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Abstract—In this paper, we address the problem of content
placement in peer-to-peer systems, with the objective of nx&

mizing the utilization of peers’ uplink bandwidth resources. We
consider system performance under a many-user asymptoti¢\Ve
distinguish two scenarios, namely “Distributed Server Netwvorks” @ @ ? %

(DSN) for which requests are exogenous to the system, and “Ru

P2P Networks” (PP2PN) for which requests emanate from the @ @

peers themselves. For both scenarios, we considerd@ss network ? %
model of performance, and determine asymptotically optiméa @

content placement strategies in the case of a limited conten ‘

catalogue. We then turn to an alternative “large catalogue”

scaling where the catalogue size scales with the peer poptita. (a) Distributed Server Network (b) Pure Peer-to-Peer Network
Under this scaling, we establish that storage space per peer
must necessarily grow unboundedly if bandwidth utilization is
to be maximized. Relating the system performance to propeigs
of a specific random graph model, we then identify a content

placement strategy and a request acceptance policy whichiftly  accepted, uplink bandwidth is used to serve them at the
maximize bandwidth utilization, provided storage space pepeer ;a4 streaming rate (potentially via parallel substredrom
grows unboundedly, although arbitrarily slowly, with system size. . . . .
different peers). They are rejected if their acceptanceldvou
require disruption of an ongoing request service. Rejected
|. INTRODUCTION requests are then handled by the data center. Alternatidesno

The amount of multimedia traffic accessed via the Interneif operation could be envisioned (e.g., enqueueing of reique
already of the order of exabyteSs0(®) per month, is expected service at rates distinct from the streaming rate, joinviser
to grow steadily in the coming years. A peer-to-peer (P2BYy peers and data center,...). However the proposed model is
architecture, whereby peers contribute resources to stuppappealing for the following reasons. It ensures zero waitin
service of such traffic, holds the promise to support sud¢ime for requests, which is desirable for VoD application;
growth more cheaply than by scaling up the size of dagalysis is facilitated, since the system can be modeled as
centers. More precisely, a large-scale P2P system basedadass network[7], for which powerful theoretical results are
resources of individual users can absorb part of the load tleyailable; and finally, as our results show, simple placémen
would otherwise need to be served by data centers. strategies ensure optimal operation in the present model.

In the present work we address specifically the Video-on-In the P2P system we are considering, there are two kinds
Demand (VoD) application, for which the critical resourcesf peers: boxes and pure users. Their difference is thatdoxe
at the peers are storage space and uplink bandwidth. @arcontribute resources (storage space and uplink banwidt
objective is to ensure that the largest fraction of traffic i® the system, while pure users do not. This paper focuses on
supported by the P2P system. More precisely, we look ftre following two architectures (illustrated in Figirke 1):
content placement strategies that enable content dowerlsad , Distributed Server Network (DSN): Requests to down-
to maximally use the peers’ uplink bandwidth, and hence max- |oad contents come only from pure users, and can be
imally offload the servers in the data centers. Such stegegi  regarded as external requests.
must adjust to the distinct popularity of video contentsaas , pure P2P Network (PP2PN):There are no pure users

more popular content should be replicated more frequently. in the system, and boxes do generate content requests,
We consider the following mode of operation: Video re-  which can be regarded as “internal”.

quests are first submitted to the P2P system;

Fig. 1: Two architectures of P2P VoD systems

if they ACThe rest of the paper is organized as follows: We review
part of the results developed in this paper have made thetaifja “brief relatfad work in Secthlill! and introduce our system model in
announcement” in [12] and further shown in more detail[in}[13 Section[Tll. For the Distributed Server Network scenarie t
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so-called “proportional-to-product” content placemenategy Boufkhad et al.[[B] considered P2P VoD from yet another
is introduced and shown to be optimal in a large system limitewpoint, looking at the number of contents that can be
in Sectior 1V, where extensive simulation results are alee p simultaneously served by a collection of peers.

vided. For the Pure P2P Network scenario, a distinct placéme Content placement problem has also been addressed towards
strategy is introduced and proved optimal in Secfidn V. ®hegther different optimization objectives. For example, Alde
results apply for a catalogue of contents of limited size. Ag a|. [1] aim at minimizing total delivery cost in the netior
alternative model in which catalogue size grows with therusgnd zhou et al.[T19] target jointly maximizing the average
population is introduced in Sectidn VI, where it is show@ncoding bit rate and average number of content replicas

that the “proportional-to-product” placement strategmains  as well as minimizing the communication load imbalance of
optimal in the DSN scenario in this large catalogue settingideo servers.

for a suitably modified request management technique. Cache dimensioning problem is considered [ih [9], where

Laoutaris et al. optimized the storage capacity allocation
Il. RELATED WORK for content distribution networks under a limited total leac

The number and location of replicas of distinct conterfior@ge budget, so as to reduce average fetch distance for

objects in a P2P system have a strong impact on such systefi& reduest contents with consideration of load balanciny a
performance. Indeed, together with the strategy for hagdliWorkload constraints on a given node. Our paper takes a
incoming requests, they determine whether such requeg'gerent perspective, focus_m_g on many-user z_;\symptom:s .
must either be delayed, or served from an alternative, mdft¢ results show that the finite storage capacity per noc’i,e_ls
expensive source such as a remote data center. Requests wifiver @ bottleneck (even in the “large catalogue model’, it
cannot start service at once can either be enqueued (we tR&? Scales to infinity more slowly than the system size).
speak of a waiting model) or redirected (we then speak of aThere are obvious similarities between our present objecti
loss model). and the above works. However, none of these identifies explic
Previous investigations of content placement for P2P \ogPntent placement strategies at the level of the indivigeats,
systems were conducted by Suh etfall [11]. The problem taokbich lead to minimal fraction of redirected (lost) requseist
led in [L1] differs from our current perspective, in partano & setup with dynamic arrivals of requests.
optimization of placement with respect to content poptyjari  Finally, there is a rich literature on loss networks (see in
was attempted in this work. Performance analysis of bogarticular Kelly [7]); however our present concern of opim
queueing and loss models are considered_in [11]. Valancing placement to minimize the amount of rejected traffic in a
et al. [17] considered content placement dependent on gbnteorresponding loss network appears new.
popularity, based on a heuristic linear program, and vigidla
this heuristic’s performance in a loss model via simulagion
Tewari and Kleinrock [[14], [[15] advocated to tune the 1. M ODEL DESCRIPTION
number of replicas in proportion to the request rate of the
corresponding content, based on a simple queueing formula, . .
for a V\?aiting ?nodel, and also from the s'?andqpoint ofgthe Ioadawe. now introduce our mathematical model and related
on network links. They further established via simulatitiest fotations. Denote the set of all boxesiasLet |B| = B and

Least Recently Used (LRU) storage managemen poficies 887 2 2155 (0 0, JI0CL 88 2068 B0 (U0
peers emulated rather well their proposed allocation. P ' 9 Y

. .. .. spaceM. We further assume that each box can simultaneously
Wu et al. [18] considered a loss model, and a specific timg= X ) )
s%[veU concurrent requests, whetéis an integer, i.e., each

slotted mode of operation whereby requests are submitie Y has an uplink bandwidth equal @ times the video
to randomly selected peers, who accommodate a random . . : . .

T . streaming rate. In particular we assume identical stregmin
selected request. They showed that in this setup the optim

. rates for all contents.
cache update strategy can be expressed as a dynamic program.

Through experiments, they established that simple mecha- € Set of available contents is definedcas.et |C| = C
nisms such as LRU or Least Frequently Used (LFU) perforfifld index contents frorh to C'. Thus a given box will be
close to the optimal strategy they had previously charizedr 2PI€ 10 serve requests for contentor all ¢ € ;.

Kangashariju et al[]6] addressed file replication in an envi-In & Pure P2P Network, when box has a request for
ronment where peers are intermittently available, withaime & certain content, which is coincidentally already in its
of maximizing the probability of a requested file being pmsecache, a “local service” is provided and no download service
at an available peer. This differs from our present focusat t is needed, hence the service to this request consumes no
the bandwidth limitation of peers is not taken into accourfandwidth resource. The effect of local service on deriving
while the emphasis is on their intermittent presence. Th&p optimal content placement strategy will be discussed in
established optimality of content replication in propomtito detail in Sectioi’V/.
thelogarithmof its popularity, and identified simple heuristics In a Distributed Server Network, however, local servicd wil
approaching this. never occur since all the requests are external with regpect



the system resourdes Our objective is then to determine content placement strate
For a new request that needs a download service, @ies so that in the corresponding loss network model, the
attempt is made to serve this request by some box holdifigction of rejected requests is minimal. The difficulty ioing
contente, while ensuring that previously accepted requestkis analysis resides in the fact that the normalizing comtst
can themselves be assigned to adequate boxes, given the cecbumbersome to evaluate. Nevertheless, simplificationaro
content and bandwidth resources of all boxes. This potgntiaunder large system asymptotics, which we will exploit in the
involves “repacking” of requests, i.e., reallocation of thle next sections.
bandwidth resources in the system (“box-serving-request”We conclude this section by the following remark. For sim-
mapping) to accommodate this new download demand pattephicity we assumed in the above description that a particula
If such repacking can be found, then the request is acceptedntent is either fully replicated at a peer, or not presént a
otherwise, it is rejected from the P2P system. all, and that a request is served from only one peer. It should
It will be useful in the sequel to characterize the concurrehowever be noted that we can equally assume that contents
numbers of requests that are amenable to such repacking. aret split into sub-units, which can be placed onto distinct
n = {n.}.cc be the vector of numbers. of requests per peers, and downloaded from such distinct peers in parallel
contentc. Clearly, a matching of these requests to server box&sb-streams in order to satisfy a request. This extension is
is feasible if and only if there exist nonnegative integers detailed in AppendikJF.

(number of concurrent downloads of contenfrom box b)
V. OPTIMAL CONTENT PLACEMENT IN DISTRIBUTED

such that
SERVER NETWORKS
Z Zebh = Mo, VeEC We first describe a simple adaptive cache update strategy
bic€ T driven by demand, and show why it converges to a “prede-
Z zep < U, VbeDB. (1) termined” content placement called “proportional-to-guot”
c:c€Ty strategy. We then establish the optimality of this “projmoral-

A more compact characterization of feasibility follows hy ato-Product” placement in a large system asymptotic regime.

application of Hall's theorem[2] (detailed in AppendiX B)

'A. The Proportional-to-Product Placement Strate
giving thatn is feasible if and only if: P 9y

A simple method to adaptively update the caches at boxes
vSCC, ch <UbeB: SNJ #0}. (2) driven by demand is described as follows:
ceS

We now introduce statistical assumptions on request dsrivg)emand-Dnven Cache Update

and durations. New requests for contemtccur at the instants X - X
of a Poisson process with rate. We assume that the video'/N€never a new request comes, with probabilify (e is
streaming rate is normalized tb, and is the same for all chosen such tha3 < 1), the server p!cksa.bdxunlformly at
contents. We further assume that all videos have the salff dom, and_ attempts to push contentto Fh's box's cache. If
duration, again normalized at 1. Under these assumptibas, { IS alreadylln there, do nothing; otherwise, remove a content
amount of work per time unit brought into the system by€/ected uniformly at random from the cache.
contentc equalsv,.
With the above assumptions at hand, assuming fixed cache ,
contents, the vectat of requests under service is a particular Slnce external d(_emands for cc_)ntemtare according to a
instance of a general stochastic process known as a |5’§§SS°” process with r_atz@c, we find that ynder the_above
network model. Loss networks were introduced to represe’?ﬂ'ﬁnple s_trat_egy, contet!s pushed at ratev. into a particular
ongoing calls in telephone networks, and exhibit rich st 20X Which is not caching content Recall that each box
In particular, the corresponding stochastic process Ersitvie storesM distinct contents, and lgtdenote a candidate “cache
and admits a closed-form stationary distribution. For th¥at€”, which is a sizél/ subset of the full content sét For

Distributed Server Network model, the stationary distii  CONVENience, leyy denote the collection of all such
reads: With the above strategy, the caches at each box evolve

1 vl independently according to a continuous-time Markov pssce
m(n) = 7 H n_c!I{n is feasible- ) The rate at which cache statg is changed toj’, where
cee j' = j+{c}\ {d} for some contents € j, ¢ ¢ j, which
In words, the numbers of requests are independent Poissonwe denote by;(j, j'), is easily seen to be(j, j') = ev./M.
random variables with parameter, conditioned on feasibility Indeed, contentd is evicted with probability1l/M, while
of the whole vectom. contentc is introduced at ratev.,.
It is easy to verify that the distributiop(-) given by

2In fact the external users issuing requests could keep locples of
previously accessed content, and hence experience “lecaice” upon re- 1
accessing the same content. But we do not need considersttiigssehappens p(]) == H Ve, JE€UJ, (4)
outside the perimeter of our system. Z c€j



for some suitable normalizing constan verifies the follwing kept fixed. This can either reflect the situation where we use
equation: the previously introduced sampling strategy, or alteuedfi
e N g gt - the situation where the cache update strategy has alreadly ma
r(1)a(,7) =p()eG"3), 557 € T () the distribution of cache states converge to the steady, statl
The latter relations, known as the local balance equationgcurs at a slower time scale than that at which new requests
readily imply thatp(-) is a stationary distribution for the abovearise and complete.
Markov process; since the process is irreducible, this és th Note that, asB grows large, the right-hand side in the

unique stationary distribution. feasibility constraint[(2) verifies, by the strong law ofdar
Thus, we can conclude that under this cache upda@mbers,

strategy, the random cache state at any box eventuallyfsllo
this stationary distribution. This is what we refer to as the {beB: SNT#0H~B > m;. )
“proportional-to-product” placement strategy, and it is the §:iNS#0

one we advocate in the Distributed Server Network scenario. )
Here, {m;} corresponds to a particular content placement

Remark 1:The customized parametershould not be too Strategy, under which each box holds a size content set
large, otherwise the burden on the server will be increased ¢ With probability m;, and this happens independently over
to use of “push”. Neither should it be too small, otherwise thPoxes. Specificallyyn; = 3 T].c; 7. (where Z is a nor-
Markov chain will converge too slowly to the steady state. Malizing constant) corresponds to our proportional-toejict

Under the cache update strategy, the distribution of cach@&cement strategy.
contents needs time to converge to the steady state. Howeve¥Ve now establish a sequence of loss networks indexed by
if we have a priori information about content popularity, wé large parameteB. For the B™" loss network, requests for
can use a sampling strategy as an alternative way to direcﬁl}mentc € C (regarded as “calls of type) arrive at rate
generate proportional-to-product content placement mgm ve = (pU?.) - B, each “virtual link” S C C has a capacity

One method works as follows:
W& EWU > my)-B, (8)

Sampling-Based Preallocation §:iNS£0

Select successively/ contents at random in an i.i.d. fash—andc € S represents that virtual [in is part of the “route

ion, according to the probability distributiofi, }, where which serves call of typezE This particular setup has been

i . A H i 13 H H ” “y
Ve = Ve/ Y wee Ve 1S the normalized popularity. If there are'dem'f'e.d as the "large capacity network _39?"'”9 n Ke_.[_
dupli cel There, it is shown that the loss probabilities in the lingtin
uplicate selections of some content, re-run the procedurre e wherel can be characterized via the analvsis
It is readily seen that this yields a sample with the desire 9 res = oo ¢ y
distribution. of an associated variational problem.

We now describe the corresponding results [7]
relevant to our present purpose. For thB*™" loss
fetwork, consider the problem of finding the mode of

stationary distribution [13), which corresponds to

maximizing > . (ne” logve? —logn!) over feasiblen® .

An alternative sampling strategy which can be faster th
the one described above when very popular items are pre
is given in the AppendikIC.

. Then, approximatéog ni”! by nf” logn?® — n according
B. A Loss Network Under Many-User Asymptotics to Stirling’s formula and replace the integer vectar

We now consider the asymptotic regime callethny user— by a real-valued vectox®. This leads to the following
fixed catalogue” scaling The number of boxes3 goes to optimization problem:
infinity. The system load, defined as

2 Deccve [OPT 1]
p= =0 (6)
. . BU . _ max Z(x(f) logv? — 2@ logz? +22)  (9)
is assumed to remain fixed, which is achieved in the present x® =
section by assuming that the content collectiois kept fixed, ® ®
while the individual rateqv.} scale linearly withB. We also sl vScd, Zxc =Ws (10)

assume that the normalized content popularifigs remain ces

fixed asB increases. It thus holds that = 7.pBU for all

. Note that although boxes are pure resources rather th
ceC 9 P ag]Note that this construction in fact admits a form of fixed mogtwhich is

users, Scal'ng O{Vc}_ with B to 'nf'mty aCtua”y indicates a equivalently transformed from a dynamic routing model veheach particular
“many-user” scenario. box is regarded as a link and calls of typecan use any single-link route

To ana|yze the performance of our proposed proportionaprresponding to a box holding contentThis equivalent transform is based
on the assumption that repacking is allowed (cf. SectioniB.7]). We have

to—product strategy, We. reqUire .that the cache contentsearme already found this equivalent transform by converting ifeitity condition ()
pled at random according to this strategy and are subsdguent @) in SectiorTll.

over x® > 0.



The corresponding Lagrangian is given by:

B) B B) B) B
Lx®,y®) = > (a2 logrv® — 2 loga? + )
ceC
B B
+ § yéB)(Wé) - E I(C))v
sce ces

where {y$"} . . are Lagrangian multipliers. The KKT con-

ditions for this convex optimization problem comprise the
original constraints and the following ones:

OWE =3 af) =0, gp 20, ¥ SCC,
ceS
OL(x,y)

om = logvd’ —logz — Y gw =0 vcecC
Le

S:ceS
(11)

where (x®,y®) is a solution to the optimization problem.
From equation[(111), we further get

7% = 1 exp(— Z y®), Veel. (12)

S:ceS Since v,

we have

4), or if the catalogue siz€' scales with the box population
size B, a case not covered by the classical literature on loss
networks, and to which we turn in Sectibn VI-B.

Proof: First, we considep > 1. Letting

exp (— Z y?) =1/p, VeeC, (24)

S:ceS

Ve e C, Z yo = log p. (15)
S:ceS

Putting equation[(15) intd (12) leads to

Veel, 220 = v /p.

Thus, inequality[(7]0) in OPT 1 becomes

vsce, » v <p > mBU. (16)
ceES 7:iNS#£D

= pBU - . and y_ . 7. = 1, inequality [16)

Then the result that we will need from Kellgl[7] is the fol-further becomes, upon explicitly writing out the normatiaa
lowing: for the B loss network, the steady state probabilitfOnstantZ:

of accepting request far, denoted byAY, verifies

S:ceS

vSCe, Y ey

Ioe<> o> J#e 7

ceES  g:. gcc c€G ceC g: gns#p c€G
|gl=M gce
IGl=M

Two types of product terms (mapped to subdets C) appear

where §¢ are the Lagrangian multipliers of the previousn both sides:

optimization problem.

C. Optimality of Proportional-to-Product Content Placeme

Note that the global acceptance probability, denoted lﬂ){
Asys, Which also readsA,,, = ZCEC v.A., cannot exceed
min(1,1/p). Indeed, it is clearly no larger than 1. It cannoIth
exceedl/p either, otherwise the system would treat mor
requests than its available resources.

I (

L Tleexc et IKl=M+1, KNS #0.

[Loex?e) D€ KNS, |K| =M.

To show whether inequality (17) hold, we only have to prove
at given anyS C C, for each product term (related tokd
hich appears in one inequality corresponding to a cefain

s multiplicity on the left hand side is no more than that on
the right hand side.

We now prove that the proportional-to-product content 1+ FOr @ product term of Type I:

placement not only achieves the optimal global acceptance
probability A,,s = min(1,1/p), but also achieves fair
individual acceptance probabilities, i.ed, = A,y for all c.
More precisely, we have the following theorem:

Theorem 1:By using m; = []..,7./Z forall j C C
s.t. |j| = M, where Z is the normalizing constant, we have
limp 00 AY = min{1,1/p}, Vc € C, for fixed p andC. o

Before giving the proof, we comment on the result. One
point to note is that because of] (7), the above optimal
acceptance rate is achieved with probability one under
any random sampling which follows the proportional-to-
product scheme. Secondly, the optimality of the asymptotic
acceptance probability does not depend i as long as
M > 1. Thus for this particular scaling regime, storage space

o On the LHS: Since] ] x 7e

= Hceg D. - Uy for
someG C C andc’ € SN K, whereg is a sizeM
content set¢’ ¢ G, andiC = G+ {¢'}. It is easy to
see that we havéS N K| different choice of¢’ in

a K, so the multiplicity of this product term on the
LHS equalgS N K|.

On the RHS: WhenS N K| > 2, for any ¢’ € K,
K\{c'} is a sizeM content set of which the intersect
with S is not empty, hence the multiplicity equals
IK] (= M +1). When|SNK| = 1, the exception to
the above case is thatdf € SNK, thenkC\ {c'} is

a sizeM content set which has no intersect wéh
and is actually impossible to appear in the second
summation term (over all siz& content setgj s.t.
GNS # 0) in inequality [IT). Thus, the multiplicity
equals|K| —1 (= M).

is not a bottleneck. As we shall see in the next two sections, From above, we can see that the multiplicity of the
increasing M does improve performance if either local product term on the LHS is always no more than that
services occur, as in the Pure P2P Network scenario (Section on the RHS.



2. For a product term of Type Il:

K is actually already a siz&/ content setj s.t. GNC # S0% 1
(. Therefore, it is easy to see that on both sides, tl g 400/ ]
multiplicities of this product term are both %’
Now we can conclude that inequalify {17) holds for&l C, g% |
and continue to check the complementary slackness. Giv & 20%) © iﬁMP 1
p > 1, one simple solution to equation {15) reads: @ 0%l p o UNE |
_ S - Optimal
VSCC, g =logp L5 - (18) 0% == ‘ ‘ ‘ ‘ .
Besides, inequality({(17) is tight faf = C (we even do not o8 ! 2 l’t e e 2

need to check this whep = 1). Therefore, complementary
slackness is always satisfied with solutién](18).

So far we have proved that the KKT condition holds when
p > 1. Whenp < 1, we modify [14) by letting

Fig. 2: System loss rates under different traffic loads

10 contents and serve at mokt = 4 concurrent requests.
The duration of downloading each content is exponentiall
eXp <_ Z y(sB>> =1 veed, (19) " distributed with mean equal g'][ﬂ) time unit. The par:meter ’
Siees in the cache update algorithm is setlg9B3 such that upon a
and hence there is an additional factgfp > 1 on the RHS request, one box will definitely be chosen for cache update.
of inequality [IT). Since the old version of inequalitiedX1s  For every algorithm, we take the average overindepen-
proved to hold, the new version automatically holds, butenogjent repetitive experiments, each of which is observed for

of them is tight now. However, fron{19) we havg” = time units. According to the sample path, the initigh of the
0, V'S € €, which means complementary slackness is alwaygole period is regarded as a “warm-up” period and hence
satisfied (similar tp = 1). ignored in the calculation of final statistids.

Therefore, according to equatidn[13), it can be concludedsome implementation details are not captured by our theo-
that by usingm; =[], 7./Z for all j, we can achieve retical model, but should be considered in simulations.Jpo
® . 1 a request arrival, the most idle box (i.e., with the largest
Ac” = min{l,1/p} + O (B 2) , Veel, number of free connections) among all the boxes which hold
the requested content is chosen to provide the servicehéor t
purpose of load balancing. If none of them is idle, we use a
D. Simulation Results heuristic repacking algorithm which iteratively realltesithe

In this subsection, we use extensive simulations to evalu@ngoing services among boxes, in order to handle as many
the performances of the two implementable schemes propo&@@uests as possible while still respects load balancimg O
in SubsectiofiIV-A which follow the “proportional-to-pradt”  important parameter which trades off the repacking conifylex
placement strategy, namely the sampling-based prea'thmatand the performance is the maximum number of iterations
scheme and the demand-driven cache upda‘[e (|abe|edt7né%z, which is set as “undefined” by default (i.e., the iterations
“SAMP” and“CU" , respectively). will continue until the algorithm terminates; theoretigahere

We compare the results with the theoretical optimum (i.dre at most iterations). Other details regarding the repacking
loss rate for each content equa(ﬂ; _ 1/p)+; the curves algorithm can be found in AppendlKlD We will see an
are labeled agOptimal” ) and a uniform placement strategyinteresting observation abotjt'** later.

(labeled as’UNIF" ) defined as the following: first, permute Figure[2 evaluates system loss rates under different traffic
all the contents uniformly at random, resulting in a contef@ads p. Our two algorithms SAMP and CU, which tar-
sequence(c;}, for 1 < i < C; then, push theM contents get the proportional-to-product placement, both match the
indexed by subsequencl:(; mod o) }on+i<j<(p+1)m INtO theoretically optimum very well. On the other hand, the
the cache of bo, for 1 < b < B. UNIF is also used to UNIF algorithm, which does not utilize any information albhou
generate the initial content placement for CU so that the logontent popularity, incurs a large loss even if the system is
rate can be reduced during the warm-up period. underloaded 4 < 1). The gain of proportional-to-product

If not further specified, the default parameter setting is @acement over UNIF becomes less significant as the traffic

follows: The popularity of content$’.} follows a zipf-like

solimp_ 0o AY = min{1,1/p}. [ |

distribution (see e.gl:[4]), ie., “We can get enough samples during each observation perio@ tifne
units (for example, whep = 1, B = 4000 andU = 4, the average arrivals
R (CO + c)_o‘ would be 160000). It has also been checked that after the warm-up period,
c = Z (c + c’)*a ) (20) the distribution of cache states well approximates the gmtagmal-to-product
c’ec\“0 placement and is kept quite stably for the remaining observaeriod.

with a decaying factory > 0 and the shiftc, > 0. We use 5In fact, aroundp = 1, they perform a little worse than the optimum. The

. e e reason is thap = 1 is the “critical traffic load” (a separation point between
a = 0.8 andcy = 0. The content CataloQue size = 500 and zero-loss and nonzero-loss ranges), under which the diowlaesults are

the number of boxed3 = 4000. Each box can stord/ = easier to incur deviation from the theoretical value.
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makes no difference.
load grows, which can be easily expected. Recall that the proportional-to-product placement is only

In Figure [3, when the decaying facter in the zipf- optimal when the number of boxd3 — oo. Figuresh and
like distribution increases, the distribution of placedmts then show the impact of a finit&. In Figure[®, asB
generated by UNIF has a higher discrepancy from the radgcreases, the system loss rate of every algorithms iregeas
content popularity distribution, so UNIF performs worsen O(compared to the two proportional-to-product stratedifdlF
the other hand, the two proportional-to-product strategiee is less sensitive td3). In Figure[®, non-homogeneity in the
insensitive to the change of content popularity, as we ebgglec individual loss rates of requests for each content alsoatsfle

Figure[4 shows the effect of repacking on the system loasdeviation from the theoretical result (whéh — oo, the
rate. In sub-figure (a), we find that under SAMP, repacking lgss rates of the requests for all the contents are provee to b
not necessary. In sub-figure (b) which shows the performsmndgentical). As expected, increasing the number of boxesr(fr
of CU, whenp is low, one iteration of repacking is sufficient4000 to 8000) makes the system closer to the limiting scenario
to make the performance close enough to the optimum; whand the individual loss rates more homogeneous. Another
p is high, repacking also becomes unnecessary. The main tatdeservation is that as the popularity of a content decre@ses
away message from this figure is that we can execute a repdtile figure, the contents are indexed in the descending ofder o
ing procedure of very small complexity without sacrificingheir popularity), the individual loss rate increases. ldwer,
much performance. The reason is that when the server pieksording to FigurEl2, those less popular contents do nettaff
a box to serve a request, it already respects the rule of Idhe system loss rate much even if they incur high loss, since
balancing. their weights{?. } are also lower.

We then explain why CU still needs one iteration of In fact, if we choose a smaller content catalogue sizer
repacking to improve the performance wheris low. Note a larger cache sizé/, simulations show the negative impact
that during the cache update, it is possible that the box d$ a finite B will be reduced (the figures are omitted here).
currently uploading the “to-be-kicked-out” content to smThis tells us that ifC' scales withB rather than being fixed,
users. If repacking is enabled, those ongoing services eanthe proof of optimality under the loss network framework in
repacked to other boxes (see details in Appemndix D), but$ubsectiofTV-B is no longer valid and must be a bottleneck
tmer = () (no repacking), they will be terminated and countedgainst the performance of the optimal algorithm. We will
as losses. Whep is high, however, boxes are more likely tosolve this problem by introducing a certain type of “large
be busy, which leads to the failure of repacking, so repagkicatalogue model” later in Sectign]VI.
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V. OPTIMAL CONTENT PLACEMENT IN PURE o« FOrc=c*"+1,me=Ae=2.=1-— ZCZM Me.
PEER-TO-PEERNETWORKS o« FOorc* +2<ce<C,m.=M.=z.=0. o

In the Pure P2P Network scenario, when Ibdxas a request  The proof consists in checking that the KKT conditions
for contentc which is currently in its own cache, a “localare met for the above candidate solution. Details are gimen i
service” will be provided and no download bandwidth in théppendix(E.
network will be consumed. To simplify our analysis, each The above optimal solution suggests the following place-
request for a specific content is assumed to originate frament strategy:

a box chosen uniformly at random (this in particular assumes
identical tastes of all users). “Hot-Warm-Cold” Content Placement Strategy

This means that the effective arrival rate of the requests fo
contentc which generates traffic load actually equaéls = Divide the contents into three different classes according
v.(1—m.), wherem, is defined as the fraction of boxes whaheir popularity ranking (in descending order):
have cached content Let p. = pi denote the traffic load , Hot: The A — 1 most popular contents. At each box,
generated by requests for contenand). denote the fraction M — 1 cache slots are reserved for them to make sure
of the system bandwidth resources used to serve requests for nat requests for these contents are always met via local
contente. Obviously, .. A < 1. The traffic load absorbed service.
by the P2P system either via local services or via serviafro , warm: The contents with indices from/ to ¢* + 1 (or

another box is then upper-bounded by c* if ZELM m. = 1). For these contents, a fraction,
5= Z peite + [pe(l — e)] A e (21) of all the boxes will store contemtin their remaining one
Py cache slots, where the values@f. is given in Theorerfl2.

All requests for these contents (except+ 1 if it is
classified as “warm”) can be served, at the expense of all
bandwidth resources.

Cold: The other less popular contents are not cached at
all.

where “A” denotes the minimum operator.

We will use this simple upper bound to identify an op-
timal placement strategy in the present Pure P2P Network
scenario. To this end, we shall establish that our candidate’
placement strategy asymptotically achieves this perfacaa
bound, namely absorbs a portigrin the limit whereB tends
to infinity.

To find the optimal strategy, we introduce a variabl
z. 2 [pe(1 —m.)] A ) for all c. Note further that the fraction
A. is necessarily bounded from above By, as only those
boxes holdinge can devote their bandwidth to serving It
is then easy to see that the quantityin (21) is no larger
than the optimal value of the following linear programmingW

Remark 2:The requests for the* most popular contents
?‘hot" contents and “warm” contents except conteht+ 1)
incur zero loss, while the requests for the— ¢* — 1 least
popular contents incut00% loss. There is a partial loss in
the requests for contemt + 1 if 0, m. < 1.

Note that the placement for “warm” contents looks like the
ater-filling” solution in the problem of allocating tramss-

problem: sion powers onto different OFDM channels to maximize the
overall achievable channel capacity in the context of wisl
[OPT 2] o
communications [16]. o
m§X Z(pcmc + IC)
A cec Under this placement strategy, the maximum upper bound
s.t. Veel, 0<m. <1, 0< A <1 on the absorbed traffic load reads

VCEC, ngcg)\ca xcgpc(l_mc); c” c” p
Sie=M, YA <1 5= pet(pes+1) (15 L)
c ) c = - _— 1 + Pe
ceC ceC = c=4
The following theorem gives the structure of an optimaVe then have the following corollary: _
solution to OPT 2, and as a result suggests an optimalCorollary 1: Considering the large system limi# — oo,
placement strategy. with fixed catalogue and associated normalized popularitie
{V.} as considered in Subsectign TV-B, the proposed “hot-
Theorem 2:Assume that{i.} are ranked in descendingwarm-cold” placement strategy achieves an asymptotic- frac

order. The following solution solves OPT 2: tion of absorbed load equal to the above upper bownand
e FOri<c<M—1,m,=1,\. =z, = 0. is hence optimal in this sense. S
o For M < c¢<c* m.= A =2z = p/(1+ pc), Where
c* satisfies that Proof: With the proposed placement strategy, hot (respec-
o i1 tively, cold) contents never trigger accepted requestsesall
Z _Pe <1, but Z _Pe . incoming requests are handled by local service (respéygtive
Lt pe S Lt re rejected). For warm contents, because each box holds oely on



warm content, it can only handle requests for that particulbottleneck? Is the proportional-to-product placemerdtsgy
warm content. As a result, the processes of ongoing requestth optimal under the large-catalogue scaling?
for distinct warm contents evolve independently of one ang Necessity of Unbounded Storage

other. For a given warm content the corresponding number . . . .
g it P g We first establish that bounded storage will strictly

of ongoing requests behaves as a simple one-dimensiosal los . izati f bandwidth To this enel
network with arrival rater.(1 — m.) and service capacity constrain utilization of bandwidth resources. To this enel w

m.BU. Forc=M,...,c*, one hasn. = p./(1+ p.) where need the following lemma:
pe = v./(BU), so both the arrival rate and the capacity of ] .
the corr(/eépon)ding loss network equial BU. The asymptotic . Lemma_l.Cons_lder the system und_er large catalogu_e scal-
acceptance probability a8 — oo then converges td and ing, with fixed weightsw; and cache sizé/ per box. Define

. M = [2M/a]. Then
the accepted load due to both local service and serwczg. [ .
from other boxes converges ta.. For contentc* + 1 (if ?I) More than half of the contents are replicated at mtst

me-41 > 0), the corresponding loss network has arrival ratt(iam?s' and e
et ' (i) For each of these contents, the loss probability is aste

Ver41(1—me+41) @nd service capacityi.- 1 BU. Then, in the e N .
limit B — oo, the accepted load (due to both local servicegé#:]fédyzéév_f U) > 0, whereE(-,-) is the Brlang function(7]

and services from other boxes) reggs 17mcr 11 + Mex 41 crc .17t
(which is actually smaller thap.- 11). Summing the accepted E(v,C) 4 v Z v i
loads of all contents yields the result. [ | C! 1 n!
<
VI. LARGE CATALOGUE MODEL Proof: We first prove part (i). Note that the total number

Keeping the many-user asymptotic, we now consider Iﬁgcontent replicas in the system equatd/. Thus, denoting

alternative model of content catalogue, which we term t ff"the frﬁctlonBﬁ)f}(\:;/nte?ts;egjl\l;ateg. a; I.eMt’—i—l.ulrges,
“large catalogue” scenario. The set of conte@tss divided itfollows that faB(M’ +1) < » which in turn yields

into a fixed number of “content classes”, indexed by T. f< M < M < 1

In classi, all the contents have the same popularity (arrival ~a([2M/a]l+1) T 2M +a 2]

rate) v;. The number of contents within clagsis assumed which implies statement (i).

to scale in proportion to the number of boxBs i.e., classi To prove part (i), we establish the following general prop-
containsc; B contents for some fixed scaling factas. We erty for a loss network (equivalent to our original systenithw
further definea £ 3", ;. With the above assumptions, thecall types; € 7, corresponding arrival rateg, and capacity

system traffic loap in equation[(B) reads (maximal number of competing callg); on link ¢ for all
1 ¢ € L. We usel € j to indicate that the route for calls of type
P=yg Zail/i. (22) 4 comprises link?. Denoting the loss probability of calls of

= type j in such a loss network gs;, we then want to prove

The primary motivation for this model is mathematical conve pj > E(v;,C)), (23)

nience: by limiting the number of popularity values we limit

A ; i
the “dimensionality” of the request distribution, even uigh where Cj = minge; Cy, i€, the .capacny of the bottleneck
we now allow for a growing number of contents. It can also b“enk on the route for calls of typg. : -

' Note that the RHS of the above inequality is actually the

justified as an approximation, that would result from batgh'.{oss probability of a loss network with only calls of tyge

into a single class all contents with a comparable poplylaﬂland capacityC”:. Fixing indexj, we define this loss network
Such classes can also capture the movie type (e.g. thriller, g : . .
an auxiliary system and consider the following coupling

comedy) and age (assuming popularity decreases with dont%n
y 9 g pop Y construction which allows us to deduce inequalityl (23): Ket
be the number of active calls of tygein the original system

age).
We used; to denote the normalized popularity of conten{or all £, and letX; denote the number of active calls of type
 in the auxiliary system. Initially,X;(0) = X’ (0). The non-

classi € Zanditreads , ., 0; = 1. Itis reasonable to regar
J

eacho; as fixed.»; = 0;/(a;B) represents the normalized, o, yansition rates for the joint procedsX }rex, X) are
popularity of a specific content in clagsswhich decreases asgiven by J

the number of contents in this classB increases, since users

now have more choices within each class. In practice, amenli ¥ # j : Xi — X +1 at ratev, HI{Zkal Xn<Cy}s
video provider company which uses the Distributed Server Lgj
Network architecture adds both boxes and available movies & 7 J : Xk — Xi — 1 at rate Xy,
each type to attract more user traffic, under a constraint of &%, X;) — (X; +1,X} +1) at ratev;"",
maximum tolerable traffic loag. (X5, X7) = (X; +1, X)) at ratev;",
Returning to the Distributed Server Network model of (Xj, Xj) — (X;, X} +1) at ratev"”,
Sectior{I¥, we consider the following questions: What antoun(X;, X;) = (X; — 1, X} — 1) atrateX},
of storage is required to ensure that memory space is not (&, X7) — (X;, X} — 1) at rate [ X — Xjr,
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where the system are regarded as balls, and all|theg= >, o; B)
contents are regarded as bins. We throw each of MhB

voth &2y T oo -HI : : .
J JHAXG<CG} {2 ko0 Xk<Ce}s balls at random among all th€| bins. Bin¢ (corresponding
i to contentc which belongs to class) will be chosen with
A viLixi=c1} 'HI{EWXKCe}v probability v;/(pBU). Alternatively, the resulting allocation
tej can be viewed as a bipartite random graph connecting boxes
V;zum A VjI{X]’.<C§} . I{erj st ey Xe=Cr}- to contents. <&

It follows from Theorem 8.4 in[[5] thaf X } is indeed a loss  Note that this strategy differs from the “proportional-to-

network process with the original dynamics, and thdtis product” placement strategy proposed in Secfioh IV, in that

a one-dimensional loss network with capadity and arrival it allows for multiple copies of the same content at the same

ratev;. From the construction, we can see that all transitiom®x. However, by the birthday paradox, we can prove the

preserve the inequality(; (¢) < X’(¢) for all ¢ > 0, due to the following lemma which shows that up to a negligible fraction

following reason: OnceX; increases by 1Y’ either increases of boxes, the above content placement does coincide with the

by 1 or equals the capacity Iirrt[f’ and for the latter case, theproportional-to-product strategy.

corresponding transition rate?” |mpl|es thatX; < C} = X7.

Similarly, OI’ICGX' decreases by 1, eithex; aIso decreases Lemma 2:By using the above content placement strategy,

by 1, or in the case that; does not decrease it must be thait a certain box, i < /(min; a;)B,

the transition rateX; — X is strictly positive. In any case, the )

above inequality is preserved. Pr(all the M cached contents are differgnt 1.  (24)
We further letA;(t), A’(t) denote the number of typg o

external calls,L;(t), L)(t) the number of typej call rejec- Proof: In the birthday paradox, if there ame people
tions, andD; (t), D’;(t) the number of typg call completions, andn equally possible birthdays, the probability that all the
respectively in the original and auxiliary systems, dutinge 1, people have different birthdays is close towhenever
interval [0, ¢]. It follows from our construction that whenever,, < ,/n. Here in our problem, at a certain box, the
the service for a call of typg completes in the original cache slots are regarded as “people” and|fHecontents are
system, the service for a call of typealso completes in the regarded as “birthdays.” Although the probability of picgi
auxiliary system, henc®;(t) < D’(t) for all t > 0. Since one content is non-uniform, the probability of picking one
X;j(t) = A;j(t)—=D;(t)—L;(t), X;(t) = A5(t)-Dj(t)—L’(t)  content within a specific class is uniform. One can think of
and 4;(t) = Aj(t), we haveL;(t) > L’( ). Upon dividing picking a content for a cache slot as a two-step process: With
this inequality by A(¢) and Iettlngt tend to infinity, one probabilitya;v;/ Y-, a;v;, a content in classis chosen. Then
retrieves the announced inequallfyl(23) by the ergodicréteo conditioned on class a specific content is chosen uniformly
Back to the context of our P2P system, for those conter{srandom among all the; B contents in class.
which are replicated at most/’ times (i.e., the contents Contents from different classes are obviously different.
considered in part (i)), the rejection rate of conterdf type When M < +/a; B, even if all theM cached contents are
Jj readsp; > E(inf; v;, C%) > E(inf; v;, M'U). B from classi, the probability that they are different is close to
1. Thus, M < +/min; o; B is sufficient for [24) to hold. m
The above lemma readily implies the following corollary:
Corollary 2: Under the assumptions in Lemia 1, The over- To prove that under this particular placement, inefficiency
all rejection probability is at leas{ £ (min; v;, M'U). Indeed, in bandwidth utilization vanishes asf — oo, we shall in
for boundedA/, M’ is also bounded, and(min; v;, M'U) fact consider a slight modification of the “request repagkin
is bounded away fror. © strategy considered so far for determining which contemts t
Thus, even when the system loads strictly less than 1, accept:
with bounded)M there is a non-vanishing fraction of rejected
requests, hence a suboptimal use of bandwidth. Counter-Based Acceptance Rule

B. Efficiency of Proportional-to-Product Placement A parameterL > 0 is fixed. Each boxb maintains at all

We consider the following‘Modified Proportional-to- times a counterZ, of associated requests. For any content
Product Placement” Each of theM storage slots at a givene, the following procedure is used by the server whenever a
box b contains a randomly chosen content. The probability ofquest arrives: A random set df distinct boxes, each of
selecting one particular contents v;/(pBU) if it belongs to  which holds a replica of content is selected. An attempt is
classi. In addition, we assume that the selections for all suchade to associate the newly arrived request withl.afloxes,
MB storage slots are done independently of one another. but the request will be rejected if its acceptance would lead

any of the corresponding box counters to excééd

Remark 3:This content placement strategy can be viewed
as a “balls-and-bins” experiment. All th&/B cache slots in
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Remark 4:Note that in this acceptance rule, associating dassical alternatives such as LRU, in conjunction with gslo
request to a set of. boxes does not mean that the requestetttwork operation, also deserves more detailed analysis.

content will be downloaded from all thede boxes. In fact,
as before, the download stream will only come from one of
the L boxes, but here we do not specify which one is to bét!
picked.

It is readily seen that the above rule defines a loss network]
Moreover, it is a stricter acceptance rule than the pre\lr}'ous[3
considered one. Indeed, it can be verified that when all aggoi
requests have an associated setLoboxes, whose counters
are no larger tharL.U, there exist nonnegative integefs,
such thatzb:cejb Zep = Lng, ¥ ¢ € C and Zmejb Zap <
LU, ¥V b € B, then feasibility condition[{2) holds a fortior.

(4]

(5]

We introduce an additional assumption, needed for technicg;
reasons.

Assumption 1:A content which is too poorly replicated is
never served. Specificallp content must be replicated at
least M3/4 times to be eligible for service. o

[7]
8]
. N . . [
Our main result in this context is the following theorem:
Theorem 3:Consider fixedM, «;, v;, and corresponding
load p < 1. Then for suitable choice of parametér with (10]
high probability (with respect to placement) &— oo, the
loss network with the above “modified proportional-to-puot  [11]
placement” and “counter-based acceptance rule” admits a
content rejection probability(M) for some functiong(M)
decreasing to zero atl — oc. o [12]
The interpretation of this theorem is as follows: The frac-
tion of lost service opportunities, for an underloaded esyst [13]
(p < 1), vanishes ad\f increases. Thus, while Corollafy 2 14]
showed thatM — oo is necessary for optimal performance,
this theorem shows that it is also sufficient: there is no need
for a minimal speed (e.gV/ > log B) to ensure that the loss %]
rate becomes negligible. [16]

The proof is given in AppendikJA. 7]

VII. CONCLUSION

In peer-to-peer video-on-demand systems, the information
of content popularity can be utilized to design optimal et (18
placement strategies, which minimizes the fraction ofatejé |19
requests in the system, or equivalently, maximizes the uti-
lization of peers’ uplink bandwidth resources. We focused
on P2P systems where the number of users is large. For
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APPENDIX

the limited content catalogue size scenario, we proved tRe pyoof of Theorerfi]3

optimality of a proportional-to-product placement in thesD
tributed Server Network architecture, and proved optityali

The proof has five sequential stages:

of “Hot-Warm-Cold” placement in the Pure P2P NetworK) The chance for a content to be “good”

architecture. For the large content catalogue scenari@lsee
established that proportional-to-product placement deta
optimal performance in the Distributed Server Network. Man
interesting questions remain. To name only two, more géne
popularity distributions (e.g. Zipf) for the large catalmg

scenario could be investigated; the efficiency of adaptaahe

update rules such as the one discussed in Setfion] IV-A, or

Let N. denote the number of replicas of conterf class
i. Then, N. admits a binomial distribution with parameters
(5.

E[N,]| < M3/, ie.,

Vi

pBU

). We call contentc a “good” content if | N, —

M
‘NC_V[)—U‘ < M?/3, (25)
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As N, ="M 7., whereZ; ~ Ber(p) (p 2

2

pj;;U) are i.i.d., memory slot at a particular box (we index a slot lyfor

according to the Chernoff bound, 1 < j < MB), and f(&) corresponds to the number of good
M contents in class based on the placemegti.e., X; = f(£).
Pr (Nc > M2/ 4 :)—U> < g~ MBI(a) (26) It is easy to see that in our case= 1, hence we have

L N> ) < 9o—2t/(MB) .
where ¢ 2 (Mz/s i up_lzy) JMB and I(z) 2 supy{zf — Pr(|X; —E[X;]| > t) < 2e , V>0
In(E[e?4:])} is the Cramér transform of the Bernoulli rando
variableZ;. Instead of directly deriving the RHS of inequality Pr (|Xi - E[X;]| > (MB)2/3) < 2 2(MB
(28), which can be done but needs a lot of calculations (see
Appendix[G), we upper bound it by using a much simplefhus, we have
approach here: For the same deviation, a classical uppeidbou Pr (Xi > (1 _ 2676(1%”3)) ;B — (MB)2/3)
on the Chernoff bound of a binomial random variable is
provided by the Chernoff bound of a Poisson random variable
which has the same mean (see €.g. [5]). Therefore, the RHS

mTakingt = (MB)?/3 in the above inequality further yields
)1/3

A
Ve

Pr (Xl- > E[X;] (MB)2/3)

of inequality [26) can be upper bounded by > Pr (|XZ- —-E[Xi]| < (MB)2/3)
> 11— 2e2MB)Y? (29)

viM . pU
exp [ — P ST 1+ M ,
‘ where (a) holds since

where(z) is the Cramér transform of a unit mean Poisson Ex.] — p . B
random variable, i.e.J(z) = xlogz — = + 1. By Taylor's [Xi] = Pr(contentc Ils/ggood "
expansion off (z) atz = 1, the exponent in the last expression > (1 — 2¢O )) - a;B.

is equivalent to . B .
q Note that in order for the lower bound aK; shown in the

viM (1 U \° a3 above probability to bed(B), M ~ o(B'/?) is a sufficient
o \2\vanE) O (M ) condition.
_ —ﬁMl/?’ ‘o (M1/3) __o (M1/3) . 3) The chance for a box to be “good”
2v; We call a replica “good” if it is a replica of a good content,
On the other hand, whef/ is large, —M?/3 + ’/;_[1}4 > (0 and useC; to denote the number of good replicas of class
holds, hence we have We also call a box “good” if the number of good replicas of
s M classi held by this box lies within
Pr NCS—M23+1—) o
( pU O‘Z”;JM + O(M?/3).

MB

= Pr (Z Z; > MB - d) < e MBI(@)  (27) As we did for “good contents,” we will also use the Chernoff
i=1 bound to prove that a box is good with high probability.

Let & represent an event that the numh®f of good

here(—Z;) ~ B L a2 M-Y3/B— -1 henB =Pl -V5
where( ) er(p), a / p € [~1,0] when contents within class satisfies

is large, and it is easy to check th&fi) = I(—a). Similarly
as above by upper boundirg?/(-=® we can find that the X; > (1 - 26*@(M1/3>) o B — (MB)%/?3, (30)
exponent of the upper bound is als® (1/'/3). Therefore, s
_ e which has a probability of at least— 2e=*(M5)") ' accord-
Pr(contentc is good > 1 — 2¢~ ™). (28) ing to inequality [ZB) whenmM/ ~ o(B'/?). Conditional on
&;, according to the lower bound in inequalify 125) (i.e., the

2) Th ber of “good contents” i h cl . .
) The number of “good contents” in each class definition of “good contents”) and inequality (30), we have

Denoting by X; the number of good contents in claswe v M i
want to use a corollary of Azuma-Hoeffding inequality (see C; > <Z—U - M2/3) ( (1 — 2¢O )) a; B
e.g. Section 12.5.1 id [10] or Corollary 6.4 inl[5]) to upper p
bound the chance of its deviation from its mean. This corglla —(MB)2/3)
applies to a functiorf of independent variables, . . ., &,, and
states that if the function changes by an amount no more than ~ _ /g . %% (1 —O(M~V3 4 M2/SB—1/3)) _
some constant when only one componerg; has its value pU
changed, then for all > 0, (31)
Pr(|f(€) — E[f(£)]] > t) < 9e—2t7/(nc?) On the other hand, from the upper bound in inequality (25)

and the factX; < «; B, we obtain that
Back to our problem, each independent variaplecorre-

‘ oGV
spond to the choice of a content to be placed in a particular

C; < MB -
= U

(1 + O(M—1/3)) : (32)
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Conditional on&;, to constitute a box, sample without refrom inequality [34%), we further have
placement from the determined content replicas. Denote the o M
Pr( (k)

number of good replicas of clagsstored in a particular box
(say, boxbd) by ¢;, which actually represents the number of

G —

>0 M2/3)>

good replicas in thé/ samples sampled without replacement < 2€_®(Ml/%) Pr (6’ )+ (1 —Pr(&))
from all the MB replicas, among whicl(; are good ones = 1-(1-2 —o(M'/3 ))Pr (51)
(conditional oné&;). This means that, conditional of;, ¢; oM/ —OUMB) )
follows a hypergeometric distributio” (MB, C;, M). It can < 1-(1-2e )1 - )
be found that (see e.g. Theorem 1 [ifi [8]) conditional&n = 9 O o — ((MBV”) (35)
H; <4 ¢ <s G;. Here, "< " represents stochastic ordering, = ) ) ) ) )
and Putting inequality [(35) back to inequalitf (33) immedistel
results in
) ; QilVi —1/3 . —o(MV/?)
G; ~ Bin(M, i 1+0M~2)) ], Pr(box b is good > 1 — 2|Z]e . (36)

H, ~ Bin (M, aigi (1 B O(M,l/g n MQ/gBl/g))) ’ 4) The number of “good boxes
P We use a similar approach as in Stage 2 to bound the
where the second parameters of the distribution&pfand NUMber of good boxes, sdy, which can be represented as a

H; are determined according to inequaliti¢s](32) and (3&1”Ct'0n9 ) whereg = (&1, &2, -+, {un) is the same content
respectively. acement vector defined in Stage 2. Sgll¢) changes by an

; i ; mount no more thath when only one componeigt has its
. Vé?ggiii?o:hy we need these two “binomial bounds” o ﬁalue changed, then for afl > 0, Pr(|Y — E[Y]| > ) <

2e~2°/(MB) | and takingt = (MB)2/3 further yields

Pr(box b is not good Pr (|Y _E[Y]| > (MB)2/3) < 9~ 2AMB)!?

- (U

< ZPr(cz

i€l

azl/lM
Gi— > O( M2/3)}> Similarly as we obtain inequality_(29), we finally come to

Pr (Y > B (1 — 2|I|e—®(Ml/3))) >1-— 26_2(MB)1/3_
(37)

azl/zM’ >0 M2/3)) , (33)

) 5) The performance of a loss network
where for alli € Z,

Finally, consider the performance of the loss network

Pr(Q amM’ >0 Mg/g)) defined by the “Counter-Based Acceptance Rule” We
introduce an auxiliary system to establish an upper bound
;v M on the rejection rate. In the auxiliary system, upon arrival
= Pr ( G~ U Z O(Mg/g)’ 51') of a request for content, L different requests are mapped
v M to L distinct boxes holding a replica @f but here they are
+Pr ( G — ———| > O(M?/?), 55) accepted or rejected individually rather than jointly. tireg
Zy, (respectivelyZ;) denote the number of requests associated
< Pr ( G — O‘Z”lM’ >0 M2/3) &') “Pr(&) to box b in the original (respectively, auxiliary) system, one
readily sees thaZ, < Z; at all times and all boxes and for
+Pr(&7). (34) each box, the processZ; evolves as a one-dimensional loss
network. We now want to upper bound the overall arrival rate
By definition of stochastic ordering, of requests to a good box:
Pr ( ¢ — O‘MM > O(M?/3) g) (@) Non-good contents
Assume that upon a request arrival, we indeed pick
- . (Gi < a;v; M +O(M2/3)) content replicas, rather th@ di_stinct boxes holding the _
- - pU requested content (as specified in the acceptance ruley. Thi
a;v M 2/3 entails that, if two replicas of this content are presentra o
+Pr (Hi < U oM )) box, then this box can be picked twice. However, since a
(@) s vanishing fraction of boxes will have more than one replicas
< 2¢O of the same content whei/ < /(min; o;)B (as proved

in Lemmal2), we can strengthen the definition of a “good”
where (a) can be obtained using a similar Chernoff boundibgx to ensure that, on top of the previous properties, a good
approach as folV, in Stage 1 of this proof. Thus, continuingbox should holdM distinct replicas. It is easy to see that the
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fraction of good boxes will still be of the same order as withetwork, sayF (A, C'), as a certain conditional probability of

the original weaker definition. S ~ Poi(}), i.e.,
With these modified definitions, consider one non-good Pr(S = C)
contentc of classi cached at a good box. Its unique replica E\NC)=Pr(S=C|S<C)=

will be picked with probabilityZ/N, when the sampling of Pr(§ < C)

L replicas among theV, existing ones is performed. Thus,Using the Chernoff bound, we ha (S > C) < e~ M (/N
since we ignore requests for all contentvith N, < M3/4 wherel(z) = zlogz — x + 1, hence

(according to Assumptioil 1), the request rate will be at most

—AI(C/N)
LM/, e P i M
Besides, there are at mo€d(M2/3) non-good content 1=Pr(§>C) 7 1—e M

replicas held by one good box. The reason is as follows: Byack to the Erlang function in our probled(C/\) = I((p+
definition, a good box holds at least O(M~1/12))=1), hence,

3 (O‘W;JM - O(M2/3)> —M-oMm¥3 (@38 P2 =LU)<E(pLU +O(LM V"), LU) < 66(2{1 )

: p

i€l

where the second inequality holds under the assumption that

good co_ntent rep_hcas among all classes, SO the remamw% 1 (otherwise, the exponent will beconeor +O(L)).
slots, being occupied by non-good content replicas, areoat m

O(M?/3). Therefore, the overall arrival rate of requests for The number of good replicas in good boxes is, due to
non-good contents to a good box is upper bounded by inequality [37) and equatioR (38), at IeMB(l—O(JV[—1’/3)),
non-good= O(M?/3 . LM~3/4y = O(LM~*/12). (39) with a high probability (at least—2¢~2(MB)'"*) On the other
hand, the total number of replicas of good contents is at most

(b) Good contents MB, which is the total number of replicas (or available cache
The rate generated by a good contenf classi is v; L/N.. slots).
Now, by definition of a good content, one has: Now pick some smalk € (0,1/3) and letX denote the
v; M e number of good contents which have at lekst/3*< replicas
N, > p—U(l - oM )- outside good boxes. Then necessarily, with a probabilitstof

leastl — 2e~2(MB)'/*
This entails that the rate of requests for this content iseupp R
bounded by XM?/3+¢ < MB — MB(1 — O(M~Y?)) = O(BM?/?),
LU _ .
pﬁ(l +O(M™3)). i.e., X < O(BM~¢). According to inequality[{29), the total

number of good contents 8(B) (specifically, very close to
IC| = aB) with a probability of at least — 2|Z|e~2(MB)""*
hence we can conclude that, with high probability, for a
Yraction of at least —O(M ~¢) of good contents, each of them
has at least a fractioh — O(M ~1/3+¢€) of its replicas stored

By definition of a “good box,” there are at masty; M /pU +
O(M?/3) good content replicas of classached in this good
box. Therefore, the overall arrival rate of requests fordjo
contents to a good box is upper bounded by

Poood — Z (@(1 N O(M1/3))) in g.ood poxes (since f’;\.g.ood content hgsM & O(M?/3)
g — M replicas in total by definition). We further ugkto represent
© o M the set of such contents.
X ( e+ O(M2/3)) Recall thatd, was defined in Subsection1WB as the steady-
P state probability of accepting a request for conterih the
= (pLU)(1+O(M /%)), (40)  original system. For alt € C,
To conclude, for any good bok, the processZ, evolves 4. > Pr(all the L sampled replicas are in good boxes
as a one-dimensional loss network with arrival rate no large x Pr(Zy < LU, Vb s.t. box b is sampled

than (g) (1 B O(M_l/3+6))L

x Pr(Z; < LU, Vb s.t. box b is samplegl.

b L
¢ (1 - O(M—1/3+6)) : (1 - Le—@<L>) .

Next, we are going to upper bound the loss probability (42)

of Z;. Sincew is an upper bound on the arrival rate, the

probability thatZ, = LU is upper bounded bye(pLU + Here, (b) is obtained according to inequalifyl(41). The argu
O(LM~'/'2), LU). One can actually further upper bound thisnent why (a) holds is as follows: We havé. ~ v; M /(pU)
Erlang function bye=©(X), To see this, let us first rewrite replicas (assuming that contents of class:), among which
the loss probability (Erlang function) of a general 1-D los&” = N.(1 — O(M~'/3+€)) are in good boxes. Then, the

7 = Pnon-goodt “good= PLU + O(LM /%),
by combining the two results ifi (B9) and {40).
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probability thatl. samples fall in the good boxes can be writtes.t. a:z(-k) € JZ.(’“), which means eachgk) is affiliated with a

explicitly as distinct connection (i.e., a feasible solution in our mdel
NN —1)--- (N’ — L +1) Now we want to prove the existence of such a SDR, i.e.,
NoNo— 1) (No—L+1)’ to prove equation(43). For 7 C J, there is a one-to-one

_ _ _ mapping betweer?” and aS C C. Further, thisS can be
which can be approximated as the first part on the RHS Weapped to aS C ¢ where

write above, under the assumption that« M. The second
part is due to the fact that; < Z, for all box b. S={c;: N <k<n, st Cgk) € S,
It should be recalled that within this stage of proof, finally
coming to inequality [(42) actually needs everything to bge., S is the set of all contents considered & without

conditional on the following events: considering multiple services of each content. Thef, C .7,
o The number of good boxes 8(B);
« The number of good contents &(B); RHS = | U JZ.(’“)| = Z U
« A box cachesM distinct replicas, I®er b:3c, €S s.t. ci€b

and asB,M — oo and M < /(min; «;)B, all of them
have high probabilities. Additionally; 2 C as B, M — .
Therefore, further letting. — oo but keepingl < M'/3—¢,  and

U

(beB: SN, # 0}

we will find that the RHS of inequality {(42) is approximated LHS = [T] = |S| < Z 0
as = i
1—O(LM™ Y3 — Le ®F) x 1, “es
and then conclude that the requests for almost all the ctmten Therefore, if
will have near-zero loss. Vs cc, Z ni<=Ul{beB: SNJy # 0}]
B. Proof of Equivalence between Feasibility Conditiofs (1) ci€S
and [2) o - holds, then equatioh (#3) holds. The sufficiency is proved.
1) Sufficiency of Conditiol ]2)We use Hall's theorem to
prove the sufficiency. 2) Necessity of ConditiofilJ(2)For anyS C C,
[Hall's theorem] Suppose7 = {J1, Ja,- - - } is a collection of . — 7. = 7
sets (not necessarily countable). A SDR (“System of Distin¢= ‘ ceZSb:cZEJb . b:azces ce;m, "
Representatives”) for7 is defined asX = {xi,x2, -}, st €Ty
where z; € J;. Then, there exists a SDR (not necessarily (a)
< = :
unique) iff. 7 meets the following condition: T w3 eszt €, vouibessna # il
. (& S.1. C b
VTCJ, [Tl < |ALEJTA|' (43) where the inequality (a) is due to the second constraint in

condition [1). Hence, the necessity is proved.

In our P2P VoD system, denote the content setCas

{c1,¢a,-++ ,cn}. Given the ongoing download services of- Approximation to Proportional-to-Product Placement-Us
each conten{n;},, we get a “distinguishable content set’ing Bernoulli Sampling
c = {C(l) D ) (D) @) me) An alternative sampling strategy to get the proportioal-t
@ @ ey R product placement is as follows:
cNacNa"'acN }a
wherec!®) represents thé-th download service of conteat 10 PUsh contents to box (1 < b < B), the server wil
for 1 < k < n;, and has its “potential connection set” 1. GenerateC independent Bernoulli random variables

; X, ~ Ber(p,) for all ¢ € C, wherep, = 80./(1+ 5v.),

(k) _ 70) . . ] c c) 10 _ e = pPle c
St =" 1<j<U cied, beB}, U, is the normalized version of., and( is a customized
i.e., the set of all the connections of those boxes which have constant parameter.

contente;. A collection of the “potential connection sets” for 2. If >°.c Xc = M (which means a valid cluster of size
all {c®} is then M is generated), push conteatto box b if X. = 1;

1) (2 2 Otherwise, go back to Stép 1.
= (O, @ gm0 g g ey

and a SDR forS is

We now analyze why this scheme works: after generating a
X ={a", 2, alm) W @ ey valid sized/ subset, the probability that this subset is a certain
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subsetg; equals D. Detailed Implementation in the Simulations

1) A Heuristic Repacking AlgorithmWe first describe the
concept of “repacking.” When the cache sixé = 1, all the
1— bandwidth resources at a certain box belongs to the content
Hceg-pC'Hcgg.( pC) P .
= J J the box caches. Whefd > 2, however, this is not the case:
Pr(}cec Xe = M) all the contents cached in one box are actually competitors f

Pr(X. =1, Ve € Gj; X =0, Ve & G| Y X, = M)
ceC

- H Pc < [ecepe > the bandwidth resources at that box. Let's consider a simple
Al \Pr(X o Xe=M) example in whichB = 2, M = 2 andU = 1: Box 1 which
°€ caches content and 2 is serving a download of content
= H Ve/Z, while box 2 which caches conterit and 3 is idle. When a
c€g; request for content comes, the only potential candidate to

serve it is box1, but since the only connection is already
occupied by a download of conteff the request for content

L has to be rejected. However, if this ongoing download can be
“forwarded” to the idle box, the new request can be satisfied
without breaking the old one. We call this type of forwarding
“repacking.”

whereZ = Pr(}" .o Xe = M)/(BM [1.cc pe), Which actu-
ally equals the normalizing factor fqi .. 7.

We then consider the computationaf complexity of thi
approximation algorithm. Assuming thét. } is sorted in the
descending order, we have

M c In the the feasibility condition[{1) and its equivalent form
Pf(Z Xe=M) > Hpc ' H (1= pe) @), we actually allow perfect repacking to identify a fdrai
ceC c=1 c=M+1

{n.}. In a real system, perfect repacking needs to enumerate
all the possible serving patterns and choose the best oed bas
Hcczl(l + B0¢) n on some criterion, which is usually computationally infibées

We then propose a heuristic repacking algorithm which is not

So the ::omNputatlor?al (r:]omplexny IS upper boundebd Ry complex but can achieve similar functionality and imgrov
O(BC/P*). Note that the constant parametgr can be performances, although imperfect.

adjusted t_o geta highé)r.r(szec XC. - M). in order tq reduce Several variables need to be defined before we describe the
computational complexity. To achieve this, we can just dmoalgorithm'

a 8 which maximizes its lower boun&*, so ) i
o n.. the system-wide ongoing downloads of content
c which does not count the downloads from the server.
R

M ~
]._.[c:1 BVC Ay P*.

dlogP* M

Ve

1+ 60,

0. (44)

« B*: The set of boxes which have conten{(“potential
candidate boxes”) anklfree connections, fay < k < U.

The server can use any numerical methods (e.g., Newton’s

method) to seek a root of equatidn(44). In fact, this lower

boundP* on Pr(}_ .. X. = M) is not tight, since it is just

the largest item in the sum expression. When the popularity

is close to uniformness (e.g., in a zipf-like distributiom,

is small), this largest item is no longer dominant, so the ,

lower bound P* is quite untight, which means we actually

overestimate the computation complexity by only evaluatin

its upper bound. However, this will not affect the real gaimw

obtain after choosing the optimalaccording to equatiof (#4).
Recall that we also proposed a simple sampling strategy in.

D.: number of boxes which has content D, =
Yo IBE].

u,: a U-dimensional vector, of which theth component
represents the content béxs using itsi-th connection

to upload (a valué represents a free connection).

¢o: the “orphan content” which is affiliated with a new
request or an ongoing download but has not been assigned
with any box.

C,. the set of contents which has once been chosen as
orphan contents.

tr: the number of repacking already done.

Section[IV-A. It is easy to see that when some contents areygte that when choosing a box to serve a request, load bal-

much more popular than the others (e.g., zipf-likés large),

ancing is already considered, which to some extent redhees t

the probability that duplicates appear in one sldesample chance of necessary repacking in later operations. However

is high, hence largely increases the number of resamplingnacking is still needed for an incoming request for conten
Thus, it would be faster if we choose the Bernoulli sampling. 55 soon asl-oB* = 0
k— ).

However, when the popularity is quite uniform, the simple

sampling works very well. An extreme case is that under ﬂ?@epacking Algorithm

uniform popularity distribution,

(C) SN Mt i After getting a request for contentwhile Uy~ oB% = (), the
Pr{a valid sizeM subse} = % =11 (1 - 5) . server
i=1 1. Initialize ¢, := ¢, C, := {c}, andtg := 0.

which shows that when is large, you can get a valid sample 2. LetC = {c :

almost every time.

Ne /Do > ne,/De, andc & C,}, ie.,
a set of contents which haven’'t become orphans during
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this repacking process and of which the utilization factofrhe KKT condition includes the feasible set defined in OPT
(may be larger than) is larger than that of the current2 and the following:

orphan content,. If C, = 0, regardc, as a loss and oL
TERMINATE. . l—yc—2. = 0, Vg
3. Choosec* = argmax, cs{n-/Dy}. Uniformly pick oL ¢
one (box, connection) pair from i~ Pe T Ue +ve—peze—y = 0, Ve
oL
{(b,i): be B°, ¢*is thei-th component of,}. on, ~ vetve—mtwe =0, ve;
ue(me—1) = 0, u. >0, V¢
4. Use the chosen bdxand itsi-th connection to continue ve(Ae —e) = 0, v. >0, Ve
uploading the remaining part of content. At the Ye(te —Ac) = 0, ye 20, Ve
same timec* which was served using that connection 5 ree=
Zc(xc — pc+ pcmc) = 0, 2. 20, Vg

becomes a new orphan, i.e, := ¢*. Updateu,; and
{n.}. Settg :=tr+1. weAe = 0, we >0, Ve.

& i . .
5. If UrsoBe, # 0, i.e., there exists a free connection tQNe then put the solution stated in the theorem into KKT

serve the new,, then use the load-balancing-based box, ,jitio 1o check whether the condition is satisfied. The
selection rule to select a box to continue uploading ﬂ}ﬁ\alysis is as follows:

remaining part ofc,. The repacking process is perfect Forl<c<M—1 si - landh =z =0
(no remaining orphan) and TERMINATE. Otherwise, * 'O' * = ¢ = =4, SinCem, = 1L antdA. = z. =0, We
obtain thatv. = 0, y. + 2. = 1, pe(1l — z.) = u. + 7,

o If tr = %", a customized algorithm parameter  andy, = 5 — w,. Letting w. = 0, we further have:

(0 < tp* < (), regarde, as a loss and TERMI- Ue = P =, Yo =1, 2e = 1—n. To keepue, ye, ze > 0,
NATE. we must have) € [0,1] andy < p.n, for1 <c < M —1.
» Otherwise, seC, := C, + {c,}, and go to Stepl2. Thus, since{p. } are also ranked in the descending order,
we have
VS Pl (45)

2) A Practical Issue in Cache UpdataiVhen a boxb is
chosen for cache update (and it does not hold the content
¢ corresponding to the request), it might still be uploading
contentc’ which is to be replaced. This fact is not captured by

For M < ¢ < ¢*, sincem. = A\ = z. = pc/(l + pC)!
we obtain thatu, = w. =0, y. + 2. =1, pe(1 — 2.) =
Y = Ve, Yo =10+ v.. We further have:

the Markov chain model. In practice, those ongoing services = T~ P = n+o =1 n+o _
must be terminated. Since we have introduced the repacking pe+1 pe+1 pet+1
scheme, they become “orphans” ready for repacking. We To keepu,, ., z. > 0, we must havep.n < v < p. +
implement the procedure as follows: 1—mn, for M < ¢ <c*. Thus,

1. Rank these orphans by their remaining service time in P <Y< per +1—1. (46)

the ascending order, i.e., the original download which is
sooner to be completed is given higher priority.

2. Do repacking one by one until one orphan fails to be
repacked. Note that here the repacking algorithm starts
from Step[b, since there may already be some boxes

e Forc=c*+1, whenm, = 0, it degenerates to the next
case. Whenn,. > 0, sincem, = A\ = 2. < p(1 —me),
we obtain thatu, = w. = 2. =0, y. = 1, pe +v. =
v, n+v. = 1. We further have

with both content and free connections. N = pep1+1—n. (47)
o Forc*+2<c¢ <, sincem. = A\, = z. = 0, we obtain
E. Proof of Theorerfl]2 thatu, = 2. = 0, ye = 1, e = Y=pe;, We = 1+ve—1 =
N+~ —pe.— 1. To keepv., w. > 0, and due to the fact
The Lagrangian of OPT 2 is thaty € [0, 1], we must havey > p., forc*+2 < c < C.
Thus,
Y 2 Per42- (48)

L(fha )‘7x;uavayaz7wan7’7)
For inequalities [(455),[(46),[(48) and equatidn](47) to hold

= 7 — Ne — 1) — -1 . . .
Z {pcmc +Ze = te(me = 1) = ve(Ae = ) simultaneously, we can choosej)avhich satisfies

ceC
P41 +1 < < P41 +1

pM—1+1_ B pM+1

—n Z)‘C_l — 5 ch_M ) which also satisfies) € [0,1]. Therefore, the theorem is
ceC ceC proved.

_yc(xc - )\c) - Zc('rc - pc + pcmc) + wc)\c:|

)
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It should be mentioned that WheEZ;M m. = 1, i.e., then within one stream, some substreams may completerearlie
me41 = 0, the case ¢ = ¢* 4+ 1” can be combined with than the others. Therefore, the above equality needs to be
the next cased* +2 < ¢ < C”, hence equatiorf(47) does notadded as a constraint (and used to come up with the following
exist while inequality[(4B) is changed t0> p.-1+1. Then, we result), i.e., the bandwidth for th& substreams should be
can just choose g which satisfies reserved until the whole streaming is completed.

+1 Then, in the proof of the optimality of “proportional-to-
Pex+1 . .
0<n< S product” placement for DSN, every expression keeps the same
M

_ except that the feasibility constraimt {10) is changed to
F. Storage of Segments and Parallel Substreaming

B

We have mentioned before that compared to the “storage vSeo, Z Z e < _ Z m; BUK, (51)
of complete contents and downloads by single streaming” feOcoce FgNS#D
setting, a more widely used mechanism in practice is thad the “proportional-to-product” placemetin;} is now
each box stores one specific segment of a video cont¥fith respect to each segment, i.en; = [[,.;7/Z for
and a download (streaming) comprises parallel substrapm@ll / € © s.t. [j| = M, where Z is the normalizing
from different boxes. To model this mechanism, we have t§@nstant andy = 0. if & € c. With an observation that
following simplifying assumptions: Each content is divide >_pco 0 = K> .cc?c = K, we can still come to an
into K segments with equal length which are independentfequality same with inequality (17), except thaandC are
stored. Each box can store up fd segments (actually it replaced by and© respectively. All the succeeding steps are
does not matter if we keep the original storage space of egffctly the same in the proof of optimality.

box, i.e., M complete contents, which now can holdK G, Another Approach to Bound the Chance of “Good Con-
segments, since the storage space is a customized parRMgigts” in Proving Theorerfl3

and thesell segments do not necessarily belong\fodistinct At the first stage of proving Theorel 3, we mentioned that

ZZZLe?)tg' Zgﬁ gggg:nvgg] d:lt;?acgr;?; 'SS lg:tpr)g:’;?': ng\;vchwe can also directly derive the Chernoff bound on the RHS of
h d X load ratel /K (th P u q tl' 9. t."inequality [26) to get the result. The derivation is giveltole
\|2” t 0‘1”3 oad ratel / : (the a"e{?‘ge Sfetrh"'ce_ ‘_”aI'O” 'ts St' Recall that/(z) = supy{zf — In(E[¢?%])} is the Cramér
Pt asi because eac s?gm_en VSKO € onginal content 4, hsform of the Bernoulli random variablg,. It is easy to

length). The definition of “traffic loadp is then the same as in

. . - : check that
equation[(B). A request for a content will be divided into sub .
requests submitted to the boxes holding those correspgndin ;) _ aln (%) +(1—2)ln (i%f)) if z € 0,1]
segments of this content, generatifigparallel substreaming 400 else
flows in total (one box can serve more than one substreaming

service for this request if it caches more than one distinéiso recall thata £ (M2/3 + ”,,—5}4) JMB = M~'3/B +p,

segments of this content). o . wherep £ —i-. Since we are considering a largea < [0, 1]
Let ¢ represent a segment adde c indicate thatt is a holds. Thus, denoting = 1 — p for brevity, the exponent of

segment of content. Recall that we use:. to denote the RHS of inequality [[ZB) reads
number of concurrent downloads (now called “streams”) of

contentc in the network. We further usey to denote the —MB - I(a)
number of substreams corresponding to segrtient = —(pMB + M?3).1In (1 + } - )
Now the original feasibility constrainf1) becomes pM1/3B
1
- : —(PMB — M?/3) -In (1 — ——7—
bz;ﬂ[} Z6b ng, V 9 S @, (p ) n le/BB
e UK VbR 49 _ pMB+ M?/3 pMB
) GZEJ zop < , € D, (49) - le/3B + 2(pM1/3B)2
: b
pMB — M?/3 pMB
where® represents the whole set of segments apdienotes b — + ,p + o(M*1/3)
; pM'/3B 2(pM1/3B)2
the the number of concurrent substreams downloading ségmen s
0 from boxb. It is easy to see that the equivalent version which _ M / (l + }) + O(]\/fl/3)
can be proved by Hall's theorem becomes: 2B \p p
1/3
VSCO, Y ng<KU[{beB: SNJ, #0}, (50) _ M ﬂJr% +o(M3)
oes 2 vi  B(l-24)
where with a little abuse of notatios is used to denote a - .0 (M1/3) . (52)
subset of0, instead ofC as before.

Since we have assumed that video duration and vid¥gth similar steps as above, we can show the 1e>§p0nent
streaming rate are all the same, one naturallyshas: n. for ~ €xponent of the RHS of inequality (27) is alse® (M1/3).
all 6 € c. If we let randomness exist in the service duratiorf,herefore, inequality((28) is proved.
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