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Abstract

Scheduling is a critical and challenging resource alleratnechanism for multihop wireless net-
works. It is well known that scheduling schemes that favatdiwith larger queue length can achieve high
throughput performance. However, these queue-lengteebschemes could potentially suffer from large
(even infinite) packet delays due to the well-knolast packet problemwhereby packets belonging to
some flows may be excessively delayed due to lack of subsepaeket arrivals. Delay-based schemes
have the potential to resolve this last packet problem byedugling the link based on the delay the
packet has encountered. However, characterizing thraugbgtimality of these delay-based schemes
has largely been an open problem in multihop wireless nétsvéexcept in limited cases where the
traffic is single-hop.) In this paper, we investigate deeged scheduling schemes for multihop traffic
scenarioswith fixed routes. We develop a scheduling scheme based onvadeky metric, andshow
that the proposed scheme achieves optimal throughputrpgaface. Further, we conduct simulations to
support our analytical results, and show that the delagdhasheduler successfully removes excessive

packet delays, while it achieves the same throughput reggothne queue-length-based scheme.

. INTRODUCTION

Link scheduling is a critical resource allocation compdnienmultinop wireless networks, and also

perhaps the most challenginfhe seminal work of [1] introduces a joint adaptive routimglacheduling
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algorithm, called Queue-length-based Back-Pressure R-Biat has been shown to be throughput-
optimal, i.e., it can stabilize the network under any felesibad. This paper focuses on the settings with
fixed routes, where the Q-BP algorithm becomes a schedulagitom. Since the development of Q-BP,
there have been numerous extensions that have integratedritoverall optimal cross-layer framework.
Further, easier-to-implement queue-length-based sdihgdichemes have been developed and shown to
be throughput-efficient (segl[2] and references thereimnerecent attempts|[3]2[5] focus on designing
real-world wireless protocols using the ideas behind tlagerithms.

While these queue-length-based schedulers have been shoaahieve excellent throughput perfor-
mance, they are usually evaluated under the assumptiorildlaat have an infinite amount of data and
keep injecting packets into the network. However, in pgtivhen accounting for multiple time scales
[6]-[8], there also exist other types of flows that have adimtumber of packets to transmit, which can
result in the well-knowrlast packet problemconsider a queue that holds the last packet of a flow, then
the packet does not see any subsequent packet arrivalshasdhte queue length remains very small
and the link may be starved for a long time, since the quengtfebased schemes give a higher priority
to links with a larger queue length. In such a scenario wittvflevel dynamics, it has also been shown
in [6] that the queue-length-based schemes may not evenrbagtiput-optimal.

Recent works in[[9]-H[14] have studied the performance oagitlased scheduling algorithms that use
Head-of-Line (HOL) delays instead of queue lengths as lieigivts. One desirable property of the delay-
based approach is that they provide an intuitive way arohedast packet problem. The schedulers give
a higher priority to the links with a larger weight as befobeit now the weight (i.e., the HOL delay)
of a link increases with time until the link is scheduled. ldenif the link with the last packet is not
scheduled at this moment, it is more likely to be scheduleth@next time. However, the throughput
of the delay-based scheduling schemes is not fully undedstnd has only been established for limited
cases with single-hop traffic.

The delay-based approach was introduced in [9] for scheglii Input-Queued switches. The results
have been extended to wireless networks for single-hoficrafoviding throughput-optimal delay-based
MaxWeight scheduling algorithms [11], [12], [15]. It hasalbeen shown that delay-based schemes with
appropriately chosen weight parameters provide good QualiService (QoS)[[10], and can be used
as an important component in a cross-layer protocol desidh [The performance of the delay-based
MaxWeight scheduler has been further investigated in alesingp network with flow-level dynamics
[13]. The results show that, when flows arrive at the baseéostatarrying a finite amount of data, the

delay-based MaxWeight scheduler achieves optimal thnouigberformance while its queue-length-based
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counterpart does not.

It should be noted that even for the multihop wireless netwawrith fixed routes, the scheduling
problem is both important and challenging. There are mamstiag works focusing on such scenarios
with fixed routes (see [16]-[18] for examplegjowever, in multihop wireless networks, the throughput
performance of these delay-based schemes has largely beeypen problem.To the best of our
knowledge even with the assumption of fixed routésere are no prior works that employ delay-based
algorithms to address the important issue of throughptitra scheduling in multihop wireless networks.
Indeed, the problem becomes much more challenging in théihopl scenario. In[[12], the key idea
in showing throughput-optimality of the delay-based Majyl¢ scheduler is to exploit the following
property: after a finite time, there exists a linear relatm@iween queue lengths and HOL delays in
the fluid limits (which we formally define in Sectidn_IIl}1A), kere the ratio is the mean arrival rate.
Hence, the delay-based MaxWeight scheme is basically alguit/to its queue-length-based counterpart,
and thus achieves the optimal throughput. This propertgshfr the single-hop traffic. Since given that
the exogenous arrival processes follow the Strong Law ofeédiumbers (SLLN) and the fluid limits
exist, the arrival processes are deterministic with caristtes in the fluid limitsHowever, such a linear
relation does not necessarily hold for the multihop trafmce at a non-source (or relay) node, the
arrival process may not satisfy SLLN and the packet arrieiemay not even be a constant, depending
on the underlying schedulers dynamicko this end, we investigate delay-based scheduling schémaes
achieve optimal throughput performance in multihop wissl@etworks.

Unlike previous delay-based schemes, we view the packay @ a sojourn time in the network, and
re-design the delay metric of the queue as the sojourn-tifferehce between the queue’s HOL packet
and the HOL packet of its previous hop (see [Eq] (36) for thenébrdefinition). Using this new metric, we
can establish a linear relation between queue lengths dagsde the fluid limits. The linear relation then
plays the key role in showing that the proposed Delay-bassek#ressure (D-BP) scheduling scheme
is throughput-optimal in multihop networks.

In summary, the main contributions of our paper are as falow

« We devise a new delay metric for multihop wireless netwond develop the D-BP algorithm, under

which a linear relation between queue lengths and delayeiflgid limits can be established. From
this linear relation, we can show that D-BP achieves optithedughput performance. To do this,
we first re-visit throughput-optimality of Q-BP using fluidnit techniques. Further, we develop a
simpler greedy approximation of D-BP for practical implartagtion.

« We provide extensive simulation results to evaluate théopmance of the delay-based schedulers,
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including D-BP. Through simulations, i) we observe thatldm packet problem can cause excessive
delays for certain flows under Q-BP, while the problem is glated under D-BP. ii) We show that
D-BP also achieves better fairness and prevents the flowdatiasubsequent packet arrivals from
starving. iii) Finally, we simulate the simpler greedy apyximation algorithms of Q-BP and D-BP,
and show that the delay-based approximation empiricalljexes a throughput region that is no

smaller than that of its queue-based counterpart.

The paper is organized as follows. In Sectloh Il, we presedetiled description of our system
model. In Sectiol1ll, we show throughput-optimality of @?Rising fluid limit techniques, and extend
the analysis to D-BP in Sectidn ]V. The discussions are @rréxtended to the greedy algorithms in
Section[V. We evaluate the performance of delay-based stémsdthrough simulations in Sectién]VI,

and conclude our paper in Section \VII.

[I. SYSTEM MODEL

We consider a multihop wireless network described by a thoegraphG = (V, £), where) denotes
the set of nodes anél denotes the set of links. Nodes are wireless transmitéesirers and links are
wireless channels between two nodes if they can directlyngconicate with each other. During a single
time slot, multiple links that do not interfere with each @tltan be active at the same time, and each
active link transmits one packet during the time slot if iteege is not empty. Le§ denote the set of
flows in the network. We assume that each flow has a single,,fexed loop-free route. The route of
flow s has anH (s)-hop length from the source to the destination, where datthhop link is denoted
by (s, k). Let H™3 £ max.s H(s) < oo denote the length of the longest route over all flows. Note
that the assumption of single route and unit link capacitpngy for ease of exposition, and one can
readily extend the results to more general scenarios wmititiple fixed routes and heterogeneous link
rates applying the techniques used in this paper. To specifyl@seeinterference, we consider theh

hop of each flows or link-flow-pair (s, k). Let P denote the set of all link-flow-pairs, i.e.,
PE{(s,k)|s€S, 1<k<H(s)}
The set of link-flow-pairs that interfere witfs, k) can be described as
I(s,k) = {(r,7) € P | (r,j) interferes with(s, k),

or (r,7) = (s,k)}.

(1)
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Note that the interference model we adopt is very generdljrasiudes the class of thE-hopinterference
modeH. A schedule is a set of (active or inactive) link-flow-paiegid can be represented by a vector
M € {0,1}/P|, where| - | denotes the cardinality of a set. Each eleméfyt, is set to 1 if link-flow-pair
(s,k) is active, and O if link-flow-pair(s, k) is inactive. Slightly abusing the notation, we also ude
to denote the set of active link-flow-pairs 81, i.e., M £ {(s,k) € P | M, = 1}. A scheduleM is
said to befeasibleif no two link-flow-pairs of M interfere with each other, i.e(r,j) ¢ I(s, k) for all
(r,7), (s,k) with M, ; =1 and M, ;, = 1. Let Mp denote the set of all feasible schedulesinand let
Co(Mp) denote its convex hull.

Let A,(t) denote the number of packet arrivals at the source node ofdlattime slott. We assume
that packets are of unit length. Similar fo [12], we assuna #ach arrival proces4;(t) is a stationary
and ergodic Markov chain with countable state space, ansfisathe Strong Law of Large Numbers
(SLLN): That is, with probability one,

limg o0 Zi;htAS(T) = As, 2)

for each flows € S, where ), denotes the mean arrival rate of flow We let X £ (A1, A2, A ]
denote the arrival rate vector.

Let Qs x(t) denote the number of packets at the queugsof) at the beginning of time slot.
For notational ease, we also ugg ;, to denote the queue itself. We 6k(t) 2 Qs k(t), (s,k) € P]
denote the queue length vector at time gloind use|| - || to denote theL;-norm of a vector, e.g.,
1G®)| = > (s kyep @sk(t). Let Il x(t) denote the service af), , at time slott, which takes a value
of either 1 if link-flow-pair (s, k) is active, or O otherwise, in our settings. We i} ;.(¢) denote the
actual number of packets transmitted frapg ;, at time slott. Clearly, we havel, ;(t) < II; ,(t) for all
time slotst > 0. Let P, 4 (t) £ Zle Qs,i(t) denote the cumulative queue lengths up to Akté hop for
flow s. By convention, we sef); 5 (,)+1(t) = 0, and then we hav® p (.1 (t) = P g (t). The queue

length evolves according to the following equations:

Qs,k’(t + 1) = Qs,k’(t) + \Ijs,k:—l(t) - \Ils,k(t)> (3)

where we set, (t) = Aq(t).
tUnder theK -hop interference model, two links within &-hop “distance” interfere with each other and cannot bevatsil
at the same timé [19]. Wheff = 1, it is also called therimary or node-exclusivénterference model. The 1-hop interference

model has been known as a good representation for Bluetodth«CDMA networks [20]-4][28]. WhenK = 2, it is often used
to model the ubiquitous IEEE 802.11 DCF (Distributed Cooatiion Function) wireless networks 22, [24]=[26].
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Let F(t) be the total number of packets that arrive at the source nbflevo s until time slott > 0,
including those present at time slot 0, and Jéj[k(t) be the total number of packets that are served at
Q.. until time slott > 0. By convention, we sef (0) = 0 for all link-flow-pairs (s, k) € P. We let
Zs 1,i(t) denote the sojourn time of theth packet ofQ); ;. in the network at time slot, where the time is
measured from the time when the packet arrives in the net(ierk when the packet arrives at the source
node), and letV; ,(t) = Z; x,1(t) denote the sojourn time of the HOL packet@f ; in the network
at time slott. We setW (t) = 0 for all s € S. Further, ifQ, ,(t) = 0, we setWj ,(t) = W, ,_1(1).
Letting Us 1 (%) L4 W 1(t) denote the time when the HOL packet@f ; arrives in the network, we
have that

U, x(t) = inf{r <t | Fy(r) > F,4(t)}, for all t > 0. (4)

As in [27], a discrete-time queueing system is said toskable if the underlying Markov chain
is positive Harris recurrentWhen the state space is countable and all states commar{estin the
system that we consider in this paper), this is equivaleribéoMarkov chain beingpositive recurrent
The throughput regionof a scheduling policy is defined as the set of arrival rateorscfor which the
network remains stable under this policy. Further, dptimal throughput regior{or stability regior) is
defined as the union of the throughput regions of all possbleduling policies. We let* denote the

optimal throughput region, which can be represented as
A* 2 {X| 34 € Co(Mp) s.t. Ay < b, V(s, k) € P}. (5)

An arrival rate vector is strictly insida*, if the inequalities above are all strict.

We summarize the notations in Appendik A for quick reference

I1l. QUEUE-LENGTH-BASED BACK-PRESSUREALGORITHM

It has been shown iri[1] that Q-BP stabilizes the network foy feasible arrival rate vector using
stochastic Lyapunov techniques. Specifically, we can useaamtic Lyapunov function to show that
the function has a negative drift under Q-BP when queue fengte large enough. In this section, we
re-visit throughput-optimality of Q-BP using fluid limit ¢aniques. The analysis will be extended later
to prove throughput-optimality of the delay-based badspure algorithm.

To begin with, we define thqueue differentialAQ, ;. (t) as

AQs,k(t) = Qs,k(t) - Qs,k-l—l(t)v (6)

and specify the back-pressure algorithm based on queuéhteng follows.
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Queue-length-based Back-Pressure (Q-BP) algorithm:

M* e argmax v 3 (s pyep AQsp(t) - M. (7)

The algorithm needs to solve a MaxWeight problem with weighg queue differentials, and ties can be
broken arbitrarily if there is more than one schedule that the largest weight sum.

We establish the fluid limits of the system in the followingosaction.

A. Fluid Limits

We define the process describing the behavior of the underlgystem ast = (X' (¢),t =0,1,2,---),

where

X(t) £ ((Zs,k,l(t)> t 7ZS7k7Qs,k(t) (t))> (37 k) € P) .

We define the norm of'(¢) as

IXOI £ 1MW + W (1)) ®)

Clearly, under Q-BP, the evolution &f forms a discrete-time Markov chain with countable statecepa

Let X(*) denote a proces¥ with an initial configuration such that
1A )] = 2. (©)

The following Lemma was derived in [28] for continuous-ti@untable Markov chains, and it follows
from more general results i [29] for discrete-time coutgadarkov chains.
Lemma 1 (Theorem 4 of [12])Suppose there exist an> 0 and a finite integef” > 0 such that for

any sequence of processgsX () (zT),z = 1,2,--- }, we have
limsup, ,.  E [%HX(I) T[] <1-e (10)

Then, the Markov proces%’ is positive recurrent.

A stability criteria of [10) leads to a fluid limit approadhQj3 [31] to the stability problem of queueing
systems. Hence, we start our analysis by establishinfuftelimit modelas in [12], [30]. We define the
procesgy = (A,F, F,Q,PIL W, W, U), and it is clear that a sample path pf*) uniquely defines the
sample path oft(*). Then we extend the definition &f = A, F, F', Q, P,II, ¥, W andU to continuous
time domain ag’(t) £ Y(|t]) for each continuous time > 0.

As in [12], we extend the definition oFs(:”)(t) to the negative intervat € [—x,0) by assuming

that the packets present in the initial staté*)(0) arrived in the past at some of the time instants
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—(z —1),—(z —2),---,0, according to their delays in the stat*)(0). By this convention, we have
F(—z)=0forall s € S andz, and>", ¢ F(0) < 2 for all 2.

Then, applying the techniques used in the proof for Theoreino#[30] or Lemma 1 of([12], we can
show that with probability one, for any sequence of prow@ney("”n)(mn.)}, where{z, } is a sequence
of positive integers with:,, — oo, there exists a subsequenis,, } with z,,, — oo asj — oo such that

the following convergences holghiformly over compact (u.o.ciptervals:

%ﬂj foxnjt Agmnj)(T)dT — st (11)
LR () > £i(0), (12)
o ES (1) = Funlt), (13)
LQU () = aui(t), (14)
P ) = pas(t), (15)
o Jy o I (e fim(r)r, (16)
. St (nydr = [ p(r)dr. (17)

Similarly, the following convergences (which are denotgd' b>") hold at every continuous point of the

limit function:
LW (@, t) = wer(), (18)
xij Usglj)(mnjt) = ug k(). (19)

The above convergence properties follow directly from theefa-Ascoli Theorem and the structure of
the model: that the arrival process satisfies the SLLN ant tttea sequence of the (scaled) departure
process is uniformly bounded and uniformly equicontinuous

Any set of limiting functionq f, foq,p.m 0, w, u) is called afluid limit. The family of these fluid limits
is associated with our original stochastic network. Thd&cbaequence@iy(m")(xn-)} and their limits
are referred to as fiuid limit model[27]. Since some of the limiting functions, namety, fs,k,qs,k,p&k
are Lipschitz continuous ift, oo), they are absolutely continuous. Hence, at almost all poiat |0, o),

the derivatives of these limiting functions exist. We caltls pointsregular time.
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We then present thiuid model equationsf the system as follows.

>ses 15(0) <1, (20)
Pak(t) = 20 gs.a(t), (21)
psi(t) = fs(t) = fur(t), (22)
fs(t) = £5(0) + Ast, (23)
us i (t) =t — wy (1), (24)
Vs k(t) < ms (1), (25)
Aqsp(t) = qs,(t) = ds41(2), (26)

(27)
(ws,k—l(t) - Ws,k(t))+> OthEVWiSe

4o { Yapar(O) = mu(0), T auelt) >0,
where (2)* £ max(z,0), and we set); o = .o = \s. Fluid model equations can be thought of as
belonging to a fluid network which is the deterministic e@li@nce of the original stochastic network.
Any set of functions satisfying the fluid model equations éflexd afluid model solutiorof the system.

It is easy to check that any fluid limit is a fluid model solution

It is clear from [T) that Q-BP will not schedule link-flow-pdis, k) if Qs (t) — Qs x+1(t) < 0. Hence,
if link-flow-pair (s, k) is scheduled, it must satisfy thél ,.(t) — Qs x+1(t) > 0. Moreover, the length
of queueQ; ; can decrease by at most one within one time slot, and thehesfgtjueueq, ;1 can
increase by at most one within one time slot, due to the assompf unit link capacity (a similar

argument also holds with non-unit link rates). This implibat, if

Qs,k(t) > Qs,k+1(t) -2 (28)

initially holds for all (s, k) at time slot 0, then the inequality holds for every time glot 0. This further
implies that

s,k (1) = Gs,i1(t), 1€, Agsp(t) =0, (29)

for all (scaled) timet > 0, from the convergence of (IL4)Ve assume that at time slot O, all queues on
the route of each flow are empty except for the first queue, ithfieliows that [28) holds for all (scaled)

time ¢ > 0, and thus Ag; 1 (t) > 0 holds for all timet > 0.

Remark:Note that we make the assumption of empty queues for easeabfsisr Even without this

assumption, we can show that there exists a finite fifme 0 such that for all timet > 7', (29) holds
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for all (s,k) € P. This can be proved by induction. The detailed proof can hadoin AppendiX_C,
but the basic idea is as follows: Consider a flow S. We want to show that there exists a finite time
T; > 0 such that for all timet > T3, (29) holds for all(s, k) with k € {1,2,--- | H(3)}.

1) First, we show that there exists a finite tiriig; > 0 such that for all timet > Tj ;, (29) holds
for link-flow-pair (s,1). Suppose tha{(29) does not hold f@r 1). Then Q-BP does not schedule
(5,1), i.e., gs1(t) does not decrease ang,(t) does not increase. On the other hand, due to the
exogenous arrivals at the source node of figw; ; (£) must increase with time. Hence, there must
exist a finite timeT; ; such that[(29) holds fo(s, 1) at time T; ;. We can further show thaf (9)
holds for allz > T; ; under Q-BP. This can be proved by contradiction.

2) Then, we discuss the induction step: Consitlee {1,2,---,H($) — 1}. Suppose that for all
time t > Tz, > 0, (29) holds for(s,j) and for allj € {1,2,--- ,k}, we show that there exists
a finite time T; ;41 > T such that for all timet > T ;44, (29) holds for(s, ;') and for all
j' € {1,2,--- ,k + 1}. For simplicity, we consider the case for whiégh= 1, and the general
induction step follows similarly. Now, suppose thatl(29edmot hold for(3, 2), and we prove it by
contradiction. Clearly, Q-BP will schedule only link-flopairs for which [[(2B) holds (i.e., link-flow-
pair (,1) in this case). Hence, the fluid limit model of the subsysteat tonsists of link-flow-pairs
for which (29) holds must be stable, from the throughputroglity of Q-BP (see Proposition 2).
This, in particular, implies thag; ; is stable, which further implies that »(¢t) must increase with
time, because Q-BP keeps forwarding packets frgmto ¢; » while not servingg; . Hence, there
must exist a finite timel’; , > T3 ; such that for all timet > T} 5, (29) holds for(s, 2).

Hence, lettingT; £ T; m(s), we have that for all timet > T;, (29) holds for all(3, k) with & €
{1,2,--- ,H(8)}. Since the above arguments can be applied to any flawS, we can complete the

proof by settingl’ = max;cs 75.

B. Throughput-Optimality of Q-BP
Proposition 2: Q-BP can support any traffic with arrival rate vector thattigcy inside A*.
Before giving the proof of Propositidd 2, in the followingiena, we present a linear relation between
cumulative queue length, (¢) and waiting timew; x(¢), which is used for proving Propositién 2.
Lemma 3:For any fixedt;;, > 0, the two conditionsu; x(t; ;) > 0 and f’s,k(ts,k) > fs(0) are

equivalent for every link-flow-paits, k) € P. Further, if the conditions hold, we have
ps,k(t) = )\sws,k(t)a (30)
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I 1’:\s k(t)
| |

I

| Ws, k(t) !
I

| , I

O ts, k us, k(t) t

Fig. 1. Linear relation between queue lengths and delaykerfltid limits.

for all ¢t > t, , with probability one.
Fig.[1 describes the relations between the variables.
Proof: Since the first part, i.e., that the two conditions are edeivais straightforward from the
definition of fluid limits and[(#), we focus on the second pa€,, if f&k(t&k) > f5(0), then [30) follow.
Suppose thaf, . (tsx) > f5(0). Then, by the definition ofi, 4 (t), we havef, x(t) = fs(u,x(t)), for
all t > t, ;. From [22), [(2B) and_(24), we obtain that
ps,k(t) = fs(t) - fs,k(t)
= (fs(0) + Ast) — (fs(0) + Asus(t))
= )\5 . (t — ust(t))
= )\Sw&k(t).
[ |

Proof of Propositio R: We prove stability using standard Lyapunov techniquesiLgt(t)) denote

the Lyapunov function defined as

V(@) £ 53 e mer (@s5(0)* (31)

From the results of Lemmas 1 and 3, to show positive recuereme only need to prove that for any

¢ > 0, there exists a finite tim&, > 0 such that for any fluid limit with|g(0)|| < 1, we have

gl < ¢, (32)
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for all time ¢ > T;. To show the above, it is sufficient to show that for any> 0, there existgs > 0
such thatV(q(t)) > ¢ implies 22V (g(t)) < —¢o for any regular timet > 0, where 22V (g(t)) =
lims) o V(ff(t+6)()$—V(q”(t)) .

Suppose! s strictly insideA*, then there exists a vectgre Co(Mp) such thatk < @, i.e., A < dsx
for all (s, k) € P. Sinceq(t) is differentiable, then for any regular time> 0, we can obtain the derivative
of V(q(t)) as

=V (1)
(a)
= Z(S7k)ep QS,k(t) : (ws,k—l(t) - Ws,k(t))

(®)
< Z(s,k)eP s k(1) - (s, -1(t) — Ts,1(2))

=D (s k)ep Dsp(t) - As (33)
- Z(s,k)ep Ags (1) - s (1)
= (s yep Dds k() - (Ns — b )

+ 2 (s ke Bs(t) - (D5 — T k(1))
where (a) and (b) are frond_(R7) arld [25), respectively.

Note thatg,x(t) < H™™max jjep Agr;(t), for any (s,k) € P. Hence, we have/(q(t)) <
LS| H™>(H™* max, jyep Agr,;(t))?. Let us chooses = ,/ﬁ, then V(g(t)) > ¢ implies
max (. jep Agr;(t) > (3. Since < ¢(t) and Ag x(t) > 0 for all (s, k) € P, then in the final result of
(33), we can conclude that the first term is bounded as follows

D skyer Adsi(t) - (As — @5 k) < —Cming k(G5 — As)
£ (<0,
and that the second term becomes non-positive due to tleaviall. Since Q-BP chooses schedules that
maximize the queue differential weight sum (7), then we hied
7(t) € argmax s o1, Z(S’k)ep Aqs i (t) - ds ks
which implies that
Do (s.k)eP Dsk(t) - Osk < D5 kyep Adsk(t) - Ts k(1)

for all ¢ € Co(Mp). Therefore, this shows that(g(t)) > ¢ implies ﬁ—iV(q*(t)) < —(2. Then, it
immediately follows that for any > 0, there exists a finite tim&; > 0 such that for any fluid limit

with [|g(0)]] < 1, we have||q(t)|| < ¢ for any timet¢ > T). Also, we have
Psk(t) < (| < ¢, (34)
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for all (s,k) € P. Let us choosé large enough, then it follows froni (RO}, (22) arnd](34) that
For(T1) = fo(Th1) — ps(T1) > £5(0),
for all (s,k) € P and for any timet > T3. Hence, we haveé (80) from Lemrha 3, and thus, we have

_ I
1@ + @l < llg@)] +

1
p(t
1]

(b) max
< <1+—‘5‘H )c

ming Ag
2 e,
where (a) and (b) are froni_(B0) and [34), respectively. We moake ¢; arbitrarily small by choosing
small enought.
Now, consider any fixed sequence of proces{%e&’(x) (xt),x =1,2,--- } (for simplicity also denoted
by {z}). Hence, for any fixed; > 0, we can always choose a large enough intéger 0 such that for

any subsequencgr,,} of {z}, there exists a further (sub)subsequefieg, } such that

lim; o0 %I!X(m"ﬂ')(xan)H = 1D + [@(T)]] < e

almost surely. This in turn implies (for small enougf) that
lim sup,_, o, %HX(I)(:UT)H <eag=l-e<l1 (35)
almost surely. This is because there must exist a subseguéke} that converges to the same limit as
lim sup, o0 X (27
One can readily show that the sequer{g%c¢]X(m)(xT)|],x =1,2,---} is uniformly integrable using
standard techniques by invoking the Dominated Converg@iemrem and so the details are omitted
here. Then, the almost sure convergencd_in (35) along witloram integrability implies the following

convergence in the mean:

limsup, o0 B[L[ X @T) ] < 1—e.

Since the above convergence holds for any sequence of p&m«pisux(x)(:p-),x =1,2,---}, the

condition of [10) in Lemmal]l is satisfied. This completes thaop [ |

IV. DELAY-BASED BACK-PRESSUREALGORITHM

A. Algorithm Description
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In this section, we develop the Delay-based Back-Pres$uBR) policy, and in Section IV-B, we
prove that it is throughput optimal. A similar delay-basgg@ach has appeared first in [12] for single-
hop networks.However, as mentioned earlier, when packets travel maltipps before leaving the
system, the analytical approach in[12] (i.e., using HOLagieh the queue as the metric) cannot capture
gueueing dynamics of multihop traffic and the resultanttsmhs cannot guarantee the linear relation. We
will carefully design link weights using a new delay metriad re-establish the linear relation between
gueue lengths and delays in the fluid limits for multihop ficaf

Recall that\W; ,(¢) denotes the sojourn time of the HOL packet of quéne.(t) in the network,
where the time is measured from the time when the packeteariivthe network. We define the delay
metric W, x(t) as

Wi () 2 Wi i (t) — Wi g1 (), (36)

and also definelelay differentialas

AW, 1 (1) £ Wi 1 (1) — Wi ppa(t). (37)

The relations between these delay metrics are illustratéiig.[2. We specify the back-pressure algorithm
with the new delay metric as follows.
Delay-based Back-Pressure (D-BP) algorithm:

M* e ArgMmaX o a (D (s k)P AW, o (t) - My .. (38)

D-BP computes the weight @%, k) as the delay differentiaﬂsW&k(t) and solves the MaxWeight problem,
i.e., finds a set of non-interfering link-flow-pairs that nmaikzes weight sum. Ties can be broken arbitrarily
if there is more than one schedule that has the largest wsight An intuitive interpretation of the new
delay metricW&k(t) is as follows. Note that the queue lengdih () is roughly the number of packets
arriving at the source node of flow during the time slots betweejt/, 1.(t), Us (t) + W&k(t)), and
from the SLLN, Q, x(t) is on the order of\,WW, ,(t) when W, ,(t) is large. Hence, a large/, ;(t)
implies a large queue lengt); 1 (¢), and similarly, a large delay differentialW&k(t) implies a large
queue length differentiahQ; (¢). Therefore, being favorable to the delay weight suni_in (38jhisome
sense “equivalent” to being favorable to the queue lengtightesum in [T) as Q-BP. We later formally
establish the linear relation between the fluid limits of egidengths and delays in Section 1V-B.

We highlight here that the last packet problem can be solyeiithéd D-BP scheme using our proposed
delay metric. Let us focus on the source nodes first. Supgwgeat the source node of floyy there

are a finite number of packets waiting to be transmitted aedetlare no further packet arrivals. From
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Fovs 5 i-—l— W
(s,k-1) \ (s,K) \ (s,k+1)\

W k-1(t) W k(t) W kr1(t)

Wes(t) = Wei(t) - We e (t)
Weke1(t) = Wepar(t) - Wei(t)
AWs,k(t) = Ws,k(t) - Ws,k+1(t)

Fig. 2. Delay differentials using new delay metric.

the definition of [3B) and the fact thal, o(t) = 0, we havelV, ;(t) = W, (t). If some of the packets
are stuck at the source node, the delay mdﬁﬁgl(t) keeps increasing with time. On the other hand,
Wia(t) = Wi a(t) — Wy 1(t) is equal to the inter-arrival time between two packets aresdwt increase
with time, in particular because some packets at the souode rare not served. Hence, the delay
differential AW, 1(t) = W1 (t) — W,2(t) also increases with time. This implies that under DBP, the
increasing delay will eventually “push” all the packetstthee waiting at the source node to the second-
hop link. After all the packets leave the source node, we ¢emeKve similar procedure at the transmitting
node of the second-hop link: sin€g, 1 (t) = 0 and W, () = 0, we havelV, »(t) = W, »(t). Repeating
the same argument, we can conclude that all the packets Kifflately be “pushed” to the destination
node of flows.

Recall thatU; ;(t) denotes the time when the HOL packet @f ; arrives in the network (or the
source node, rather than the current node). WeéJlgf(t) denote the time when the packet that arrives
(in the network or the source node) immediately after the Hfakcket of(), ; arrives in the network.
Let B, x(t) = U, 1(t) — Usk(t) denote the inter-arrival time between the HOL packet)f, and the

packet that arrives immediately after it. Clearly, D-BPIwibt schedule link-flow-paifs, k) if

W&k(t) - Ws7k+1(t) < 0.

Hence, if link-flow-pair(s, k) is scheduled, it must satiswﬁ/&k(t) - W&Hl(t) > 0. Moreover, the delay
Ws,k(t) can decrease by at moB}, ,(t) within one time slot, and the deldﬁfs,kﬂ(t) can increase by
at mostB; (t) within one time slot, due to the assumption of unit link capa@ similar argument also

holds with non-unit link rates). Therefore, if inequality
Ws,k(t) > Ws,k-i—l(t) - 2Bs,k(t) (39)

initially holds for all (s, k) at time slot 0, then the inequality holds for all time siot 0. This further
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leads to

Ws (1) > Ws 11(t), 1.€., Ag (t) >0, (40)

for all (scaled) timet > 0, in the fluid limits, from the convergence o¢f (18pd that—B(x"’j)

T s,k (x”jt)—>

0, asx,, — oo (otherwise we will arrive a contradiction with the assuroptbn the arrival process, i.e.,
it satisfies the Strong Law of Large Numbers). Recall that ssume that all queues on each route are

empty at time slot 0, except for the first queue, tHed (39) E@) follow.

B. Throughput-Optimality
The following lemma provides the linear relation betweeeuwpilengths and delays in the fluid limits.
Lemma 4:For any fixedt, ; > 0, if f&k(t&k) > f5(0) for every link-flow-pair (s, k) € P, then we
have

QS,k(t) = Asws,k(t)v (41)

for all ¢t > t, , with probability one.
Proof: It follows immediately from Lemma]3. ]
We emphasize the importance bf(41). Lenimha 4 implies that aftfinite time (i.e.max, yycp ts 1),
the queue lengths arg; times delays in the fluid limit model. Then the schedules oB®-are very
similar to those of Q-BP, which implies that D-BP achieves tptimal throughput regiod*. In the
following, we show that the condition of Lemma 4 indeed holds, sach a finite time exists.
Lemma 5: Consider a system under the D-BP policy. Then)?cstrictly insideA*, there exists a finite

time 7" > 0 such that the fluid limits satisfy the following property Wwiprobability one,

Fso(T) > £4(0), (42)

for all link-flow-pairs (s, k) € P.

We can prove Lemmgl 5 by induction following the techniquescdbed in Lemma 7 ofi [12]. The
formal proof is provided in AppendixIB. We next outline andrhal discussion, which highlights the
main idea of the proof. First, we consider the base case. RiR®ses one of the feasible schedules in
Mp (we omit the term “feasible” in the following, whenever theis no confusion) at each time slot.
Each schedule receives a fraction of the total time and therst exist a schedule that receives at least
ﬁ fraction of the total time. Thus, after a large enough tifie> 0, there must exist a schedule
M* that is chosen for at Iea%al—ﬂ amount of time. The number of initial packets df* is bounded
from (20), thus, for a large enougdh, all initial “fluid” of at least one link-flow-pair ofM* must be

completely served, i.ef&k(Tl) > fs(0), for at least ondgs, k) with M7, = 1.
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Next, we consider the inductive step. Suppose there exigis>a0, such that for at least one subset

S; C P of cardinalityl, we have

fox(T1) > £5(0), (43)

for all (s,k) € S;. Then there existd;,; > T; such that

fon(Tig1) > £5(0), (44)

holds for all link-flow-pairs(s, k) within at least one subséi,; C P of cardinality! + 1. Since flows
travel hop-by-hop, packets that have been served by onarlit have been served by the link at the
previous hop (of the flow that the packets belong to). Herfcg, k) € S;, we must havés, k—1) € S;.

Repeating the argument, (&, k) € S;, we have(s,i) € S; for 1 <i < k. Let

SEE{(r4) | (r,j) ¢S, (rj—1) €S, forj>1;
(45)

or (r,j) ¢ Sy, for j =1}
denote the set of link-flow-pair§-, j) such that(r, j) € P\S; is the closest hop to the source ofTo
avoid unnecessary complications, we discuss the industiep forl = 1. The generalization for > 1
is straightforward. We show that for give$y andT}, there exists a finite tim&, > Ty such that[(44)
with T, holds for at least two different link-flow-pairs.
Let (3, k) denote the link-flow-pair that satisfids {43) with. Since(s, k) € S; implies (3, i) € S; for
all 1 <i <k, we must havé: = 1 andS; = {(8,1)}. From [@5), we have that

St =A{(r1) | re S\{s}} UN;, (46)

where N; = {(3,2)} if H(5) > 1, andN; = ) if H(8) = 1. We discuss only the case thAt(s) > 1,

and the other case can be easily shown following the sameofia@alysis. Now suppose that
fri(t) < £:(0), for all (r,5) € P\Sy, and allt > 0, (47)

i.e., for all the link-flow-pairs except those 6f, the total amount of service up to tintds no greater
than the amount of the initial fluid for all > 0. We show that this assumption leads to a contradiction,
which completes the induction step.

From the base case and Lemia 4, we havdt) = A\;w; 1 (t) for all ¢ > 7. We view the subset of
link-flow-pairs S; as a generalized system, and consider the time slots whesithat least one packet
transmission from the outside ¢f;, i.e., (r,j) € P\S:. For each such time slot, we say that the time

slot is unavailableto S;.

June 4, 2018 DRAFT



18

1) The number of such unavailable time slots is bounded fitoenatoove by, , since at every such
time slot, at least one initial packet will be transmitteddahe total number of initial packets is
bounded by|G(0)|| < x,, from (9). Hence, the amount of (scaled) time unavailablg;tés bounded
by [l(0)]] < 1.

2) Since the amount of (scaled) time unavailableSiois bounded, there exists a sufficiently large
t > Ty such that the fraction of time that is given ¢a j) € P\S; is negligible, and we must have
Wy 5 (t) = @(1@ and Ady; 5(t) = ©(1) for (7,7) € P\(S1 U S).

3) Then, we can restrict our focus on the generalized systeto timet¢ > T, and ignore the time that
is unavailable ta5;. Then Q-BP and D-BP are in some sense “equivalent” in thergéned system
Sy for t > T with the following properties: First, Q-BP will stabilizéé system if the arrival rate
vector is strictly inside\*. Second, since the linear relatidn {41) holds for all lirdafipairs in.S;
from Lemmad_ 4, D-BP will schedule links similar to Q-BP andcastabilizes the generalized system
Si.

4) Now let us focus orb;. Link-flow-pairs in S} must have some initial fluid a&t> 7 becauseS; N
St = 0. On the other hand, the generalized netwStkis stable. This implies that the delay metrics
of link-flow-pairs in ST should increase on the same order as we increasse., w,- j-(t) = O(t)
for (r*,7*) € S}. Then we haveAw,- ;-(t) = O(t), sincew,- j-11(t) = O(1) from (r*,j* +1) €
P\(S1 U S7) and 2). Since the delay differentialSa, x(t) for all (s, k) € S and Aw; 5(t) for
all (#,7) € P\(S; U SF) are bounded above from stability ¢f and 2), respectively, D-BP will
choose link-flow-pairs in the set ¢f} for most of time for a sufficiently large. This implies that
the amount of time unavailable t8, is ©(¢), which contradicts with our previous statement in 1)
that the fraction of time that is given 1o, j) € P\S; is negligible.

We provide the detailed proof of Lemrh& 5 in Appendix B.

We then present throughput-optimality of D-BP in the follog proposition.

Proposition 6: D-BP can support any traffic with arrival rate vector thattiscy inside A*.
Proof: We show the stability using fluid limits and standard Lyaputechniques. From Lemmas 4
and[®, we obtain the key property for proving throughpuiroptity of D-BP in Eq. [41), i.e., after a

finite time, there is a linear relation between queue lengtits delays in the fluid limit model. We start

2We use the standard order notatigr(n) = o(f(n)) implies lim,_,.(g(n)/f(n)) = 0; and g(n) = ©(f(n)) implies
c1 <limp—oc(g(n)/f(n)) < co for some constants; andc;.
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with the following quadratic-form Lyapunov function,

V(@(1) 2 130 pyep LtOF (48)

Following the line of analysis in the proof for Propositioh e can show that for ang; > 0, there
exist ¢, > 0 and a finite timeZ” > 0 such thatV/ (¢(t)) > ¢; implies 2=V (G(t)) < —¢, for any regular

i+
time ¢t > T, if the underlying scheduler maximiz@sk Aq;f(t) - s ,(t). Then, by applying the linear

relation [41), we can see that D-BP indeed satisfies such d@itmm and obtain the results. We omit the

detailed proof since it mirrors the derivations in Proposif2. [ |

V. GREEDY ALGORITHMS

It is well known that the schemes (e.g., Q-BP and D-BP) basethe back-pressure techniques are
complex to implement because they involve computing a MagWecomponent, which in general is
NP-hard [19]. Hence, although D-BP operates efficiently ackieves the optimal throughput region, it
could be difficult to implement in practice. Therefore, we amterested in simpler approximations of
D-BP that can achieve a guaranteed fraction of the optimdbpeance. The Delay-based Greedy Max-
imal Scheduling (D-GMS) algorithm is a good candidate agipnation algorithm. A Greedy Maximal
Scheduling (GMS) algorithmi [23], [26], [32]. [33] (which &lso known as Longest Queue First (LQF))
operates (in the scenarios with single-hop traffic) as Wadloat each time slot, starts with an empty
schedule; first picks a link with the maximum weight (e.g., queue length or delay); atdsto the
schedule, and disables other links that interfere wjthext picks a linkl’ with the maximum weight
from the remaining set of links, addsinto the schedule, and disables other links that interfeth i
and continues this process until all links are either chagetisabled. All chosen links will be scheduled
during time slott. Note that any schedule obtained by GMS is maximal.

GMS has been extensively studied due to its low complexi8], [@istributed implementations [34] (or
distributed approximations [35]) and empirically obsehgood performance [22]. It was first shown in
[32] that GMS is throughput-optimal in networks where thecatledlocal poolingcondition is satisfied.
The authors of [21],[33] generalize the idealetal poolingto o-local pooling whereo is a topological
notion depending on the underlying network topology andaited thelocal pooling factor There, the
authors show that GMS can achieverdraction of the optimal throughput region. On the other dhan
in [36], [37], thelocal poolingcondition is generalized to the scenarios with multihofffitrai.e., GMS
is throughput-optimal in networks where thaultihop local-poolingcondition is satisfied. Next, we will

discuss the performance limits of D-GMS.
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Algorithm 1 Greedy Maximal Scheduling (GMS) Algorithm
1: procedure GMS(P, )

2: M+ 0

3: P P

4: while P’ # () do

5: pick a link-flow-pair (s, k) with maximum weight:z(s, k) = max, jyep: (7, j)
6: M« M U{(s,k)}

7: P« P'\I(s,k)

8: end while

9: end procedure

To generalize the GMS algorithm to settings with multihogfftc, we consider link-flow-pairs. We
let z(s, k) denote the weight of link-flow-paifs, k) € P, and conclude the procedure of GMS in
Algorithm [I. We then describe the operations of D-GMS andjitsue-length-based counterpart (called
Q-GMS) in the following.

Delay-based Greedy Maximal Scheduling (D-GMS) Algorithm: At each time slott, the algorithm

sets the weight of each link-flow-pair to the delay differahti.e.,
x(s, k) «+ AW, x(t), for all (s, k) € P, (49)

and finds its schedule in decreasing order of weight confagrto the underlying interference constraints,
by applying Algorithn1.

Queue-length-based Greedy Maximal Scheduling (Q-GMS) Algorithm: At each time slott, the
algorithm sets the weight of each link-flow-pair to the quérrggth differential, i.e.,

(s, k) < AQux(t), for all (s,k) € P, (50)

and finds its schedule by applying AlgoritHm 1.

We characterize the throughput performance of D-GMS in tleviing proposition.

Proposition 7: The achievable throughput region of D-GMS is no smaller ttheat of Q-GMS.

We omit the proof here, since it follows the similar line ofadysis for D-BP to establish the linear
relation between queue lengths and delays in the fluid ljnaitel the result can then be obtained by
applying the techniques used [n [36], [37].
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Fig. 3. lllustration of the last packet problem under Q-BP.

VI. NUMERICAL RESULTS

In this section, we first highlight th&ast packet problenior the queue-length-based back-pressure
algorithm. The last packet problem implies that flows thaklaacket arrivals at subsequent time may
experience excessive delays under Q-BP, which is laterrooadi in the simulations. Then, we compare
throughput and delay performance of Q-BP and D-BP in a gritlvowk topology under the2-hop
interference model. Finally, we compare throughput pentorce of Q-GMS and D-GMS in a size-6 ring
network under thel-hopinterference model.

We first show the last packet problem of Q-BP through simoifeti We observe that several last
packets of a short flow (that carry a finite amount of data) metysguck, which could cause excessive
delays We consider a scenario consisting of 7 nodes and 6 links @srsm Fig.[3(a)), where nodes are
represented by circles and links are represented by dastesdwith their associated link capaciges
We assume a time-slotted system. We establish three flovessbort flow ¢ — 4 — 6) and two long
flows (1 — 2 — 3) and 6 — 6 — 7). The short flow arrives in the network with 10 packets at tibne
The long flows have an infinite amount of data and keep injggbisckets at the source nodes following
Poisson distribution with mean rateat each time slot. Numerical calculation shows that theilidasate
under the 2-hop interference should satisfy that 4.44. We conduct our simulation for0® time slots,
and plot time traces of HOL delay of the short flow when= 3. Fig.[3(b) illustrates the results that

the delay increases linearly with time under Q-BP, which liegpthat several last packets of the short

3Unit of link capacity is packets per time slot.
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Fig. 4. Performance of scheduling algorithms for multihogdfic following Poisson distribution.

flow are excessively delayed. On the other hand, D-BP susdeeskrving the short flow and keeps the

delay close to 0. This also implies that certain flows whoseuguengths do not increase due to lack of
future arrivals (or whose inter-arrival times between groof packets are very large) may experience a
large delay under Q-BP, which will be confirmed in the follogrisimulations.

Next, we evaluate the throughput performance of differehiedulers in a grid network that consists
of 16 nodes and 24 links as shown in Hig. #(a), where nodesiaks are represented by circles and
dashed lines, respectively, with link capacity. We essib® multihop flows that are represented by
arrows. LetA\; = 0.1 and A\, = 1. At each time slot, there is a file arrival with probability= 0.01 for
flow (11 — 10 — 9) (represented by the red thick arrow in Hig. 4(a)), and tre dike follows Poisson
distribution with mean rafep\; /p. Note that flow {1 — 10 — 9) has bursty arrivals with a small mean
rate (we simply call it the bursty flow in the following par)ll the other 8 flows have packet arrivals
following Poisson distribution with mean raté, at each time slot. Although these flows share the same
stochastic property with an identical mean arrival rate, uniform patterns of traffic are avoided by
carefully setting the link capacities and placing the flowthwdifferent number of hops in an asymmetric
manner.

We evaluate the scheduling performance by measuring a¥¢otg queue lengths in the network over

“Note that given the network topology, it is hard to find the @xaoundary of the optimal throughput region of scheduling
policies in a closed form. Hence, we probe the boundary blngcthe amount of traffic. After we choose which determines

the direction of traffic load vector, we run our simulationghatraffic load pX changingp, which scales the traffic loads.
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time. Fig[4(D) illustrates average queue lengths undéerdift offered loads to examine the performance
limits of scheduling schemes. Each result represents arageef 10 simulation runs with independent
stochastic arrivals, where each run lastsifeft time slots. Since the optimal throughput region is defined
as the set of arrival rates under which the queue lengthsimnefinéte, we can consider the traffic load,
under which the queue length increases rapidly, as the laoyiod the optimal throughput region. Fig. 4|(b)
shows that D-BP achieves the same throughput region as @iB®,supporting the theoretical results
on throughput performance.

Although Q-BP and D-BP perform similarly in terms of the age queue length (or average delay

due to Little’s Law) over the network, the tail of the delastiibution of Q-BP could be substantially
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longer because certain flows are starved. This could caumenens unfairness between flows, resulting
in very poor QoS for certain flows.

Note that although a bursty flow is a long flow that has an irdiaitnount of data, the arrivals occur in
a dispersed manner (i.e., the inter-arrival times betweeungs of packets are very large) and we can view
this bursty flow as consisting of many short flows. Thus, weeekphat the bursty flow may experience
a very large delay under Q-BP. This is because the bursty #Holslsubsequent packet arrivals over long
periods of time, which does not allow the queue-lengths twvgand thus contributes to the long tail of
the delay distribution. However, this phenomenon may notifeat itself in terms of a higher average
delay for Q-BP, as can be observed in [fig. }(b), because tlertnof data corresponding to the bursty
flow in the simulation is small compared to the other flows. @& dther hand, D-BP can achieve better
fairness by scheduling the links based on delays and notirsgabursty or variable flows. We confirm
this in the following observations.

Fig.[ illustrates the effectiveness of using D-BP over QiBRerms of how each scheme affects the
delay distribution of bursty flows. We spt= 0.2. The results show that the tail of the delay distribution
under D-BP vanishes much faster than Q-BP. Further, we pottean delaythe 1st and 5th percentile
deIaH of the bursty flow over offered loads in Figl 6. All these delaynder D-BP are substantially
less than under Q-BP, which implies that D-BP successflillyieates the excessive packet delays. This
confirms that, Q-BP causes a substantially long tail for thkayd distribution of the network due to the
starvation of the bursty flow, while D-BP overcomes this acHieves better fairness among the flows
by scheduling the links based on delays.

Finally, we consider a size-6 ring network topology under thhopinterference model as shown in
Fig.[7(a), where links have unit link capacity. We simulate tflows: flow (I — 2 — 3 — 4) and flow
(4 —5—6—1). Itis known [21] that Q-GMS is not throughput-optimal ingmetwork, as théocal
pooling condition is not satisfied (and thus thaultihop local poolingis not satisfied from Lemma 7 of
[37]). On the other hand, although D-GMS is at least as efficas Q-GMS, it is not known whether
D-GMS can achieve larger throughput in certain scenarigs, m the network in Fid. 7(h).

To see these, we construct a traffic pattern using the idéZ8in Ve consider packet arrivals in a frame

of 12 time slots. Two flows have the same arrival pattern irhdemme. We assume two arrival patterns

Suppose there ar®y packets sorted by their delays from the largest to the ssiaftee X-th percentiledelay is defined as
the delay of the[ 45X |-th packet. If 45X < 1, it means the maximum delay. For example, if the delays[#®,1,1,1], the

40th percentile delay is 2.
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Fig. 7. Performance comparison of Q-BP, D-BP, Q-GMS and DSEbt multihop traffic under the 1-hop interference model.

for each frame. Starting with empty queues at time slot Oaichérame, the number of exogenous packet
arrivals at the source of each flow (i.e., nodes 1 and 4) falpattern?, = {1,0, 5,0, 1,0,5,0, 1,0,5,0}
with probability ¢, and pattern?, = {1,0,0, 1,0,0, 1,0,0, 1,0,0} with probability (1 — €), where

0 < e < 1. The average arrival rate vector is than= (15e+ 51 —e))e= (3 + %e)e, wheree is a
dimension-2 vector with all components equal to 1. It is dassheck that\ lies strictly inside the optimal
throughput region whef < e < % while Q-GMS cannot stabilize the network under such a trafittern
for all e > 0. Because under Q-GMS, when pattdtnoccurs in a frame, all the packets arriving in this
frame can be completely served and leave the network by tti@kthis frame, while patter®; occurs,
none of the packets arriving in this frame leaves the netvigrkhe end of this frame. We evaluate the
performance of different scheduling policies under theveltcaffic pattern. For each policy under a fixed
¢, we take the average over 10 independent experiments, aath @in beingl0” time slots. In Fig[ 7(B),
we can see that Q-BP and D-BP have finite average queue leordihf e < % = 0.143 and thus achieve
the maximum throughput. On the other hand, the average deegéh increases linearly with under
Q-GMS and D-GMS starting frona = 0 ande = 0.04, respectively. This implies that neither Q-GMS
nor D-GMS is throughput-optimal in this setting, while D-@Vachieves larger throughput € 0.04).

To fully characterize the performance limits of D-GMS is ateresting yet challenging problem.
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VIlI. CONCLUSION

In this paper, we developed a throughput-optimal delaytdsack-pressure scheduling scheme for
multihop wireless networksvith fixed routes We introduced a new delay metric suitable for multihop
traffic and established a linear relation between queudhsrand delays in the fluid limits, which plays
a key role in the performance analysis and proof of throutdoptimality. Delay-based schemes provide
a simple way around the well-known last packet problem thaguyes queue-based schedulers, and thus
avoid flow starvation. As a result, the excessively long yelhat could be experienced by certain flows
under queue-based scheduling schemes are eliminatedutveing loss of throughputNonetheless, in
this paper, we have only considered the scheduling problgmfixed routes, albeit with multihop flows.
The question of whether delay-based schemes under dynanting can achieve throughput-optimality

is still very much open.

APPENDIX A
SUMMARY OF NOTATIONS
APPENDIX B
PROOF OFLEMMA
Proof: We show that there exists a finite tirfie>> 0 such that the fluid limits satisfy, ,(T') > £,(0)
for all link-flow-pairs (s, k) € P. We prove this by induction. We show that there exists a fitiites 7
with at least one link-flow-pair that satisfies the conditiand for a given set of link-flow-pairs satisfying
the condition, at least one additional link-flow-pair wilitssfy the condition by increasing.
We first fix an arbitrarye; > 0 and define a constat; £ maxg H(s) + (Y., \sH(s)) 1. In the fluid

limit model, we will have
fs(er) = fs(0) + Asexr > f5(0), for all s € S.

Since queue lengths are no greater than the injected ambuiatay we have that, ;(e1) < fs(e1) for

all (s,k) € P, and thus,
Z(s,k)ep Psk(e1) < E(s,k)ep fs(e1)
< 22 H(s) (fs(0) + Aser) (51)

< K17
where the last inequality is from Ed._(20):, fs(0) < 1 and the definition off;. Now we show by

induction that there exists a finite tin¥e such that

Fs1(T) > £5(0), for all link-flow-pairs (s, k).
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Symbol Definition

1% set of nodes

& set of links

S set of flows

P set of link-flow-pairs

Mp set of feasible schedules

Co(Mp)  convex hull of Mp

A" optimal throughput region

H(s) # of hops on the route of flow

H™max maxses H(s)

As(t) # of packet arrivals for flons at time slott

As mean arrival rate for flows

Fi(t) cumulative # of packet arrivals for flow up to time slott
Qs k(t) queue length of); , at time slott

s 5 (t) service atQ,,x at timet

Vs k(1) # of packet departures & at time slott

Py 1 (t) Z?:l Qs,i(t)

Fs,k(t) cumulative # of packets served @t ;, up to time slott
Zs 1,i(t) sojourn time (in the network) of théth packet ofQ, , at time slott

Ws.k(t) sojourn time (in the network) of the HOL packet @, at time slott, i.e., Zs x,1(¢)
Us,x(t) time when the HOL packet of), . arrives in the network, i.et,— W x(t)

Wi (t) W (t) = Wek—1(t)

AW k() Wor(t) — We s (D)

1) Qsr(t) — Qs rsr(t)

inter-arrival time (at the system or the source node) batvike HOL packet of), , and the packet that arrives

immediately after it

TABLE |
SUMMARY OF NOTATIONS

Base Case: There existsI; > 0 such that for at least one link-flow-pa(s, k),

Fsr(T1) > fo(er). (52)

Let 7} £ ¢ + K. Suppose that (52) does not hold, i.e., there exists at tasipacket that arrives
before time slot|x,,¢;] + 1 and is not served by the end of time slat, 77 |. Hence, at each time
slot betweer |z, €| + 1, |x,,T1]], there exists at least one schedule that has positive sumisigght.

Therefore, the schedule determined by D-BP must serve at twee packet in the original system,
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otherwise the summed weight of the schedule (that does met sey packet) is zero, which is not the

maximum over all the feasible schedules. Hence, we must have
Seper (Far 1) = B (w0,e0)
2 |on, 1] = [zn,@1],
Dividing both sides of the above inequality by, and lettingz,, — oo, we obtain
S eer (FlT) = Foaler)) > 1.
Then, from [[51), we have
> s er Fsi(T1) 2 Ysmep fsn(er) + o pmep Psiler)

= 2 (s mep fs(€1):
Therefore,fs,k(Tl) > fs(eq) for at least one link-flow-paits, k).

Inductive Step: Suppose that there exif and a subse$; C P such that for all(s, k) € S;, we have

For(T1) > foler). (53)

Then thereexistsTj,; > Tj, wherel <1< Y H(s), and a link-flow-pair(s, k) € P\S; such that

foi (D) = fs(er). (54)

Further we defines; 1 = S; U {(5,k)}.

We prove the inductive step fdr= 1. The generalization fof > 1 is straightforward. Hence, we
show that for givenS; and T}, there exists a finitd, > T such that[(5¥) withl, holds for at least two
different link-flow-pairs.

Let (5, k) denote the link-flow-pair that satisfigs (53) with. Then, we hafes; = {(3,1)} and can
specify the sefS] of link-flow-pairs (s, k) € P\S; that is closest to the source of each flow frdml (46).
We illustrate the case thd{ (5) > 1, and the other case th&f(s) = 1 can be easily shown following

the same line of analysis. Now, we have
fgﬂ(f) > fg(el), for all ¢t > T7.
For all the other link-flow-pairs, we observe that

2 rf)eP\s, (fr(el) - fr,j(Tl)) < K. (55)

®Note that if(s, k) € S;, we must havés, k—1) € S;. Hence, forl = 1, we must have the first hop of a flow, i.6; = (3,1)

for somes.
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Suppose that for all > T, we have
fri(t) < fr(er), forall (r,5) € P\S;. (56)

In the following part, we provide a choice @} > T such that assumptioh (66) leads to a contradiction,
which completes the inductive step, and then the lemmawisliby induction.

We view each sample pathi®i)(¢) after time slot[x,,,T1] as a generalized system with link-flow-
pairs inS; = {(s5,1)}. We say that a time slot isnavailableto S; when a packet from a link-flow-pair
(r,j) € P\Sy is transmitted during the time slot. L&t (¢) denote the (scaled) amount of time unavailable
to S; during the period of 73, ¢] in the scaled system, for all> T;. For the scaled generalized system
S1, we obtain from[(5b) and (36) that

hsi () < Yirgpers, (Fral®) = Frs(T) < K, (57)

for all ¢ > Tj. Since the time unavailable t6;, is bounded, as time increases, only link-flow-pairs
in .S; will be scheduled, which implies that the weight of link-flgpirs of P\S; becomes negligible.
This allows us to focus o;. Owing to Lemmd} and the definition ¢f;, the linear relation between
gueue lengths and delays holds for the link-flow-paiSin Then, it can be easily shown following the
same line of analysis of Propositioh 6 that link-flow-painsS; are stable under D-BP Hence, for all

(s,k) € S1, we have

qs,k(t) < Cl, for all ¢t > Ty, (58)
and thus
Ws k(1) < %, forall t > T, (59)

for some constant’;, which depends ofi; and K; and does not depend on tinie
Recall thatS} denotes the set of link-flow-pairs that is closest to the s®wf each flow out ofS;

defined in (48). We choosklarge enough such that for gl, k) € S, and (r*, j*) € ST,

C C C
/\_i_<t_€1_k_i><<t_€1_ki>_€1' (60)

From [56), there are packets that arrive at the source nodeneyec; and have not been served jath

hop by timet for all (r, j) € P\S;, we obtain that

t—e <w, (t) <t, forall (r,5) € P\S;. (61)

"Note that since Lemmds 4 ahtl 5 hold for the generalized systerRropositio b can be applied ).
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Since(r*, j*), (r*, 5% + 1) € P\S; for (r*,5*) € ST, we have

Wy ey 1 (t) = Wy e g1 (t) — Wi joy (F) < €1, (62)

for all (r*,5*) € S}. From [59), [61L), and thai*, j* — 1) € S1, we have
Wye j=(t) >t — € — f—l (63)

e

for all (r*,j*) € S7. Then, we have

Aws,k(t) = ws,k(t) - ws,k-‘rl(t)

(a)
< Ci/As — (t—e1 —Ci/ )

b
< (t—El—Cl//\r*)—El

—
=

—
o
~

< Wy o () — Wy =41 (L)

= Aty j- (1)
for all (s,k) € Sy and (r*, j*) € Sy, where (a) is from[(539) and_(63), (b) is from_{60), and (c) isnfr
(63) and [(6R). Hence, for large t, we have that

A (t) <  min  {Aw,- j-(1)}. (64)
(r.5*)est

Also, from (61), we have that

Aww(t) < e, (65)
for all (#,7) € P\(S;US;). Since [B5) holds for an arbitrarily smalj and from [64), D-BP favors link-
flow-pairs of S} for all large¢. Note thatAw, x(t) is bounded for(s, k) € Sy from (59), andAw; ;(t)
is bounded for(#, j) € P\(S; U S;) from (€8), andAub,.. ;.(t) increases linearly on the order offor
(r*,7*) € S} from (63). Hence, there exists a lar@é such that for allt > 77, link-flow-pairs in S}
will be scheduled at all the time slots betwegn,, 75| + 1, [x,,t]] under D-BP. Then, we can choose
T, > T3 and have that

hsl (Tg) > Ty — T2/ > Kj.

However, this contradictavith (57), which shows that, the assumptién](56) is false, ancetegists a
large T, such that

fii(T2) > fs(er), for at least ond(s, k) € P\S). (66)

In fact, our choice ofl;, depends on the sé . However, since there are only a finite number of flows,

we can always choose a large enoughso that [66) holds for som, k) € P\S;. [ |
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APPENDIX C

LEMMA [B

Lemma 8: Consider a system under the Q-BP policy. Then)?cstrictly insideA*, there exists a finite

time 7" > 0 such that the fluid limits satisfy the following property fall ¢ > 7" with probability one:

QS,k(t) > QS,k-l-l(t)» i-e-> AQS,k(t) > 07 (67)

for all (s,k) € P.

Proof: We let P, = {(s,j) | 1 < j < k} denote the set of link-flow-pairs among the fikshops
of flow s. Consider a flows € S. We want to show that there exists a finite tithe> 0 such that for all
time t > T', (61) holds for every link-flow-paifs, k) € P; s (z). We prove it by induction.

Base Case: We first show that there exists a finite tirfig; > 0 such that[(&7) holds fofs, 1) and for
anyt > T ;. Suppose thaf (67) does not hold {8t 1) and for all¢ > 0. Then, Q-BP does not schedule
link-flow-pair (3, 1) due to the operation of Q-BP that it does not schedule anyflavi-pair (s, k) with
AQs k(t) < 0. On the other hand, due to the exogenous arrivals at the smade of flows, Qs (t)
must increase with time. Specifically, 1&% ; £ 1/)s, then we havey; 1 (T51) = ¢5,1(0) + A\Ts1 > 1.
Since Q-BP does not schedule link-flow-p&ir; 1), then it satisfies thags »(7;1) < ¢s2(0) < 1 from
(20). Hence Ags1(Ts1) = ¢5,1(T51) — ¢52(T51) > 0, i.e., [€T) holds for link-flow-pair(s, 1) at time
Ts1. We next show thaf (67) also holds for al>> T ; for link-flow-pair (5,1) under Q-BP. Suppose
thatt* > T3, is the first time afterl;; such thatAg;(t*) < 0 occurs. Consider a positive sequence
{xn,} for which the convergence to the fluid limits holds. Th@a, is scheduled at some time slots
in the interval of[|x,,,T; 1] + 1, |z,,t]] in the original system. Let* be the first such time slot in
the interval of |z, 75 1] + 1, |x,,t]] when Qs is scheduled in the original system. Hence, we have
Qs1(7) > Qs2(7*), otherwise it is not scheduled. This further implies tidat;(7) > Qs2(7) — 2
for any time slotr > 7*, following a similar argument for showing (P8). Thereforee must have
Ag;z1(t*) > 0 from the convergence of {114), which leads to a contradictimus, [6Y) holds for any
t > T;; for link-flow-pair (s, 1) under Q-BP.
Inductive Step: Suppose that there exists a finite tiffig, > 0 such that[(6]7) holds for alls, k) € P;
and for allt > T} 5, wherel < k < H(3), we want to show that there exists a finite tiffig,; > T«
such that[{@7) holds for alls, k) € P; ;.1 and for allt > T; ;1. Clearly, it is sufficient to show that
(67) holds for(s,k + 1) for all t > T} ;4.

Let Py(r) denote the set of link-flow-pairs such thatl(67) holds fortall- 7. Clearly, we have
Psr C Po(Ts ). SupposePy(Ts ) = Po(t) for all t > Ty, i.e., the set of link-flow-pairs for which
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(67) holds does not change after tifig,. Then, Q-BP will schedule only link-flow-pairs in s (7% 1)
for all time slott > [z, Ts ] + 1 in the original system. This implies that the fluid limit mdaé the
subsystem that consists of link-flow-pairs # (7 ;) must be stable for an§ strictly inside A*, from
throughput-optimality of Q-BP (See Propositioh 2). Speeify, we can show that for any fixegd> 0,
there exists &” > T, such thaty , yep (1, ,) ¢s.k(t) < ¢ for all £ > T". We now consider two cases:
1) there is no link-flow-pair in seP\Py(T; ) that becomes satisfying_(67) by timeax{7”, (1 +
Q)/Ashs
2) there exists at least one link-flow-pair in sBtPy(7; ) that becomes satisfying (67) by time
max{T", (1 + ¢)/As}.
In Case 1), chooseT; k11 = max{T", (1 + ¢)/As}. Then,

Gr1(Ts pr1) > fs(Ts 1) — Z Qs (Ts je11)
(8,k)EPs i

> fi(Tops) — > Gsp(Topr)
(5,K)EPo (T )

> Tsre1rs — ¢
> 1.
Since Q-BP does not schedule link-flow-péit k£ + 1) by time 75 j.11, then it satisfiess y42(Ts k+1) <
G5k+2(0) < 1 from 20). Hence Agz i 1(Ts k1) = @5 p01(Tspv1) — @srr2(Ts1) > 0, i.e., [67) holds
for link-flow-pair (s, k + 1) at time T} 4. Similar as in the base case, we can show {hdt (67) holds for
anyt > Tj ;41 for link-flow-pair (5, £ 4+ 1) under Q-BP.
In Case 2), let Tj) be the first time aftef’; ;, when there is a link-flow-paifs, k) e P\Po(Ts ) such that
(67) holds for(3, k) at timeTy. SupposePy(Ty) = Po(t) for all t > Ty, i.e., the set of link-flow-pairs for
which (67) holds does not change after tiffig Then similarly, we can show that there exigt$ > T
such thaty " 1yep, (1) 4s,k(t) < ¢ for anyt > T". Again, we consider two cases:
i) there is no link-flow-pair in the set dP\ Py (7)) that becomes satisfying (67) by timeax{7”, (1+
O/ Asks
i) there exists at least one link-flow-pair in the set®{P,(7,) that becomes satisfying (67) by time
max{7T", (1 +¢)/As}.
In Case 2-i), we choos€l; 1 = max{T", (1 + ¢)/A:}. Following a similar argument in Case 1), we
show that[(6FF) holds for alt > 77 ;. for link-flow-pair (3, k + 1) under Q-BP. Since there are finite

number of link-flow-pairs in the system, Dase 2-ii), recursively applying the above argument , we show
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that there exists a finite tim&; ., such that[(6l7) holds for all > T .., for link-flow-pair (3, k + 1)
under Q-BP.

ChooseT; £ max; <x<p(s) Ts,k then [67) holds for all link-flow-pairgs, k) € P; g (s), for all time
t > Tk

Note that the above argument applies to a@nyg S. ChooseT £ max,cs 7T, > 0. Therefore, [(G7)

holds for all link-flow-pairs ofP for all time ¢t > T. [ ]
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