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Differential Forms for Target Tracking and
Aggregate Queries Iin Distributed Networks

Rik Sarkar and Jie Gao

Abstract—Consider mobile targets in a plane and their move- of target motion that will allow the users easy and effective

ments being monitored by a network such as a field of sensors.&V access to the data. The possible solutions can be tailored to
develop distributed algorithms for in-network tracking and range different system requirements and assumptions.

queries for aggregated data (for example returning the numier Tak le of the | fi t sch .
of targets within any user given region). Our scheme storeshe ake an example of the localion manageément schemes in

target detection information locally in the network, and answers ~Cellular systems. The problem is to find the current locatibn

a query by examining the perimeter of the given range. The the mobile user when receiving a call. There are two atomic

cost of updating data about mobile targets is proportional b the  gperations, called paging and update respectively. Paiging

target displacement. The key insight is to maintain in the sesor ,seq \when the system searches the cellular towers looking fo

network a function with respect to the target detection dataon . . .

the graph edges that is adifferential form such that the integral the us_er. Update ref_ers to mobile users informing the _syst_em

of this form along any closed curveC' gives the integral within ~ Of their current locations. The full scheme uses a cominati

the region bounded byC. of paging and update, based on user mobility patterns and
The differential form has great flexibility making it appro-  call frequencies. This solution assumes the cooperation of

priate for tracking mobile targets. The basic range query @ o mopjle users/targets and that the query is for indididua
be used to find a nearby target or any given identifiable target . e
identifiable targets.

with cost O(d) where d is the distance to the target in question. .
Dynamic insertion, deletion, coverage holes and mobilityfasensor Targets may not always be so cooperative or capable of
nodes can be handled with only local operations, making the direct communication with the system. In such cases the task
scheme suitable for a highly dynamic network. It is extreme}  of |ocating, tracking and querying for mobile targets isiety
robust and capable of tolerating errors in sensing and targe . the communication infrastructure spanning the regidre T

localization. Targets do not need to be identified for the traking, S - " )
thus user privacy can be preserved. In this article, we only targets may not be individually identifiable, but being able

elaborate the advantages of differential forms in tracking of t0 detect the number of targets in any region can still supply
mobile targets. Similar routines can be applied for organiing valuable information. This is motivated by the recent adesn
many other types of informations, for example streaming sdar  of large scale wireless sensor networks. As sensor networks
sensor data (such as temperature data field), to support efiient ,+r,de into the space where people live and work, they form

range queries. We demonstrate through analysis and simulains . d ication infrastruct that id
that this scheme compares favorably with existing schemehat & S€NSING and communication infrastructure that can peovi

use location services for answering aggregate range queﬂg)f real-time assessment of the I|V|ng environment and the l@obi

target detection data. objects therein. Indeed, tracking of mobile targets is fified
Index Terms—Multi target tracking, aggregate query, sensor &S @ major motivating application for sensor networks [42][
networks, [15], [17], [24], [25], [28] from the very beginning. We use

sensor network as a simple model for a distributed tracking
infrastructure but the solution is independent of the pafdr

. . _ i . hetwork underneath. For example, wireless enabled devices
Keeping track of mobile objects is a common question igyy he tracked by wireless access points or other wireless

modern society. People in motion need to maintain CONNeClyyjces, In this case, the wireless infrastructure actshas t
ity, thus requiring location management. Other appliC®jo gon50r network.

for example monitoring of traffic require real-time assess- ~gnsider the following scenario of wide-area deployment
ment of environments of mobile devices. Mobile targets caf} sansors along major roads to track and monitor moving
be identifiable, for example possessing unique identifiers @ahicles. A suitable sensor can detect the position anctitglo

unique_ signal signatures, or non-iden_tifiable, for exantple ¢ 4 target within its sensing range [19], the navigatiorteys
maintain user privacy. Queries on mobile targets may be@bqyl 5 car may also communicate directly with the sensors.

locating the _current position of a mobile identifiable ta.rgn A target may or may not have identifiable signatures. The
aggregated information such as the count of targets in a URgSving vehicles come in swarms as in the typical case of

specified region. There is often a connected communicatig.giym to heavy traffic situation. A user may use hand-held

infrastructure spanning the space in which targets move. fices (smartphones, PDAs, etc) or the cars GPS system to

major technical question is centered around the reprelS@mta .o mmunicate with nearby sensors or other portals and iequir
Rik Sarkar is with the Department of Informatics, Univeysif Edinburgh, 107 the target distribution. Of particular interest to us Emge

UK. E-mail: rsarkar@inf.ed.ac.uk. gueries foraggregateddata, for example, the level of traffic

Jie Gao is with the Department of Computer Science, Stonyolro congestion in a specified neighborhood and its evolution ove
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A preliminary version of this article appeared in the ACM Auah Interna- time. FormaHYv W? ask a countlng _range query: Wh:’;lt is the
tional Conference on Mobile Computing and Networking - MGBIM '10.  nhumber of targets in any user-specified regith The topic for

I. INTRODUCTION



this paper is to develop an efficient data processing andyqueange queries by touring along the boundary of the region.
scheme for such applications. A desirable solution shoalegh This idea is introduced below.
low query delay, low communication costs, as well as low
maintenance cost as the targets move rapidly.
The questions of detecting target presence, localization

communication have been investigated as independentcobse Write explicit expressions for smooth forms. In this o
problems on their own, and are not our focus here. P P ’ Py

will concentrate on processing and storing the local targ%?e a formulation which can be considered an implicit repre-

information. We examingracking at the global scale of the sentation corresppnding to smooth forms. This_represjentat
network allows us to consider the concepts in a more discrete manner

In sensor networks, the most adopted target tracking that is suitable for computations and dynamic modifications

proach, arguably, is the sensors to record the detectiam®ve Is discrete dlﬁerenthl_form Is defined ona cell complex, .
in the data logger or report to a base station. The base rsta .&<ample, a decomposition of the plane into non-overlapping
assembles target trajectories for post-experiment aisall/sis aces bY a planar.graph.
solution bears the common problems of having a centralConsider the simplest case. We have a planar graph em-
server (bottleneck and a single point of failure, not resiii Pedded in the plane, and one target lies within a facand
to attacks), and in particular, the data collection step esak@S & Weight ofw, representing its size or other metrics of
it inappropriate for applications with stringent delay uigg- Nterest. The differential one-form is represented by afiom
ments. In many practical scenarios, movements of targets &rOn directed edges. The value fgfab) on edgeab must be
relevant only in the local region and for a short period dhe negation of the value faf(ba), that is{(ba) = —£(ab).
time. For example, some cars turning on a particular by-ro¥{ further maintain the property that for the fagg, the
is a relevant traffic information only while they are in theUmmation of all the values of the edges on its boundary,
neighborhood. It is difficult to justify the high communizat N clockwise order, isv. The summation c_)f a_II the values of
and storage costs of updating a remote server for high valuniBe boundary edges on each other face.ighis ensures that
of such fleeting pieces of data. Very often, users may be 3y cycle containing the facg will have a total summation
a neighborhood of where the relevant data is generated OAw, and any cycle not containing, will have a sum of0
centralized solution would require both the data and quef§e€ Figure 4). In other words, one is able to answer range
from the users to be delivered to a (possibly) remote servBHeries by simply integrating the differential one-fornisng
This leads to unacceptable delay and unnecessary netwifk range boundary. The weight on an edge signifies we have
traffic. created a differential form whose integral over the edgessum
Alternatively, the sensor in the proximity of a target cafP that value.
detect the target and can locally cache the detection eUkist. ~ The basic definition for one target can be generalized to
scheme has low maintenance cost as data is stored locally Andtiple non-identifiable targets — such that the integffaho
only local updates are needed when target moves. But wig¢e is the total weight of the targets within the face. This
such raw detection data stored directly in the network it ay range query can be done for a swarm of targets with the
not easy to answer range queries. One has to flood all §&me query cost. Using range queries we can implement the
nodes inside the rang& to find out the total number, the query for locating a nearby target or a given identifiablgear
communication cost of which is proportional to the areaipf The idea is to use exponentially enlarging range around the
A(R). guery node and once the range includes the target, reduce the
User privacy and anonymity are vital in the modern worldange by using divide and conquer. The cost for this earch
The simple methods mentioned above require consistent idéhnbounded byO(d), whered is the distance to the target in
tification of mobile devices to keep track of data and prevefitiestion, representing locality sensitivity.
overcounting. Thus, users are effectively “followed” agyth  The differential form has great flexibility that allows low
move through the network. This can raise concerns makingpintenance cost under both network dynamics and target
individuals unwilling to participate in the method. In a ronmovements. When a target moves from one fggeto an
cooperative scenario identification can be difficult anderradjacent facef;, we only need to update the differential
neous. Wherever possible, we prefer a scheme that does oné-form on the edge:b common to fy, f1. We assign
need to identify devices in tracking them. &(ab) + &(ab) — w, for a target of weightw. This ensures
The solution we propose in this paper uses loc#hat the property of the one-form is maintained. The cost for
maintenance, but instead of storing raw detection dataestothe update is a constant and can be done locally. Network
target movements implicitly. Counting range queries hawynamics such as link addition and removal, or node ingertio
costs proportional to the perimeter of rangeP(R) < A(R). and removal, can be handled in constant time. We also show
For this we use a novel notion of differential form on th¢hat the differential one-form can be initialized in linear
network. The key insight is to maintain in the sensor netwodommunication cost, i.e., constant cost per node. Furthisr,
a function on the edges that isca-vectorfield with respect aids in energy management. Sensors only need to be active if
to target movement vectors, which means that the integthkre are moving targets nearby. A region of the network wher
along any closed curv€' gives the integral of the regionthere are no targets need not perform any communications to
bounded byC. Thus our scheme naturally supports efficiennaintain tracking data, and can sleep or go to low power mode

%Uf approach: differential forms. A differential form is
ommonly considered on smooth manifolds, where it is easier



for extended periods. boundary condition I( at the target location and at the

The method automatically handles sensing holes — relaetwork boundary). Every node can follow the logafor-
tively large faces in the planar graph. If a target moves deemation gradiento arrive at the target. In addition, touring the
inside a hole and is not detected by any sensor, its contsibutboundary of a given range and summing up the difference of
to the total count of a region enclosing the hole is still eotr the potential values on the edges across the region boundary
This is an improvement over the naive approach of storing theovide the number of targets in the interior of the range.
target detection data locally at a sensor detecting theetardJpdating the gradient field is costly when a target moves — a
which cannot account for targets not currently in range.  small move may change the field everywhere. Our method in

Although we present as the major application of differdntisomparison keeps updates localized to a small neighborhood
forms the tracking of targets, the same routine can be applief the motion.

for organizing streaming scalar sensor data (such as temper To summarize, the scheme proposed in this paper comple-
ture data field), to support efficient range queries. _ments the state of the art data processing methods in a sensor
The rest of the paper is organized as follows. We reviemetwork by providing low-maintenance, low cost range query

prior related work on range queries of mobile target and-elafcheme for a large number of non-identifiable mobile targets
orate how our scheme fits and compares with the state of the

art schemes. Then we introduce the definition of differéntia  |||. D IFFERENTIAL FORMS ONCELL COMPLEXES

onej—for.m. on the network. The algolrithms for computing and A gtterential form is defined on aell complexinduced by
maintaining the one-form are described afterwards. Wertepg planar grapl@ in the plane in our case. The vertices, edges
simulation evaluations and comparisons with prior workhat t 4 - ~ac of the planar graph are thd and?2 dimensional

end. elements created by the planar graph. In algebraic topology

these are called the-cells, 1-cells and2-cells respectively.

See Figure 1 for examples. The composition of the different
There are a lot of previous works on tracking mobile targetimensional cells covering the deployment region is caled

and on range queries of sensor data. We briefly mention thegdl complex The idea of a cell complex extends upkaells

and compare with our approach. for arbitrary k. A more detailed treatment of cell complexes

Range queries.For a typical range query, we ask for arfan be found in [13].
aggregate value of data in a query-region of the network.

This problem has been studied in computational geometry.

Centralized data structures for geometric range queryatit st o
points [3] or motion data [2] have been developed. But they

are obviously not a good fit for a distributed sensor network

setting. For static sensor data, distributed methods ssch a

DIFS [11], DIM [21] and fractional cascading [9] decente&li  Our primary focus is to track targets in the plane as they
the range query process. These methods use hierarchic spagge between faces2{cells) of the planar graph — a-
partitioning techniques that are not suitable for trackélyg complex in the plane. We assign and update weights of the
namic information such as moving targets. edges {(-cells) of the complex. The idea extends to suitable
Location services.Existing solutions for tracking and searchcomplexes of higher dimensions.

ing for mobile targets, termed dscation servicesfocus on ~ For ease of explanation, we assume for now that the
the tracking and searching of a single target. The earlieskw targets are accurately tracked by nearby sensors. Various
is by Awerbuch and Peleg [5] and followed up in [1], [6]target detection schemes and signal processing primhises

[20] to fine tune the system. The location of a mobile target igen developed in the literature [19]. In the algorithm and
updated to a carefully selected set of nodes, called thé¢idmca simulation sections we address the issues of sensing hudes a
servers, whose spatial density cascades exponentiallyeast@rget detection errors. Our strategy assigns values tesedg
move away from the target. Location services have amortizetithe planar graph, and changes these values as the target
update cost of)(dlogd) when a target moves a distanée moves. We introduce the following definitions and notations
and a query cost 0O(d’) if the query node is of distanceto represent the related faces, edges and values.

d’ away from the target’s current location. In comparison, we

have better asymptotic bounds. Our update cost is worst cdseBoundaries and Boundary Chains

O(d) and query cost is no more th&n(d'). Location services A face is demarcated by the edgeslecells that surround

do not support range queries very well. Location serviceg, Sych a set of edges form thmundaryof the cell. For an
particularly [1] will be discussed in detail in subsectiorAV edgepq, we use the ordered paip, ¢) to represent a directed
when we compare its performance with our method. We sh%ge whose direction or orientation is fromto g. We use
that for both updates and range query cost, our methodj§p7 q) to represent the same edge with orientatignp).
substantially better. For brevity, we can represefip,¢) and (¢,p) ase and —e
Information gradients. The third approach is to define arespectively. In a diagram, when an edge is labeled simply as
potential field centered at the target [22], which satisfies an arrowhead is used to represent the intended orientation
the Laplace’s equatioV?®(z) = 0 with proper Dirichlet The opposite orientation will naturally correspond-te.

II. RELATED WORK

Fig. 1.0, 1, 2-cells.



Definition 3.1. Chains. Supposea,b,c... are orientedk- b d b d
cells, then a chain on these edges is a formal SyirH- \2b +
Asc+ ..., where each; is an integer. — \(’ / -
e a €

This chain simply signifies\; occurrences of, A\ occur- ¢
rences ob etc. The advantage of the summation notation will _
be clear in a short while. In particular,kachain is a chain of Fig- 3. Action of the boundary operata? on facese and 7 produces the

. . . boundary of the union of the two.
edges and &-chain is a chain of faces. Note that in many
1-chains we consider, the edges v_wl! be adjacent to each Ot%e.rDiﬁerential Forms and Tracking Forms
and form a connected path. But this is not necessary in genera

and the edges in an edge chain can in fact be any set of ed do this subsection we define functions over edge chains and
from the complex. Show how they help in tracking a target.

We can also associate orientations witktells or faces We consider a functiory that assigns a value to each
. " directed edge in the planar graph The function is defined to
These correspond to traversing the boundary cycle of a fac

hhve the property thaf(—e) = — . We extend this func-
some direction, clockwise or counter-clockwise. In thipga .. property ak( e). .f(.e) G i
: . . . tion to edge chains by making it distributive over summation
we assume that all faces are oriented in the clockwise dir

e » p—
tion. Such a consistent orientation of cells is made posdigl Jp(a totet...)=fla)+ f(b) + flc) + ... Let us refer

) . o to such functions as-formsor edge formsA 1-form f can
the fact that the 2-dimensional planedgentable[18]. Thus, be extended to a-form df on the faces of the planar graph,
given a cello represented as an ordered tuple: (p, q,7, s, t),

as shown in Figure 2, we understand that the order correspolfd,\;;(f)t i ?(Ifg;he value on the boundary of that face, that

to a clockwise traversal of edgés, q), (¢,7), (r, s), (s,t) and
(t,p). Correspondingly;-o is the same cell with the opposite
orientation,—o = (t,s,r,q,p). Observe that the orientation
of a cell implies a specific orientation for each edge on i
boundary.

Now suppose there is a single targeof weight w in the
domain. Then at any given time this target resides in a single
unique face of the planar grapgh *. Then we define a one-
rm on the faces and edges such that it is non-zero on this
face and is zero on every other face:

Definition 3.3. Tracking form &. A tracking formé& for a

P a4 targetT’ of weightw is a one-form such that
w  If o containsl’
: di(o) = { 0 otherwise
T

Remember that on the faeethe form is defined to take a value
s equal to its sum on the boundary edgéS,c) = £(Jo). We
Fig. 2. Action of boundary operator on a face will give a chain of its C@ll extend the form to a skt of faces by simple summation :
boundary edges with orientations inherited from the oston o. dé(U) = Z dé(o).
oecU

As a direct consequence of this definition, we know that to
evaluate the presence of the target within a subsef faces,
it suffices to add the extended tracking-fortH on the faces
in U. If a face inU contains the target’, thend¢(U) sums
to w, else it sums to zero. The following lemma implies that
it is sufficient to sum the forng only on the edges that form

gjaa' the boundary of the sdf to obtaindé(U).

The idea behind this definition is shown in Figure 3. The€mma 3.4. The sum of an extended form on the faces in set
two neighboring faces and+ have boundarie8o = a+b+c U equals the sum of the form on the boundarylgfthat is:

and 0 = d + e + (—c), respectively. Note that a shared€(U) = £(0U).
edge like c must always appear with opposite orientation, Proof: This follows directly from the definitions:

Definition 3.2. Boundary operatord. The boundary operator
0 acts on ak-cell o to produce & — 1-chaind(c) = a +
b+ c... wherea,b,c... are cells on the boundary ef with
orientations inherited from a known orientationaafFor a set
of cellsU = {o,7 ...}, we extend to operate on it a8U =

and therefore have opposite signs for the two faces. ThUC%(U) — Z dé(o) from definition 3.3
the resultant boundar§{o,7} = a + b+ d + e is exactly ey
the boundary of the union of two faces. This applies more — Z £(00) from definitions of¢ & d¢
generally to any set of faces. We refer the reader to [18] for ol
more details on the algebra of chains. S

Our definitions are set up such that an orientedell o = & D_(00)| by distributivity of ¢ over +
is equivalent tooc with an assignment of orientations to its _ 5(8([’]6)[] by definition 3.2

boundary edgeéa, b, c, ... ), such thatda + db + dc - - - = 0.

For example, in Figure 29(pq) + 0(qr) + O(rs) + O(st) + 1The degenerate cases of the target being on an edge or a varteye
a(tp) — (q _ p) 4 (7, _ q) 4 (s _ T) + (t _ s) + (p _ t) — (). resolved locally by a predetermined policy between thelloc_)ales_to assign
This can be treated as a definition of orientation dteell. the target to a face. We ignore these cases to keep our dimtissple.



B —c in Jr. In the initial configuration, we hadé(o) = w

This lemma is equivalent to Stokes’ theorem [7]. Its signifand d¢(7) = 0. After the move, we need to have a final
icance becomes clear in Figure 4. Given any cyclm P, it configuration withdé(c) = 0, and d{(r) = w. This is
is possible to detect if the targ&t is inside the loop or not, achieved by the following simple modification to the form
by simply adding the tracking form alonf. If 7" is in the on the shared edge:
interior, then¢(L) = w, and if T is not in the interior, then
&(L) = 0. In either case, the query does not need to visit the §(e) = &(e) —w. @
The same assignment can alternately be written from the poin
of view of 7 as:

(=) = &(=0) +w. )

Evidently, these two are the same operation, sificec) =
—¢(c).

The following theorem says that this indeed is the correct
operation that achieves the desired result.

Fig. 4. Query for a targef” inside L. (a) T is inside L, therefore¢ (L) — w. Theorem 3.5. If o andr are adjacent faces with shared edge
(b) T is not insideL, therefore¢(L) = 0. andd¢ has valued (o) = w anddé(r) = v, then the modifi-

nodes in the interior of.. A simple walk on the loop suffices cation desi:rlbed in equation (1) or (2) resultsfitor) = v —w
andd¢(r) = v + w.

to find the answer. Further, this works exactly the same way
for any arbitrary loopL and position of the targef'. Proof: Suppose, the boundary of is do = €1 + es +
+ ¢+ ---. In the initial configuration we had{(o) =
1) + &(e2) + -+ &(c) + - - - = u. After the modification,
we haved¢(o) = &(e1)+E€(e2)+- -+ (&(c)—w)+- - - = u—w.
Similarly, after the modification, we hav& (7) = £(ex) +
Blewrr) + 4 (E(=0) +w) + - = v+ w. =
In the proof above we take the initial values to beand

Multiple Targets. This idea extends to any number of target'g'('e
in the domain. Suppose targefs,7Ts,..., T, of weights
wi,ws, ..., W, individually give rise to tracking formg;,
&, ..., &. Then we can construct a combined tracking for
as the sum of thesg¢ = & + & + --- + &, on each edge.
Given any_loqu, the sum(L) will provide the total weight v instead ofw and zero so that the same proof applies to
of targets_|n5|deL. . . .. scenarios with multiple targets, and any preexisting wisigh
The weights assigned to targets can be adjusted to suit €ihe faces and edges. For a system with a single target,

needs of the system. For example, if all weights are eque, tl%.le final values arg(c) = 0 and&(7) = w, as required. In

§(L) pjrjov_ides., the cognht oif tahrget? insideL. lf. egch indj\éidu eneral, the weight df’ is removed from the weight of and
target7T; is given weight2?, then from¢(L) it is possible added to the weight of.

to deduce exactly which ones are located insideThis is
equivalent to maintaining a form for each individual target
It is possible to imagine other scenarios where targets are ) ) ) )
assigned different weights according to their importarice, In this section, we describe the algorithms for constrigctin
example, objects can be classified according to needs 4h@ tracking form, and for supporting range queries androthe
weights assigned according to their types. queries.

Given the weights and target locations, it is always possibl
to create a suitable tracking form. In the next section wé wil. Planar graph for tracking

IV. ALGORITHMS

describe an efficient algorithm. As a first step we compute a planar graph. The planar graph

Updating tracking forms for mobile targets. When a target an be either a subgraph of the communication graph of the
moves from one face to another, we need to update the track§§'SOrs, or a virtual graph chosen for the tracking apjpicat

form by changing its value on the directed edges. Without los [N the first case, consider the sensor network as the nodes
embedded in a region in the plane, and an associated com-

munication graphG. We obtain a planar subgraph C G
that contains all the nodes, but is drawn in the plane without
crossing edges. We can apply planarization techniques to
extract a planar graph from the network connectivity graph.
Such methods have been developed in the past [8], [10], [23],
[27]. Any such algorithm can be used for our purpose.
Fig. 5. TargetT of weight w moves from facer to facer. Modify &(c) « Alternatively, we can also consider a virtual planar graph
&(c) — w to obtain the new form. chosen for the tracking application. For example, the sirtu
planar graph can represent any convenient space decompo-
of generality, we consider the example in Figure 5, wHEre sitions, such as streets and blocks, any other meaningful
moves from faces to an adjacent face. Let us say, the districts, or simply a global grid overlayed on the regioor F
shared edge that was crossedbwappears as in do, and as each virtual edge we can appoint a nearby sensor or all the




nearby sensors (e.g., those whose sensing ranges cover lpart= (7, 7) is on «, ande € do, then we do the following

of the edge) to ‘maintain’ the value on the edge. In this caseodification:

we only assume that a target crossing an edge of the virtual £(e) == &(e) +w, (3)
graph can be detected by at least one sensor and the new

differential form value is updated. Such virtual planarggra. Wherew is the weight ofI". Quite clearly, any simple directed
can be made to create finer subdivisions as required. WHdackwise loop that contairif passes through one such edge.
the mobile entities can detect their own locations, theyaan /N cases where the loop has more than one such edges, the

their own notify the system when they cross an edge of tRgditional edges appear in oppositely oriented pairs agd th
graph. values on them cancel out each other.

The following theorem shows that the algorithm above

B. Constructing a Tracking Form creates a correct tracking form.

In this subsection, we show how to initialize a tracking onétheorem 4.1. Supposel(c) = u, then after the algorithm
form in the network. First, we describe the simple case wheabove is executed,
the network is empty of targets to start with, and all targets 1) |f a facec contains target, thend¢ (o) = u + w,
enter through the outer boundary. Next we will see that the 2) Elsedt (o) = u.
ideas from this case provide a mechanism for initializing th

more general case where targets may be present at the time Proof: Supposel’ € o, theng € o and has an outgoing
of initialization. edgee. Therefore, after the algorithm is executédchanges

) _ _ ) S one € do by {(e) := £(e) +w. All other edges oo remain
Starting with an empty field. In this case, we initialize all unchanged. Therefore, after the modificatiéfy) = u + w.
edges to zero, that is for every edge= P, {(e) = 0. NOW, This proves the first claim. '
suppose that a targét of weight w enters the network. It Supposel’ ¢ o, if & is not on the traila, then of course
crosses the edgee 97 to enter the face. Then we modify nothing changes, andé(c) = u. So, the only case we need
§(c) := &(c) + w. Clearly, after this modification/¢(r) = w. 5 consider is whem is on the pathn. We know thata is
As T moves, we can adaptively modify the form according tQ path from the current face @t to the face at infinity, and
equation (1) or (2). o is neither of these. Therefore, has degree exactlg in
' «. Suppose the incoming and outgoing edgesarand e,
respectively. Then the algorithm will have made the follogyi
modifications :£(—e;) = {(—e1) +w and{(ez) = &(e2) +w.
Therefore, the original suni (o) = a+---+&(e1) +E&(e2) +
.-+ = u remains unchangedit(c) = a+-- -+ (£(e1) —w) +
(&(e2) + w) + - -+ = u. This proves the second claim. =

Once again, the proof works for domains with multiple

targets. We execute this once for each target in the domain or

! for each face containing targets with the total weight okthe

‘ targets. Thus producing the correct form for initializati@he
@) () same procedure can be executed in case a target appears in the

Fig. 6. The entry of a targef” into the network. (a) As it moves from face middle of the network at any time during the operation.

to face, it leaves a trail of edges that it modified - shown itdddue. (b) In cases where there are many targets in the field, creating a
The trail in the dual graph. The edges of the dual graph arensles dotted {raj| to the boundary for each can be expensive. In such cases

lines, and the dual trail of the target as a solid blue path. erform the initialization as a sweep on the network. We
The process is shown in Figure 6(a). As the target mov s P . . . P '
iscuss this further in section IV-I.

from face to face, it modifie§ on the shared edges betwee
adjacent faces. Creating a trail of edges with non-zeroegalu

Now, let us look a comple® that is the dual complex d?. C. Containment queries
A vertex (says) in P corresponds to a face’)in P. An edge

b : i he shared b Given a one-form on the planar graph, we can query the
¢ etweend\_/emfces : d;e_ﬁ)_;]esent_'ls tfe; are_rpedrf]g etwe(Tn number of targets inside any loop on the planar graph. This
corresponding faces df. The trail of edges InP thus results ¢ ,cection extends it to queries of a geometric range. In the

in a dual trail, Whlch is a path i@, shown in Flgure_ 6(b). Fpr following we use the example of user specified squares. Other
a more complete picture, we can regard the region outside

the bl h s fa Cinfini d then the dual trail ometric ranges can be handled in a similar manner.
€ planar graph as ®mce at in ity an en he dual rall = £6r now, let us assume that the network is sufficiently dense
of T' is a path from this face to the current positionof

so that every point within it is covered (sensed) by one or
Initializing a field with targets. The idea of the dual trail more sensors, in particular that every point in a face isiwith
directly leads to a simple algorithm to initialize targeatsthe a small constant distan@eof some vertex of the face. Let us
field. We take a dual path to the face at infinity and add tredso assume that the density is bounded, that is, insideiaky d
suitable weight to edges d? whose dual are on the path. of radius1 the number of nodes is bounded by some constant
More formally, for a targef’, we select any simple directedk. This is not a very restrictive assumption. In a very dense
patha in P from the current face of to the face at infinity. network, we can select a sample of bounded density that still



covers the region. We assume geographic face routing [16] iSOur query cost is sensitive to the distance to the target.

used to follow the faces that intersect a given geometrigecur Notice that whether we simply want to deliver a message to
Let us use the notatiof,(r) to denote the square of sidethe target or obtain its location, the cost{¥d). Thus our

length2r, centered at point. We sometimes usg to denote query cost is asymptotically optimal.

both a node and its location. We define tiee ofS,(r) to

be r. The goal is to compute the weight of targets inside this Nearest Target Search

box, or equivalently, compute the sum of the tracking form on From a query node, we would like to find the target that is

the boundany[ (r)). nearest tg. This is useful, for example, in performing nearest
Consider the faces of that intersect this boundary. By ~. @- ' pie.inp 9
nei hbor queries.

the assumptions above, there are at most a constant number. . , .
b irst we find the smallest bos,,(2") that contains one or

of these within a unit distance of any point anS,(r). . . :
. more targets, by performing an exponentially growing dearc
Therefore, the number of faces intersected by the boundary . X ' S
as in the previous subsection. This implies that the nearest

is O(|0S,(r)|) or O(r). : ; ; i i—1
Let @ represent this set of faces at the boundary. Fga}rget Is contained in an annulis(2°) \ 5,(2" ). Next we

e . . perform a binary search on the size of the box by recursively
a sufficiently large box queriedy is an annulus andq splitting the annulus. That is, we check if a target is coradli
has 2 different connected components — sHy = S8 + v piting § ' g

) _ dn Sp(271.1.5). Thus we find an annulus of half the width that
where each is a connected edge chain, in fact a cycle. Must contain a target, and follow the procedure recursivel
of these, sayy lies outsideS,(r) and /5 lies inside. We get, P y

say thaty and —83 respectively form the outer and innerTh|s eventually gives us an annulus of constant width, and we

approximations obS,(r). The reason for taking /3 is that 216221:35: tpass over the targets in this annulus to find the one
by default is oriented counter clockwise, therefore we rreve . . .

. . . . The binary search runs i@(log d) rounds wherei is the
the orientation to match our conventiogé-—() gives a lower

. L . . distance to the nearest target. Each round costs us O(d) to
gguﬁgpc;? Lhoeu\lfquelght of targets inside the box, wijlle) gives sum the form along the boundary of a box of size at n2a'st

We can now find the answer to our query. First, we ﬁn'(lj'hus the whole procedure runs in time and communication

&(—p). Next, for every facer € @, we manually check the complexity of O(dlog d).
total weight of targets inside N S,(r). The sum of these
values with¢(—f3) gives the answer. F. Update costs

Note that this entire computation can be done in a dis- The network incurs a certain cost in updating the tracking
tributed manner by a single walk along the cydlg,(r). The form as a target moves. To be precise, every time the target
size of the sub-complex induced 6y and therefore the cost moves from one face of to another, the form on that edge

of this computation iO(r). has to be updated. Therefore, the total cost of the updatd®qu
the number of faces traveled by the target. By the arguments i
D. Search queries section IV-C as a target moves along a straight line segnfent o

(!)?ngthd, the system require®(d) updates at nodes. If updat-
ing an edge requires communication between the endpoints,
then the communication cost is aléf(d). Note that in some
cases this may not be necessary. If both the sensors carn detec
a target entering a face, which can happen for example if the
We search in two stages. First, we find the smallest b gNSINg range covers the entire edge, then the ta_rge_t lsdsens

i . hal? . .~ Dy both these sensors, and each can update their view of the
Sp(2%) that containg’. This is done by successively checkmge . L

i . . . dge without any mutual communication. In such cases, the
Sp(2%) for i = 0,1,2,3,.... Suppose thd" is at a distance . . ) o

. . . ugdate is carried out without any communication at all.
d then the size of the largest box tested in this process i One can consider adversarial behavior, for example where
2Me(d1, Denote this box as, (r). From section IV-C, the cost ’ ple v
a target repeatedly crosses an edge back and forth to induce

of checking a box of size is bounded by:r F?gr(i)?me constant many updates in the nearby sensors. However, this sort of

. Then the total cost of the test aboveaisz 21 — 0(d). behavior is easy to detect, and can be handled separatefy. If
= would like to reduce maintenance cost, we can stop updating
In the second step, we search within the #Xr) recur- that edge for some time. That is, the edge is assumed not
sively for the actual location of the target. We partitiore thto exist in P for that duration. Note that this ‘hole’ in the
box S,(r) into four quads, each of size/2, and check each graph does not affect anything in the rest of the networklat al
of these for the presence of a target. Each test cost®, Updates and queries can proceed as usual and the query result
therefore, the total test fot quads cost2ar. This is done is not affected unless the query happens to use this edge. The
recursively until we arrive at a node that ‘sees’ the targeédge can be reinstated when target movement is infrequent.
Clearly, the cost of this recursive searchﬁliﬁr(% + i + % + In general, when a part of the network is very active with
--) = O(r). Sincer is at mos2'&(4)] ' we have that the total many and frequent movements, it may not be economical to
cost of finding the nearest target@¥d), that is of the order track all such changes. Our scheme is sufficiently flexibkk an
of the distance to the target. robust that tracking can be turned off in such regions withou

In this section, we build an algorithm to answer queries
the type “Find the targef’ starting fromp.” It is assumed that
a differential form is maintained for the identifiable targég
that can be used to search by Similar ideas apply to find
a target nearest tp.



any loss to other parts or any overhead. Alternatively, it the neighbors of on the boundary. Now, we can initialize

possible to reduce the tracking resolution in that region liie form as usual on the dual éf. When the target moves

selectively removing nodes and edges so that the faces fioen s to a neighboring node we first remove from P’ and

larger and therefore incur fewer updates. then reinstates and its edges using the method for inserting
vertices.

G. Network holes, fault tolerance and network dynamics ~ The method naturally extends to cases where a target is

. etected by a set of sensors. In this case, we just remove all
If a network has coverage holes, a target entering the hglé : .
. . : e detecting nodes, and when the target moves, we reinstate
might be lost — no sensor detects its location. However, our :
. . .. those that no longer detect it.
range query result is not affected if the query range is eithe
outside the hole or encloses the hole completely. If theyquer

range happens to cut through the hole, this is a pathologitalAggregation of signal over all nodes
case that no method can accurately tell whether the target i%eyond tracking moving targets, differential forms caroals

inside or outside the range, due to limited sensing coverage, | \sed to compute aggregates of arbitrary functions sample
We can however get upper and lower bounds (sudfi@sand 1, sensor network. Suppodeis such a function. Since we

§(—p) in section IV-C) by computing the weights inside SUCR7, 6 5 method for computing sums of values defined over
uncovered faces. When initializing a network with largedsol o5 ofp. we adapt to make use of that existing method. For
these are simply disregarded, that is, the correspondirigwe any nodes, we apply small perturbation to the location. That

does not exist in the dual. The dual trail for the initialipat is, the valueh(s) is assumed to exist as an added weight in
therefore never goes through the hole. , a faceo incident ons, that isd{(o) < d&(o) + h(s). Each
The scheme is also fault tolerant and adaptive to network o remembers to which face its value was delegated.
dynamics. If some nodes fail, or all nodes in a region fai First, we have to initialize the form over all faces. For
even including those near the target, that does not affect I(Q/ery f’aceo— we have to find a path to the face at infinity
correctness of the tracking form. Thus, this permits dyruza\rr“_l the dual ’graphP. To build these paths, we construct ,an

networks where nodes can be turned off arbitrarily. There é@gregation tred in P, rooted at the vertex for the face at

no overheNaddon malnt?lnmbg the trac(l;mg forhm on sur\|/(|V|_|r1 finity. The path for sigma is then the path ih betweens
sensors. Nodes can also be inserted into the network. the face at infinity.

only requires refining the planar graph and the tracking form Next, starting at the leaves GF, we compute an aggregate

locally. See Figure 7 for an example. at each interior node by summing its value with those of its
children in the the aggregation tree. Let us denote thistfonc
on the dual nodes gs. For every noder € T, consider the
edgee to its parent in the aggregation trgeand its duak in
the original graphP. We set¢(e) = p(a). This initialization
can be executed as a single aggregation sweep on th& tree

s s Therefore, it can be computed at a total communication cost
Fig. 7. Suppose a node is inserted inside a facép,q,r,s,t} of total of O(n) . L
weight w and the face is partitioned into three facgs ¢, z}, {¢,7, s, z}, Now we reconsider the way the functiénis handled. We
{p,z, s, t}, where the total weights within these faces afig w2, w3 respec-  had perturbedh and shifted the valué(s) to a neighboring
tively, w1 + w2 +ws = w. We simply set the values of the edgéts:, p) = 0. 06 7 This perturbation can cause query results to be erro-
f(xvq) = f(pvq) - w1, f(l’,S) = g(pv q) + £(Q7 T’) + 5(7"7 8) — w1 — w2. N . ‘g .
One can verify easily that these values conform to the digimdf a tracking N€ous. However, this is easily rectified. Suppasis the loop
form. . L tt}at bounds the closed area over which we wish to compute

The effect of sensing noise is local. Suppose an edge gets .
the aggregate. Observe that for a loop not passing threugh

updated incorrectly due to sensing or communication fallurthe contribution ofh(s) is estimated correctly — since then

This only affects the evaluation of loops that actually Pa3%th s and o are either both inside or both outside the loop.

through that edge. All other loops still produce the corre%e only need to adjust carefully for loops passing throsigh

results. In our simulation sections we evaluate the tragkin ~ - o )
NS In this case, we need to see whetleis inside or outside
results when sensing is inaccurate.

the query region. I is inside the region theh(s) is already
incorporated in{(L). If o is outside, then the value @f(s)
H. Tracking without target locations is manually added tg(L).

Up to this point, we have assumed that the location of thelf L is traversed clockwise, then faces on the right of the
target can be sensed by the nearby sensors. We now show path are inside, else the faces on the left are inside. Toreref
to modify the tracking scheme so that it can work withouhe challenge is to find the orientation along whi¢his
target localization. traveled. This we do by means of another differential form,

Start from the simple case when the tard@etis detected calculated on the fly. Let us sayis the first edge traveled
by exactly one sensor at a time. We initialize this scenaraongl, and say; ando, are the faces adjoining Now, we
as follows. Suppose is the sensor detecting. Removes choose arbitrary points; € o1 andps € o, respectively. As
(and all incident edges) fron? to get a new planar graphwe walk alongl, we maintain two other one-formg andm,,

P’. Then inP’, T is assumed to reside in the new face witlthese are thevinding numbersroundp; andp, respectively.




For any edgé€u, v) on L, we add the clockwise angléup;v Based on this, we now assign orientations td3atklls such
to n;. By clockwise anglave mean that ifZup;v is oriented that a facef shared by adjacent cells and 7 is used with
clockwise, we add its positive value, else we add its negatigpposite orientations in the two cells. That i§,€ o and
value. Suppose; is on the exterior ang, is on the interior —f € 7. Such an assignment is possible, because the euclidean
of the region bounded by., then we have); (L) = 0. The space is orientable [13]. And as before, the boundary of ancha
value of 72 (L) will be either 2 or —27 depending on the U of 3-cells is the chain of boundarie8U = Z do.
orientation ofL.

oeU
Thus we can reliably find the sum of values inside a closedAS & result, lemma 3.4 and all ensuing results apply
loop L in the planar graphP. unchanged. We construct a tracking differential form by as-

Chanai | Unlike th f bi i signing suitable values to oriented boundary face8-oélls.
anging values.Unlike the case of mobile targets, If angj e 5 regionR C R? constructed from cells ink, we

arbitrary functionh changes with time, local updates may not,, compute the aggregate by summing the differential form

sr:an]::e. ”? paLtlcuIar, th_e Ilocallupdate scheme Works_ onlgnvh on the faces obR. The formal statements and proofs on the
the function has certain local conservation propertieshss initialization, update and summation of the tracking foranrg

when a change of in a face always causes a changé in over to higher dimensions without modification.

an adjacent fac_e. o i To apply the general result distributedly to a network, we
Instead_V\_/e simply re-|n|t|a_1l|ze th_e _fprr_n af[ regular intdeva need a cell complex iBD. As with the two dimensional case,
or on sufficient change_s. With an |n|t|ql|zat|op of cdstn), _we do not need an explicit complex on a node set. What is
we create a ngtwork-mdle one-form with which we can f'nalequired is to have a logical complei, such that faces of
the aggregate in any region of the network. its cells are monitored by the nodes in question. This can be
a virtual uniform grid, or a naturally induced cell subdiuis.
J. Completely mobile networks The rooms and floors in a large building form a natural cell

. ) division for both tracking and query of mobile gadgets and
Consider a network where all nodes are mobile. That I&FID tagged objects
r

beyond the targets, the sensors themselves are mobile. Ou ) )
method naturally extends to such scenarios. As a sensorano$e®mplexity of 3D update and queries. The volume of
it may cross an edge of the planar graph. Suppose thaf region .Of ne_twor_k, anq the number of.nodes in it grow
crosses an edge to enter a facer. Then we update the exponentially with dimension, as does the size of the boynda
network simply by first discarding all edges incident sn This increases the complexity for any tracking algorithm in
then by insertings into = as in Figure 7. Many existing higher dimensions, even when nodes are distributed with
planarization algorithms work for mobile networks [10]. wéounded density. The cost of a containment, search and range
can use such methods to maintain the graph. In all cases, @§€ries in the3D case would bSO(d ), while the nearest
removal of an edge will not incur a cost, the insertion of afrget search would run at cas{d” log ). Observe however,
edge will be made according to the idea in Figure 7. that with bounded density, the size of the cell complex iasid
Care needs to be taken in cases where we are consideﬂn‘tjnit region is_ still bounded_ by a constant. This means that
forms to monitor values defined on nodes. For example, wh@H method still operates with an update cost bounded by
a mobile network tracks its own nodes to be able to answ@rconstant. This is the most desirable property in dynamic
aggregate counts and weighted sums inside regions. Supp&arios where a tracking algorithm is likely to be used. As
in such a case crosses an edgec 97 to enterr. Then along before, the network initialization utilizing a dual spangitree
with the usual insertion, the valug(s) must be reassigned toCOMpletes a(n) complexity.
one of the new faces, for example b{e) := £(e) + h(s), as
in section 1V-1. V. SIMULATIONS

We conducted extensive simulation tests to see how the
K. 3D Networks and Movement Histories theoretical guarantee; of our alg(_)rithm translate to a_mlektw
. ) ~graph and compare with LLS [1] in performance, particularly
‘The idea of tracking forms extends naturally to high€f terms of communication costs. In addition, we conducted
dimensions. Consider targets moving in 3adimensional gimyjations to test the robustness of the algorithm to sensi
euclidean space. We first decompose the space into thfgf res and inaccuracies. This section describes therfiysdi
dimensional cells, so that our monitored space is now a celirhe simulations were done with networks that are quasi unit
complex K" of dimension 3. The boundary operai@when ik graphd of inner radiust /v/2. This choice of parameters
applied to a3-cell, produces a chain of faces (a 2-chain) thajjoys local planarization algorithms [8], [23] to be usdtie
constitute the boundary of the celly = a+b+c+.... From nqgerlying sensor networks have nodes in a perturbed grid
this, we can assign orientations to 3-cells. distribution, where the node is placed uniformly randonmly i
Definition 4.2. Orientation of a cell o. To the boundary faces the grid box assigned to it. We consider networks without any
9o = a+b+c..., we assign orientations such tiat+ ob+  Significant coverage holes. In all cases, the average degree
dc + --- = (. This implies an orientation of. There ar S _ o
. . . . . A quasi unit disk graph is one where nodes more than unitrdistaway
poss:ble orientationsto or —o. Each obtained from the Otherdo not have an edge, nodes less than a distaragay always have an edge,
by inverting the orientations of all boundary faces. and for other distances, the presence of an edge is uncertain
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about10, and the size of the network was varied betwéet servers at increasing levels. This goes on until some locati
nodes and 0,000 nodes to test the scaling properties. server at the current or neighboring square for the curesset |

To evaluate the update costs, we introduce moving targetsctaims to know the target location square at that level. Tthen
the network domain. At each step, a target selects a randsearch proceeds in that square, successively searchirgg low
direction and moves up to a unit distance in that directiolevels. Of course, it is possible that due to the lazy update
After the move, the initial and final position are comparedcheme, a server claiming to have the target is in fact im.erro
and updates are made. However in such a case, the target is guaranteed to be in one
of the neighboring squares. It can be shown that this does not

14 T T T T
- incur too high a cost. In fact, if the distance to the target,is

- 12’/\~/_’ then the search finds the target at a cosOd).
@ L 4
§* —— LS We compared costs with LLS in updates and query response.
g 8 —e—Forms The following are the important observations:
U o Update costs.Our algorithm adapts to node movements
o 4 ] very efficiently. It has an average cost of abBumessages
< et~ - per each unit distance move of the target, as compared

o ‘ ‘ ‘ ‘ to a cost of10 to 12 messages for LLS. The maximum

0 2000 4000 6000 8000 10000 update cost for our scheme is ab@utvhile that for LLS

is orders of magnitude higher — @00 or 300 or more
messages for a single small move. Most importantly, the
costs of our scheme are independent of the network size,
making it scalable to very large networks.

Fig. 8. Average update cost per move.

5 o Search queries.In answering queries where the one
8 node searches for a specific target, our scheme performs
% slightly worse — consuming aboa@ttimes the messages
2 compared taL LS.
x « Aggregate range queriesGiven a geometric region such
= sol as a rectangle or ellipse, this query asks for the number
| | | | of targets inside it. On this sort of queries, our scheme
% 2000 4000 | 6000~ 8000 10000 outperforms LLS by an order of magnitude.
Fig. 9. Max update cost for any move. 600 1400
A. Comparison with LLS 2 azzz
LLS scheme. This is a locality aware location service for‘z400 isoo
mobile networks. The principle here is to use location serve §*° & o0
at different levels. At each level=0,1,2,3,... the network g** E 400
region is tiled by squares of sid¥. The squares are aligned 1 200 e
so that a fslquzﬂre atlleveéli.?1 precisely covirtlad bly exactldyéI % mm w0 20 a0 o 8000 1000
squares of level— 1. In each square at each level, one node 1s
(a) (b)

designated to be the location server for that square, aruskee
track of more precise locations of nodes in the square.
Location updates are performed in a certain lazy manner.
Suppose mobile nodg was in a squares; at level i, and 1) Update costs:As a target moves, the tracking system
moves to a neighboring square at that level. The schefnas to update its data to be consistent with the currentttarge
does not update the location pfto the respective location position. LLS does this by suitably sending updates to it
servers. Instead, it waits untpp has left this surrounding location severs, while our scheme changes the weights on the
neighborhood ofS; before it actually performs an updateedges crossed by the target.
Thus, aroundS; there is a ring of8 squares moving where The results are shown in Figure 8. Our scheme is extremely
does not cause an update. As a compensation, LLS keep=ftient, since a small move does not cross too many edges,
location information at the location servers of these nadesand the mean cost is abduper move. LLS is designed so that
addition to S;. The idea here is to delay updates to avoidn certain moves, it does not require any updates. However,
unnecessary communication. On average, if a node movewlzen the target has undergone sufficient displacements itcha
distanced, then this scheme can be shown to have update cosfslate several nearby lower level location severs - thigrsic
of O(dlogd). The cost is amortized. That is, the average coatreasonable cost. Later on, after further displacement\em
is guaranteed to be low, but the update cost at a participr stay require higher level servers further away to be updated,
can be arbitrarily high compared to the movement at that stépcreasing the cost for that move, as well as the mean cost.
The location search for a particular node starts at some otfidne distance of the farthest server that may be trackinggetar
node in a network, and proceeds by searching nearby locatisrproportional to the network diameter. After a proportibn

Fig. 10. Average cost per search query.
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@ ® 1400 @ 2500
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Fig. 11. Aggregation query costs for random rectangle regions. (@rage (a) ]
Costs, (b) Max costs Fig. 12. Aggregation query costs for random circular regions. (agrAge

Costs, (b) Max costs
displacement this server will need to be updated as wellsThghe process is a little more complicated.

the update costs of LLS depend on the network size, though | 5 maintains a quad-tree hierarchy, and recursively sack
the amortized cost of LLS is still quite manageable, at aboghdes inside the quads at different levels. To find the agdeeg
10 to 12 messages per move. _ o we need to look at quads of different levels that intersett wi
The worst case behavior of LLS is poor. This is because | particular, if a quad) intersects the bounda@R, that
the strategy of avoiding updates until necessary meansht@at means sub-quads @ need to be analyzed further, to see
updates build up and on certain moves neighboring Servers ghich targets inside) are actually insideR. Therefore, the
servers at several levels of hierarchy need to be updated Thethod boils down to finding quads at all levels that contain
the update cost of a single move can go into several hund;tjzgets and interse@R. This turns out to be costly. This is
messages (shown in Figure 9). Our scheme, on the other hafbause LLS does not get too much benefit from the higher
never has to update more tharedges. level location servers. It is likely that a large square oe of
Note that the costs in our scheme are taken to be pigs neighbors would intersect the boundary of the range, and
portional to the number of edge updates needed. In cerigiys the lower level servers in this region would need to be
scenarios, where the target sensing does not require f¥ted.
communication, and when there is agreement among nodes ORigure 11 shows the costs whé is a random rectangle
monitoring different parts of edges, it is possible to peTfo jngide the network region. Figure 12 shows the correspandin
the updates at zero cost.. _ ~ costs whenR is a random circle. Clearly, location server
2) Search Costs.Location service schemes are designeghsed schemes incurs a substantial cost in this type of query
to answer queries that ask for the location of a specifigote that for target searching LLS actually uses a different
mobile target, or to deliver a message to the target. Oyfiadtree hierarchy for each target. This would be imprattyic
scheme of tracking forms on the other hand was designgghensive in this sort of query, where the presence of each
with aggregate queries pertaining to groups of targets iiimi target inR will then have to be checked individually, driving
Nevertheless, we find that it is a good instrument for searghe costs very high. We therefore used a common hierarchy
of specific targets, and has performance comparable t0 {gere a location server can provide information about all
location service scheme. We can maintain a tracking f0/m targets in its quad region. Even with this modification, the
for each targefl; and then use that to search for it startingssis of our scheme are still much lower, in principle only
from the query node. The scheme is described in section IV-Roportional to the size of the boundary &t
In this experiment, we chose random query nodes, and ran-
dom mobile targets. We execute a search for the targetrgarty  Efects of Target Detection Errors
at the query node. The two schemes use analogous methods ) . ]
of searching exponentially growing regions for presence of Monitoring of mobile targets is not easy. Sensing errors
the target, and in the suitable region searching exponbfntiaf’md f_a|Iures in communication can create d|ff|cult|e_s foy an
smaller subregions until reaching the target. The asyrigptofracking algorithm. Such failures occur at the physicakelay
costs are the same for the two schemes. The simulationses@ild in effect supply the algorithm with incorrect input. A
in Figures 10(a) and 10(b) show that with tracking forms fracking algorithm should be rob.ust., S0 th:?\t its per.formanc
costs about twice that of LLS to search. degrades gracefully and slowly with increasing sensingrerr
In mobile environments, since updates are much moreThis subsection tests the effects of such failures on the
frequent than queries, the higher search costs of our mettfitplity of aggregate results returned by our method. A=targ
are compensated by the significantly lower update costs. Move we compute the aggregate in arbitrary ranges using the
The costs of Nearest Target Search are similar to tardgicking form and compare with the true aggregate of the
search — in practice it scales similarly to the cost of seéagch fange. We consider two types of errors:
a target with distance and network size. 1) Failure to detect a target crossing an edgeFor
3) Aggregate Range QueriesGiven a regionR, say a example, a sensor monitoring the edge fails to detect
rectangle or an ellipse, we wish to find the number of targets  the target passing. This can also happen when targets
inside the region. With tracking forms, this is easy to do by are responsible for supplying their own tracking infor-
summing the form in walk around the boundary. The details of  mation. For example, a targets crosses an edge into a
the methods are in section IV-C. With a location sever scheme  new face, but its message notifying this move gets lost.
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In such cases, the tracking form on the edge will not kees expected.

updated, and certain queries may return incorrect resultsThe relative error decreases with increasing number of
2) Incorrect Estimation of Target Location. The location targets. This is because statistically the effects of owanting

of a target computed by the system may be incorreand under counting cancel each other, and this happens more

For example, signal strength based localization may beliably with larger number of targets.

erroneous, or even GPS based location computed by dn simulation of the second type of errors, we assign each

target itself may be off by several meters. In such casearget a location different from its true location and comgpa

the object will be estimated to be inside a different facthe true and computed counts as before. The assigned locatio

than where it really is, and will contribute an error tas intended to simulate the estimated and possibly incbrrec

the computed aggregate. location of the target. The estimation cannot be very far

In these simulations we consider a variable number (bEOM its true location, since the location of sensors or ssce
tween 20 and 300) of targets moving in the plane, and ardoints that detect the target can be used to restrict themegi
tracked by a differential form on @00 x 100 unit grid. A Within which the target must lie. Therefore we use a paramete
target takes steps in random directions and within a ungtten localization radius (LR)which limits the maximum distance
as before. As targets move, we execute queries to count ffm the true location within which the estimated location
number of targets within a unit square chosen randomly withinust lie. The estimated location is taken to be a random
the grid. For each such query, we take as error the differerR@int within this radius. We vary LR from.1 to 5.0 units.
of the computed result with the actual number of targetsén tfind as before, we carry out00 random queries for each
range. This error has a dependence on the number of tarddtsand different number of targets, with the targets moving
in the system. We measure theative error— the ratio of the tWwice between successive queries. The results are shown in
error to the number of targets and see how that changes wfiigure 14. Once again, the we find that the relative errorsirop
increasing number of targets. 003

To simulate the first type of errors, we select a probability . iy

p as the probability that a target is not detected when crgssin 25" R0
an edge. The parametgrin that sense represents the sensing S ool > iheso]
accuracy of the system. We vapyover a wide range of values :;

from 0.05 to 0.70 that is, we vary it upto the the case where = 0

70% of edge crossings are missed. For eadnd number of ig 001} .
targets we execut&)0 range queries on random axis-aligned 5200057 "
squares. We let the targets makenoves between successive 7 S Ev

queries. L

100 1;30 260
The results are shown in Figure 13. The values of the errors _ Nurber of “Targets _
Fig. 14. Error induced by incorrect localization of targets. Theoerin

counting relative to the total number of targets, plottediast the total number

250 300

— =005 of targets; for counting number of targets in random axigreld squares. The
© o 007 —v—p=0.10 parameter LR is the maximum distance between true and astinhacations
—&—p=0.20
Zg —e—p=0.50 of targets.
= D008 - ¢ -p=070|| o . .
3.5 005 with increasing number of targets. In this case, the ern@sra
55 0.0l are even lower, staying belo@#, and in most case at about
c3 1% — 2% or lower.
cl.).g 0.03f o )
52 002! Error senstivity of LLS range query. LLS operates with
] . . B . .
%’3 ool different model and goals of tracking that makes it diffidolt
' compare errors directly. We can imagine LLS being modified

% 50 10 150 200 250 300 to use edge crossing as basic update events. In this case, the

Nunber of Targets . X

Fig. 13. Error induced by failure to detect targets crossing edgés. arror plgnar _graph .V.VIH _be the fm_eSt level of t_he LLS quadtree.
in_counting relative to the total number of targets, ploteghinst the total With this modification, LLS will be susceptible to the errdr o
number of targets; for counting number of targets in randows aligned missed edge crossings. However, the target can be detected
squares. The parametgris the probability that a targets crossing and edgevhen crossing an interior edge, and this update will be

is not detected. . - ..
are very small. Even for severe valuegiafeaching uptd0% reported to locations servers. Since LLS searches theidnter

or 70%, the counting error is less tha¥ of the target count, ©f the region, it will be able to detect these targets.
and drops rapidly to less than half of that foi0 targets or Therefore LLS can be expected to have even smaller error

more. For more reasonable valuespo$uch asl0% — 20%, 'ates than the already low error of differential forms. This
the errors are just a few percents. " benefit however comes at the cost of user privacy and sub-

The curve forp = 70% fits the pattern less tightly thanstantially larger communication cost of searching theriote
the others. Its high error rate causes it to fluctuate andveeh& the query region.
more unpredictably at low number of targets. As number 80D Networks. The basic correctness properties of our method
targets increases, it stabilizes better, and ends with hehighold equally well in 3D and even higher dimensions. The
relative error rate than the other curves with lowevalues, essential comparative properties between LLS and diffeden
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forms do not change with dimension. Thus the results showlifferential form with a weight onf. Any loop surrounding
here will hold for higher dimensions with minor differencesthis this face will integrate to a non zero weight, indicgtin
As discussed earlier, the update costs for our method dhat it surrounds the building. Two paths are of different
constant, albeit a slightly larger constant. homotopy types if the loop formed by their union encloses
For cube shaped range queries 3@, the costs of our the face in question, and this can be checked with this same
method grow with the square of the radius of the range (sizest. The method in [26] is more comprehensive: in addition
of the boundary surface), while LLS, as before, does not gam testing it is also capable of generating suitable loops an
much benefit from its higher level servers. Therefore, that cgaths. However, that requires an embedding of the network in
of LLS grows almost as the volume of the range, proportionayperbolic space, making the initialization costly. Fostileg
to the cube of the radius. contractibility or homotopy types, the tracking forms pide/
The overall conclusion is that the method is extremely more lightweight, simple and robust scheme that adapts to
robust to failures and sensing noises of different types. @etwork dynamics much more easily.
average it incurs only small output errors even with largeopr Networks Without Locations. A differential form is a topo-
abilities failures. The errors degrade gracefully withré&se |ogical construct and can be defined abstractly without use
in failures. This is largely the result of the local naturetieé ¢ coordinates. Therefore, this minimal scheme is applieab
tracking mechanism: if an edge is not updated, that failufginout the use of locations. It is possible to obtain a ptana

does not affect a query unless the edge lies at the boundgpyph without using node locations [27]. After that we can
of the query region. determine a consistent orientation and create a tracking fo

abstractly. The ideas from subsections IV-H and V-l camthe

. . . . ) be used to track and query the form inside any given loop.
Anonymity: Tracking Without Identifying. Privacy of users  geometric data such as the locations of nodes and descrip-

is an essential concern in tracking applications. While W&, of the range can be helpful is executing a query, but
would like to follow users to provide better informationst essential. Existing methods [1], [9] that use hierarahi
services, this raises concerns of privacy, ethics and tsslrs o, aqree type partitions that rigidly depend on a geometric
may prefer that their detailed movements are not identified g,4cessing of the data are unsuitable for use in a coordinate
stored. free environment.

Our method contributes on both these counts. First, it =
does not need to identify devices to perform tracking. obility Models of Targets. Throughogt the_ paper we have
simply need to know that some device crossed an edgeS umeddthtat the targetsl (t:aln lmovle ;Eaahltrat\r_y I”Sanng'r.d b
the subdivision: its identity is insignificant. Second, werbt Ince updates are completely focal, the cost Is bounded by
need to store any information — even temporary identitiesN® tOt‘?‘I distance traveled_ by. the targets, not how they tnove
for long intervals. The information can be erased as soon %§sum|ng that small oscillating motions are handled in an
the edge weight has been updated efficient way as in section IV-F. The performance of LLS is

Truly anonymizing data is difficult. A process that remove@ﬁecte_d in some degre_e by t_he mqbility pa_tterns O.f the targe
all explicit data may leak implicit and probabilistic infoation In part|cular_, linear motion will again drag it strackinguees

ong, leading to the worst-case update costEgfllogd)

that is hard to anticipate before hand — see for example [13 ) . N
ered is the total distance moved. But local oscillating type

In our case, the privacy arises from the user being part X . .
a crowd. When there is only one device in the system iof motion when a target does not move too far from its original

location is trivial to find. When there are a few deviceé,ocation will keep the updates limited to local locationvaes.

one can be identified up to some uncertainty. Identificatid#etwork Power Management.Mobile devices are likely to
becomes harder with increasing number of devices. The degfeove frequently. Our scheme handles these movements effi-
of privacy also depends on knowledge of the users habiggntly and locally. It does not send updates to a distanttpoi
home locations etc, and those of other users. The precid®s is significant from power management point of view. If
characterization of privacy in an aggregate location tiragk & target of interest is present in a part of the network, nearb
scenario is an independently interesting problem that irsnanodes can be expected to be awake and actively monitoring
to be investigated. it. If all movements are handled locally, then relativelgteint
Testing Contractibility of Loops. Given a loop in the N0des can sleep or go to low power mode to save energy

network, is it contractible? Does it surround one or morgithout fear of interruptions. o _

holes? This sort of questions are significant in determining!n contrast, schemes that recruit distant location serezs

the topology of paths and cycles with respect to the networ@?.()bal central server for target tracking will need to keegsin

Given a loop of sensors, does it surround the building wRf the network on for routing to far away location servers.

want to monitor? Then the rest of the network can be put to

sleep. Or, given two different paths to the same destination VII. CONCLUSIONS

are homotopically different? Do they go around the holes In this paper we presented the use of differential forms

in different ways? These questions and their applicatiors an the application of target tracking and range queries. The

considered in [26]. method is simple, has low maintenance cost under target
The differential forms method can be easily used for suchovement, is extremely flexible and robust to network change

tests. If a building lies in facg of the graph, we create aand node mobility. The method is anonymous, and works

VI. DISCUSSIONS
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without needing any identification of devices. This makes [it6] B. Karp and H. Kung. GPSR: Greedy perimeter statelessing for
perfect for the applications of modern life where user pyya
anonymity and trust are of utmost importance.

The performance of our method is orders of magnitudér]
better than previous location services schemes for aggrega
gueries on mobile targets. We expect that more applications
can be found that use the differential forms for a diverse 4&8]
of queries of aggregated data, which we will investigatehi t (19]
future.
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