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Abstract—Many applications require the sink to compute a
function of the data collected by the sensors. Instead of sending
all the data to the sink, the intermediate nodes could process
the data they receive to significantly reduce the volume of traffic
transmitted: this is known as in-network computation. Instead of
focusing on asymptotic results for large networks as is the current
practice, we are interested in explicitly computing the maximum
achievable throughput of a given network when the sink is
interested in the first M statistical moments of the collected data.
Here, the k-th statistical moment is defined as the expectation of
the k-th power of the data.

Flow models have been routinely used in multi-hop wireless
networks when there is no in-network computation and they are
typically tractable for relatively large networks. However, deriv-
ing such models is not obvious when in-network computation
is allowed. We develop a discrete-time model for the real-time
network operation and perform two transformations to obtain
a flow model that keeps the essence of in-network computa-
tion. This gives an upper bound on the maximum achievable
throughput. To show its tightness, we derive a numerical lower
bound by computing a solution to the discrete-time model based
on the solution to the flow model. This lower bound turns out
to be close to the upper bound proving that the flow model is
an excellent approximation to the discrete-time model. We then
provide several engineering insights on these networks.

Index Terms—Sensor networks, in-network computation,
throughput, flow model.

I. INTRODUCTION

Sensor networks are an emerging class of networks with

many interesting applications and configuring them to obtain

the best performance is of prime importance. In several

applications, there is a sink that requires a function of the

information gathered by all the sensors for further decision

making, for instance, a fire-alarm system where the sink

is monitoring the maximum temperature in a building. The

standard approach known as convergecast or data collection

in the literature, is to send all the individual measurements to

the sink that then computes the required function. However,

the volume of transmitted data can be significantly reduced

by allowing the intermediate nodes to process the data they

have received and send only an essential summary to the next

node along the route to the sink. This is known as in-network

computation in the literature. This approach could potentially

lead to significant improvements in the network performance

in terms of lifetime, delay and throughput.
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The nature of the function that the sink is interested in com-

puting plays an important role in determining the performance

gains achievable utilizing in-network computation compared to

convergecast. Computing the first M moments of the data is

of interest in many sensor network applications in order to

reconstitute the distribution of the measured phenomenon via

its moment generating function. The accuracy of this process

depends on M with larger M resulting in better accuracy.

For instance, consider an application where a wireless sensor

network is deployed to measure the level of air pollution in

a city at a given time. Factors such as wind, time of the day,

cloud cover, etc., could effect the measurement at any given

point. Hence, we measure the pollution at multiple points in

the city at a given time. The average of the ensemble of data

collected by all the sensors at a given time is a very accurate

indication of the level of air pollution at that time in the

city and the variance of this collected data shows how “non-

uniform” the pollution is at that time. Note that in this example

we are interested in measuring a phenomenon (pollution) in a

potentially noisy environment.

Formally, the k-th moment of a discrete random variable

X , µk is defined as the expectation of Xk, i.e.,

µk = E(Xk) (1)

We can estimate µk as the average of the k-th powers of all

the observed data, i.e.,

µk ≃

∑N
i=1 X

k
i

N
(2)

In this paper, we explicitly compute the maximum achiev-

able throughput (defined in the next sub-section) in a wireless

sensor network when the sink is interested in computing the

first M moments of the data collected by the sensor nodes.

We focus on sensor networks that use conflict-free schedul-

ing and consider the physical model of interference. We

are interested in the optimal joint routing and scheduling

that gives maximum throughput when in-network computation

is allowed. Although random access protocols have many

desirable features like robustness to node and link failures, low

maintenance, etc., they are usually outperformed by optimal

centralized protocols. Even if centralized protocols are not

implementable in certain contexts, e.g., random deployment of

sensor nodes in war zones, etc., they can serve as a benchmark,

i.e., provide an upper bound on the performance and guide the

design of better distributed random access protocols.
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In the next sub-section, we explain the mechanism of in-

network computation and how it leads to data aggregation.

A. In-Network Computation and Data Aggregation

Assume that there are n nodes in the network and that time

is slotted. Also assume that every node i makes a measurement

periodically after every δ time slots. Let the w-th measurement

of node i be xi(w). Let x(w) denote the collection of the w-
th measurements made by all the nodes. Assuming that all

the nodes collect data at the same time, we call the collection

x(w), the w-th wave of information. In applications like the

fire-alarm system, the sink is interested only in some function

f(x(w)) of these measurements. We say that the sink has

received the wave w if it is able to compute the function of

the data in wave w. We define throughput as the rate at which

the sink receives the waves. This throughput can be viewed

as the “monitoring rate” of the phenomenon by the sensor

network. However, we use throughput in this paper as it is the

term traditionally used in convergecast.

Consider the instance when the sink is interested in

E[x(w)], the average of the measurements over all nodes

in a wave, i.e., f(x(w)) =
∑

i xi(w)/n = S(w)/n. In the

convergecast mode, all the raw data xi(w) are individually sent
to the sink where the average is computed. However, the sink

can compute this average even if it has received only partial

sums instead of all the individual raw data. Thus, when in-

network computation is allowed, each time a node i is allowed
to transmit (as defined by the schedule), it will aggregate all

the data of the wave, w, it has in its buffer (which may include

its own data xi(w)) into one (partial) sum Si(w) and send it

as one packet to the next node along the path to the sink.

Note that these partial sums must be computed only among

the measurements made at the same time, i.e., each wave of

information must be processed separately. Data from one wave

cannot be aggregated with that of another wave, i.e., there must

not be mixing among different waves. This is an important

condition that we will have to take into account later on.

Computation of more complicated functions, such as

the first two moments, i.e., variance var(x(w)) =
√

R(w)− S(w)/n and mean, can also be delegated to the

nodes in the network. In this case, the sink needs two pieces

of information: S(w), the sum of the xi(w) and R(w), the sum
of the squares x2

i (w). Thus, in-network computation creates

two types of partial sums, i.e., a node i now computes not

only the partial sum Si(w) but also the partial sum of squares

Ri(w) and transmits these two values and sends each value

as one packet. Similarly, the sink can compute the first M
moments of the data if it receives just the M sums of the first

M powers of the data.

Data aggregation is the main reason for allowing in-network

computation since it can significantly reduce the total volume

of the data transmitted compared to convergecast. This comes

at the expense of an additional complexity since processing

has to be performed at intermediate nodes. It is interesting to

note that aggregation must not be performed automatically at

all nodes when we want to compute more than one moment.

To see this, consider a case where the sink is interested in

the first two moments. Assume that some node i which is

allowed to transmit has only its own data xi(w) in its buffer.

If node i performs in-network computation blindly, it creates

two packets corresponding to sum, Si(w) = xi(w) and sum of

squares, Ri(w) = x2
i and would require two time slots to send

these packets. But, it is more efficient if i just sends its data

as such and delays in-network computation to further nodes

along the path to the sink. This can be done easily by allowing

the existence of three (instead of just two) different types of

packets per wave, namely raw data, partial sum and partial

sum of squares. More generally, when the sink is interested

in computing the first M moments, there would be M + 1
different types of packets per wave.

In the next sub-section, we summarize our contributions and

give an overview of this paper.

B. Our Contributions

In this paper, instead of focusing on asymptotic results for

large networks as is the current practice [1], we explicitly

compute the maximum achievable throughput when the sink

is interested in the first M moments of the collected data.

Flow models are routinely used in multi-hop wireless networks

when there is no in-network computation and are typically

tractable for relatively large networks. However, deriving

such models is not obvious when in-network computation is

allowed. We develop a discrete-time model for the real-time

network operation and perform two transformations to obtain

a flow model that keeps the essence of in-network computa-

tion. This gives an upper bound on the maximum achievable

throughput. To show its tightness, we derive a numerical lower

bound by computing a solution to the discrete-time model

based on the solution to the flow model. This turns out to

be close to the upper bound proving that the flow model is

an excellent approximation to the discrete-time model. We

describe our methodology in more detail in Section III-B.

In summary, our main contributions in this paper are:

1) A novel non-intuitive modeling of the in-network compu-

tation when the sink is interested in the first M moments.

2) A rigorous derivation of a flow model and a proof that its

solution is an upper bound on the maximum achievable

throughput using in-network computation.

3) A method to compute a lower bound on the maximum

achievable throughput.

4) Numerical evidence that the two bounds are close. This

validates our flow model formulation.

5) Insights on the value of in-network computation.

Throughout the paper, we use the physical interference

model and we make no restricting assumptions on the channel

gains beyond the fact that they should be quasi time-invariant.

The rest of the paper is organized as follows. We start with

a review of the related work in Section II. In Section III, we

first present the models for the wireless sensor network and

the interference. We then present our methodology to solve

this problem. Next, we present the discrete-time model and

derive the flow model from it. In Section IV, we validate our

flow model formulation and present numerical results on some

random networks and conclude in Section V.
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II. RELATED WORK

Optimizing throughput or delay in sensor networks for the

two modes of data gathering, viz., convergecast [2]–[4] and in-

network computation [1], [5]–[7] has received a lot of attention

in recent years. In these studies, the two most commonly

used models for wireless interference are the protocol model

and the physical model [8]. In the protocol model, a receiver

can successfully decode the message intended for it if and

only if it is within the transmission range of the sender and

there are no other nodes transmitting within its interference

range while in the physical model, a receiver can successfully

decode if and only if its SINR exceeds a minimum threshold

(see Section III-A for more details). Next, we first discuss the

work on throughput and delay with no in-network computation

followed with the one that considers in-network computation.

(A) Throughput with no in-network computation: Gupta

and Kumar [8] studied the capacity of a wireless

network and gave asymptotic results for the achievable

throughput under both the protocol and physical models

of interference. Tassiulas and Ephremides [9] have

proposed the backpressure algorithm for scheduling

in wireless multi-hop networks and proved that it is

throughput-optimal. Jain et al [3], Stuedi et al [4],

Karnik et al [2] have all studied the problem of explicitly

finding the maximum achievable throughput of a fixed

wireless network. Lower and upper bounds on the

maximum achievable throughput are obtained in [3].

A linear program formulation for explicitly computing

the optimal throughput of a network under the physical

interference model is given in [2] and Luo et al [10] used

linear programming techniques like column generation to

solve this problem efficiently for larger networks. In this

paper, we are interested in a similar formulation when

the network allows in-network computation.

(B) Delay with no in-network computation: Another

performance measure that is considered in the literature

is delay. Florens et al [11] considered the minimization

of delay for the convergecast problem under a protocol

interference model. They assume that there is a single

communication channel and that time is slotted such that

every slot is long enough to send just one packet of data.

They give closed form expressions for delay in terms

of the number of time slots for some special topologies

like line, multi-line, etc. However, they have considered

only a restricted set of network topologies where the

distance between any two neighboring nodes is the same.

Gargano and Rescigno [12] also consider the problem

of minimizing delay in the convergecast problem. They

assume that the nodes have directional antennas so

that any two links can be active at the same time if

they do not have any nodes in common. In effect, the

interference model they consider uses only transceiver

constraints, i.e., a node can either receive or transmit but

cannot do both at the same time and if it is receiving,

it can receive from only one node. They present an

algorithm using collision-free graph coloring that gives

the optimal solution for the overall delay. Chen et al [13]

also studied the problem of minimizing the delay under

a variation of the protocol interference model. They

showed that finding the optimal schedule for a general

graph is NP-hard and proposed an heuristic that performs

better than the RTS/CTS scheme. In our paper, although

the discrete-time model we formulate could be used to

find the optimal schedule that minimizes delay, our focus

is on computing the maximum achievable throughput

when the network allows in-network computation.

(C) Throughput with in-network computation: The earliest

study on in-network computation was made by Tiwari

[14]. They give lower bounds on the communication

complexity, defined as the number of bits that have to

be sent in the worst case to compute the function. Since

the performance measure in this study is communication

complexity, it does not matter whether the links are

wired or wireless. Also, the functions considered are for

just two sources. Giridhar and Kumar [1] studied the

problem of distributively computing the maximum rate

at which symmetric functions of sensor measurements

can be computed and communicated to the sink. They

classified the symmetric functions into two subclasses,

type-sensitive and type-threshold. They show that the

type-sensitive functions like mean, mode, median can

be computed at O(1/n) rate in collocated networks and

at O(1/ log n) rate in random planar multihop networks

while the type-threshold functions like min, max, range

can be computed at O(1/ log n) rate in collocated

networks and at O(1/ log log n) rate in random planar

multihop networks. Note however that these sub-classes

do not cover all the symmetric functions. These are

asymptotic results and they do not compute the maximum

achievable throughput explicitly which is the problem

we consider in this paper.

(D) Delay with in-network computation: Sudeep and

Manjunath [15] studied the problem of computing MAX

in an unstructured sensor network assuming the protocol

model of interference. In an unstructured network, the

nodes need not have unique identifiers. They show that in

O(
√

n/ log n) slots, MAX can be made available at the

sink with high probability. This is interesting as the best

coordinated protocol given in [16] also takes the same

O(
√

n/ log n) slots to compute MAX. Most-Aoyama

and Shah [17] give an elegant distributed scheme based

on exponential random variables to compute the class of

separable functions such as SUM in a wireless network

using gossip protocols. Ghosh et al [7] have considered

in-network computation where the sink is interested in a

function like mean, min or max, i.e., aggregation results

in a single packet regardless of the number of input

packets (perfect aggregation). They assume multiple

channels and the protocol model of interference and

give some tree-based heuristics to minimize delay and

maximize throughput for the convergecast and the perfect

aggregation problems. There is a lot of similar recent
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work on perfect aggregation [18]–[22] that consider the

problem of minimizing delay. In this paper, we consider

aggregation when the sink is interested in the first M
moments, of which the perfect aggregation is an example.

(E) Others: The modeling of compressed sensing in [23] is

very similar to the way we model the computation of

M moments. Using compressed sensing, the sink could

retrieve all the raw data unlike in our current problem

where it only retrieves the M moments of the data.

However, they consider minimizing energy consumption

as their performance measure and do not consider finding

the optimal joint routing and scheduling that maximizes

throughput which we consider.

To the best of our knowledge, there are no previous results

on explicitly computing the maximum achievable throughput

of a given network that allows in-network computation. In the

next section, we define and formulate this problem when the

sink is interested in the first M moments of the data collected

by the sensor nodes.

III. PROBLEM FORMULATION

Consider a wireless sensor network in which the sensor

nodes are measuring some quantity (e.g., temperature, pres-

sure, etc.) and the sink is interested in computing the first M
moments of these measurements. As mentioned in Section I-A,

we assume that the sensor nodes are periodically making these

measurements. Let the w-th measurement of node i be xi(w).
Let x(w) denote the collection of the w-th measurement made

by all the nodes. We call the collection x(w), the w-th wave of

information. We say that the sink has received a wave if it is

able to compute the first M moments of the data from all the

nodes in that wave. Defining throughput as the rate at which

the sink receives the waves, we are interested in explicitly

computing the maximum achievable throughput when using

in-network computation in a given wireless sensor network.

In this section, we present a systematic approach to solve

this problem. We begin by introducing the network model

including the wireless interference model.

A. Network Model

We assume that there is a static wireless sensor network with

n nodes and that the channel gains are quasi time-invariant. In

addition, there is a special node called the sink that collects and

analyzes the data from all the sensor nodes. We also assume

that the sink knows the positions of all the n nodes. Let them

be labeled 0, 1, . . . n with 0 representing the sink. We assume

that there is a single communication channel and every node

communicates with its neighbors through a transceiver which

can either transmit or receive but not do both at the same

time. We assume that the time is slotted and each slot is long

enough to transmit one packet of data. We assume that the data

collected by the sensor nodes is real numbers each of which

fits in a single packet. We also assume that all the arithmetic

operations that we do on the data result in a real number

which remains within the allowed range when represented in

the binary format and thus still fits in a single packet of data.

We do not consider power control and assume that all the

nodes transmit with the same power P .

We model the wireless interference using the physical model

which is based on Signal to Interference and Noise Ratio

(SINR) [2], [8]. Experimental results [24] show that this

models wireless interference more accurately than any other

simpler model. Also, Iyer et al. [25] showed that the results

obtained from simpler models may be qualitatively different

from those obtained from the physical model. However, note

that our technique could use any interference model.

A directed link from node i to node j is said to exist if

Pi,j ≥ βN0 where Pi,j is the total power received from node

i at node j. Here N0 is the thermal noise power and β is the

minimum Signal to Noise Ratio (SNR) required for successful

decoding of the message. Given a channel propagation model

for Pi,j , we can compute the set of all feasible directed links

L in the network using this condition. We make no restricting

assumptions on the channel propagation model.

In a wireless network, even though all the links use the same

channel, we can typically schedule a group of links to transmit

at the same time without causing excessive interference to

any intended receivers. We call such a subset of links an

independent set (Iset). The interference model dictates which

subset of links can be successfully activated at the same time.

In the physical interference model, when two or more links

are active on the same channel, every receiver considers the

power from the transmitters other than its own as interference.

Under the physical interference model, a subset of feasible

links, I , is an Iset only if they form a matching i.e.,

i 6= i′ ∧ i 6= j′ ∧ j 6= i′ ∧ j 6= j′ ∀(i, j), (i′, j′) ∈ I (3)

and all the corresponding receivers have an SINR greater than

or equal to β i.e., for all the links (i, j) in the Iset I ,

Pi,j ≥ β



N0 +
∑

(i′,j′)∈I\{(i,j)}

Pi′,j



 . (4)

The sum in (4) is the total interference received by the

destination node j of link (i, j) due to the transmissions on

all other links (i′, j′) in I .
In the next sub-section, we discuss the methodology we

adopt and the reasons behind it to solve the problem of

computing the maximum achievable throughput using in-

network computation in a given wireless sensor network.

B. Methodology

The network model described above naturally results in a

discrete-time model formulation for computing the maximum

achievable throughput for convergecast. However, the discrete-

time model is typically an integer program that is not tractable

and is solvable only for very small networks. For this reason,

the standard approach taken in the literature is to ignore the

discrete nature of the packets and assume that packets flow

on links like fluids flow in pipes. This is known as the flow

model and it does not require the notion of time slots and

waves. In the following, we say that a problem formulation
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is a flow model of the network operation (e.g., convergecast

or in-network computation) if it can be used to compute the

maximum achievable throughput (exactly or approximately)

and it does not include the notion of time slots or of waves.

Flow models are typically derived from intuition without any

reference to the underlying discrete-time model. The nonlinear

multi-commodity flow model used to compute the minimum

average packet delay in wired networks [26] is an example

of such a model. Deriving a flow model for convergecast

in wireless networks is also quite intuitive and they have

worked well to explicitly compute the maximum achievable

throughput [2], [3], [10]. In all these cases, solving the flow

model has brought insights on the optimal network structure

and operation that would have been impossible to obtain

from the discrete-time model as we cannot solve it within

a reasonable time.

Trying to derive a flow model straight away for in-network

computation problem does not result in a tractable accurate

formulation. The reasons are

1) There is no conservation of flows at the nodes since some

packets effectively disappear when they are aggregated.

2) Aggregation can happen only between data belonging to

the same wave. And this is not easy to ensure using flows.

Hence, we have to start by formulating the problem using

the discrete-time model. There is more than one way to formu-

late a discrete-time model. We have tried the straightforward

and intuitive way to formulate a discrete model for the case

of M = 1. It was based on keeping track of the number

of packets on a per-wave basis at each node. This led to

constraints with product forms, i.e., non-linear constraints.

We found that this problem is not tractable even for small

networks. In one of our attempts to simplify this formulation,

we tried to linearize these constraints but this led to a very poor

approximation of the original problem. Also, as the number

of required moments M increased, the complexity of these

constraints increased as well.

We have been able to overcome these difficulties by taking

a completely different view regarding the modeling of in-

network computation in a sensor network. It is based on

tracking of each measurement, also called a piece of infor-

mation until it reaches the sink as opposed to the conven-

tional method that focuses on tracking of packets at every

node. In this problem, although packets are not conserved,

information is. To understand how we model the in-network

computation, consider the example of computing the mean,

i.e., f(x(w)) =
∑

i xi(w)/n. Whenever a node has more than

one packet of data from the same wave, it computes their sum

and transmits only the sum when one of its link is activated. In

our approach, although only the sum is being transmitted, we

consider that all the information units making up the sum are

transmitted in the same slot. We capture this in our model by

allowing the node to create a virtual information unit per wave

for every source that is involved in the sum and to transmit all

the virtual information units in the same time slot. The model

thus keeps track of all the information units until they reach

the sink. Note that if the node is transmitting raw information,

it can only send raw data from one source in one time slot.

This novel modeling technique results in a discrete-time model

which is a linear integer program.

However, this integer program is still hard to solve. Thus, we

transform it into a flow model which could be solved optimally

for much larger networks than that was possible for the

discrete-time model. We show that this flow model provides

an upper bound on the maximum achievable throughput. To

validate the tightness of this upper bound, in Section IV, we

derive a feasible solution to the discrete-time model based

on the solution to the flow model and show that it yields a

throughput that is close to the optimal throughput computed

with the flow model. In summary,

1) We rigorously derive a flow model formulation.

2) We show that this flow model provides an upper bound

on the maximum achievable throughput.

3) We show that this upper bound is tight by computing a

near-optimal feasible solution to the discrete-time model

based on the solution to the flow model. This validates

our flow model and enables us to use it to study the effects

of in-network computation on network performance.

4) When we apply our methodology (i.e., formulating the

discrete model, followed by the derivation of the flow

model) to convergecast, it resulted in the same flow model

as the one given in the literature [2]. So, our method is

consistent with what has been done intuitively in the past.

5) We also show that when M = n, where n is the number

of nodes in the network, the flow model formulation for

in-network computation is the same as the convergecast

formulation. This further strengthens the confidence in

our model as the M = n case is intuitively convergecast.

Next, we present the discrete-time model formulation.

C. The Discrete Model

Assume that we want to compute the number of time slots

Tm, taken to receive m waves at the sink. Recall that for

every wave, there are M + 1 different types of data in the

network, viz., the raw data (represented with p = 0), the partial
sums (represented with p = 1), the partial sum of squares

(represented with p = 2) and so on. Define the state variable

qs,w,p
i (k) as a binary variable that is 1 if the information1 from

source s, wave w and type p is stored at node i at the end

of time slot k. Hence, qs,w,p
i (k) tracks the information (raw

or virtual) on a per wave, per source and per type basis. By

convention, we assume that it is 0 when k = 0.
Assume that the sensors are collecting data every δ slots,

i.e., σ = 1/δ is the input rate of the information. Let vw(k)
be a binary value that is 1 if the sensor nodes are collecting

data in time slot k. Thus, we have

vw(k) ,

{

1 if k = δw

0 otherwise

The decision variables in the model are all binary variables

with the following definitions:

1) xi,j(k): If the link (i, j) is active in slot k, it is 1,
otherwise it is 0. This is the scheduling variable.

1The information is raw data if p = 0 and virtual information if p > 0
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2) ys,w,p
i,j (k): If the information from source s, wave w and

type p is sent on link (i, j) in slot k, it is 1, else 0.
3) us,w

i (k): This variable tracks if node i aggregates raw

data from source s and wave w, i.e., in the model if it is

1, M virtual information units are created for this source

out of the raw data.

4) zw,p
i,j (k): It is 1 if the information of type p in wave w is

selected for transmission on link (i, j) in slot k, else 0.

By convention, the x, y and z variables are defined only when

the link (i, j) exists.
With these definitions, the discrete-time model formulation

Pd(m) is as follows. All constraints are over w = 1 . . .m,

s = 1 . . . n and k = 1 . . . Tm wherever w, k or s appear, unless
there is a summation over them. The constraints are also either

over all nodes i = 1 . . . n or over all links (i, j) ∈ L depending

upon the constraint. Also, all the variables are non-negative.

Pd(m) : Min
x,y,z,u

Tm (5)

subject to

Tm ≥ δm (6)

qs,w,p
i (Tm) = 0 (7)

qi,w,0
i (k) = vw(k − 1) + qi,w,0

i (k − 1)− ui,w
i (k)

−
∑

j

yi,w,0
i,j (k) +

∑

j

yi,w,0
j,i (k) (8)

qs,w,0
i (k) = qs,w,0

i (k − 1)− us,w
i (k)

−
∑

j

ys,w,0
i,j (k) +

∑

j

ys,w,0
j,i (k) ∀i 6= s

(9)

qs,w,p
i (k) = qs,w,p

i (k − 1) + us,w
i (k)

−
∑

j

ys,w,p
i,j (k) +

∑

j

ys,w,p
j,i (k)

∀p = 1 . . .M (10)

ys,w,p
i,j (k) ≤ qs,w,p

i (k − 1) (11)

m
∑

w=1

M
∑

p=0

zw,p
i,j (k) ≤ xi,j(k) (12)

n
∑

s=1

ys,w,0
i,j (k) ≤ zw,0

i,j (k) (13)

ys,w,p
i,j (k) ≤ zw,p

i,j (k) ∀p = 1 . . .M (14)
∑

(i,j)

xi,j(k) +
∑

(j,i)

xj,i(k) ≤ 1 ∀i (15)

Q (1− xi,j(k)) + Pi,j ≥ β×
[

N0 +
∑

(i′,j′)∈I 6=(i,j)

Pi′,jxi′,j′(k)

]

(16)

The constraints (7–10) are the information conservation

equations which guarantee that all the information reaches the

sink. Constraint (6) ensures that the network operates at least

as long as is necessary to generate all the waves.

Constraint (7) is the final target state where all the infor-

mation units have reached the sink. Constraints (8–10) keep

track of the flow of information. Whenever us,w
i (k) = 1, the

raw information from source s and wave w disappears at node

i which behaves as a sink for this information, and appears at

node i asM higher types of data for that source and wave. This

is how the information units for the aggregated data created.

The actual constraints on the decisions to transmit are

modelled by (11–14). Constraint (11) states the fact that

we cannot transmit a unit of information on a link if this

information is not in the buffer at the end of the previous time

slot. Constraint (12) states that information of at most one type

of one wave can be transmitted in one time slot by a node.

The actual effect of aggregation is represented by (13–14).

Recall that some data might be transmitted as raw data without

aggregation. If there is no aggregation, a packet carries the

information for a single source. In other words, if we decide to

transmit a commodity (s, w, 0), we must choose a single value

for s. This is modelled by constraint (13) which restricts the

flow of raw data to just one packet at each slot so that raw data

is transmitted like in convergecast. When we use aggregation,

on the other hand, a packet can carry more than one virtual

information unit for a given commodity (s, w, p), for instance
the aggregated values of the measurements of some subset

of sources. This is modelled by constraint (14), which allows

multiple virtual information units from different sources to be

sent on the same packet if they belong to the same aggregated

type and wave (for p ≥ 1). This constraint essentially captures

the effect of in-network computation. Comparing constraints

(13) and (14), we can see the advantage of aggregation which

permits more than one unit of information to be carried on a

given packet.

Finally, constraints (15) and (16) represent the physical

model of wireless interference. In (16), Q is a very large

positive constant [27]. The magnitude of Q is chosen so that

constraint (16) is trivially true whenever any link (i, j) is

inactive, i.e., xi,j(k) = 0. On the other hand, if the link is

active, constraint (16) reduces to (4) which is the minimum

SINR requirement constraint of the physical model.

Let T d
m be the optimal solution to problem Pd(m). This

problem is a very large integer linear program that cannot

be solved optimally except for very small networks and even

then, with large computation times. Thus, we are interested in

obtaining a problem formulation that is based on a flow model

and hopefully is more tractable. The two dimensions, time and

waves are the primary sources of complexity in Pd(m). We

transform Pd(m) such that both time and waves disappear

resulting in a flow model formulation.

We use two types of transformations on Pd(m) to derive

the flow model formulation. They are:

1) Averaging over time.

2) Bundling of waves.

We explain in detail how they are performed in the next

two sub-sections.

D. First Transformation: Averaging Over Time

The idea is to sum the constraints over time and replace the

variables with averages. Let

xi,j ,
1

Tm

Tm
∑

k=1

xi,j(k) (17)
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ys,w,p
i,j ,

1

Tm

Tm
∑

k=1

ys,w,p
i,j (k) (18)

xi,j represents the fraction of time link (i, j) is active while

ys,w,p
i,j represents the fraction of time information from source

s of wave w and type p is flowing on the link (i, j). We define

similar averages for the variables u and z as well. Note that

as the input is just one packet for every wave at every source,

we have
∑Tm

k=1 v
w(k) = 1.

Averaging out the constraints (8–14) using these definitions

is straightforward. However, time also appears in the interfer-

ence constraints (15–16). It is possible in principle to average

them too but the resulting flow model is very inaccurate

since the interference model is averaged out. Instead, we

reformulate these constraints using the extensive formulation

of the problem. First, we generate all the ISets compatible

with (15–16). This is equivalent to computing the link-Iset

incidence matrix

A(i,j),I ,

{

1 if link (i, j) ∈ I

0 otherwise

We then replace constraints (15–16) by introducing another

set of variables αI(k), a binary variable that is 1 if we use

Iset I in slot k and 0 otherwise. The modified interference

constraints are
∑

I

αI(k) ≤ 1 (19)

xi,j(k) ≤
∑

I

αI(k)A(i,j),I (20)

Constraint (19) ensures that only one Iset is chosen in slot

k and constraint (20) allows a link to be active in slot k if

and only if an Iset containing it is active in that slot. Note

that all the links in any given Iset satisfy the interference

constraints by construction and hence the original interference

constraints (15–16) are redundant in the problem formulation.

For the purpose of averaging, we then define

αI ,
1

Tm

Tm
∑

k=1

αI(k)

αI represents the fraction of time Iset I would be active in

the schedule. The discrete time dimension disappears from the

constraints (7–14) and (19–20) when we sum each of them

over k and divide with Tm, leading to problem P2(m). Note
that after this summation, all qs,w,p

i (k) variables cancel from

the equations (8), (9) and (10), except when k = 0 and k =
Tm. When k = Tm, the q′s are 0 due to the final condition

and when k = 0, the q′s are 0 by convention. The only non-

zero entity in the R.H.S of constraints (23) and (24) in P2(m)
is due to the summation

∑Tm

k=1 v
w(k) which is equal to 1.

All constraints are over all w = 1 . . .m and all s = 1 . . . n
wherever w, or s appear, unless there is a summation over

them. The constraints are also either over all nodes i = 1 . . . n
or over all links (i, j) ∈ L depending upon the constraint.

Also, all the variables are non-negative.

P2(m) : Min
α,y,z,u

Tm (21)

subject to

Tm ≥ δm (22)

∑

j

ys,w,0
i,j −

∑

j

ys,w,0
j,i + us,w

i =







1

Tm

if i = s

0 otherwise
(23)

∑

j

ys,w,p
i,j −

∑

j

ys,w,p
j,i − us,w

i = 0 ∀p = 1 . . .M (24)

m
∑

w=1

M
∑

p=0

zw,p
i,j ≤ xi,j (25)

n
∑

s=1

ys,w,0
i,j ≤ zw,0

i,j (26)

ys,w,p
i,j ≤ zw,p

i,j ∀p = 1 . . .M (27)

xi,j ≤
∑

I

A(i,j),IαI (28)

∑

I

αI ≤ 1 (29)

We can interpret the left-hand side of equation (23) as the

average information rate out of node i of wave w. It shows
that in the time-averaged model, this rate is the same for all

sources s and all waves w since the right-hand side does not

depend on either of these indices. It is equal to the inverse

of the total time Tm if i is the source of information s
and 0 otherwise. Replacing 1/Tm with λm and changing the

objective to maximize λm, we have a linear program. Note

however that because of constraint (22) and since the number

of constraints depends on m, this problem is not independent

of m.

Since a feasible solution to P2(m) (21–29) can be con-

structed from any feasible solution to Pd(m) (5–16), we have

T 2
m ≤ T d

m

where T d
m is the optimal solution to Pd(m) and T 2

m is the

optimal solution to P2(m).
Next, we transform P2(m) into Pf by bundling the waves.

This gives us the flow model for computing the maximum

achievable throughput using in-network computation.

E. Second Transformation: Bundling of Waves

If T d
m is the optimal solution to Pd(m) then m/T d

m is the

optimal rate at which the statistical function of each of the

m waves is made available at the sink. Bundling the waves

of P2(m) removes the dependence on m and formulates the

problem as maximizing this rate. For this, we define new

variables that bundle the waves together, i.e.,

m
∑

w=1

ys,w,p
i,j , ys,pi,j

where qs,pi represents the total amount of information from

source s, type p and all waves at node i and ys,pi,j represents

the total amount of information flow from source s, type p and

all waves on link (i, j. We define similar variables for z and u
as well. The waves lose their identity with the introduction of

these variables. We sum constraints (23–27) over w and obtain
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problem P3. Again, all constraints are over all s = 1 . . . n and

all k = 1 . . . Tm wherever k or s appear. The constraints are

also either over all nodes i = 1 . . . n or over all links (i, j) ∈ L
depending upon the constraint. Also, all the variables are non-

negative.

P3 : Min
α,y,z,u

Tm (30)

subject to

Tm ≥ δm (31)

∑

j

ys,0i,j −
∑

j

ys,0j,i + us
i =







m

Tm

if i = s

0 otherwise
(32)

∑

j

ys,pi,j −
∑

j

ys,pj,i − us
i = 0 ∀p = 1 . . .M (33)

M
∑

p=0

zpi,j ≤ xi,j (34)

n
∑

s=1

ys,0i,j ≤ z0i,j (35)

ys,pi,j ≤ zpi,j ∀p = 1 . . .M (36)

xi,j ≤
∑

I

A(i,j),IαI (37)

∑

I

αI ≤ 1 (38)

The right-hand side of Eq. (32) can be interpreted as the

number of waves flowing out of node i per unit time when

it is the source of information s, i.e., it is the average rate of

information flow out of s. We replace it as m/Tm , λm and

define the objective as the maximization of this rate. With this

replacement, the constraint (31) changes to

λm ≤
1

δ
(39)

This implies that the output rate cannot exceed the input rate

which is as expected. The constraints and the variables are no

longer dependent on m and we can replace λm with just λ.
As we are interested in computing the maximum achievable

throughput, it is customary to remove constraint (31) (which

corresponds to constraint (39)).

Thus, the final flow model formulation Pf is as follows.

Pf : Max
α,y,z,u

λ (40)

subject to

∑

j

ys,0i,j −
∑

j

ys,0j,i + us
i =

{

λ if i = s

0 otherwise
(41)

∑

j

ys,pi,j −
∑

j

ys,pj,i − us
i = 0 ∀p = 1 . . .M (42)

M
∑

p=0

zpi,j ≤ xi,j (43)

n
∑

s=1

ys,0i,j ≤ z0i,j (44)

ys,pi,j ≤ zpi,j ∀p = 1 . . .M (45)

xi,j ≤
∑

I

A(i,j),IαI (46)

∑

I

αI ≤ 1 (47)

Let λf be the optimal solution to problem Pf . Given a

feasible solution to P2(m) (21–29), we can construct a feasible
solution to the flow problem Pf (40–47) so we have

m

λf
≤ T 2

m ≤ T d
m (48)

This inequality (48) proves that the throughput computed

by the flow model Pf is an upper bound on the maximum

achievable throughput using in-network computation when

the sink is interested in the first M moments. Note that we

would get the same problem formulation Pf even if we had

performed bundling of waves before averaging over time.

Thus, we have derived a formulation Pf (40–47) which has all

the desirable features. It is independent of m, has continuous

and fewer variables and constraints than in Pd(m) and it is

also a linear program.

Recall that aggregation can happen only between the data

belonging to the same wave. In problem formulation Pd(m),
constraint (12) and in P2(m), constraint (25) explicitly forbid

aggregation among waves. However, due to the transforma-

tions, there is no wave superscript in the flow model Pf , and

hence no equivalent constraint. Thus, there is a possibility that

the upper bound on throughput computed using Pf is too

loose, i.e., it is not very close to the maximum achievable

throughput obtained with the discrete-time model. Hence,

there is a need to validate the tightness of the upper bound

computed by the flow model Pf . We do this in two steps.

First (in the next sub-section), we show that the throughputs

computed by P2(m) and Pf are equal, which proves that there

is no inflation in the throughput computed by Pf due to the

lack of the wave superscript and the absence of a constraint

preventing aggregation among waves. Second (in Section IV),

based on the solution to the flow model, we compute a near-

optimal feasible solution to the discrete-time model whose

throughput is close to the throughput computed by the flow

model. This shows that Pf provides a very close upper bound

to the maximum achievable throughput.

F. Equivalence of the throughputs of Pf and P2(m)

In this sub-section, we prove that the throughputs computed

by Pf and by P2(m) are equal. Define a new problem P4(m)
as P2(m) with the following additional constraint

M
∑

p=0

zw,p
i,j ≤

xi,j

m
∀s (49)

Since we added a potentially restrictive constraint, we have

T 2
m ≤ T 4

m (50)

where T 4
m is the optimal solution of P4(m). Also, we see that

constraint (25) is now redundant in P4(m) so that it separates

into m identical sub-problems for each w, each with the same

optimal solution T 4
m. The sub-problem is

Psub
4 (m) : Min

α,y,z,u
Tm (51)
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subject to

Tm ≥ δm (52)

∑

j

ys,w,0
i,j −

∑

j

ys,w,0
j,i + us,w

i =







1

Tm

if i = s

0 otherwise
(53)

∑

j

ys,w,p
i,j −

∑

j

ys,w,p
j,i − us,w

i = 0 ∀p = 1 . . .M (54)

M
∑

p=0

zw,p
i,j ≤

xi,j

m
(55)

n
∑

s=1

ys,w,0
i,j ≤ zw,0

i,j (56)

ys,w,p
i,j ≤ zw,p

i,j ∀p = 1 . . .M (57)

xi,j ≤
∑

I

A(i,j),IαI (58)

∑

I

αI ≤ 1 (59)

But, this is precisely problem Pf (40–47) with the change

of variables ys,w,p
i,j → ys,pi,j /m, zw,p

i,j → zpi,j/m and Tm →
m/λ. Hence,

m

λf
= T 4

m (60)

From inequalities (50) and (60), we conclude

T 2
m ≤

m

λf
(61)

But from inequality (48), we know

T 2
m ≥

m

λf
(62)

so that T 2
m = m

λf = T 4
m. This proves that there is no inflation

in the throughput computed by Pf due to the lack of the

wave superscript and the absence of a constraint explicitly

preventing aggregation among different waves.

Thus, we have rigorously derived the problem formulation

Pf (40–47) which is the desired flow model. In the next

section, we validate this model and obtain some insights using

it into the effects of in-network computation on the network

performance.

IV. VALIDATION AND INSIGHTS

In this section, we validate our flow model formulation Pf ,

i.e., we attempt to show that it computes an excellent upper

bound to the solution of the discrete-time model Pd(m) and

give some insights on the effects of in-network computation

on network performance. We first prove some propositions re-

lated to the maximum achievable throughput using in-network

computation and prove that when M = n the flow model

formulation Pf is equivalent to the convergecast formulation

in the literature. Next, we propose a heuristic that computes

a feasible solution to the discrete-time model based on the

solution to the flow model. As these solutions are very close

to the flow model solutions in terms of maximum achievable

throughput, we have validated our flow model formulation.

Finally, we give some insights on the effects of in-network

computation on maximum achievable throughput.

A. Some Results

As explained in the introduction (Section I-A), in-network

computation leads to data aggregation. This reduces the total

volume of data transmitted in the network and potentially

increases the achievable throughput. Hence, we can con-

clude that using in-network computation could never perform

worse than convergecast in terms of the maximum achievable

throughput. This leads to the following proposition.

Proposition 4.1: If λM is the maximum achievable

throughput with in-network computation when the sink is

interested in the first M moments of the data collected by the

sensor nodes and λC is the maximum achievable throughput

using convergecast, then

λM ≥ λC ∀M ≥ 1 (63)

Again consider the problem where the sink is interested

in the first M moments of the data collected by the sensor

nodes in the network. If in-network computation is allowed,

any node that has k different raw data packets of the same

wave in its buffer decides to aggregate them if and only if

k > M . It creates the M different partial sums using those k
data and thus reduces the number of time slots it requires to

transmit the information in its buffer from k to M . Because

of this nature of in-network computation, it is obvious that

the potential savings in the volume of the transmitted data are

inversely proportional to M . Thus, we have

Proposition 4.2: If λM is the maximum achievable

throughput with in-network computation when the sink is

interested in the first M moments of the data collected by

the sensor nodes then

λM ≥ λM+1 ∀M ≥ 1 (64)

The maximum number of raw data packets a node can

potentially receive of a particular wave is limited by the

number of nodes n in the network because every node collects

only one data packet per wave. So, when M ≥ n, no node

would be able to perform aggregation and reduce the volume

of the transmitted data. Thus, the maximum throughput we

can expect cannot be more than that is possible through

convergecast. This proves the following proposition.

Proposition 4.3: If n is the number of nodes in the network

excluding the sink, λM is the maximum achievable throughput

with in-network computation when the sink is interested in the

first M moments of the collected data and λC is the maximum

achievable throughput using convergecast then

λn = λn+1 = . . . = λC (65)

Based on this proposition, it would give us another level of

confidence if we could show that the solution given by our

flow model Pf when M = n is equal to the solution of the

flow model for convergecast given in [2]. Next, we show this.

B. The Special Case of M = n

Let λn be the optimal throughput of Pf when M = n and

let λC be the optimal convergecast throughput obtained by

solving the following problem PC [2]. Recall that there is a

flow from every source s to the sink in convergecast.
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PC : Max
α,y

λ (66)

∑

j

ysi,j −
∑

j

ysj,i =

{

λ if i = s

0 otherwise
(67)

n
∑

s=1

ysi,j ≤
∑

I

A(i,j),IαI (68)

∑

I

αI ≤ 1 (69)

From Proposition 4.1, we have

λn ≥ λC (70)

Next, we perform a series of transformations on Pf when

M = n. The idea is to get rid of the dependence on the flow

type p. From constraint (42), we get the value of us
i

us
i =

∑

j

ys,pi,j −
∑

j

ys,pj,i

Replacing us
i in constraint (41) and rearranging the terms gives

∑

j

(ys,0i,j + ys,pi,j )−
∑

j

(ys,0j,i + ys,pj,i ) =

{

λ if i = s

0 otherwise

We sum on both sides over all p to get

n
∑

p=1

∑

j

(ys,0i,j +ys,pi,j )−

n
∑

p=1

∑

j

(ys,0j,i +ys,pj,i ) =

{

nλ if i = s

0 otherwise

Next, we add constraint (44) to constraint (45) and get

n
∑

s=1

(ys,0i,j + ys,pi,j ) ≤ z0i,j + nzpi,j ∀p ∀(i, j) ∈ L

We sum the above inequality over all p to get

n
∑

p=1

n
∑

s=1

(ys,0i,j + ys,pi,j ) ≤ n

n
∑

p=0

zpi,j

Now, we replace

n
∑

p=1

(ys,0i,j + ys,pi,j ) → nysi,j and

n
∑

p=0

zpi,j → zi,j

With these changes, problem Pf becomes problem P5

P5 : Max
α,y,z

λ (71)

∑

j

ysi,j −
∑

j

ysj,i =

{

λ if i = s

0 otherwise
(72)

zi,j ≤ xi,j (73)
n
∑

s=1

ysi,j ≤ zi,j (74)

xi,j ≤
∑

I

A(i,j),IαI (75)

∑

I

αI ≤ 1 (76)

It is not hard to see the equivalence of this new problem

with the flow model for convergecast (66–69). Thus, if λ5 is

the optimal throughput of this new problem, then we have

λC = λ5 (77)

Since, a feasible solution to P5 can be constructed from the

optimal solution to Pf with M = n, we have

λ5 ≥ λn (78)

From (70), (77) and (78), we conclude that when M = n,
Pf (40–47) is equivalent to the convergecast formulation given

in the literature [2].

In the next sub-section, we give an heuristic to construct a

feasible solution to the discrete-time model formulation, whose

achievable throughput is close to optimal.

C. Feasible Solution: Lower Bound

By design, the flow model Pf (40–47) gives an upper bound

on the maximum achievable throughput. However, solving

Pf is not straightforward as the number of possible Isets

is exponentially large in the number of links, making it a

very large linear program. So, we use the column generation

technique to solve Pf to optimality, which involves solving

a series of small linear programs [10]. Unlike the column

generation technique in [10], we a priori enumerate all the

possible Isets (using the efficient algorithm for enumeration

proposed in [10]). In the first iteration, we solve Pf with

only the single link Isets as the input. For every iteration after

this, the most useful Isets to be added are determined using

the dual values of the constraints of the current iteration. We

iterate until all the constraints have non-positive dual values

which ensures optimality. We have successfully employed

this technique for networks with up to 30 nodes. For larger

networks, a priori enumeration of Isets is not scalable and

we need more sophisticated column generation techniques

that generates new Isets as required after every iteration.

However, past work on wireless sensor networks suggests that

a clustering approach which divides a large network into many

small manageable clusters is the most efficient approach for

many applications [28], [29]. Thus, the approach we took in

this work is useful in most practical scenarios.

An obvious question now is how close the upper bound

computed by Pf is to the optimal solution of the discrete-

time model given in Section III-C. We answer this question

by computing the optimality gap between the upper bound

and some lower bound. If the gap is small, we know that the

upper bound is good. In this section, we show that this is the

case by obtaining a feasible solution (based on the solution

to the flow model) to the discrete-time model. The achievable

throughput of this feasible solution is naturally a lower bound

on the maximum achievable throughput.

Typically, a feasible solution to the discrete-time model

Pd(m) is a sequence of Isets (one Iset per time slot generally

with some periodic pattern). Assume that such a feasible solu-

tion to Pd(m) is given. To compute the achievable throughput

of this feasible solution, we have designed a simulator that

imitates the actual network operation. It works on two simple
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rules that capture the working of in-network computation when

the sink is interested in the first M moments:

1) A transmitter sends the highest type packet from the

oldest wave available in its queue.

2) A receiver aggregates the raw data it has in its queue for

a given wave when the total number of packets (including

all types and raw data) of that wave is more than M .

We activate the Isets in the sequence given in the feasible

solution and update the buffers at all nodes after every time

slot. From this, we get the number of time slots (∆m) required

to empty the network of the first m waves (we use m =
10000). Using this, we can now compute the throughput of

the given feasible solution as m/∆m and compare it with the

solution λ of Pf .

Next, we describe the method we use to obtain a feasible

schedule to the discrete-time model that gives near-optimal

throughput. As mentioned earlier, we derive the feasible solu-

tion from the optimal flow solution. Much information is lost

in the transformation from Pd(m) to Pf so that converting

the optimal solution of Pf to a feasible solution of Pd(m) is
difficult. Especially, the routing produced by the flow model

is generally too complex to be of any practical use. In order

to simplify routing, we impose new constraints on Pf to force

a single path routing. For this, we define a new set of binary

variables wi,j that indicate whether the link (i, j) is used or

not. The new constraints are

ys,pi,j ≤ wi,j ∀(i, j) ∀s ∀p
∑

j

wi,j ≤ 1 ∀i, wi,j ∈ {0, 1}

The solution to this problem is a set of Isets with the

fractions of time each of them should be activated to achieve

the optimal throughput possible through single-path routing.

We normalize these fractions to find the number of times

each Iset needs to be active. We assume a random order

of activation of these Isets and thus we have a sequence of

Isets that is a feasible solution to the discrete model. In the

simulator, we assume that this Iset pattern is repeated until all

the waves reach the sink and compute the throughput of this

feasible solution. However, adding the binary variables wi,j

has transformed Pf from a standard LP into a mixed IP so

that computing an optimal solution becomes extremely time

consuming as M or the size of the network increases. In the

cases where M becomes too large to solve the problem Pf

with single path routing within a reasonable time, we fix the

routing as follows:

1) We either use a min-hop tree or

2) a tree using the most active links in the optimal solution

to Pf .

We then solve Pf (40–47) considering only this tree as

the network. We obtain a feasible solution to the discrete-

time model and compute the achievable throughput using the

simulator following the same approach as described before.

For some instances, the min-hop tree gives better throughput

than the other tree and vice versa.

For numerical results, we have randomly generated two

16-nodes networks (netA and netB) and a 30-nodes network
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Fig. 2: λ vs P for the 16-nodes network, netA when M = 1

(netC), given in Figure (1). We used the network parameters

given in Table I with the following channel propagation model.

Pi,j =
Gi,jP

(
di,j

d0

)η
; SNR =

Pi,j

N0

where di,j is the physical distance between nodes i and j, Gi,j

is the channel gain on link (i, j) that accounts for channel

fading and shadowing, d0 is the near-field cross over distance,

η is the path-loss exponent and N0 is the thermal noise power

in the frequency band of operation. Recall that we assume

the channel gains to be quasi time-invariant. For simplicity in

numerical calculations, we have assumed the same constant G
on all the links. However, this should not be construed as a

limitation as computations with different G on different links

are not more complex.

β 6.4 dB

N0 -100 dBm

η 3

d0 0.1 m

Gl 1

TABLE I: Network parameters used for obtaining numerical

results

Network At the lowest power At the highest power

netA 2 15

netB 3 15

netC 6 29

TABLE II: Average node degree in netA, netB and netC

The average node degree of the three networks at the lowest

and the highest powers is given in Table II. For the two 16-

nodes networks, we were able to optimally solve the single-

path problem for M < 8 but for higher M , we have fixed

the routing using the two methods described before. For the

30-nodes network, CPLEX was unable to solve the optimal

single-path problem for any M as it is a very large binary

program. Thus, we use the other heuristics that fix the routing

using other methods to obtain the feasible solutions.

Plots of maximum achievable throughput λ versus the

transmit power P (used by all the nodes) for some selected

M for the three networks (netA, netB and netC) are given

in Figures (2 – 9). These plots show that the upper bound
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sink

(a) First 16 nodes network, netA

sink

(b) Second 16 nodes network, netB

sink

(c) A 30 nodes network, netC

Fig. 1: Random Networks
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Fig. 3: λ vs P for the 16-nodes network, netA when M = 3
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Fig. 4: λ vs P for the 16-nodes network, netA when M = 15
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Fig. 5: λ vs P for the 16-nodes network, netB when M = 2
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Fig. 6: λ vs P for the 16-nodes network, netB when M = 5
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Fig. 7: λ vs P for the 16-nodes network, netB when M = 10
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Fig. 8: λ vs P for the 30-nodes network, netC when M = 1
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Fig. 9: λ vs P for the 30-nodes network, netC when M = 12
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Fig. 10: γ (gain) vs M for netA at three different powers

(labelled optimal flow) is very close to the lower bound

(labelled feasible solution). This validates the flow model Pf .

D. Insights

We can now use the flow model to gain some insights on the

effect of in-network computation. The first result comes from

Figures (2–7). Because of the way we constructed the feasible

solution, they show that we can get near-optimal throughput

using a single-path routing. This is important since single path

routing is easy to implement and our results confirm that this

is not a bad idea. The feasible solutions in Figure (8) for the

30-nodes network when M = 1 are not as close to the upper

bound as those for the 16-nodes network in Figures (2). The

reason for this is that we were unable to optimally solve the

large binary program (that imposes single path routing) for the

30-nodes network that gives the best feasible solutions for the

16-nodes network for small M .

As mentioned in the introduction, in-network computation

is expected to potentially improve the throughput significantly

compared to convergecast. In this paper, we have attempted to

quantify this improvement and to the best of our knowledge,

this is the first such attempt in the literature. For the plots in

Figures (10–11), we define the gain γ
M

as follows and plot it

with respect to M .

γ
M

=
λM − λC

λC

(79)

We observe from this plots that for low M , in-network com-

putation does lead to significant gains in throughput compared

to convergecast at all powers. For M = 1, the throughput

using in-network computation is several times larger than that
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Fig. 11: γ (gain) vs M for netB at three different powers

is possible using convergecast and even for relatively large M
like 5, the gains in throughput are surprisingly still significant.

We also note that these gains are much larger at lower

powers than at higher powers which implies that λM increases

slower than λC when the transmission power increases. This

is because the increased spatial reuse resulting from higher

transmission power is more useful for the convergecast that

transports larger volume of data compared to when in-network

computation is allowed. We believe that our model can further

shed light on the optimal topology, the optimal placement of

gateway, etc., and provide further insights on the effects of

in-network computation on network performance. We would

explore this as a part of our future work.

V. CONCLUSION

In this paper, we have rigorously developed a framework to

study the problem of in-network computation in a wireless

sensor network using scheduling under a physical interfer-

ence model. In particular, we have derived a flow model to

compute the maximum achievable throughput when the sink

is interested in the first M moments of the collected data.

In addition, we have given a method to obtain near-optimal

feasible solutions to the discrete-time model.

From the numerical results, we observed that it was possible

to achieve close to optimal throughput using a single path rout-

ing. The gains due to in-network computation are significant

even for relatively large M and they are much larger at lower

powers than at higher powers.

Maximizing the lifetime of a sensor network is an important

objective in sensor networks context. In-network computation

has the potential to reduce the energy consumption per node

and thus increase the overall lifetime. Modifying our flow

model to study this problem is straightforward. Apart from

this, our future work would involve developing similar flow

models when the sink is interested in functions other than the

first M moments and further understanding the effects of in-

network computation on network performance.
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