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Differential Forms for Target Tracking and
Aggregate Queries in Distributed Networks

Rik Sarkar and Jie Gao

Abstract—Consider mobile targets in a plane and their move-
ments being monitored by a network such as a field of sensors. We
develop distributed algorithms for in-network tracking an d range
queries for aggregated data (for example returning the number
of targets within any user given region). Our scheme stores the
target detection information locally in the network, and answers
a query by examining the perimeter of the given range. The
cost of updating data about mobile targets is proportional to the
target displacement. The key insight is to maintain in the sensor
network a function with respect to the target detection dataon
the graph edges that is adifferential form such that the integral
of this form along any closed curveC gives the integral within
the region bounded byC.

The differential form has great flexibility making it appro-
priate for tracking mobile targets. The basic range query can
be used to find a nearby target or any given identifiable target
with cost O(d) where d is the distance to the target in question.
Dynamic insertion, deletion, coverage holes and mobility of sensor
nodes can be handled with only local operations, making the
scheme suitable for a highly dynamic network. It is extremely
robust and capable of tolerating errors in sensing and target
localization. Targets do not need to be identified for the tracking,
thus user privacy can be preserved. In this article, we only
elaborate the advantages of differential forms in tracking of
mobile targets. Similar routines can be applied for organizing
many other types of informations, for example streaming scalar
sensor data (such as temperature data field), to support efficient
range queries. We demonstrate through analysis and simulations
that this scheme compares favorably with existing schemes that
use location services for answering aggregate range queries of
target detection data.

Index Terms—Multi target tracking, aggregate query, sensor
networks,

I. I NTRODUCTION

Keeping track of mobile objects is a common question in
modern society. People in motion need to maintain connectiv-
ity, thus requiring location management. Other applications,
for example monitoring of traffic require real-time assess-
ment of environments of mobile devices. Mobile targets can
be identifiable, for example possessing unique identifiers or
unique signal signatures, or non-identifiable, for exampleto
maintain user privacy. Queries on mobile targets may be about
locating the current position of a mobile identifiable target, or
aggregated information such as the count of targets in a user
specified region. There is often a connected communication
infrastructure spanning the space in which targets move. A
major technical question is centered around the representation
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of target motion that will allow the users easy and effective
access to the data. The possible solutions can be tailored to
different system requirements and assumptions.

Take an example of the location management schemes in
cellular systems. The problem is to find the current locationof
the mobile user when receiving a call. There are two atomic
operations, called paging and update respectively. Pagingis
used when the system searches the cellular towers looking for
the user. Update refers to mobile users informing the system
of their current locations. The full scheme uses a combination
of paging and update, based on user mobility patterns and
call frequencies. This solution assumes the cooperation of
the mobile users/targets and that the query is for individual
identifiable targets.

Targets may not always be so cooperative or capable of
direct communication with the system. In such cases the task
of locating, tracking and querying for mobile targets is entirely
on the communication infrastructure spanning the region. The
targets may not be individually identifiable, but being able
to detect the number of targets in any region can still supply
valuable information. This is motivated by the recent advances
of large scale wireless sensor networks. As sensor networks
intrude into the space where people live and work, they form
a sensing and communication infrastructure that can provide
real-time assessment of the living environment and the mobile
objects therein. Indeed, tracking of mobile targets is identified
as a major motivating application for sensor networks [4], [12],
[15], [17], [24], [25], [28] from the very beginning. We use
sensor network as a simple model for a distributed tracking
infrastructure but the solution is independent of the particular
network underneath. For example, wireless enabled devices
can be tracked by wireless access points or other wireless
devices. In this case, the wireless infrastructure acts as the
sensor network.

Consider the following scenario of wide-area deployment
of sensors along major roads to track and monitor moving
vehicles. A suitable sensor can detect the position and velocity
of a target within its sensing range [19], the navigation system
in a car may also communicate directly with the sensors.
A target may or may not have identifiable signatures. The
moving vehicles come in swarms as in the typical case of
medium to heavy traffic situation. A user may use hand-held
devices (smartphones, PDAs, etc) or the car’s GPS system to
communicate with nearby sensors or other portals and inquire
for the target distribution. Of particular interest to us are range
queries foraggregateddata, for example, the level of traffic
congestion in a specified neighborhood and its evolution over
time. Formally, we ask a counting range query: what is the
number of targets in any user-specified regionR? The topic for
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this paper is to develop an efficient data processing and query
scheme for such applications. A desirable solution should have
low query delay, low communication costs, as well as low
maintenance cost as the targets move rapidly.

The questions of detecting target presence, localization or
communication have been investigated as independent research
problems on their own, and are not our focus here. We
will concentrate on processing and storing the local target
information. We examinetracking at the global scale of the
network.

In sensor networks, the most adopted target tracking ap-
proach, arguably, is the sensors to record the detection events
in the data logger or report to a base station. The base station
assembles target trajectories for post-experiment analysis. This
solution bears the common problems of having a central
server (bottleneck and a single point of failure, not resilient
to attacks), and in particular, the data collection step makes
it inappropriate for applications with stringent delay require-
ments. In many practical scenarios, movements of targets are
relevant only in the local region and for a short period of
time. For example, some cars turning on a particular by-road
is a relevant traffic information only while they are in the
neighborhood. It is difficult to justify the high communication
and storage costs of updating a remote server for high volumes
of such fleeting pieces of data. Very often, users may be in
a neighborhood of where the relevant data is generated. A
centralized solution would require both the data and query
from the users to be delivered to a (possibly) remote server.
This leads to unacceptable delay and unnecessary network
traffic.

Alternatively, the sensor in the proximity of a target can
detect the target and can locally cache the detection event.This
scheme has low maintenance cost as data is stored locally and
only local updates are needed when target moves. But with
such raw detection data stored directly in the network it is
not easy to answer range queries. One has to flood all the
nodes inside the rangeR to find out the total number, the
communication cost of which is proportional to the area ofR,
A(R).

User privacy and anonymity are vital in the modern world.
The simple methods mentioned above require consistent iden-
tification of mobile devices to keep track of data and prevent
overcounting. Thus, users are effectively “followed” as they
move through the network. This can raise concerns making
individuals unwilling to participate in the method. In a non-
cooperative scenario identification can be difficult and erro-
neous. Wherever possible, we prefer a scheme that does not
need to identify devices in tracking them.

The solution we propose in this paper uses local
maintenance, but instead of storing raw detection data, stores
target movements implicitly. Counting range queries have
costs proportional to the perimeter of rangeR, P(R)≪ A(R).
For this we use a novel notion of differential form on the
network. The key insight is to maintain in the sensor network
a function on the edges that is aco-vectorfield with respect
to target movement vectors, which means that the integral
along any closed curveC gives the integral of the region
bounded byC. Thus our scheme naturally supports efficient

range queries by touring along the boundary of the region.
This idea is introduced below.

Our approach: differential forms. A differential form is
commonly considered on smooth manifolds, where it is easier
to write explicit expressions for smooth forms. In this paper we
use a formulation which can be considered an implicit repre-
sentation corresponding to smooth forms. This representation
allows us to consider the concepts in a more discrete manner
that is suitable for computations and dynamic modifications.
This discrete differential form is defined on a cell complex,for
example, a decomposition of the plane into non-overlapping
faces by a planar graph.

Consider the simplest case. We have a planar graph em-
bedded in the plane, and one target lies within a facef0 and
has a weight ofw, representing its size or other metrics of
interest. The differential one-form is represented by a function
ξ on directed edges. The value forξ(ab) on edgeab must be
the negation of the value forξ(ba), that is ξ(ba) = −ξ(ab).
We further maintain the property that for the facef0, the
summation of all the values of the edges on its boundary,
in clockwise order, isw. The summation of all the values of
the boundary edges on each other face is0. This ensures that
any cycle containing the facef0 will have a total summation
of w, and any cycle not containingf0 will have a sum of0
(see Figure 4). In other words, one is able to answer range
queries by simply integrating the differential one-forms along
the range boundary. The weight on an edge signifies we have
created a differential form whose integral over the edge sums
to that value.

The basic definition for one target can be generalized to
multiple non-identifiable targets – such that the integral of a
face is the total weight of the targets within the face. This
way range query can be done for a swarm of targets with the
same query cost. Using range queries we can implement the
query for locating a nearby target or a given identifiable target.
The idea is to use exponentially enlarging range around the
query node and once the range includes the target, reduce the
range by using divide and conquer. The cost for this earch
is bounded byO(d), whered is the distance to the target in
question, representing locality sensitivity.

The differential form has great flexibility that allows low
maintenance cost under both network dynamics and target
movements. When a target moves from one facef0 to an
adjacent facef1, we only need to update the differential
one-form on the edgeab common to f0, f1. We assign
ξ(ab) ← ξ(ab) − w, for a target of weightw. This ensures
that the property of the one-form is maintained. The cost for
the update is a constant and can be done locally. Network
dynamics such as link addition and removal, or node insertion
and removal, can be handled in constant time. We also show
that the differential one-form can be initialized in linear
communication cost, i.e., constant cost per node. Further,this
aids in energy management. Sensors only need to be active if
there are moving targets nearby. A region of the network where
there are no targets need not perform any communications to
maintain tracking data, and can sleep or go to low power mode
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for extended periods.
The method automatically handles sensing holes — rela-

tively large faces in the planar graph. If a target moves deep
inside a hole and is not detected by any sensor, its contribution
to the total count of a region enclosing the hole is still correct.
This is an improvement over the naive approach of storing the
target detection data locally at a sensor detecting the target,
which cannot account for targets not currently in range.

Although we present as the major application of differential
forms the tracking of targets, the same routine can be applied
for organizing streaming scalar sensor data (such as tempera-
ture data field), to support efficient range queries.

The rest of the paper is organized as follows. We review
prior related work on range queries of mobile target and elab-
orate how our scheme fits and compares with the state of the
art schemes. Then we introduce the definition of differential
one-form on the network. The algorithms for computing and
maintaining the one-form are described afterwards. We report
simulation evaluations and comparisons with prior work at the
end.

II. RELATED WORK

There are a lot of previous works on tracking mobile targets
and on range queries of sensor data. We briefly mention these
and compare with our approach.

Range queries.For a typical range query, we ask for an
aggregate value of data in a query-region of the network.
This problem has been studied in computational geometry.
Centralized data structures for geometric range query on static
points [3] or motion data [2] have been developed. But they
are obviously not a good fit for a distributed sensor network
setting. For static sensor data, distributed methods such as
DIFS [11], DIM [21] and fractional cascading [9] decentralize
the range query process. These methods use hierarchic space
partitioning techniques that are not suitable for trackingdy-
namic information such as moving targets.

Location services.Existing solutions for tracking and search-
ing for mobile targets, termed aslocation services, focus on
the tracking and searching of a single target. The earliest work
is by Awerbuch and Peleg [5] and followed up in [1], [6],
[20] to fine tune the system. The location of a mobile target is
updated to a carefully selected set of nodes, called the location
servers, whose spatial density cascades exponentially as we
move away from the target. Location services have amortized
update cost ofO(d log d) when a target moves a distanced,
and a query cost ofO(d′) if the query node is of distance
d′ away from the target’s current location. In comparison, we
have better asymptotic bounds. Our update cost is worst case
O(d) and query cost is no more thanO(d′). Location services
do not support range queries very well. Location services,
particularly [1] will be discussed in detail in subsection V-A
when we compare its performance with our method. We show
that for both updates and range query cost, our method is
substantially better.

Information gradients. The third approach is to define a
potential field centered at the target [22], which satisfies
the Laplace’s equation∇2Φ(x) = 0 with proper Dirichlet

boundary condition (1 at the target location and0 at the
network boundary). Every node can follow the localinfor-
mation gradientto arrive at the target. In addition, touring the
boundary of a given range and summing up the difference of
the potential values on the edges across the region boundary
provide the number of targets in the interior of the range.
Updating the gradient field is costly when a target moves – a
small move may change the field everywhere. Our method in
comparison keeps updates localized to a small neighborhood
of the motion.

To summarize, the scheme proposed in this paper comple-
ments the state of the art data processing methods in a sensor
network by providing low-maintenance, low cost range query
scheme for a large number of non-identifiable mobile targets.

III. D IFFERENTIAL FORMS ONCELL COMPLEXES

A differential form is defined on acell complex, induced by
a planar graphG in the plane in our case. The vertices, edges
and faces of the planar graph are the0, 1 and2 dimensional
elements created by the planar graph. In algebraic topology
these are called the0-cells, 1-cells and2-cells respectively.
See Figure 1 for examples. The composition of the different
dimensional cells covering the deployment region is calleda
cell complex. The idea of a cell complex extends up tok-cells
for arbitraryk. A more detailed treatment of cell complexes
can be found in [13].

Fig. 1. 0, 1, 2-cells.

Our primary focus is to track targets in the plane as they
move between faces (2-cells) of the planar graph – a2-
complex in the plane. We assign and update weights of the
edges (1-cells) of the complex. The idea extends to suitable
complexes of higher dimensions.

For ease of explanation, we assume for now that the
targets are accurately tracked by nearby sensors. Various
target detection schemes and signal processing primitiveshave
been developed in the literature [19]. In the algorithm and
simulation sections we address the issues of sensing holes and
target detection errors. Our strategy assigns values to edges
of the planar graph, and changes these values as the target
moves. We introduce the following definitions and notations
to represent the related faces, edges and values.

A. Boundaries and Boundary Chains

A face is demarcated by the edges or1-cells that surround
it. Such a set of edges form theboundaryof the cell. For an
edgepq, we use the ordered pair(p, q) to represent a directed
edge whose direction or orientation is fromp to q. We use
−(p, q) to represent the same edge with orientation(q, p).
For brevity, we can represent(p, q) and (q, p) as e and−e
respectively. In a diagram, when an edge is labeled simply as
e, an arrowhead is used to represent the intended orientation.
The opposite orientation will naturally correspond to−e.
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Definition 3.1. Chains. Supposea, b, c . . . are orientedk-
cells, then a chain on these edges is a formal sumλ1a+ λ2b +
λ3c+ . . . , where eachλi is an integer.

This chain simply signifiesλ1 occurrences ofa, λ2 occur-
rences ofb etc. The advantage of the summation notation will
be clear in a short while. In particular, ak-chain is a chain of
edges and a2-chain is a chain of faces. Note that in many
1-chains we consider, the edges will be adjacent to each other
and form a connected path. But this is not necessary in general,
and the edges in an edge chain can in fact be any set of edges
from the complex.

We can also associate orientations with2-cells or faces.
These correspond to traversing the boundary cycle of a face in
some direction, clockwise or counter-clockwise. In this paper
we assume that all faces are oriented in the clockwise direc-
tion. Such a consistent orientation of cells is made possible by
the fact that the 2-dimensional plane isorientable[18]. Thus,
given a cellσ represented as an ordered tupleσ = (p, q, r, s, t),
as shown in Figure 2, we understand that the order corresponds
to a clockwise traversal of edges(p, q), (q, r), (r, s), (s, t) and
(t, p). Correspondingly,−σ is the same cell with the opposite
orientation,−σ = (t, s, r, q, p). Observe that the orientation
of a cell implies a specific orientation for each edge on its
boundary.

σ

p

s

t r

p

s

t r

q q

∂

Fig. 2. Action of boundary operator on a faceσ will give a chain of its
boundary edges with orientations inherited from the orientation σ.

Definition 3.2. Boundary operator∂. The boundary operator
∂ acts on ak-cell σ to produce ak − 1-chain∂(σ) = a +
b + c . . . wherea, b, c . . . are cells on the boundary ofσ, with
orientations inherited from a known orientation ofσ. For a set
of cellsU = {σ, τ . . . }, we extend∂ to operate on it as∂U =
∑

σ∈U

∂σ.

The idea behind this definition is shown in Figure 3. The
two neighboring facesσ andτ have boundaries∂σ = a+b+c
and ∂τ = d + e + (−c), respectively. Note that a shared
edge like c must always appear with opposite orientation,
and therefore have opposite signs for the two faces. Thus
the resultant boundary∂{σ, τ} = a + b + d + e is exactly
the boundary of the union of two faces. This applies more
generally to any set of faces. We refer the reader to [18] for
more details on the algebra of chains.

Our definitions are set up such that an oriented2-cell σ
is equivalent toσ with an assignment of orientations to its
boundary edges(a, b, c, . . . ), such that∂a+ ∂b+ ∂c · · · = ∅.
For example, in Figure 2,∂(pq) + ∂(qr) + ∂(rs) + ∂(st) +
∂(tp) = (q − p) + (r − q) + (s− r) + (t− s) + (p− t) = ∅.
This can be treated as a definition of orientation of a2-cell.

σ τ

b

a

c −c

d

e

b

a e

d

Fig. 3. Action of the boundary operator∂ on facesσ and τ produces the
boundary of the union of the two.

B. Differential Forms and Tracking Forms

In this subsection we define functions over edge chains and
show how they help in tracking a target.

We consider a functionf that assigns a value to each
directed edge in the planar graphP . The function is defined to
have the property thatf(−e) = −f(e). We extend this func-
tion to edge chains by making it distributive over summation:
f(a+ b + c+ . . . ) = f(a) + f(b) + f(c) + . . . . Let us refer
to such functions as1-formsor edge forms. A 1-form f can
be extended to a2-form df on the faces of the planar graph,
if we let it take the value on the boundary of that face, that
is, df(σ) = f(∂σ).

Now suppose there is a single targetT of weightw in the
domain. Then at any given time this target resides in a single
unique face of the planar graphP 1. Then we define a one-
form on the faces and edges such that it is non-zero on this
face and is zero on every other face:

Definition 3.3. Tracking form ξ. A tracking form ξ for a
targetT of weightw is a one-form such that

dξ(σ) =

{

w if σ containsT
0 otherwise

Remember that on the faceσ the form is defined to take a value
equal to its sum on the boundary edges,dξ(σ) = ξ(∂σ). We
can extend the form to a setU of faces by simple summation :
dξ(U) =

∑

σ∈U

dξ(σ).

As a direct consequence of this definition, we know that to
evaluate the presence of the target within a subsetU of faces,
it suffices to add the extended tracking-formdξ on the faces
in U . If a face inU contains the targetT , thendξ(U) sums
to w, else it sums to zero. The following lemma implies that
it is sufficient to sum the formξ only on the edges that form
the boundary of the setU to obtaindξ(U).

Lemma 3.4. The sum of an extended form on the faces in set
U equals the sum of the form on the boundary ofU , that is:
dξ(U) = ξ(∂U).

Proof: This follows directly from the definitions:

dξ(U) =
∑

σ∈U

dξ(σ) from definition 3.3

=
∑

σ∈U

ξ(∂σ) from definitions ofξ & dξ

= ξ

(

∑

σ∈U

(∂σ)

)

by distributivity of ξ over+

= ξ(∂U) by definition 3.2

1The degenerate cases of the target being on an edge or a vertexcan be
resolved locally by a predetermined policy between the local nodes to assign
the target to a face. We ignore these cases to keep our discussion simple.
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This lemma is equivalent to Stokes’ theorem [7]. Its signif-
icance becomes clear in Figure 4. Given any cycleL in P , it
is possible to detect if the targetT is inside the loop or not,
by simply adding the tracking form alongL. If T is in the
interior, thenξ(L) = w, and if T is not in the interior, then
ξ(L) = 0. In either case, the query does not need to visit the

T

L

ξ(L) = w

TL

ξ(L) = 0

(a) (b)

Fig. 4. Query for a targetT insideL. (a)T is insideL, thereforeξ(L) = w.
(b) T is not insideL, thereforeξ(L) = 0.

nodes in the interior ofL. A simple walk on the loop suffices
to find the answer. Further, this works exactly the same way
for any arbitrary loopL and position of the targetT .

Multiple Targets. This idea extends to any number of targets
in the domain. Suppose targetsT1, T2, . . . , Tk of weights
w1, w2, . . . , wk, individually give rise to tracking formsξ1,
ξ2, . . . , ξk. Then we can construct a combined tracking form
as the sum of theseξ = ξ1 + ξ2 + · · · + ξk on each edge.
Given any loopL, the sumξ(L) will provide the total weight
of targets insideL.

The weights assigned to targets can be adjusted to suit the
needs of the system. For example, if all weights are equal, then
ξ(L) provides the count of targets inside. If each individual
target Ti is given weight2i, then from ξ(L) it is possible
to deduce exactly which ones are located insideL. This is
equivalent to maintaining a form for each individual target.
It is possible to imagine other scenarios where targets are
assigned different weights according to their importance,for
example, objects can be classified according to needs and
weights assigned according to their types.

Given the weights and target locations, it is always possible
to create a suitable tracking form. In the next section we will
describe an efficient algorithm.

Updating tracking forms for mobile targets. When a target
moves from one face to another, we need to update the tracking
form by changing its value on the directed edges. Without loss

b
τσ

−c
T

c

a e

d

Fig. 5. TargetT of weight w moves from faceσ to faceτ . Modify ξ(c)←
ξ(c)−w to obtain the new form.

of generality, we consider the example in Figure 5, whereT
moves from faceσ to an adjacent faceτ . Let us say, the
shared edge that was crossed byT appears asc in ∂σ, and as

−c in ∂τ . In the initial configuration, we haddξ(σ) = w
and dξ(τ) = 0. After the move, we need to have a final
configuration with dξ(σ) = 0, and dξ(τ) = w. This is
achieved by the following simple modification to the form
on the shared edge:

ξ(c) := ξ(c)− w. (1)

The same assignment can alternately be written from the point
of view of τ as:

ξ(−c) := ξ(−c) + w. (2)

Evidently, these two are the same operation, sinceξ(−c) =
−ξ(c).

The following theorem says that this indeed is the correct
operation that achieves the desired result.

Theorem 3.5. If σ andτ are adjacent faces with shared edgec,
anddξ has valuesdξ(σ) = u anddξ(τ) = v, then the modifi-
cation described in equation (1) or (2) results indξ(σ) = u−w
anddξ(τ) = v + w.

Proof: Suppose, the boundary ofσ is ∂σ = e1 + e2 +
· · · + c + · · · . In the initial configuration we haddξ(σ) =
ξ(e1) + ξ(e2) + · · ·+ ξ(c) + · · · = u. After the modification,
we havedξ(σ) = ξ(e1)+ξ(e2)+· · ·+(ξ(c)−w)+· · · = u−w.

Similarly, after the modification, we havedξ(τ) = ξ(ek) +
ξ(ek+1) + · · ·+ (ξ(−c) + w) + · · · = v + w.

In the proof above we take the initial values to beu and
v instead ofw and zero so that the same proof applies to
scenarios with multiple targets, and any preexisting weights
on the faces and edges. For a system with a single target,
the final values areξ(σ) = 0 and ξ(τ) = w, as required. In
general, the weight ofT is removed from the weight ofσ and
added to the weight ofτ .

IV. A LGORITHMS

In this section, we describe the algorithms for constructing
the tracking form, and for supporting range queries and other
queries.

A. Planar graph for tracking

As a first step we compute a planar graph. The planar graph
can be either a subgraph of the communication graph of the
sensors, or a virtual graph chosen for the tracking application.

In the first case, consider the sensor network as the nodes
embedded in a region in the plane, and an associated com-
munication graphG. We obtain a planar subgraphP ⊆ G
that contains all the nodes, but is drawn in the plane without
crossing edges. We can apply planarization techniques to
extract a planar graph from the network connectivity graph.
Such methods have been developed in the past [8], [10], [23],
[27]. Any such algorithm can be used for our purpose.

Alternatively, we can also consider a virtual planar graph
chosen for the tracking application. For example, the virtual
planar graph can represent any convenient space decompo-
sitions, such as streets and blocks, any other meaningful
districts, or simply a global grid overlayed on the region. For
each virtual edge we can appoint a nearby sensor or all the
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nearby sensors (e.g., those whose sensing ranges cover part
of the edge) to ‘maintain’ the value on the edge. In this case
we only assume that a target crossing an edge of the virtual
graph can be detected by at least one sensor and the new
differential form value is updated. Such virtual planar graphs
can be made to create finer subdivisions as required. When
the mobile entities can detect their own locations, they canon
their own notify the system when they cross an edge of the
graph.

B. Constructing a Tracking Form

In this subsection, we show how to initialize a tracking one-
form in the network. First, we describe the simple case where
the network is empty of targets to start with, and all targets
enter through the outer boundary. Next we will see that the
ideas from this case provide a mechanism for initializing the
more general case where targets may be present at the time
of initialization.

Starting with an empty field. In this case, we initialize all
edges to zero, that is for every edgee ∈ P, ξ(e) = 0. Now,
suppose that a targetT of weight w enters the network. It
crosses the edgec ∈ ∂τ to enter the faceτ . Then we modify
ξ(c) := ξ(c) +w. Clearly, after this modification,dξ(τ) = w.
As T moves, we can adaptively modify the form according to
equation (1) or (2).

T

(a) (b)

Fig. 6. The entry of a targetT into the network. (a) As it moves from face
to face, it leaves a trail of edges that it modified - shown in bold blue. (b)
The trail in the dual graph. The edges of the dual graph are shown as dotted
lines, and the dual trail of the target as a solid blue path.

The process is shown in Figure 6(a). As the target moves
from face to face, it modifiesξ on the shared edges between
adjacent faces. Creating a trail of edges with non-zero values.

Now, let us look a complex̄P that is the dual complex ofP .
A vertex (sayσ̄) in P̄ corresponds to a face (σ) in P . An edge
ē between vertices in̄P represents the shared edgee between
corresponding faces ofP . The trail of edges inP thus results
in a dual trail, which is a path in̄P , shown in Figure 6(b). For
a more complete picture, we can regard the region outside of
the planar graph as aface at infinity, and then the dual trail
of T is a path from this face to the current position ofT .

Initializing a field with targets. The idea of the dual trail
directly leads to a simple algorithm to initialize targets in the
field. We take a dual path to the face at infinity and add the
suitable weight to edges ofP whose dual are on the path.

More formally, for a targetT , we select any simple directed
pathα in P̄ from the current face ofT to the face at infinity.

If ē = (σ̄, τ̄) is on α, ande ∈ ∂σ, then we do the following
modification:

ξ(e) := ξ(e) + w, (3)

wherew is the weight ofT . Quite clearly, any simple directed
clockwise loop that containsT passes through one such edge.
In cases where the loop has more than one such edges, the
additional edges appear in oppositely oriented pairs and the
values on them cancel out each other.

The following theorem shows that the algorithm above
creates a correct tracking form.

Theorem 4.1. Supposedξ(σ) = u, then after the algorithm
above is executed,

1) If a faceσ contains targetT , thendξ(σ) = u+ w,
2) Elsedξ(σ) = u.

Proof: SupposeT ∈ σ, then σ̄ ∈ α and has an outgoing
edgeē. Therefore, after the algorithm is executed,ξ changes
on e ∈ ∂σ by ξ(e) := ξ(e)+w. All other edges on∂σ remain
unchanged. Therefore, after the modification,ξ(σ) = u + w.
This proves the first claim.

SupposeT /∈ σ, if σ̄ is not on the trailα, then of course
nothing changes, anddξ(σ) = u. So, the only case we need
to consider is when̄σ is on the pathα. We know thatα is
a path from the current face ofT to the face at infinity, and
σ is neither of these. Therefore,̄σ has degree exactly2 in
α. Suppose the incoming and outgoing edges areē1 and ē2
respectively. Then the algorithm will have made the following
modifications :ξ(−e1) = ξ(−e1)+w andξ(e2) = ξ(e2)+w.
Therefore, the original sumdξ(σ) = a+ · · ·+ ξ(e1)+ ξ(e2)+
· · · = u remains unchanged :dξ(σ) = a+ · · ·+(ξ(e1)−w)+
(ξ(e2) + w) + · · · = u. This proves the second claim.

Once again, the proof works for domains with multiple
targets. We execute this once for each target in the domain or
for each face containing targets with the total weight of these
targets. Thus producing the correct form for initialization. The
same procedure can be executed in case a target appears in the
middle of the network at any time during the operation.

In cases where there are many targets in the field, creating a
trail to the boundary for each can be expensive. In such cases,
we perform the initialization as a sweep on the network. We
discuss this further in section IV-I.

C. Containment queries

Given a one-form on the planar graph, we can query the
number of targets inside any loop on the planar graph. This
subsection extends it to queries of a geometric range. In the
following we use the example of user specified squares. Other
geometric ranges can be handled in a similar manner.

For now, let us assume that the network is sufficiently dense
so that every point within it is covered (sensed) by one or
more sensors, in particular that every point in a face is within
a small constant distanceδ of some vertex of the face. Let us
also assume that the density is bounded, that is, inside any disk
of radius1 the number of nodes is bounded by some constant
k. This is not a very restrictive assumption. In a very dense
network, we can select a sample of bounded density that still
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covers the region. We assume geographic face routing [16] is
used to follow the faces that intersect a given geometric curve.

Let us use the notationSp(r) to denote the square of side
length2r, centered at pointp. We sometimes usep to denote
both a node and its location. We define thesize ofSp(r) to
be r. The goal is to compute the weight of targets inside this
box, or equivalently, compute the sum of the tracking form on
the boundary∂[Sp(r)].

Consider the faces ofP that intersect this boundary. By
the assumptions above, there are at most a constant number
of these within a unit distance of any point on∂Sp(r).
Therefore, the number of faces intersected by the boundary
is O(|∂Sp(r)|) or O(r).

Let Q represent this set of faces at the boundary. For
a sufficiently large box queried,Q is an annulus and∂Q
has 2 different connected components — say∂Q = β + γ
where each is a connected edge chain, in fact a cycle. One
of these, sayγ lies outsideSp(r) and β lies inside. We
say thatγ and −β respectively form the outer and inner
approximations of∂Sp(r). The reason for taking−β is thatβ
by default is oriented counter clockwise, therefore we reverse
the orientation to match our conventions.ξ(−β) gives a lower
bound on the weight of targets inside the box, whileξ(γ) gives
an upper bound.

We can now find the answer to our query. First, we find
ξ(−β). Next, for every faceσ ∈ Q, we manually check the
total weight of targets insideσ ∩ Sp(r). The sum of these
values withξ(−β) gives the answer.

Note that this entire computation can be done in a dis-
tributed manner by a single walk along the cycle∂Sp(r). The
size of the sub-complex induced byQ and therefore the cost
of this computation isO(r).

D. Search queries

In this section, we build an algorithm to answer queries of
the type “Find the targetT starting fromp.” It is assumed that
a differential form is maintained for the identifiable target T ,
that can be used to search forT , Similar ideas apply to find
a target nearest top.

We search in two stages. First, we find the smallest box
Sp(2

i) that containsT . This is done by successively checking
Sp(2

i) for i = 0, 1, 2, 3, . . . . Suppose theT is at a distance
d, then the size of the largest box tested in this process is
2⌈lg(d)⌉. Denote this box asSp(r). From section IV-C, the cost
of checking a box of sizer is bounded byar for some constant

a. Then the total cost of the test above isa
⌈lg(d)⌉
∑

i=0

2i = O(d).

In the second step, we search within the boxSp(r) recur-
sively for the actual location of the target. We partition the
box Sp(r) into four quads, each of sizer/2, and check each
of these for the presence of a target. Each test costsar/2,
therefore, the total test for4 quads costs2ar. This is done
recursively until we arrive at a node that ‘sees’ the target.
Clearly, the cost of this recursive search is4ar(12 + 1

4 + 1
8 +

· · · ) = O(r). Sincer is at most2⌈lg(d)⌉, we have that the total
cost of finding the nearest target isO(d), that is of the order
of the distance to the target.

Our query cost is sensitive to the distance to the target.
Notice that whether we simply want to deliver a message to
the target or obtain its location, the cost isΩ(d). Thus our
query cost is asymptotically optimal.

E. Nearest Target Search

From a query nodep, we would like to find the target that is
nearest top. This is useful, for example, in performing nearest
neighbor queries.

First we find the smallest boxSp(2
i) that contains one or

more targets, by performing an exponentially growing search
as in the previous subsection. This implies that the nearest
target is contained in an annulusSp(2

i) \ Sp(2
i−1). Next we

perform a binary search on the size of the box by recursively
splitting the annulus. That is, we check if a target is contained
in Sp(2

i−1 ·1.5). Thus we find an annulus of half the width that
must contain a target, and follow the procedure recursively.
This eventually gives us an annulus of constant width, and we
make a pass over the targets in this annulus to find the one
nearest top.

The binary search runs inO(log d) rounds whered is the
distance to the nearest target. Each round costs us O(d) to
sum the form along the boundary of a box of size at most2d.
Thus the whole procedure runs in time and communication
complexity ofO(d log d).

F. Update costs

The network incurs a certain cost in updating the tracking
form as a target moves. To be precise, every time the target
moves from one face ofP to another, the form on that edge
has to be updated. Therefore, the total cost of the update equals
the number of faces traveled by the target. By the arguments in
section IV-C as a target moves along a straight line segment of
lengthd, the system requiresO(d) updates at nodes. If updat-
ing an edge requires communication between the endpoints,
then the communication cost is alsoO(d). Note that in some
cases this may not be necessary. If both the sensors can detect
a target entering a face, which can happen for example if the
sensing range covers the entire edge, then the target is sensed
by both these sensors, and each can update their view of the
edge without any mutual communication. In such cases, the
update is carried out without any communication at all.

One can consider adversarial behavior, for example where
a target repeatedly crosses an edge back and forth to induce
many updates in the nearby sensors. However, this sort of
behavior is easy to detect, and can be handled separately. Ifwe
would like to reduce maintenance cost, we can stop updating
that edge for some time. That is, the edge is assumed not
to exist in P for that duration. Note that this ‘hole’ in the
graph does not affect anything in the rest of the network at all.
Updates and queries can proceed as usual and the query result
is not affected unless the query happens to use this edge. The
edge can be reinstated when target movement is infrequent.

In general, when a part of the network is very active with
many and frequent movements, it may not be economical to
track all such changes. Our scheme is sufficiently flexible and
robust that tracking can be turned off in such regions without
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any loss to other parts or any overhead. Alternatively, it is
possible to reduce the tracking resolution in that region by
selectively removing nodes and edges so that the faces are
larger and therefore incur fewer updates.

G. Network holes, fault tolerance and network dynamics

If a network has coverage holes, a target entering the hole
might be lost – no sensor detects its location. However, our
range query result is not affected if the query range is either
outside the hole or encloses the hole completely. If the query
range happens to cut through the hole, this is a pathological
case that no method can accurately tell whether the target is
inside or outside the range, due to limited sensing coverage.
We can however get upper and lower bounds (such asξ(γ) and
ξ(−β) in section IV-C) by computing the weights inside such
uncovered faces. When initializing a network with large holes,
these are simply disregarded, that is, the corresponding vertex
does not exist in the dual. The dual trail for the initialization
therefore never goes through the hole.

The scheme is also fault tolerant and adaptive to network
dynamics. If some nodes fail, or all nodes in a region fail
even including those near the target, that does not affect the
correctness of the tracking form. Thus, this permits dynamic
networks where nodes can be turned off arbitrarily. There is
no overhead on maintaining the tracking form on surviving
sensors. Nodes can also be inserted into the network. This
only requires refining the planar graph and the tracking form
locally. See Figure 7 for an example.

p

σ

tt r r

p

s

q q

s

x

Fig. 7. Suppose a nodex is inserted inside a face{p, q, r, s, t} of total
weight w and the face is partitioned into three faces{p, q, x}, {q, r, s, x},
{p, x, s, t}, where the total weights within these faces arew1, w2, w3 respec-
tively, w1+w2+w3 = w. We simply set the values of the edgesξ(x, p) = 0,
ξ(x, q) = ξ(p, q) − w1, ξ(x, s) = ξ(p, q) + ξ(q, r) + ξ(r, s) − w1 − w2.
One can verify easily that these values conform to the definition of a tracking
form.

The effect of sensing noise is local. Suppose an edge gets
updated incorrectly due to sensing or communication failure.
This only affects the evaluation of loops that actually pass
through that edge. All other loops still produce the correct
results. In our simulation sections we evaluate the tracking
results when sensing is inaccurate.

H. Tracking without target locations

Up to this point, we have assumed that the location of the
target can be sensed by the nearby sensors. We now show how
to modify the tracking scheme so that it can work without
target localization.

Start from the simple case when the targetT is detected
by exactly one sensor at a time. We initialize this scenario
as follows. Supposes is the sensor detectingT . Removes
(and all incident edges) fromP to get a new planar graph
P ′. Then inP ′, T is assumed to reside in the new face with

the neighbors ofs on the boundary. Now, we can initialize
the form as usual on the dual ofP ′. When the target moves
from s to a neighboring nodet, we first removet from P ′ and
then reinstates and its edges using the method for inserting
vertices.

The method naturally extends to cases where a target is
detected by a set of sensors. In this case, we just remove all
the detecting nodes, and when the target moves, we reinstate
those that no longer detect it.

I. Aggregation of signal over all nodes

Beyond tracking moving targets, differential forms can also
be used to compute aggregates of arbitrary functions sampled
by sensor network. Supposeh is such a function. Since we
have a method for computing sums of values defined over
faces ofP , we adapt to make use of that existing method. For
any nodes, we apply small perturbation to the location. That
is, the valueh(s) is assumed to exist as an added weight in
a faceσ incident ons, that isdξ(σ) ← dξ(σ) + h(s). Each
node remembers to which face its value was delegated.

First, we have to initialize the form over all faces. For
every faceσ, we have to find a pathα to the face at infinity,
in the dual graphP̄ . To build these paths, we construct an
aggregation treeT in P̄ , rooted at the vertex for the face at
infinity. The path for sigma is then the path inT betweenσ̄
and the face at infinity.

Next, starting at the leaves ofT , we compute an aggregate
at each interior node by summing its value with those of its
children in the the aggregation tree. Let us denote this function
on the dual nodes asµ. For every nodēσ ∈ T , consider the
edgeē to its parent in the aggregation treeT and its duale in
the original graphP . We setξ(e) = µ(σ̄). This initialization
can be executed as a single aggregation sweep on the treeT .
Therefore, it can be computed at a total communication cost
of O(n).

Now we reconsider the way the functionh is handled. We
had perturbedh and shifted the valueh(s) to a neighboring
faceσ. This perturbation can cause query results to be erro-
neous. However, this is easily rectified. SupposeL is the loop
that bounds the closed area over which we wish to compute
the aggregate. Observe that for a loop not passing throughs,
the contribution ofh(s) is estimated correctly – since then
both s andσ are either both inside or both outside the loop.
We only need to adjust carefully for loops passing throughs.
In this case, we need to see whetherσ is inside or outside
the query region. Ifσ is inside the region thenh(s) is already
incorporated inξ(L). If σ is outside, then the value ofh(s)
is manually added toξ(L).

If L is traversed clockwise, then faces on the right of the
path are inside, else the faces on the left are inside. Therefore
the challenge is to find the orientation along whichL is
traveled. This we do by means of another differential form,
calculated on the fly. Let us saye is the first edge traveled
alongL, and sayσ1 andσ2 are the faces adjoininge. Now, we
choose arbitrary pointsp1 ∈ σ1 andp2 ∈ σ2 respectively. As
we walk alongL, we maintain two other one-formsη1 andη2,
these are thewinding numbersaroundp1 andp2 respectively.
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For any edge(u, v) onL, we add the clockwise angle∠upiv
to ηi. By clockwise anglewe mean that if∠upiv is oriented
clockwise, we add its positive value, else we add its negative
value. Supposep1 is on the exterior andp2 is on the interior
of the region bounded byL, then we haveη1(L) = 0. The
value of η2(L) will be either 2π or −2π depending on the
orientation ofL.

Thus we can reliably find the sum of values inside a closed
loop L in the planar graphP .

Changing values.Unlike the case of mobile targets, if an
arbitrary functionh changes with time, local updates may not
suffice. In particular, the local update scheme works only when
the function has certain local conservation properties, such as
when a change ofδ in a face always causes a change−δ in
an adjacent face.

Instead we simply re-initialize the form at regular intervals
or on sufficient changes. With an initialization of costO(n),
we create a network-wide one-form with which we can find
the aggregate in any region of the network.

J. Completely mobile networks

Consider a network where all nodes are mobile. That is,
beyond the targets, the sensors themselves are mobile. Our
method naturally extends to such scenarios. As a sensor moves,
it may cross an edge of the planar graph. Suppose thats
crosses an edgee to enter a faceτ . Then we update the
network simply by first discarding all edges incident ons,
then by insertings into τ as in Figure 7. Many existing
planarization algorithms work for mobile networks [10]. We
can use such methods to maintain the graph. In all cases, the
removal of an edge will not incur a cost, the insertion of an
edge will be made according to the idea in Figure 7.

Care needs to be taken in cases where we are considering
forms to monitor values defined on nodes. For example, when
a mobile network tracks its own nodes to be able to answer
aggregate counts and weighted sums inside regions. Suppose
in such a cases crosses an edgee ∈ ∂τ to enterτ . Then along
with the usual insertion, the valueh(s) must be reassigned to
one of the new faces, for example byξ(e) := ξ(e) + h(s), as
in section IV-I.

K. 3D Networks and Movement Histories

The idea of tracking forms extends naturally to higher
dimensions. Consider targets moving in a3 dimensional
euclidean space. We first decompose the space into three
dimensional cells, so that our monitored space is now a cell
complexK of dimension 3. The boundary operator∂ when
applied to a3-cell, produces a chain of faces (a 2-chain) that
constitute the boundary of the cell:∂σ = a+b+c+ . . . . From
this, we can assign orientations to 3-cells.

Definition 4.2. Orientation of a cellσ. To the boundary faces
∂σ = a+ b+ c . . . , we assign orientations such that∂a+ ∂b+
∂c + · · · = ∅. This implies an orientation ofσ. There are2
possible orientations:+σ or−σ. Each obtained from the other
by inverting the orientations of all boundary faces.

Based on this, we now assign orientations to all3-cells such
that a facef shared by adjacent cellsσ and τ is used with
opposite orientations in the two cells. That is,f ∈ σ and
−f ∈ τ . Such an assignment is possible, because the euclidean
space is orientable [13]. And as before, the boundary of a chain
U of 3-cells is the chain of boundaries:∂U =

∑

σ∈U

∂σ.

As a result, lemma 3.4 and all ensuing results apply
unchanged. We construct a tracking differential form by as-
signing suitable values to oriented boundary faces of3-cells.
Given a regionR ⊂ R

3 constructed from cells inK, we
can compute the aggregate by summing the differential form
on the faces of∂R. The formal statements and proofs on the
initialization, update and summation of the tracking form carry
over to higher dimensions without modification.

To apply the general result distributedly to a network, we
need a cell complex in3D. As with the two dimensional case,
we do not need an explicit complex on a node set. What is
required is to have a logical complexK, such that faces of
its cells are monitored by the nodes in question. This can be
a virtual uniform grid, or a naturally induced cell subdivision.
The rooms and floors in a large building form a natural cell
division for both tracking and query of mobile gadgets and
RFID tagged objects.

Complexity of 3D update and queries. The volume of
a region of network, and the number of nodes in it grow
exponentially with dimension, as does the size of the boundary.
This increases the complexity for any tracking algorithm in
higher dimensions, even when nodes are distributed with
bounded density. The cost of a containment, search and range
queries in the3D case would beO(d2), while the nearest
target search would run at costO(d2 log d). Observe however,
that with bounded density, the size of the cell complex inside
a unit region is still bounded by a constant. This means that
our method still operates with an update cost bounded by
a constant. This is the most desirable property in dynamic
scenarios where a tracking algorithm is likely to be used. As
before, the network initialization utilizing a dual spanning tree
completes atO(n) complexity.

V. SIMULATIONS

We conducted extensive simulation tests to see how the
theoretical guarantees of our algorithm translate to a network
graph and compare with LLS [1] in performance, particularly
in terms of communication costs. In addition, we conducted
simulations to test the robustness of the algorithm to sensing
failures and inaccuracies. This section describes the findings.

The simulations were done with networks that are quasi unit
disk graphs2 of inner radius1/

√
2. This choice of parameters

allows local planarization algorithms [8], [23] to be used.The
underlying sensor networks have nodes in a perturbed grid
distribution, where the node is placed uniformly randomly in
the grid box assigned to it. We consider networks without any
significant coverage holes. In all cases, the average degreewas

2A quasi unit disk graph is one where nodes more than unit distance away
do not have an edge, nodes less than a distancer away always have an edge,
and for other distances, the presence of an edge is uncertain.
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about10, and the size of the network was varied between400
nodes and10, 000 nodes to test the scaling properties.

To evaluate the update costs, we introduce moving targets to
the network domain. At each step, a target selects a random
direction and moves up to a unit distance in that direction.
After the move, the initial and final position are compared
and updates are made.

0 2000 4000 6000 8000 10000
0

2

4

6

8

10

12

14

Network Size

A
v
g
 
U
p
d
a
t
e
 
C
o
s
t

 

 

LLS
Forms

Fig. 8. Average update cost per move.
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Fig. 9. Max update cost for any move.

A. Comparison with LLS

LLS scheme. This is a locality aware location service for
mobile networks. The principle here is to use location servers
at different levels. At each leveli = 0, 1, 2, 3, . . . the network
region is tiled by squares of side2i. The squares are aligned
so that a square at leveli is precisely covered by exactly4
squares of leveli−1. In each square at each level, one node is
designated to be the location server for that square, and keeps
track of more precise locations of nodes in the square.

Location updates are performed in a certain lazy manner.
Suppose mobile nodep was in a squareSi at level i, and
moves to a neighboring square at that level. The scheme
does not update the location ofp to the respective location
servers. Instead, it waits untilp has left this surrounding
neighborhood ofSi before it actually performs an update.
Thus, aroundSi there is a ring of8 squares moving where
does not cause an update. As a compensation, LLS keeps its
location information at the location servers of these nodesin
addition to Si. The idea here is to delay updates to avoid
unnecessary communication. On average, if a node moves a
distanced, then this scheme can be shown to have update costs
of O(d log d). The cost is amortized. That is, the average cost
is guaranteed to be low, but the update cost at a particular step
can be arbitrarily high compared to the movement at that step.

The location search for a particular node starts at some other
node in a network, and proceeds by searching nearby location

servers at increasing levels. This goes on until some location
server at the current or neighboring square for the current level
claims to know the target location square at that level. Thenthe
search proceeds in that square, successively searching lower
levels. Of course, it is possible that due to the lazy update
scheme, a server claiming to have the target is in fact in error.
However in such a case, the target is guaranteed to be in one
of the neighboring squares. It can be shown that this does not
incur too high a cost. In fact, if the distance to the target isd,
then the search finds the target at a cost ofO(d).

We compared costs with LLS in updates and query response.
The following are the important observations:

• Update costs.Our algorithm adapts to node movements
very efficiently. It has an average cost of about2 messages
per each unit distance move of the target, as compared
to a cost of10 to 12 messages for LLS. The maximum
update cost for our scheme is about7, while that for LLS
is orders of magnitude higher — at200 or 300 or more
messages for a single small move. Most importantly, the
costs of our scheme are independent of the network size,
making it scalable to very large networks.

• Search queries. In answering queries where the one
node searches for a specific target, our scheme performs
slightly worse — consuming about2 times the messages
compared toLLS.

• Aggregate range queries.Given a geometric region such
as a rectangle or ellipse, this query asks for the number
of targets inside it. On this sort of queries, our scheme
outperforms LLS by an order of magnitude.
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Fig. 10. Average cost per search query.

1) Update costs:As a target moves, the tracking system
has to update its data to be consistent with the current target
position. LLS does this by suitably sending updates to it
location severs, while our scheme changes the weights on the
edges crossed by the target.

The results are shown in Figure 8. Our scheme is extremely
efficient, since a small move does not cross too many edges,
and the mean cost is about2 per move. LLS is designed so that
on certain moves, it does not require any updates. However,
when the target has undergone sufficient displacement, it has to
update several nearby lower level location severs - this incurs
a reasonable cost. Later on, after further displacement, a move
may require higher level servers further away to be updated,
increasing the cost for that move, as well as the mean cost.
The distance of the farthest server that may be tracking a target
is proportional to the network diameter. After a proportional
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Fig. 11. Aggregation query costs for random rectangle regions. (a) Average
Costs, (b) Max costs

displacement this server will need to be updated as well. Thus,
the update costs of LLS depend on the network size, though
the amortized cost of LLS is still quite manageable, at about
10 to 12 messages per move.

The worst case behavior of LLS is poor. This is because
the strategy of avoiding updates until necessary means thatthe
updates build up and on certain moves neighboring servers and
servers at several levels of hierarchy need to be updated. Thus
the update cost of a single move can go into several hundred
messages (shown in Figure 9). Our scheme, on the other hand,
never has to update more than8 edges.

Note that the costs in our scheme are taken to be pro-
portional to the number of edge updates needed. In certain
scenarios, where the target sensing does not require any
communication, and when there is agreement among nodes on
monitoring different parts of edges, it is possible to perform
the updates at zero cost.

2) Search Costs.:Location service schemes are designed
to answer queries that ask for the location of a specific
mobile target, or to deliver a message to the target. Our
scheme of tracking forms on the other hand was designed
with aggregate queries pertaining to groups of targets in mind.
Nevertheless, we find that it is a good instrument for search
of specific targets, and has performance comparable to the
location service scheme. We can maintain a tracking formξi
for each targetTi and then use that to search for it starting
from the query node. The scheme is described in section IV-D.

In this experiment, we chose random query nodes, and ran-
dom mobile targets. We execute a search for the target starting
at the query node. The two schemes use analogous methods
of searching exponentially growing regions for presence of
the target, and in the suitable region searching exponentially
smaller subregions until reaching the target. The asymptotic
costs are the same for the two schemes. The simulation results
in Figures 10(a) and 10(b) show that with tracking forms it
costs about twice that of LLS to search.

In mobile environments, since updates are much more
frequent than queries, the higher search costs of our method
are compensated by the significantly lower update costs.

The costs of Nearest Target Search are similar to target
search – in practice it scales similarly to the cost of searching
a target with distance and network size.

3) Aggregate Range Queries.:Given a regionR, say a
rectangle or an ellipse, we wish to find the number of targets
inside the region. With tracking forms, this is easy to do by
summing the form in walk around the boundary. The details of
the methods are in section IV-C. With a location sever scheme,
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Fig. 12. Aggregation query costs for random circular regions. (a) Average
Costs, (b) Max costs

the process is a little more complicated.
LLS maintains a quad-tree hierarchy, and recursively tracks

nodes inside the quads at different levels. To find the aggregate,
we need to look at quads of different levels that intersect with
R. In particular, if a quadQ intersects the boundary∂R, that
means sub-quads ofQ need to be analyzed further, to see
which targets insideQ are actually insideR. Therefore, the
method boils down to finding quads at all levels that contain
targets and intersect∂R. This turns out to be costly. This is
because LLS does not get too much benefit from the higher
level location servers. It is likely that a large square or one of
its neighbors would intersect the boundary of the range, and
thus the lower level servers in this region would need to be
visited.

Figure 11 shows the costs whenR is a random rectangle
inside the network region. Figure 12 shows the corresponding
costs whenR is a random circle. Clearly, location server
based schemes incurs a substantial cost in this type of query.
Note that for target searching LLS actually uses a different
quadtree hierarchy for each target. This would be impractically
expensive in this sort of query, where the presence of each
target inR will then have to be checked individually, driving
the costs very high. We therefore used a common hierarchy
where a location server can provide information about all
targets in its quad region. Even with this modification, the
costs of our scheme are still much lower, in principle only
proportional to the size of the boundary ofR.

B. Effects of Target Detection Errors

Monitoring of mobile targets is not easy. Sensing errors
and failures in communication can create difficulties for any
tracking algorithm. Such failures occur at the physical layer
and in effect supply the algorithm with incorrect input. A
tracking algorithm should be robust, so that its performance
degrades gracefully and slowly with increasing sensing errors.

This subsection tests the effects of such failures on the
quality of aggregate results returned by our method. As targets
move we compute the aggregate in arbitrary ranges using the
tracking form and compare with the true aggregate of the
range. We consider two types of errors:

1) Failure to detect a target crossing an edge.For
example, a sensor monitoring the edge fails to detect
the target passing. This can also happen when targets
are responsible for supplying their own tracking infor-
mation. For example, a targets crosses an edge into a
new face, but its message notifying this move gets lost.
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In such cases, the tracking form on the edge will not be
updated, and certain queries may return incorrect results.

2) Incorrect Estimation of Target Location. The location
of a target computed by the system may be incorrect.
For example, signal strength based localization may be
erroneous, or even GPS based location computed by a
target itself may be off by several meters. In such cases,
the object will be estimated to be inside a different face
than where it really is, and will contribute an error to
the computed aggregate.

In these simulations we consider a variable number (be-
tween 20 and 300) of targets moving in the plane, and are
tracked by a differential form on a100 × 100 unit grid. A
target takes steps in random directions and within a unit length
as before. As targets move, we execute queries to count the
number of targets within a unit square chosen randomly within
the grid. For each such query, we take as error the difference
of the computed result with the actual number of targets in the
range. This error has a dependence on the number of targets
in the system. We measure therelative error– the ratio of the
error to the number of targets and see how that changes with
increasing number of targets.

To simulate the first type of errors, we select a probability
p as the probability that a target is not detected when crossing
an edge. The parameterp in that sense represents the sensing
accuracy of the system. We varyp over a wide range of values
from 0.05 to 0.70 that is, we vary it upto the the case where
70% of edge crossings are missed. For eachp and number of
targets we execute100 range queries on random axis-aligned
squares. We let the targets make2 moves between successive
queries.

The results are shown in Figure 13. The values of the errors
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Fig. 13. Error induced by failure to detect targets crossing edges. The error
in counting relative to the total number of targets, plottedagainst the total
number of targets; for counting number of targets in random axis aligned
squares. The parameterp is the probability that a targets crossing and edge
is not detected.

are very small. Even for severe values ofp reaching upto50%
or 70%, the counting error is less than8% of the target count,
and drops rapidly to less than half of that for100 targets or
more. For more reasonable values ofp such as10% − 20%,
the errors are just a few percents.

The curve forp = 70% fits the pattern less tightly than
the others. Its high error rate causes it to fluctuate and behave
more unpredictably at low number of targets. As number of
targets increases, it stabilizes better, and ends with a higher
relative error rate than the other curves with lowerp values,

as expected.
The relative error decreases with increasing number of

targets. This is because statistically the effects of over counting
and under counting cancel each other, and this happens more
reliably with larger number of targets.

In simulation of the second type of errors, we assign each
target a location different from its true location and compare
the true and computed counts as before. The assigned location
is intended to simulate the estimated and possibly incorrect
location of the target. The estimation cannot be very far
from its true location, since the location of sensors or access
points that detect the target can be used to restrict the region
within which the target must lie. Therefore we use a parameter
localization radius (LR)which limits the maximum distance
from the true location within which the estimated location
must lie. The estimated location is taken to be a random
point within this radius. We vary LR from0.1 to 5.0 units.
And as before, we carry out100 random queries for each
LR and different number of targets, with the targets moving
twice between successive queries. The results are shown in
Figure 14. Once again, the we find that the relative error drops
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Fig. 14. Error induced by incorrect localization of targets. The error in
counting relative to the total number of targets, plotted against the total number
of targets; for counting number of targets in random axis aligned squares. The
parameter LR is the maximum distance between true and estimated locations
of targets.

with increasing number of targets. In this case, the error rates
are even lower, staying below3%, and in most case at about
1%− 2% or lower.

Error senstivity of LLS range query. LLS operates with
different model and goals of tracking that makes it difficultto
compare errors directly. We can imagine LLS being modified
to use edge crossing as basic update events. In this case, the
planar graph will be the finest level of the LLS quadtree.
With this modification, LLS will be susceptible to the error of
missed edge crossings. However, the target can be detected
when crossing an interior edge, and this update will be
reported to locations servers. Since LLS searches the interior
of the region, it will be able to detect these targets.

Therefore LLS can be expected to have even smaller error
rates than the already low error of differential forms. This
benefit however comes at the cost of user privacy and sub-
stantially larger communication cost of searching the interior
of the query region.

3D Networks. The basic correctness properties of our method
hold equally well in 3D and even higher dimensions. The
essential comparative properties between LLS and differential
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forms do not change with dimension. Thus the results shown
here will hold for higher dimensions with minor differences.
As discussed earlier, the update costs for our method are
constant, albeit a slightly larger constant.

For cube shaped range queries in3D, the costs of our
method grow with the square of the radius of the range (size
of the boundary surface), while LLS, as before, does not gain
much benefit from its higher level servers. Therefore, the cost
of LLS grows almost as the volume of the range, proportional
to the cube of the radius.

The overall conclusion is that the method is extremely
robust to failures and sensing noises of different types. On
average it incurs only small output errors even with large prob-
abilities failures. The errors degrade gracefully with increase
in failures. This is largely the result of the local nature ofthe
tracking mechanism: if an edge is not updated, that failure
does not affect a query unless the edge lies at the boundary
of the query region.

VI. D ISCUSSIONS

Anonymity: Tracking Without Identifying. Privacy of users
is an essential concern in tracking applications. While we
would like to follow users to provide better information
services, this raises concerns of privacy, ethics and trust. Users
may prefer that their detailed movements are not identified or
stored.

Our method contributes on both these counts. First, it
does not need to identify devices to perform tracking. We
simply need to know that some device crossed an edge of
the subdivision: its identity is insignificant. Second, we do not
need to store any information – even temporary identities –
for long intervals. The information can be erased as soon as
the edge weight has been updated.

Truly anonymizing data is difficult. A process that removes
all explicit data may leak implicit and probabilistic information
that is hard to anticipate before hand – see for example [14].
In our case, the privacy arises from the user being part of
a crowd. When there is only one device in the system, its
location is trivial to find. When there are a few devices,
one can be identified up to some uncertainty. Identification
becomes harder with increasing number of devices. The degree
of privacy also depends on knowledge of the users habits,
home locations etc, and those of other users. The precise
characterization of privacy in an aggregate location tracking
scenario is an independently interesting problem that remains
to be investigated.

Testing Contractibility of Loops. Given a loop in the
network, is it contractible? Does it surround one or more
holes? This sort of questions are significant in determining
the topology of paths and cycles with respect to the network.
Given a loop of sensors, does it surround the building we
want to monitor? Then the rest of the network can be put to
sleep. Or, given two different paths to the same destination,
are homotopically different? Do they go around the holes
in different ways? These questions and their applications are
considered in [26].

The differential forms method can be easily used for such
tests. If a building lies in facef of the graph, we create a

differential form with a weight onf . Any loop surrounding
this this face will integrate to a non zero weight, indicating
that it surrounds the building. Two paths are of different
homotopy types if the loop formed by their union encloses
the face in question, and this can be checked with this same
test. The method in [26] is more comprehensive: in addition
to testing it is also capable of generating suitable loops and
paths. However, that requires an embedding of the network in
hyperbolic space, making the initialization costly. For testing
contractibility or homotopy types, the tracking forms provide
a more lightweight, simple and robust scheme that adapts to
network dynamics much more easily.

Networks Without Locations. A differential form is a topo-
logical construct and can be defined abstractly without use
of coordinates. Therefore, this minimal scheme is applicable
without the use of locations. It is possible to obtain a planar
graph without using node locations [27]. After that we can
determine a consistent orientation and create a tracking form
abstractly. The ideas from subsections IV-H and IV-I can then
be used to track and query the form inside any given loop.

Geometric data such as the locations of nodes and descrip-
tion of the range can be helpful is executing a query, but
not essential. Existing methods [1], [9] that use hierarchical
quadtree type partitions that rigidly depend on a geometric
processing of the data are unsuitable for use in a coordinate
free environment.

Mobility Models of Targets. Throughout the paper we have
assumed that the targets can move in anarbitrary manner.
Since updates are completely local, the cost is bounded by
the total distance traveled by the targets, not how they move,
assuming that small oscillating motions are handled in an
efficient way as in section IV-F. The performance of LLS is
affected in some degree by the mobility patterns of the targets.
In particular, linear motion will again drag it stracking squares
along, leading to the worst-case update cost ofΘ(d log d)
whered is the total distance moved. But local oscillating type
of motion when a target does not move too far from its original
location will keep the updates limited to local location servers.

Network Power Management.Mobile devices are likely to
move frequently. Our scheme handles these movements effi-
ciently and locally. It does not send updates to a distant point.
This is significant from power management point of view. If
a target of interest is present in a part of the network, nearby
nodes can be expected to be awake and actively monitoring
it. If all movements are handled locally, then relatively distant
nodes can sleep or go to low power mode to save energy
without fear of interruptions.

In contrast, schemes that recruit distant location serversor a
global central server for target tracking will need to keep most
of the network on for routing to far away location servers.

VII. C ONCLUSIONS

In this paper we presented the use of differential forms
in the application of target tracking and range queries. The
method is simple, has low maintenance cost under target
movement, is extremely flexible and robust to network changes
and node mobility. The method is anonymous, and works
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without needing any identification of devices. This makes it
perfect for the applications of modern life where user privacy,
anonymity and trust are of utmost importance.

The performance of our method is orders of magnitude
better than previous location services schemes for aggregate
queries on mobile targets. We expect that more applications
can be found that use the differential forms for a diverse set
of queries of aggregated data, which we will investigate in the
future.
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