storage of Segments and Parallel Substreaming
	G Another Approach to Bound the Chance of ``Good Contents'' in Proving Theorem 3

