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Abstract—Traffic monitoring and estimation of flow parame-
ters in high speed routers have recently become challenging as the
Internet grew in both scale and complexity. In this paper, we focus
on a family of flow-size estimation algorithms we call Residual-
Geometric Sampling (RGS), which generates a random point
within each flow according to a geometric random variable and
records all remaining packets in a flow counter. Our analytical
investigation shows that previous estimation algorithms based on
this method exhibit certain bias in recovering flow statistics from
the sampled measurements. To address this problem, we derive
a novel set of unbiased estimators for RGS, validate them using
real Internet traces, and show that they provide an accurate and
scalable solution to Internet traffic monitoring.

I. INTRODUCTION

Recent growth of the Internet in both scale and complexity
has imposed a number of challenges on network management,
operation, and traffic monitoring. The main problem in this
line of work is to scale measurement algorithms to achieve
certain objectives (e.g., accuracy) while satisfying real-time
resource constraints (e.g., fixed memory consumption and
per-packet processing delay) of high-speed Internet routers.
This is commonly accomplished (e.g., [5], [6], [7], [8], [9],
(101, [11], [14], [15], [17], [21], [18], [19], [20], [22], [25],
[30]) by reducing the amount of information a router has
to store in its internal tables, which comes at the expense
of deploying special estimation techniques that can recover
metrics of interest from the collected samples.

In this paper, we study two problems in the general area of
measuring flow sizes — 1) determining the number of packets
transmitted by ‘“elephant” flows [11], [15], [17], [21], [20],
[22] and 2) building the distribution of flow sizes seen by the
router in some time window [7], [18], [30] — coupled in a
single measurement technique. The former problem arises in
usage-based accounting and traffic engineering [6], [11], [12],
[13], [26], while the latter has many security applications such
as anomaly and intrusion detection [1], [23], [16].

Our interest falls within the family of residual sampling,
which selects a random point A within each flow and then
samples the remainder R of that flow until it ends. Denoting
by L the size (in packets) of a random flow, sampled residuals
R are simply L — A. Stochastically larger A results in fewer
flows being sampled and leads to lower overhead in terms of
both CPU and RAM consumption. Besides reduced overhead
arising from omission of many small-size flows from counter
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tables, residual sampling guarantees to capture large flows with
probability 1 — o(1) as their size L — oco. This allows ISPs
to determine ‘“heavy-hitters” and charge the corresponding
customers for generated traffic.

While in P2P networks residual sampling distributes the
initial point A uniformly within user lifetimes [29], flow-based
estimation [11], [17] usually employs geometric A since it
can be easily implemented with a sequence of independent
Bernoulli variables. We call the resulting approach Residual-
Geometric Sampling (RGS) and note that it has received some
limited analytical attention in [11], [17]; however, unbiased
estimation of individual flow sizes, analysis of the resulting er-
ror, asymptotically accurate recovery of flow-size distribution
P(L = i) from sampled residuals R, and analysis of space-
CPU requirements in steady state have not been explored. We
overcome these issues below.

A. Single-Flow Usage

We start with the problem of obtaining sizes of individ-
ual flows for accounting purposes. Since residual sampling
requires an estimator to convert residuals into the metrics of
interest, our first task is to define proper notation and desired
properties for the estimation algorithm. Assume that for a flow
of size L the sampling algorithm produces residual Ry, where
both L and R; are random variables. We call an estimator
e(Ry) unbiased if its expectation produces the correct flow
size, ie., Fle(Rp)[L = 1] = Ele(R;)] = [. Unbiased
estimation allows one to average the estimated size of several
flows of a given size ! and accurately estimate their total
contribution. We further call an estimator elephant-accurate
if ratio e(R;)/l converges to 1 in mean-square as [ — oo.
Elephant-accuracy ensures that the variance of e(R;)/l tends
to zero as | — oo, which means that the amount of relative
error between e(R;) and [ becomes negligible for large flows.

Prior work on RGS [11], [17] has suggested the following
estimator:

e(RL) =Rr—1+1/p, )

where 0 < p < 1 is the parameter of geometric variable A.
To understand the performance of (1), we first build a general
probabilistic model for residual-geometric sampling and derive
the relationship between flow size L and its residual Ry,. Using
this result, we prove that:

l

Ele(Ry)] = - 2)



which indicates that (2) is generally biased and on average
tends to overestimate the original flow size by a factor of up to
1/p. To address this problem, we derive a different estimator:

é(RL)ZRL—l-l-l/p—m

3)
and prove that it is both unbiased and elephant-accurate.
We also derive in closed-form the mean-square error §; =
E[(é(R;)/l—1)?] for finite [, which can be used to determine
when (3) approximates the true flow size with accuracy
sufficient for billing purposes.

B. Flow-Size Distribution

Our second problem is estimation of the original flow-size
probability mass function (PMF), which we assume is given
by fi = P(L = 1i),i = 1,2,... We call PMF estimator ¢;
asymptotically unbiased if it converges in probability to f; for
all ¢ as the number of sampled flows M — oco. One may
be at first tempted to compute this distribution based on the
values produced by either (1) or (3) for each observed flow;
however, we show that such ¢; almost always differ from the
original distribution f; and the bias persists as sample size
M — oco. The reason for this discrepancy is that e(.) and é(.)
both estimate the sizes of flows that have been sampled by the
algorithm, which are not representative of the entire population
passing through the router. As longer flows are more likely to
be selected by residual sampling, this approach overestimates
their fraction and skews the PMF towards the tail.

Denote by M; the number of sampled flows with Ry = i
and define a new estimator:

(ji _ ‘Z\f\; (1 p)Mz+1 ) (4)
p+(1—p)M

Using the general model of RGS derived later in the paper,
we prove that g; tends to f; in probability as M =", M, —
oo and obtain the amount of error |g; — f;| for finite M. We
also provide asymptotically unbiased estimators for the total
number of flows n:

1_
A=M+—L, (5)
p

and the number of flows n; with exactly ¢ packets:

M; — (1 —p)M;

fiy = ( p) +17 6)
p

where nn/n — 1 and 7;/n; — 1, both in probability, as

M — oco. We call the resulting combination (3)-(6) Unbiased

Residual-Geometric Estimators (URGE).

C. Performance Evaluation

To reduce RAM overhead, our implementation periodically
discards flow records if the corresponding flows have com-
pleted (i.e., FIN, RST packets detected) or if no packets from
these flows arrive within some timeout 7. Unfortunately, no
analytical results are available on the number of flows M ()
that a router needs to track in steady state or the amount of
RAM needed to keep the counters. We overcome this problem

by deriving E[M (t)] in equilibrium and showing that it can
be orders of magnitude smaller than both the total number of
flows n and the number of sampled flows M.

We finish the paper by evaluating URGE with real Internet
traces obtained from NLANR [24] and CAIDA [3]. Our
experiments reveal that the proposed algorithm produces very
accurate estimation of flow metrics and thus allows one to
perform more aggressive sampling (i.e., smaller probability
p) of the monitored traffic. We also discover in experiments
that URGE works very well even on short traces, which
makes it suitable for monitoring small customer networks and
individual protocols.

II. RELATED WORK

In this section, we review several sampling algorithms in the
area of traffic monitoring. In particular, we classify existing
work into two categories: packet sampling and flow sampling,
where the former makes per-packet and the latter per-flow
decisions to sample incoming traffic.

A. Packet Sampling

Sampled NetFlow (SNF) [25] is a widely used technique in
which incoming packets are sampled with a fixed probability
p. The general goal of SNF is to obtain the PMF of flow
sizes; however, [14] shows that it is impossible to accurately
recover the original flow-size distribution from sampled SNF
data. Estan ef al. [10] propose Adaptive NetFlow (ANF), which
adjusts the sampling probability p according to the size of
the flow table; however, ANF’s bias in the sampled data is
equivalent to that in SNF and is similarly difficult to overcome
in practice.

Instead of using one uniform probability for all flows as in
[10], [25], another direction in packet sampling is to compute
p;(c) for each flow i based on its currently observed size c.
This approach has been studied by two independent papers,
Sketch-Guided Sampling (SGS) [20] and Adaptive Non-Linear
Sampling (ANLS) [15]. A common feature of these two
methods is to sample a new flow with probability 1 and then
monotonically decrease p;(c) as ¢ grows. Both methods must
maintain a counter for each flow present in the network and
are difficult to scale due to the high RAM/CPU usage.

B. Flow Sampling

In flow thinning [14], each flow is sampled independently
with probability p and then all packets in sampled flows are
counted. Hohn et al. [14] show that flow thinning is able
to accurately estimate the flow size distribution; however,
this method typically misses 1 — p percent of elephant flows
and thus does not support applications such as usage-based
accounting and traffic engineering [6], [11], [12], [13], [26].
For highly skewed distributions with a few extremely large
flows and many short ones (which is typical for Internet links),
this method may also take a long time to converge.

To address these problems of flow thinning, Estan et.
al. [11] introduce a size-dependent flow sampling algorithm
called Sample-and-Hold (S&H), which is proposed to identify



elephant flows. For each packet from a new flow, the algorithm
creates a flow counter with probability p; once a flow is
sampled, all of its subsequent packets are then counted. It
is easy to verify that S&H samples a flow with size [ with
probability 1 — (1 — p)!, which quickly approaches 1 as [
grows. Creating a unifying analytical model for this approach
and understanding the properties of samples it collects is the
main topic of this paper.

Another direction of size-dependent flow sampling has been
explored by Duffield et al. in [5], [6], [8], which present an-
other size-dependent flow measurement method called Smart
Sampling. Their approach selects each flow of size L with
probability p(L) = min(1,L/z), where z is some constant.
Since this method requires flow size L before deciding whether
to sample it or not, it can only be applied oft-line.

Kompella et. al. [17] examine a method called Flow Slicing
(FS), which combines SNF and S&H with a variant of smart
sampling. Other non-sampling methods include exact counting
[27], [31] and lossy counting [18], [22], which are orthogonal
to our work.

III. UNDERLYING MODEL

In this section, we build a general probabilistic model of
Sample-and-Hold [11] and establish the necessary analytical
foundation for the results that follow. Due to limited space,
omitted proofs, simulations, and various implementation de-
tails can be found in the extended technical report [28].

A. Sample-and-Hold

Consider a sequence of packets traversing a router and
assume that its flow-measurement algorithm checks each
packet’s flow identifier z in some RAM table. If x is found
in the table, the corresponding counter is incremented by 1;
otherwise, with probability p a new entry for z is created in
the table (with counter value 1) and with probability 1 — p the
packet is ignored.

To model this process, we first need several definitions.
Assume that flow sizes are i.i.d. random variables and define
geometric age A to be the number of packets discarded from
the front of a flow with size L before it is sampled (see Fig.
1). Let G be a shifted geometric random variable with success
probability p, i.e., P(G = j) = (1 — p)’p. It thus follows that
Ay is simply:

Ap = min(G, L). @)

Now define geometric residual Ry to be the final counter
value of a flow of size L conditioned on the fact that it has
been sampled (i.e., A < L):

Rp=L—Ap, 3

which is also illustrated in Fig. 1. From the perspective of
traffic monitoring in this paper, geometric residual Ry, is the
only quantity collected during measurement and available to an
estimation algorithm. Since this approach belongs to the class
of residual-sampling techniques [29] and specifically uses ge-
ometric age, this paper calls S&H by a more mathematically-
specific name Residual-Geometric Sampling (RGS).

. flow size L . discarded
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Fig. 1. Residual-geometric sampling of a flow with size L.

Assume that L has a PMF f; = P(L = i), where ¢ =
1,2,..., and denote by p, = P(Ap < L) the probability that
a random flow is sampled. Then, we have the following result.

Lemma 1: Probability p, that a flow is selected by RGS is:

ps = E[L— (1—p)*] =1—Zfi(1—p)"- ©9)

Next, let h; = P(Rr = i) be the PMF of geometric residual
Ry, The following lemma expresses h; in terms of f;.
Lemma 2: The PMF of geometric residual Ry, is:

Y il =p)T
_ > .

The result of Lemma 2 is fundamental as most of the results
in this paper are conveniently derived from (10).

i

(10)

B. Fixed Flow Size

We next analyze a special case of residual sampling where
the original flow size is fixed at L = [. Note that residuals
are now R; instead of Ry since the original flow size is no
longer a random variable. Recall that the goal of single-flow
size estimation is to obtain [ from R; for each sampled flow.
The next corollary follows from (10) and gives the distribution
and expectation of geometric residual R;.

Corollary 1: Given flow size L = [, the PMF of R; is:

A=
PR, =1)= =1 =p) (11)
and its expectation is:
l
E =——F+1—-1/p. 12
[Rl] 1_(1_p)l+ /p (12)

Next, we apply the results obtained in this section to analyze
existing estimation methods that have been proposed for RGS.

IV. ANALYSIS OF EXISTING METHODS

In this section, we examine prior approaches [11], [17] to
estimating single-flow usage and whether their results can be
generalized to recover the PMF of L.

A. Single-Flow Usage

To evaluate single-flow estimators, we use the following
definition that is commonly used in statistics [2].

Definition 1: Estimator e(R;) is called unbiased if
Ele(Ry)] =1 for all I > 1.

Unbiased estimation is a key property of an estimator as
it allows accurate estimation of the total contribution from a
sufficiently large pool of flows (e.g., one customer network).
However, since large flows are typically rare, one commonly
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Fig. 2. Expectation of estimator (13) in simulations and its model (14).

faces an additional requirement to estimate their size with
Jjust a single sample e(R;), which is formalized in the next
definition.

Definition 2: Estimator e(R;) is called elephant-accurate if
e(R;)/l — 1 in mean-square as [ — cc.

Elephant-accuracy guarantees that the amount of relative
error between e(R;) and [ decays to zero as | — co. As before,
suppose that a flow of size [ produces a counter with value
R;. Recall that [11], [17] suggest the following estimator:

e(Ri) = R —1+1/p, (13)

where p is the probability of residual-geometric sampling. The
next result directly follows from (12).
Theorem 1: Expectation E[e(R;)] is given by:

I
L—(1=-pt

Note that (14) indicates that (13) is generally biased,
especially when [p is small. Indeed, for Ip ~ 0, we have
1 — (1 —p) =~ Ip and E[e(R;)] ~ 1/p regardless of I,
which shows that in such cases E[e(R;)] carries no infor-
mation about the original flow size. However, as | — oo, it
is straightforward to verify that the bias in e(R;) vanishes
exponentially, which is consistent with the analysis in [17],
which has only considered the case of | — oo.

To see the extent of bias in (13) and verify (14), we apply
residual-geometric sampling to flows of size [ ranging from 1
to 10° packets, feed the measured sizes to (13), and average
the result after 1000 iterations for each [. Fig. 2 plots the
obtained Ee(R;)] along with model (14). The figure indicates
that (14) indeed captures the bias and that (13) tends to over-
estimate the size of short flows even in expectation, where
smaller sampling probability p leads to more error.

To quantify the error of individual values e(R;) in estimat-
ing flow size [ and to understand elephant-accuracy, denote by
Y, = e(R;)/l and define the Relative Root Mean Square Error
(RRMSE) to be:

Ele(R))] = (14)

6 = VE[Yi - 1)7]. (15)
Note that §; — 0O indicates that ¥; — 1 in mean-square
and thus implies elephant-accurate estimation. The next result

derives §; in closed form.
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Fig. 3. RRMSE of (13) in simulations and its model (16).

Theorem 2: The RRMSE of (13) is given by:

1—p— — 1n2(1 = p)! — (1 = p)i+?
5 = p-ll-Dp(L-p) —(A=p)"" o
Pp*(1 = (1—p)")
Observe from (16) that for flows with size [ = 1, the

relative error is /1 —p/p, but as | — oo, § — 0 and
the estimator is elephant-accurate. Fig. 3 plots (16) against
simulations, indicating a close match. The figure also shows
that the RRMSE starts from 1/p and decreases towards zero
as O(1/1) as | — oo.

B. Flow-Size Distribution

We now investigate whether e(Ryz) defined in (13) can
be used to estimate the actual flow-size distribution {f;}3°;.
Denote by ¢; = P(e(Ry) = i) the PMF of estimated sizes
among the sampled flows. To understand our objectives with
approximating the PMF of L, the following definition is in
order.

Definition 3: An estimator {¢;}5°, of PMF {f;}°, is
called asymptotically unbiased if q; converges in probability
to f; for all ¢ as the number of sampled flows M — co.

The next theorem follows directly from (10).

Theorem 3: The PMF of flow sizes estimated from (13) is
given by: o

S £ =)
K2 ps )
where y(i) = [i + 1 — 1/p] and p; is in (9).

The result in (17) indicates that each ¢; is different from
fi regardless of the sampling duration and thus cannot be
used to approximate the flow-size distribution. We verify (17)
with a simulated packet stream with 5M flows, where flow
sizes follow a power-law distribution P(L < i) = 1 — i~ ®
for 2+ = 1,2,... and « = 1.1. Fig. 4 plots the CCDF of
random variable e(Ry) obtained from simulations as well
as model (17), both in comparison to the tail of the actual
distribution. The figure shows that (17) accurately predicts the
values obtained from simulations and that PMF {¢;} is indeed
quite different from {f;}.

So far, our study of existing methods in residual-geometric
sampling has shown that they are not only generally biased, but
also unable to recover the flow-size distribution from residuals
Ry. This motivates us to seek better estimation approaches,
which we perform next.

a7
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V. URGE

This section proposes a family of algorithms called Un-
biased Residual-Geometric Estimators (URGE), proves their
accuracy, and verifies them in simulations.

A. Single-Flow Usage

For estimating individual flow sizes, we first consider an
estimator directly implied by the result in (12). Notice that
solving (12) for [ and expressing flow size [ in terms of E[R;],
we get:

1 u
- mW(u(l —p)*log(1 —p))7

where u = E[R;] + 1/p — 1 and W (z) is Lambert’s function
(i.e., a multi-valued solution to We" = z) [4]. Thus, a
possible estimator can be computed from (18) with E[R]
replaced by the measured value of geometric residual R;.
However, there are two reasons that (18) is a bad estimator
of flow sizes. First, Lambert’s function W (z) has no closed
form solution and has to be numerically solved using tools
such as Matlab. Second, it can be verified (not shown here
for brevity) that (18) is not an unbiased estimator. Instead, we
define a new estimator:

(18)

1—p)t
é(Rl)ZRz—l-l—l/p—ﬂ. (19)
and next show that it is unbiased.
Lemma 3: Estimator é(R;) in (19) is unbiased, i.e.,
Ele(R))] = L. (20)

We plot in Fig. 5 simulation results obtained from (19). The
figure indicates that é(R;) accurately estimates actual sizes for
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Fig. 6. RRMSE of (19) in simulations and model (21).

all flows in both cases of p. Next, we derive the RRMSE of
URGE.
Theorem 4: The RRMSE of (19) is given by:

5:\/1—p+Zp<p—2)<1—p>l—(1—p>21+1
: Pp*(1—(1-p)) '

It is easy to verify from (21) that URGE has zero RRMSE
for | = 1 or [ — oo, confirming its elephant-accuracy. We
plot &, obtained from simulations along with the model in Fig.
6, which shows that (21) accurately tracks the actual relative
error. From Figures 5-6, it is clear that é(R;) significantly
improves the accuracy of estimating small flow sizes compared
to e(R;). In practice, (21) can be used to determine threshold
lgp, which leads to desired bounds on error for all [ > [y and
allows ISPs to use e(R;) instead of .

21

B. Flow-Size Distribution

It is worth mentioning that while (19) produces unbiased
estimation of flow sizes, é(Ry) is not suitable for computing
the flow-size distribution, as we show below. Denote by
Gi = P(é(Rr) = i) the PMF of é(Ry). Then, we have the
following result.

Lemma 4: PMF of é(Ry) is given by:

1o (i
0= > (1=p) D fip, (22)
* j=y(@)
where ps is in (9), function y(7) is:
y(i) =[i+1—-1/p—w], (23)

and w =W (—(1—p)"*1=1/Plog(1 — p)).

Notice from (22)-(23) that distribution ¢; does not even
remotely approximate the original PMF f;. This problem is
fundamental since residual sampling exhibits bias towards
larger flows and even if we could recover L from Ry exactly,
the distribution of sampled flow sizes would not accurately
approximate that of all flows passing through the router.

We thus explore another technique for estimating the flow-
size distribution. Before doing that, we need the next lemma.

Lemma 5: The flow size distribution f; can be expressed
using the PMF of geometric residuals {h;} in (10) as:

~hi—= (1 =p)hiy

= A om &9
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This result leads to a new estimator for the flow-size
distribution: M ) M
Q= e 25)
p+ (1 —p)M
where M is the total number of sampled flows and M; is the
number of them with the geometric residual equal to ¢. Since
M;/M — h; in probability as M — oo (from the weak law
of large numbers), we immediately get the following result.

Corollary 2: The estimator in (25) is asymptotically unbi-
ased.

We next verify the accuracy of ¢; in simulations with 5M
flows in the same setting as in the previous section. We plot
in Fig. 7 the CCDF estimated from (25) along with the actual
distribution. The figure shows that ¢; accurately follows the
actual distribution for both cases of p.

C. Convergence Speed

We next examine the effect of sample size M on the
convergence of estimator ¢;. To illustrate the problems arising
from small M, we study (25) with p = 1074 and 107 in
simulations with the same 5M flows. The estimator obtained
M = 3,090 flows for p = 10~* and just M = 337 for
p = 107°. Fig. 8 indicates that while the estimated curves
under both choices of p still approximate the trend of the
original distribution, they exhibit different levels of noise. As
the next result indicates, small p leads to a small sample size
M and thus more noise in the estimated values.

Corollary 3: Suppose that M flows are selected by
residual-geometric sampling from a total of n flows. Then,
the expected value of M is given by:

E[M] = nps = nE[1l — (1 —p)~]. (26)

To shed light on the choice of proper p for RGS, we show
how to determine the minimum M that would guarantee a
certain level of accuracy in ¢;. Define ﬁi = M;/M to be an
estimate of h; = P(Ry = 7). The next lemma follows from
Lemma 5 and Corollary 2 and indicates that the accuracy of
G; directly depends on whether h; approximates h; accurately.

Lemma 6: Suppose that |;LJ — h;| < nh; holds with prob-
ability 1 — £ for j € [1,4 + 1] and small constants 7 and &.
Then, there exists a constant (:

¢ = @+ 20— p)h)
p+ (1 =p)(1=nh

27)
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Fig. 8. Estimator (25) in simulations with very small p.

such that ( -+ 0asn — 0 and P(|g; — fi| < (fi)=1-¢&.
Next, we obtain a bound on M from the requirement that
h; be bounded in probability within a given range [h;(1 —
n); hi(1+n)]. )
Theorem 5: For small constants n and &, |h; — h;| < nh;
holds with probability 1 — ¢ if sample size M is no less than:

(L—hi) (o1 2
e (07 - g/2)”,
where ®(x) is the CDF of the standard Gaussian distribution
N(0,1).
For example, to bound ﬁz within 10% percent of h; (i.e.,
n = 0.1) with probability 1 — ¢ = 95% for all h; > 1072, the
following must hold:

(1-1072%) x 1.962
102 x 0.12

which indicates that M = 38K flows must be sampled to
achieve target accuracy. If we reduce 7 to 1%, increase 1—£ to
99%, and require the approximation to hold for all h; > 1073,
then M must be at least 66M flows. Converting 7 into ¢ using
(27), one can establish similar bounds on the deviation of ¢;
from f;.

M > (28)

M > ~ 3.8 x 10*, (29)

D. Estimation of Other Flow Metrics

Besides flow sizes and the flow-size distribution, URGE
also provides estimators for the total number of flows and
the number of them with size i. Before introducing these
estimators, we need the next lemma.

Lemma 7: The expected number of flows with sampled
residuals Ry, = 7 is:

where h; is the PMF of geometric residuals Ry and ps is
given by (9).

Based on this, we next develop two estimators and prove
their accuracy. Let n be an estimator of the total number of
flows n observed in the measurement window [0, T']:

(1-p)

n=M+ M,y 31)

and n; be an estimator of the number of flows n; with size i:
. M;—(1—-p)Miyq

i = (32)
p




Then, the next result shows that both of these estimators are
asymptotically unbiased.

Lemma 8: Ratios 7/n and n;/n; converge to 1 in proba-
bility as M — oo.

Note that [17] provided a similar estimator as (31) and
proved E[n] = n using a different approach from ours;
however, our results are stronger as they show convergence
in probability and additionally address estimation of n;. Sim-
ulations verifying (31)-(32) are omitted for brevity.

E. Active Flows

In a typical implementation of URGE, one needs a flow ta-
ble to keep a mapping between flow identifiers and associated
counters. An important element of any sampling algorithm is
to ensure that the table keeps only active flows, which can be
accomplished by periodic sweeps through RAM and removal
of all flows that have completed. Such a strategy together with
RGS can achieve a significant reduction in the table size.

To understand how much benefit removal of dead flows
provides to memory consumption, we next derive the expected
number of active flows at any time ¢ and their fraction sampled
by the algorithm. Assume a measurement window [0, 7],
where T is given in packets seen by the router. For each flow
7, let inter-packet delays within the flow be given by a random
variable Aj;, which counts the number of packet arrivals
from other flows between adjacent packets of j. Denoting by
A = E[A;], we have the following result.

Lemma 9: Assuming stationary flow arrivals in [0,7"] and
T — o0, the expected number of active flows N (¢) at time ¢
is given by:

E[N() = A+1. (33)

Our baseline reduction in flow volume comes from geo-
metric sampling in previous sections and reduces the number
of flows by a factor of r1 = n/E[M]. Now additionally
define ratio ro = n/E[N(t)] = T/(A + 1)E[L] and observe
that longer observation windows (i.e., larger T), smaller flow
sizes (i.e., smaller F[L]), and denser arrivals (i.e., smaller A)
imply more savings of memory. In fact, 7' — oo results in
ro — oo if the other parameters are fixed. However, even
more reduction is possible by discarding dead flows in RGS.
Denote by M(t) the number of sampled flows that are still
alive at ¢ and consider the next result.

Lemma 10: Assuming the flow arrival process is stationary
in [0, 7] and T — oo, the expected number of active sampled
flows at time ¢ is given by:

L—p
B0 = A+ 1)(1 - 0 Ps). (34)
where p; in (9) is the fraction of all flows sampled by RGS.

Define r3 = n/E[M(t)] and notice that it increases not
only as T" grows, but also when p decreases. Performing a self-
check using Jensen’s inequality, observe that 0 < p,/pE[L] <
1 and therefore E[M(t)] < E[N(t)], which means that the
former indeed always results in more reduction in table size.
Simulations with heavy-tailed flows (omitted due to limited
space) show that the model is very accurate.
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Fig. 9. Estimating single-flow usage in the FRG trace with p = 0.001.
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Fig. 10. RRMSE of single-flow usage in the FRG trace with p = 0.001.

VI. PERFORMANCE EVALUATION

In this section, we evaluate our models using several Internet
traces in Table I from NLANR [24] and CAIDA [3]. Trace
FRG was collected from a gigabit link between UCSD and
Abilene in 2006. We extracted from it additional traces with
only Web, DNS, and NTP flows (also seen in the table).
Additionally, we use three traces from CAIDA: LARGE - a
one-hour trace from an OC48 link, MEDIUM - a one-minute
trace from a OC192 link, and SMALL — a 7-minute trace from
a gigabit link.

As the table shows, URGE typically sees a reasonably large
number of flows M over the entire interval [0,7]; however,
the number of active flows N (¢) and those constantly kept in
memory M (t) is much smaller. For the FRG trace, for exam-
ple, E[M] is 15 times smaller than n, while E[N(t)] is 81
and E[M (t)] is 658 times smaller. In general, NLANR traces
benefit more from the removal of dead flows than CAIDA
data, because former was collected over two consecutive days
and thus had a larger observation window 7', which led to
larger ratios ro and r3. The same reasoning also explains the
fact that the LARGE trace exhibits much higher benefit from
removing dead flows than MEDIUM or SMALL traces.

A. Estimation Accuracy

First, we examine the problem of estimating the total
number of flows n in [0,77] and size-one flows n; in this
interval. The fifth and eighth columns of Table II list the
absolute error of models (31) and (32), respectively. The table
indicates that these estimates are commonly within 2.5% of
the correct value.

We next evaluate the performance of URGE in estimating
single-flow usage. Fig. 9 plots the expectation of estimated



TABLE I
REDUCTION IN THE NUMBER OF FLOWS USING RESIDUAL SAMPLING WITH p = 0.01 AND DIFFERENT TYPES OF PERIODIC REMOVAL OF DEAD FLOWS

sampling only removal only both
source trace total flows n | total pkts nFE[L] E[M] T [ EIN®O] 12 | E[M)] =
FRG 1,756,702 131,821,685 117,995 15 21,645 81 2,669 658
NLANR Web 239,174 6,497,894 26,051 9 9,698 24 985 240
DNS 120, 446 292,977 2,073 44 600 152 19 4,797
NTP 382,489 720,447 4,086 54 3,036 73 7 2,887
LARGE 9,653, 609 117,250,415 519,144 19 | 262,525 37 21,590 447
CAIDA | MEDIUM 2,317,369 43,837,666 139,316 17 | 281,137 8 53,903 43
SMALL 200,910 2,179,574 12,862 16 44,414 5 5,948 34
TABLE II
PERFORMANCE OF URGE WITH p = 0.001
] # of flows # of size-one flows
source trace actual (n) estimated (72) error actual (n1) | estimated (1271) error
FRG 1,756,702 1,736,261 1.16% 768,742 749,958 2.44%
NLANR Web 239,174 253,996 6.2% 13,686 13,922 1.72%
DNS 120, 446 124,176 3.1% 76,607 78,045 1.88%
NTP 382,489 375,326 1.87% 281,370 279,096 0.8%
LARGE 9,653,609 9,717,315 0.66% | 4,535,449 4,630,037 2.09%
CAIDA MEDIUM | 2,317,369 2,278,984 1.66% | 1,299,343 1,273,989 1.95%
SMALL 200,910 202, 604 0.84% 93,575 95,106 1.64%
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Fig. 11. Estimating the flow size distribution using URGE in the FRG trace.

flow sizes (averaged over 100 iterations) along with the actual
values obtained from the FRG trace using p = 0.001. The
figure shows that the estimator e(R;) from previous work
tends to overestimate the sizes of small flows, while URGE’s
estimator é(R;) accurately follows the actual values. We also
compare the relative errors of the two studied methods in Fig.
10, which indicates that URGE has RRMSE bounded by 1
for all flows, while e(R;) exhibits very large d; for small and
medium flows, which is an increasing function of 1/p.

For the flow-size distribution, we first examine three values
of p to compare its effect on the accuracy of URGE in the FRG
trace. Fig. 11 indicates that estimation for all three values of p
are very consistent and all of them follow the actual distribu-
tion accurately. In our experiments with p = 0.0001, URGE
recovered the original PMF { f;} using only M = 7,616 total
flows out of n = 1.75M.

Finally, we apply URGE with p = 0.001 to NLANR traces
of different traffic types and plot in Fig. 12 the estimated
distributions along with the actual ones. As the figure shows,
the flow statistics of different applications can be accurately
estimated by URGE. We observe a similar match in our
experiments with three CAIDA traces as shown in Fig. 13.

VII. CONCLUSION

In this paper, we proved that previous methods based on
residual-geometric sampling had certain bias in estimating
single-flow usage and were unable to recover the flow-size
distribution from the sampled residuals. To overcome this
limitation, we proposed a novel modeling framework for
analyzing residual sampling and developed a set of algorithms
that were able to perform accurate estimation of flow statistics,
even under the constraints of small router RAM size, short
trace duration, and low CPU sampling overhead.
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