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Abstract—We study the trade-off between delivery delay and
energy consumption in a delay tolerant network in which a
message (or a file) has to be delivered to each of several
destinations by epidemic relaying. In addition to the destinations,
there are several other nodes in the network that can assist in
relaying the message. We first assume that, at every instant, all
the nodes know the number of relays carrying the packet and
the number of destinations that have received the packet. We
formulate the problem as a controlled continuous time Markov
chain and derive the optimal closed loop control (i.e., forwarding
policy). However, in practice, the intermittent connectivity in the
network implies that the nodes may not have the required perfect
knowledge of the system state. To address this issue, we obtain an
ODE (i.e., a deterministic fluid) approximation for the optimally
controlled Markov chain. This fluid approximation also yields
an asymptotically optimal open loop policy. Finally, we evaluate
the performance of the deterministic policy over finite networks.
Numerical results show that this policy performs close to the
optimal closed loop policy.

I. INTRODUCTION

Delay tolerant networks (DTNs) [[1] are sparse wireless ad
hoc networks with highly mobile nodes. In these networks,
the link between any two nodes is up when these are within
each other’s transmission range, and is down otherwise. In
particular, at any given time, it is unlikely that there is a
complete route between a source and its destination.

We consider a DTN in which a short message (also referred
to as a packet) needs to be delivered to multiple (say M)
destinations. There are also N potential relays that do not
themselves “want” the message but can assist in relaying
it to the nodes that do. At time ¢ = 0, Ny of the relays
have copies of the packet. All nodes are assumed to be
mobile. In such a network, a common technique to improve
packet delivery delay is epidemic relaying [2]. We consider a
controlled relaying scheme that works as follows. Whenever a
node (relay or destination) carrying the packet meets a relay
that does not have a copy of the packet, then the former has
the option of either copying or not copying. When a node that
has the packet meets a destination that does not, the packet
can be delivered.

This is an extended version of a paper that appeared in WiOpt 2011.

This work was supported by the Indo-French Centre for the Promotion of
Advanced Research (IFCPAR) Project 4000-IT-1, by DAWN (an Associates
program of INRIA, France), and by the Department of Science and Technol-
ogy, Government of India.

Chandramani Singh, Anurag Kumar and Rajesh Sundaresan are with the
Department of Electrical Communication Engineering Indian Institute of Sci-
ence Bangalore, India (email: {chandra, anurag, rajeshs}@ece.iisc.ernet.in).
Eitan Altman is with INRIA, Sophia-Antipolis, France (email: Ei-
tan.Altman @sophia.inria.fr).

We want to minimize the delay until a significant fraction

(say «) of the destinations receive the packet; we refer to this
duration as delivery delay. Evidently, delivery delay can be
reduced if the number of carriers of the packet is increased
by copying it to relays. Such copying can not be done
indiscriminately, however, as every act of copying between
two nodes incurs a transmission cost. Thus, we focus on the
problem of the control of packet forwarding.
Related work: Analysis and control of DTNs with a single-
source and a single-destination has been widely studied.
Groenevelt et al. [3] modeled epidemic relaying and two-
hop relaying using Markov chains. They derived the average
delay and the number of copies generated until the time of
delivery. Zhang et al. [4] developed a unified framework based
on ordinary differential equations (ODEs) to study epidemic
routing and its variants.

Neglia and Zhang [5] were the first to study the optimal
control of relaying in DTNs with a single destination and
multiple relays. They assumed that all the nodes have perfect
knowledge of the number of nodes carrying the packet. Their
optimal closed loop control is a threshold policy - when a relay
that does not have a copy of the packet is met, the packet
is copied if and only if the number of relays carrying the
packet is below a threshold. Due to the assumption of complete
knowledge, the reported performance is a lower bound for the
cost in a real system.

Altman et al. [6] addressed the optimal relaying problem for
a class of monotone relay strategies which includes epidemic
relaying and two-hop relaying. In particular, they derived static
and dynamic relaying policies. Altman et al. [7] considered
optimal discrete-time two-hop relaying. They also employed
stochastic approximation to facilitate online estimation of
network parameters. In another paper, Altman et al. [8] consid-
ered a scenario where active nodes in the network continuously
spend energy while beaconing. Their paper studied the joint
problem of node activation and transmission power control.
These works ([6]], [[7], [8]) heuristically obtain fluid approxi-
mations for DTNs and study open loop controls. Li et al. [9]]
considered several families of open loop controls and obtain
optimal controls within each family.

Deterministic fluid models expressed as ordinary differential
equations have been used to approximate large Markovian
systems. Kurtz [[10] obtained sufficient conditions for the con-
vergence of Markov chains to such fluid limits. Darling [[11]]
and subsequently, Darling and Norris [[12]] generalized Kurtz’s
results. Darling [[11] considers the scenario when the Marko-
vian system satisfies the conditions in [10] only over a subset.



He shows that the scaled processes converge to a fluid limit
until they exit from this subset. Darling and Norris [12]]
generalize the conditions for convergence, e.g., uniform con-
vergence of the mean drifts of Markov chains and Lipschitz
continuity of the limiting drift function, prescribed in [10].
Gast and Gaujal [13] address the scenario where the limiting
drift functions are not Lipschitz continuous. They prove that
under mild conditions, the stochastic system converges to the
solution of a differential inclusion. Gast et al. [14] study
an optimization problem on a large Markovian system. They
show that solving the limiting deterministic problem yields an
asymptotically optimal policy for the original problem.

Our Contributions: We formulate the problem as a con-
trolled continuous time Markov chain (CTMC) [15], and
obtain the optimal policy (Section [[II). The optimal policy
relies on complete knowledge of the network state at every
node, but availability of such information is constrained by
the same connectivity problem that limits packet delivery.
In the incomplete information setting, the decisions of the
nodes would have to depend upon their beliefs about the
network state. The nodes would need to update their beliefs
continuously with time, and also after each meeting with
another node. Such belief updates would involve maintaining
a complex information structure and are often impractical
for nodes with limited memory and computation capability.
Moreover, designing closed loop controls based on beliefs is
a difficult task [16], even more so in our context with multiple
decision makers and all of them equipped with distinct partial
information.

In view of the above difficulties, we adopt the following
approach. We show that when the number of nodes is large,
the optimally controlled network evolution is well approx-
imated by a deterministic dynamical system (Section [[V]).
The existing differential equation approximation results for
Markovian systems [10]], [11] do not directly apply, as, in the
optimally controlled Markov chain that arises in our problem,
the mean drift rates are discontinuous and do not converge
uniformly. We extend the results to our problem setting in
our Theorem [£.]] in Section [Vl Note that the differential
inclusion based approach of Gast and Gaujal [13] is not
directly applicable in our case, as it needs uniform convergence
of the mean drift rates. The limiting deterministic dynamics
then suggests a deterministic control that is asymptotically
optimal for the finite network problem, i.e., the cost incurred
by the deterministic control approaches the optimal cost as the
network size grows. We briefly consider the analogous control
of two-hop forwarding [17] in Section Our numerical
results illustrate that the deterministic policy performs close
to the complete information optimal closed loop policy for a
wide range of parameter values (Section [VI).

In a nutshell, the ODE approach is quite common in the
modeling of such problems. Its validity in situations without
control is established by Kurtz [10], Darling and Norris [12],
etc. We aim in this paper at rigorously showing the validity
of this limit under control in a few DTN problems.

II. THE SYSTEM MODEL

We consider a set of K := M + N mobile nodes. These
include M destinations and N relays. At t = 0, a packet is
generated and immediately copied to Ny relays (e.g., via a
broadcast from an infrastructure network). Alternatively, these
Ny nodes can be thought of as source nodes.

1) Mobility model: We model the point process of the meet-
ing instants between pairs of nodes as independent Poisson
point processes, each with rate A. Groenevelt et al. [3] validate
this model for a number of common mobility models (random
walker, random direction, random waypoint). In particular,
they establish its accuracy under the assumptions of small
communication range and sufficiently high speed of nodes.

2) Communication model: Two nodes may communicate
only when they come within transmission range of each other,
i.e., at meeting instants. The transmissions are assumed to be
instantaneous. We assume that that each transmission of the
packet incurs unit energy expenditure at the transmitter.

3) Relaying model: We assume that a controlled epidemic
relay protocol is employed.

Throughout, we use the terminology relating to the spread
of infectious diseases. A node with a copy of the packet is said
to be infected. A node is said to be susceptible until it receives
a copy of the packet from another infected node. Thus at ¢ = 0,
Ny nodes are infected while M + N — Ny are susceptible.

A. The Forwarding Problem

The packet has to be disseminated to all the M destinations.
However, the goal is to minimize the duration until a fraction
a (a < 1) of the destinations receive the packet.

At each meeting epoch with a susceptible relay, an infected
node (relay or destination) has to decide whether to copy the
packet to the susceptible relay or not. Copying the packet
incurs unit cost, but promotes early delivery of the packet to
the destinations. We wish to find the trade-off between these
costs by minimizing

E{7q +~E:} )

where 7T; is the time until which at least M, := [aM]
destinations receive the packet, £. is the total energy con-
sumed in copying, and v is the parameter that relates energy
consumption cost to delay cost. Varying v helps studying the
trade-off between the delay and the energy costs.

III. OpTIMAL EPIDEMIC FORWARDING

We derive the optimal forwarding policy under the as-
sumption that, at any instant of time, all the nodes have full
information about the number of relays carrying the packet
and the number of destinations that have received the packet.
This assumption will be relaxed in the next section.

A. The MDP Formulation

Let tx,k = 1,2,... denote the meeting epochs of the
infected nodes (relays or destinations) with the susceptible
nodes. Let ty := 0 and define 6y, := ty — tp_q for k > 1.
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Fig. 1. Evolution of the controlled Markov chain {sg }. Note that (my, ng)
is embedded at ¢ —, i.e., just before the meeting epoch.

Let m(t) and n(t) be the numbers of infected destinations
and relays, respectively, at time ¢. In particular, m(0) = 0
and n(0) = Ny, and the forwarding process stops at time ¢ if
m(t) = M. We use my, and ny to mean M (¢t;,—) and N (t;—)
which are the numbers of infected destinations and relays,
respectively, just before the meeting epoch t. Let e describe
the type of the susceptible node that an infected node meets
at t; e, € € := {d,r} where d and r stand for destination
and relay, respectively. The state of the system at a meeting
epoch tj is given by the tuple

Sg = (mg, ng, ex).

Since the forwarding process stops at time ¢ if m(t) = M, the
state space is [M — 1] x [Ny : N] x &[]

Let uy, be the action of the infected node at meeting epoch
tg,k =1,2,.... The control space is U € {0,1}, where 1 is
for copy and 0 is for do not copy. The embedding convention
described above is shown in Figure

We treat the tuple (0x41,€r+1) as the random disturbance
at epoch t;. Note that for £ = 1,2, ..., the time between suc-
cessive decision epochs, Jy, is independent and exponentially
distributed with parameter (my, + ng)(M + N —my — ng)\.
Furthermore, with “w.p.” standing for “with probability”, we
have
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1) Transition structure: From the description of the system
model, the state at time k + 1 is given by sp41 = (mg +
uk,nk,ekH) if ex = d, and sg41 = (kaLk + uk,ekH)
if e, = 7. Recall that e;4; is a component in the random
disturbance. Thus the next state is a function of the current
state, the current action and the current disturbance as required
for an MDP .

2) Cost Structure: For a state-action pair (sg,ur) the
expected single stage cost is given by

g(ska uk) = YUk + E {5]€+11{mk+1<1\1a}} 9

'We use notation [a] = {0, 1,..
b>a+1anda,b€Zy.

.,a} and [a:b] = {a,a+1,...,b} for

where the expectation is taken with respect to the random
disturbance (041, €x+1)- It can be observed that

~yuyg if s is such that my > M,

g(Sk,uk) = ¢ v if sp = (M, — 1,n,d) and ug = 1
yug + Cq(sk, ux) otherwise,
where
Calsirun) :
Sk, Uk) =
AT O+ g + ) (M + N — my, — nge — up) X

is the mean time until the next decision epoch. The quantity
v is expended whenever u; = 1, i.e., the action is to copy.

3) Policies: A policy 7 is a sequence of mappings {u], k =
0,1,2,...}, where u] : [M — 1] x [Ny : N| x &€ — U. The
cost of an admissible policy 7 for an initial state s = (m, n, e)
is

Jr(8) = ZE{g(sk,uZ(sk))’so = s}
k=0

Let II be the set of all admissible policies. Then the optimal
cost function is defined as

J(s) = min Jr(8).
A policy 7 is called stationary if uj, are identical, say u, for
all k. For brevity we refer to such a policy as the stationary
policy u. A stationary policy u* = {u*,u*,...} is optimal if
Ju~(8) = J(s) for all states s.

4) Total Cost: We now translate the optimal cost-to-go from
the first meeting instant into optimal total cost. Recall that
at the first decision instant t;, the state sy is (0, Ny, r) or
(0, No,d) depending on whether the susceptible node that is
met is a relay or a destination. The objective function (T)) can
then be restated as

1 N — N,
E, E =
{Ta+ &} )\NO(M+NN0)+<M+NN0
M
J=(0, No,r) + AM_NOJw(Oade)) ) 2

where the subscript m shows dependence on the underlying
policy. In the right hand side, the first term m is
the average delay until the first decision instant which has to
be borne under any policy.

B. Optimal Policy

Since the cost function g(+) is nonnegative, Proposition 1.1
in [15, Chapter 3] implies that the optimal cost function will
satisfy the following Bellman equation. For s = (m,n,e),

J(s) = min A(s,u)

ue{0,1}
where A(s,u) = g(s,u) +E (J(s')|s,u).

Here s’ denotes the next state which depends on s,u and the
random disturbance in accordance with the transition structure
described above. The expectation is taken with respect to the
random disturbance. Furthermore, since the action space is
finite, there exists a stationary optimal policy v* such that, for
all s, u*(s) attains minimum in the above Bellman equation



(see [15) Chapter 3]). In the following we characterize this
stationary optimal policy.

First, observe that it is always optimal to copy to a destina-
tion, that is, the optimal policy satisfies u*(m,n,d) = 1 for
all (m,n) € [M —1] x [Np : N]. Moreover, once a fraction «
of the destinations have obtained the packet, no further delay
cost is incurred, and so further copying to relays does not help:
u*(m,n,r) =0 for all (m,n) € [My: M —1] x [Ny : NJ.

Next, focus on a reduced state space [M, — 1] x [Np :
N] x {r}. Consider the following one step look ahead
policy [15, Section 3.4]. At a meeting with a susceptible relay,
say when the state is (m,n,r), compare the following two
action sequences.

1) Os: stop, i.e., do not copy to this relay or to any suscep-
tible relays met in the future,
2) 1s: copy to this relay and then stop.

The costs to go corresponding to the action sequences Os and
1s are, respectively,

My—1

PPN S

n+j)(M - j)

Ma—1

and

1
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The stopping set Ss is defined to be
Ss = {(m,n,r) : &(m,n) < 0} 3)
where

®(m,n) := Jos(m,n,r) — Jis(m,n,r)
Ma—1

1
DN e e g R

for all (m,n) € [M,—1] X [Ng : N]. The one step look ahead
policy is to copy to relay when (m,n,r) ¢ Ss, and to stop
copying otherwise

One step look ahead policies have been shown to be optimal
for stopping problems under certain conditions (see [18 Sec-
tion 4.4] and [15| Section 3.4]). Let us reemphasize that our
problem is not a stopping problem because an action 0 now is
not equivalent to stop as the resulting state is not a terminal
state; a susceptible relay that is met in the future may be
copied even if the one met now is not. However, we exploit
the cost structure to prove that when an infected node meets a
susceptible relay, it can restrict attention to two actions: 1 (i.e.,
copy now) and stop (i.e., do not copy now and never copy
again). Subsequently, we also show that the above one step
look ahead policy (see (3)) is optimal.

Theorem 3.1: The optimal policy uv* : [M — 1] x [Ny :

2We use the standard convention that a sum over an empty index set is
0. Thus ®(m,n) = —~ if m > M,. Consequently, for the states [Mq :
M — 1] x [Ng : N] x {r}, one step-look ahead policy prescribes stop. This
is consistent with our earlier discussion.
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Fig. 2. An illustration of the optimal policy. The symbols X’ mark the
states in which the optimal action (at meeting with a relay) is to copy

N] x & — U satisfies

1, ife=d,
1, if e =7 and ®(m,n) > 0,
stop if e =1 and ®(m,n) <0.

u*(m,n,e) =

Proof: Though the optimal policy is a simple stopping
policy, the proof of its optimality is far from obvious. See
Appendix [A] [ |

We illustrate the optimal policy using an example. Let
M = 15N = 50,Ny = 10,a = 0.8, = 0.001 and
v = 1. The “Xx” in Figure 2| are the states where the optimal
action (at meeting with a relay) is to copy. For example, if only
5 destinations have the packet, then relays are copied to if and
only if there are 24 or less infected relays. If 7 destinations
already have the packet and there are 19 infected relays, then
no further copying to relays is done.

IV. ASYMPTOTICALLY OPTIMAL EPIDEMIC FORWARDING

In states [M, — 1] X [Ny : N] x {r}, the optimal action,
which is governed by the function ®(m,n), requires perfect
knowledge of the network state (m, n). This may not be avail-
able to the decision maker due to intermittent connectivity. In
this section, we derive an asymptotically optimal policy that
does not require knowledge of network’s state but depends
only on the time elapsed since the generation of the packet.
Such a policy is implementable if the packet is time-stamped
when generated and the nodes’ clocks are synchronized.

A. Asymptotic Deterministic Dynamics

Our analysis closely follows Darling [[L1]. It is straightfor-
ward to show that the equations that follow are the conditional
expected drift rates of the optimally controlled CTMC. For
(m(t),n(t)) € [M — 1] x [Ny : N, using the optimal policy



in Theorem 3.1} we get

dE(m(8)[(m(t), n(t)))
dt

dE(n(t)|(m(t), n(t)))
dt

= A(m(t) + n(t))(M — m(t)),
(52)

= A(m(t) +n(t))(N = n(t))

Lo (m(t),n(t))>0y- (3b)

Recalling that K = M + N, the total number of nodes,
we study large K asymptotics. Towards this, we consider a
sequence of problems indexed by K. The parameters of the
Kth problem are denoted using the superscript /. Normalized
versions of these parameters, and normalized versions of the
system state are denoted as follows:

MX NE
X=—_ Y= —
K’ K’
K K
X, oM< L NE
K K (6)
K’ K’
m(t n(t
Kty = I({) andyK(t):%.

Remarks 4.1: The pairwise meeting rate and the copying
cost must both scale down as K increases. Otherwise, the
delivery delay will be negligible and the total transmission cost
will be enormous for any policy, and no meaningful analysis
is possible.

For each K, we define scaled two-dimensional integer
lattice

AK = {(;{I’()  (i,4) € [MK — 1] x [N({(:NK]}.

(x (1), 4% () € AK. Also, for (x5 (t),y*(t)) € AK, using
the notation in (6)), the drift rates in (3a)-(3b) can be rewritten
as follows.
dE(2 ()] (=" (8), y™ (1))
dt

= f35 (2™ (t),y" (1))
=A@ () + ™ ()Y — 4™ () Lgrm o (1), (1)) 0}

(7b)
where, for (z,y) € AK,
[KXa]—1 )
X (x,y) = . . — —T.
j;;x KAy+ &)y + 5 (X - 4%)
®)

We also define (z(t),y(t)) € [0,X] x [Yo,Y] as functions
satisfying the following ODEs: x(0) = 0,y(0) = Yj, and for

t >0,
t
0 fuale),p(0) = Al() + y0) (X~ 2(1)), O
dy(t
WO — fofalt),ylt) = Al(t) + v y(1)
Lg@w .y Ob)
wherd|
Ko dz
Finally, we redefine the delivery delay 7; (see (I))) to be
™8 =inf{t >0:25() > X.}, an
and 7 = inf{t > 0: x(t) > X, }. (12)

Note that 7% is a stopping time for the random process
(x¥(t),y™(t)), whereas 7 is a deterministic time instant.
Since f{(z,y) is bounded away from zero, 7% < oo with
probability 1. Similarly, on account of f;(z,y) being bounded
away from zero, 7 < oo.

Kurtz [10] and Darling [[11] studied convergence of CTMCs
to the solutions of ODEs. The following are the hypotheses for
the version of the limit theorem that appears in Darling [L1].

(i) Timgoo P (|(@5(0), 55 (0) — (2(0), y(0)| > €) = 0;

(ii) In the scaled process (€ (t),y* (¢), the jump rates are
O(K) and drifts are O(K~1);

(iit) (flK(xa y)7 f2K<x7 y)) converges to (fl (z,y), f2($7 y))
uniformly in (z,y);

@iv) (fi(x,y), f2(z,y)) is Lipschitz continuous.

Observe that, in our case, only the first two hypotheses are

satisfied. In particular, f4<(x,%) does not converge uniformly

to fa(x,y), and fa(x,y) is not Lipschitz over [0, X, | x [Yy, Y].

Hence, the convergence results do not directly apply in our

context. Thankfully, there is some regularity we can exploit

which we now summarize as easily checkable facts.

(@) ¢ (z,y) converges uniformly to ¢(x,y);
(b) the drift rates fi(x,y) and f(z,y) are bounded from
below and above;
(¢) fi(x,y) is Lipschitz and fa(z,y) is locally Lipschitz; and
(d) for all small enough v € R, and all (z,y) on the graph of
“¢(x,y) = v”, the direction in which the ODE progresses,
(fi(z,y), f2(z,y)), is not tangent to the graph.
We then prove the following result which is identical to [11}
Theorem 2.8].
Theorem 4.1: Assume that o < 1 and Y > 0. Then, for
every €,0 > 0,

Jin P sup 0.0~ 00)] > €) =
lim P (|7 — 7| >4) =0.
K—oo

Proof: See Appendix [ |
We illustrate Theorem [.1] using an example. Let X =
02,V = 0.8,a = 0.8,Y, = 0.2,A = 0.05 and T = 50.
In Figure 3} we plot (z(¢),y(t)) and sample trajectories of

3We use the convention that an integral assumes the value O if its lower
limit exceeds the upper limit. So, ¢(z,y) = —T' if x > Xq.
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Fig. 3. Simulation results: The top and bottom sub-plots respectively
show the fractions of infected destinations and relays as a function of time.
(% (t), y* (t)) are obtained from a simulation of the controlled CTMC, and
(z(t),y(t)) from the ODEs. The marker "X’ indicates the states at which
copying to relays is stopped whereas 'O’ indicates the states at which a
fraction o of destinations have the packet.

(x¥(t),y%(t)) for K = 100,200 and 500. We indicate the
states at which the optimal policy stops copying to relays,
ie., @K (2% (¢),y"(t)) goes below 0 (see Theorem and
the states at which the fraction of infected destinations crosses
X4. We also show the corresponding states in the fluid model.
The plots show that for large K, the fluid model captures the
random dynamics of the network very well.

B. Asymptotically Optimal Policy

Observe that ¢(z,y) is decreasing in = and y, both of
which are nondecreasing with ¢. Consequently ¢(x(¢),y(t))
decreases with . We define

7= inf{t > 0: ¢(z(t),y(t)) < 0}. (13)

The limiting deterministic dynamics suggests the following
policy u® for the original forwarding problemE]

life=d,

life=randt<7¥
Oife=randt>r7".

u™(m,n,e) =

We show that the policy ©*° is asymptotically optimal in the
sense that its expected cost approaches the expected cost of

4Observe that the policy ©°° does not require knowledge of m and n. The
infected node readily knows the type of the susceptible node (d or r) at the
decision epoch.

the optimal policy u* as the network grows. Let us restate
as

1 Y - Y,
EX{Ta+~&} = < :

KAY,y(1—Yy) 1— Yo

X
J=(0,Y0, —J:(0,Y,d) ).

( 07“)+1 Y (0, Yo )>
We have used superscript K to show the dependence of
cost on the network size. We then establish the following
asymptotically optimality result.

Theorem 4.2:

lim EXA{Tq++€.) = lim EE{Ty+~E) =7+ Ty(r").
K—oo K—oo

Proof: See Appendix [C] [ |
Remarks 4.2: Observe that we do not compare the limiting
value of the optimal costs with the optimal cost on the (lim-
iting) deterministic system. In general, these two may differE]
However, the deterministic policy u*° can be applied on the
finite K-node system. The content of the above theorem is
that given any € > 0, cost of the policy u* is within € of the
optimal cost on the K-node system for all sufficiently large
K.

Distributed Implementation: The asymptotically optimal
policy can be implemented in a distributed fashion. Assume
that all the nodes are time synchronizedﬂ Suppose that the
packet is generated at the source at time ¢y (we assumed ty = 0
for the purpose of analysis). Given the system parameters
M, N, a, Ny, A and , the source first extracts X, Y, X, Yy, A
and I as in (6). Then, it calculates 7* (see (I3)), and stores
to + 7* as a header in the packet.

The packet is immediately copied to Ny relays, perhaps by
means of a broadcast from an infrastructure “base station”.
When an infected node meets a susceptible relay, it compares
to + 7" with the current time. The susceptible relay is not
copied to if the current time exceeds ty + 7*. However, all
the infected nodes continue to carry the packet, and to copy
to susceptible destinations as and when they meet.

Remarks 4.3: Consider a scenario, where the interest is
in copying packet to only a fraction o of the destinations.
Observe that for every € > 0,

> e) =0.

: m(r)
AP (‘ M
Thus, in large networks, copying to destinations can also be
stopped at time 7 (see (I2)) while ensuring that with large
probability the fraction of infected destinations is close to a.
Consequently, all the relays can delete the packet and free
their memory at 7. This helps when packets are large and
relay (cache) memory is limited.

V. OPTIMAL Two-HOP FORWARDING

Instead of epidemic relaying one can consider two-hop
relaying [17]. Here, the Ny source nodes can copy the packet

SIn our case these two indeed match. See Appendix E] for a proof.

In practice, due to variations in the clock frequency, the clocks at
different nodes will drift from each other. But the time differences are
negligible compared to the delays caused by intermittent connectivity in the
network. Moreover, when an infected node meets a susceptible node, clock
synchronization can be performed before the packet is copied.



to any of the N — Ny relays or M destinations. The infected
destinations can also copy the packet to any of the susceptible
relays or destinations. However, the relays are allowed to
transmit the packet only to the destinations. Here also a similar
optimization problem as in Section arises.

Now, the decision epochs t;,k = 1,2,... are the meeting
epochs of the infected nodes (sources, relays or destinations)
with the susceptible destinations and the meeting epochs of the
sources or infected destinations with the susceptible relays. We
can formulate an MDP with state

Sk = (mk,nk, 6k).
at instant t; where my,n, and e; are as defined in Sec-
tion [[II-Al The state space is [M, — 1] x [Ny : N] x €. The
control space is U € {0, 1}, where 1 is for copy and 0 is for

do not copy. We also get a transition structure identical to that
in Section

For a state action pair (sg,ur) the expected single stage
cost is given by
g(sk ur) = Yug + E {01l my, <nio)
~yuy if si is such that my > M,
=qvif sy =(M,—1,n,d) and up =1

yug + Cq(sk, ug) otherwise,

where

Ca(sk,ur) =

1
(e 4 mue 4 we) (M — i — gl (s, —ay) A
+ (my 4+ upl{sy=ay + No)(N — ng — uplis,—})A)

is the mean time until the next decision epoch. As before, the
quantity yu accounts for the transmission energy.

Let u* : [M, — 1] X [Ny : N] x & — U be a stationary
optimal policy. As in Section the optimal policy satisfies
u*(m,n,d) = 1 for all (m,n) € [M — 1] x [Ny : NJ, and
u*(m,n,r) = 0 for all (m,n) € [My : M — 1] x [Ny : NJ.
Thus, we focus on a reduced state space [M, — 1] x [Ny :
N] x {r}. As before, we look for the one step look ahead
policy which turns out to be the same as that for epidemic
relaying. Finally, Theorem [3.1] holds for two-hop relaying as
well (see the proof in Appendix [A).

Next, we turn to the asymptotically optimal control for two-
hop relaying. The following are the conditional expected drift
rates. For (m(t),n(t)) € [My — 1] x [Ng : NJ,

dE(m(t)[(m(t), n(t)))

dt

dE(n(t)|(m(t), n(t)))

dt

= A(m(t) + n(t))(M — m(t)),

= A(m(t) + No)(N — n(t))
1{@(7n(t),n(t))>0}'

We employ the same scaling and notations as in (6). The drift

0.8

¥epidemic
---two-hop
0.6f
>0.41
0.2
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X

Fig. 4. An illustration of the epidemic and two hop trajectories. The plots
also show the graph of ‘¢(z,y) = 0.

rates in terms of (z%(¢),y% (t)) € [0, Xo] x [Yo, Y] are

K K K
dE(:L’ (t)|(1c'1t (t)v Y (t))) _ flK(l'K(t), yK(t))
= A" (1) + y" (1)) (X — 2 (1)),
K K K
dE(y (t)|(l;1t (t)’ Y (t))) _ fQK(JUK(t), yK(t))
=A@ (1) + Yo) (Y = 4™ (1)) Lo (o5 (0) 55 (1)) 505
Now, z(t),y(t) are defined as functions satisfying z(0) =
0,y(0) =Y, and for t > 0,

d%(tt) = fi(@(t),y(t)) := Alz(t) +y(t)(X — (1)),
dﬂf(f) = fa(@(t),y(1)) = A (t) + Yo)(V = y(t))

Lo (a(t),y(t))>0}

The analysis in Section applies to two-hop relaying as
well. In particular, Theorems [4.1] and 2] hold. However, for
the identical system parameters (M, N, «, A and ) and initial
state (Np), the value of the time-threshold 7* will be larger
on account of the slower rates of infection of relays and
destinations.

We illustrate the comparison between epidemic and two-
hop relaying using an example. Let X = 0.2,Y = 0.8, =
0.8,Yy = 0.2,A = 0.05 and ' = 50. In Figure [l we plot
the graph of “¢(x,y) = 07, and also the 'y versus z’ tra-
jectories corresponding to epidemic and two-hop relayings. In
Figure [5| we plot the trajectories of (z(t),y(t)) corresponding
to epidemic and two-hop relayings. As anticipated, the value
of the time-threshold 7* is larger for two-hop relaying than
epidemic relaying. Moreover, the number of transmissions is
less while the deliverly delay is more under the controlled
two-hop relaying.

VI. NUMERICAL RESULTS

We now show some numerical results to demonstrate the
good performance of the deterministic control in epidemic
forwarding in a DTN with multiple destinations. Let X =
0.2,Y = 08, = 0.8,Yy = 0.2 and v = 0.5. We vary
A from 0.00005 to 0.05 and use K = 50,100 and 200. In
Figure [6] we plot the total number of copies to relays and
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Fig. 5. The top and bottom sub-plots respectively show the fractions of
infected destinations and relays as a function of time. The marker "X’ indicates
the states at which copying to relays is stopped, and *O’ indicates the states
at which o fraction of destinations have been copied.

the delivery delays corresponding to both the optimal and
the asymptotically optimal deterministic policies. Evidently,
the deterministic policy performs close to the optimal policy
on both the fronts. We observe that, for a fixed K, both the
mean delivery delay and the mean number of copies to relays
decrease as )\ increases. We also observe that, for a fixed A,
the mean delivery delay decreases as the network size grows.
Finally, for smaller values of A, the mean number of copies to
relays increases with the network size, and for larger values
of )\, the opposite happens.

VII. CONCLUSION

We studied the epidemic forwarding in DTNs, formulated
the problem as a controlled continuous time Markov chain,
and obtained the optimal policy (Theorem [3.I). We then
developed an ordinary differential equation approximation for
the optimally controlled Markov chain, under a natural scaling,
as the population of nodes increases to oo (Theorem [.1).
This o.d.e. approximation yielded a forwarding policy that
does not require global state information (and, hence, is
implementable), and is asymptotically optimal (Theorem |4.2)).

The optimal forwarding problem can also be addressed
following the result of Gast et al. [14]. They study a gen-
eral discrete time Markov decision process (MDP) [15].
However, they do not solve the finite problem citing the
difficulties associated with obtaining the asymptotics of the

200 — -
% deterministic policy
—-©—optimal policy

150¢

100r

o
§=)

mean number of copies to relays

o

x-deterministic policy
—-O-optimal policy

mean delivery delay
=

10°

Fig. 6. The top and bottom sub-plots, respectively, show the total number
of copies to relays and the delivery delays corresponding to both the optimal
and the deterministic policies.

optimally controlled process (see [14, Section 3.3]). Instead,
they consider the fluid limit of the MDP, and analyze optimal
control over the deterministic limiting problem. They then
show that the optimal reward of the MDP converges to the
optimal reward of its mean field approximation, given by the
solution to a Hamilton-Jacobi-Bellman (HJB) equation [L8,
Section 3.2]. On the other hand, our approach is more direct.
We have a continuous time controlled Markov chain at our
disposal We explicitly characterize the optimal policy for the
finite (complete information) problem, and prove convergence
of the optimally controlled Markov chain to a fluid limit. An
asymptotically optimal deterministic control is then suggested
by the limiting deterministic dynamics, and does not require
solving HJB equations. Our notion of asymptotic optimality
is also stronger in the sense that we apply both the optimal
policy and the deterministic policy to the finite problem, and
show that the corresponding costs converge.

There are several directions in which this work can be
extended. In the same DTN framework, there could be a
deadline on the delivery time of the packet (or message); the
goal of the optimal control could be to maximize the fraction
of destinations that receive the packet before the deadline
subject to an energy constraint. Our work in this paper assumes
that network parameters such as M, N, A etc., are known; it
will be important to address the adaptive control problem when
these parameters are unknown.



APPENDIX A
PROOF OF THEOREM

We first prove that for the optimal policy it is sufficient to
consider two actions 1 (i.e., copy now) and stop (i.e., do not
copy now and never copy again). More precisely, under the
optimal policy, if a susceptible relay that is met is not copied,
then no susceptible relay is copied in the future as well. Let
us fix a Ng < n < N — 1. Let m}, be the maximum 5 such
that u*(j,n,r) = 1[] We show that u*(j,n,r) = 1 for all
0 < j < my,; see Figure [2| for an illustration of this fact. The
proof is via induction.

Proposition A.1: If u*(j,n,r) = 1forallm+1 < j <m?,
then u*(m,n,r) = 1.

Proof: Define

Y(m,n) = Jos(m,n,r) — J(m,n,r),
Oo(m,n) := Jos(m,n,r) — A((m,n,r),0),
and 01 (m,n) := Jis(m,n,r) — A((m,n,r),1).

Both the action sequences that give rise to the two cost terms in
the definition of 6y(m, n), do not copy to the susceptible relay
that was just met. Let 5 be the number of infected destinations
at the next decision epoch when a susceptible relay is met; j
can be m,m + 1,..., M. All interim decision epochs must
be meetings with susceptible destinations, and both policies
copy at these meetings. Hence, both policies incur the same
cost until this epoch, and differ by (j,n) in the costs to
go (from this epoch onwards). Averaging the difference over
j, and noting that ¥(j,n) = 0 for j > M, — 1, we geﬂ

Mo—1 /j—1
fo(m,n) = Z (H pl,n(d)> Pjn(r)Y(j,n). (14)

j=m l=m

Since A((m,n,r),0) > J(m,n,r), it follows that ¢)(m,n) >
6o(m,n), and so

M&

S
= Pmn(1)P(m,n)

My,—1

(I

j=m+1

H pln

l=m+1

+pmn ) pj’n(r)w(jv n)

which implies upon rearrangement

5 (i e

j=m+1 \l=m+1

¢(m,n) )Pm(?‘)l/}(ﬂ n)  (15)

Next, we establish the following lemma.
Lemma A.1: 61(m,n) > 01(m+1,n).
Proof: Note that both the action sequences that lead to
the two cost terms in the definition of 6;(m,n) copy at state
(m,n, r). Subsequently, both incur equal costs until a decision

"Note that, for a given n, my, could be 0, in that case we do not copy to
any more relays.

8We use the standard convention that a product over an empty index set is
1, which happens when j = m

epoch when an infected node meets a susceptible relay. Also,
at any such state (j,n + 1,7), j > m, the costs to go differ
by ¥(j,n + 1). Hence,

M,
61(m,n) = Z (H Prati( )pj,n+1(7°)¢(j7n+1)
j=m
= pm,n+1(7‘)¢(m7 n+ 1) + pm,nJrl(d)al (m + ]‘7 TL)

where

M,—1 J—1
61(m+1,n) Z ( H P+ ( )pj,n+1(7”)¢(jyn+1)-

j=m+1 \l=m+1

Thus it suffices to show that
Y(m,n+1) > 61(m+1,n).
which is same as with n replaced by n + 1. [

Next, observe that for all m < j <m},

w(]v ’I’L) = JOS(j7 n, T) - mln{A((]7 n, T): 0)7 A((.]v n, T)7 1)}
= max{6o(j,n), ®(j,n) + 61(j,n)}. (16)

Moreover, from the induction hypothesis, the optimal policy
copies at states (j,n,r) for all m + 1 < j < m}. Hence, for
m+1<j<my,
Finally, ¢(j,n) = 0 for all m} < j < M, —1 as the optimal
policy does not copy in these states. Hence, from (14),
90 (ma n)

= Py, (1) max{fo(m,n), ®(m,n) + 61(m,n)} + pm.n(d)

i ( H pl,n(

x (®(m,n) + 61(m,n)) Z ( H pz,n(d)> pin(r)
+ Pmn(d) (@(m, n) + 61(m, n))

d)) pj,n(r) ((I)(]v TL) + 01 (.73 n))
j=m+1 \l=m+1
< Pm,n (7“) max {90 (m, TL), <I>(m, n) + 61 (ma n)} + DPm,n (d)
j=m+1 \l=m+1
< P () max {6g(m, n), &(m, n) + 61(m,n)}
= nax {pm,n(T)HO(n% n) + pm,n(d) (‘P(?’IL ’I’L) + 0, (m7 ’I’L)),
<I>(m,n) +91(7’17(’1)}’ (I7)
where the first (strict) inequality holds because ®(m,n) is
strictly decreasing (see (@) and 6;(m,n) is decreasing (see
Lemma [A.T)) in m for fixed n. The second inequality follows
because the summation term is a probability which is less than
1. Now suppose that 6y(m,n) > ®(m,n) + 6;(m,n). Then
max {Py.n ()00 (M, 1) + P (d) (B(m, 1) + 61 (m, n)),
(I)(ma n) + 61 (ma n)}
= Pm.n(1)00(m, n) + P (d) (B (M, 1) + 61(m, n))
< QO(ma ’fl)
which contradicts (7). Thus, we conclude that

Oo(m,n) < ®(m,n) + 61(m,n).



This further implies that ¢)(m,n) = ®(m,n) + 61(m,n)
(see (1I6)), and so that u*(m,n,r) = 1. |

We now return to the proof of Theorem [3.1] We show that
the one-step look ahead policy is optimal for the resulting
stopping problem. To see this, observe that ®(m,n) is de-
creasing in m for a given n and also decreasing in n for a
given m. Thus, if (m,n,r) € Ss, i.e, ®(m,n) < 0 (see @),
and the susceptible relay that is met is copied, the next
state (m,n + 1,7) also belongs to the stopping set Ss. In
other words, Sg is also an absorbing set [15, Section 3.4]).
Consequently, the one-step look ahead policy is an optimal
policy.

APPENDIX B
PROOF OF THEOREM [4.1]

We start with a preliminary result and a few definitions.

Proposition B.1: Let o < 1 and Yy > 0. Let ¢* and ¢
be as given in and (T0), respectively. Then, the functions
#* (-) converge to ¢(-) uniformly, i.e., for every v > 0, there
exists a K&, such that

|¢K(mvy) -

sup
(zy)eak

for all K > K,,.
Proof: For a y € [Yp,Y], define f, : [0,
follows.
S S
(y+2)*(X —2)

Clearly, the family {f,} is positive and uniformly upper
bounded. Indeed,

fu(z) S fmax =

oz, y)| <v

X, = Ry as

fy(2) =

1
YO2(X - X))’
Further,

dfy(2) _ 1 1 B 2
dz (y+22X-2)\X—-2 y+z/)’
from which it can be seen that

dfy(z)
dz

is a suitably defined constant. So the family {f,}
[0, Xa] x [Yo,Y],

!
S fmax

where /.. i

is uniformly Lipschitz. Now, for (z,y) €

1 ot
Ky+2)y+z+ )X -2 / Jy(v)dv
z A3
< fyl(() —/ fy(v)dv
2+ 4
< [T - s
< fzn?éx (18)

where the first and the last inequalities follow from the
definitions of f,(z) and f] .. respectively. On the other hand,

1 —f (z)ﬁ
(y+2)y+z2+ %)X —2) Ny+z+ L
Y
> fy(z)ﬁ-
K
Hence
z+% 1
/z fylv)dv = Kly+2)(y+z+ %)X —2)
e KY,
S B
z+%
< [T ) - o+ o M
r/nax fmax
Sk TROt R 19
Combining and (19),
1 S
RS e are e R AL
I/nax fmax
=K TRA+KY)

Now fix a (z,y) € AK. Setting z = j/K, and summing over

je[Kz: [KX,] — 1], we get
’—Kon]_l
1 1
g —
2 i Ko Der D
i+l
AR S TN
K
_ !/
< K(Xa LL') max + fmax fmax
= A K2 K1+ KYp)
X : Xa max max
< fmax Jr f + f .
KA | (1+KYo)A = KA

The obtained upper bound on the right-hand side is indepen-

dent of (x,y) € AK, and vanishes as K — oco. Thus, for
every v > 0, there exists a K, such that
sup " (z,y) — (z,y)| <v
(z,y)EAK
for all K > K. |

In the following, to facilitate a parsimonious description, we
use the notation 2% (¢) = (2% (¢), 4% (1)), 2(t) = (z(t),y(t))
and Z = [0, X,,] X [Y0,Y]. Let us define, for a v € R,

S, ={z€Z:¢(z) >},
7, =inf{t > 0:2(t) ¢ S, },

and a stopping time

=inf{t >0:25(t) ¢ S, },



the time when 2 (¢) exits the limiting set S,. Observe that

% _ _ ! <! (20)

Ox Az +y)*(X — ) AMX,+Y)2X
and f(z,y) defined in is positive and is also bounded
away from zero. These imply that 7 < oo with probability
1. Similarly, 7, < oo. The following assertion is a corollary
of Proposition [B.1]

Corollary B.1: Let K, be as in Proposition For K >

Ky,

¢%(z) >0 forall z €S,
and ¢ (2) <O forall z ¢ S_,.

We define the uncontrolled dynamics (i.e., the one in which
the susceptible relays are always copied) as a Markov process
ZE(t) = (2% (), (t)), t > 0 for which z5(0) = 2%(0).
Let z(t) = (Z(t),5(t)), t > 0 be the corresponding limiting
deterministic dynamics. Formally, z(0) = 2(0), and for ¢t > 0,

d%f) — AE() + 5(1) (X — (1)),
d%'f) = A@(t) + 5(E)(Y —5(t).

The quantities on the right-hand side of the above equations
are at most A, and so

Also observe that the processes z(t) and z(t) satisfy the
hypotheses of Darling [11] (see Section [[V-A), and thus
convergence of zX(t) to z(¢) follows.

We also define a Markov process 2% (t) = (z5 (), 5% (¢)),
t > 7, for which X (7,) = 2X(7,) and

dE(@X ()| (@ (1), §% (1))
dt

dE(y" ()| (=" (1), y" (1)
dt

dz
— | < .
" < V2A

=A@ (1) + g () (X —2X(1)

=0

In other words, 7% (t) is the process in which relays are
not copied from 7, onwards. Similarly, we define Z(t) =
(Z(t),g(t)), t > 7, as the solution of the corresponding
differential equations. In other words, Z(7,) = z(7,,), and for
t>T,,

diit) = f1(@(1),5(t)) = A@(t) + 5()) (X — Z(1)),
W — oo, 900) =0
We define
K, =if{t>7,: 25(t) ¢ S},
T, =inf{t >7,:2(t) ¢ S_,}.
Since di
AYp(X — Xo) < - <A,

the lower bound implies that there is a strictly positive increase
in Z after time 7,. Since ®(z,y) decreases with increasing z

TABLE 1
VARIABLES AND THEIR DESCRIPTION

variables | description

2K (t) controlled dynamics with discontinuity at 75

z(t) 2K (t)’s fluid limit with discontinuity at 7*

K instant when 2% (t) exits S,

Ty instant when z(t) exits S,

K (1) uncontrolled dynamics with no discontinuity

z(¢) zK(t)’s fluid limit with no discontinuity

K (t) identical to z*(¢) until 7, at which copying to
relays is stopped

Z(t) ZK(t)’s fluid limit with discontinuity at 7,

K instant when 5 (¢) exits S_,,

Ty instant when Z(¢) exits S_,

at a rate bounded away from 0 (see 20), Z(t) must exit S_,
within a short additional duration. Thus, we have that

T, — T, <bv

for a suitably chosen b < oc.

To aid the reader, we summarize the variables used in
Table |II We also illustrate sample trajectories of a controlled
CTMC and the corresponding ODE via an example (Figure 7).
We choose M = 40,N = 160,a = 0.8, Ng = 40,\ =
0.00025 and v = 0.25. We plot the graphs of "¢(z,y) = v’
and "¢ (z,y) = —v’ for v = 0.2. We also show the trajectories
“yB vs K7 “y vs 27, “§ vs #” and the epochs 7, 7_, and
T_o.

We prove the assertion in Theorem [.1I] in three steps:
(a) over [0,7,], (b) over [r,,7—,] and (c) over [F_,,T].
However, we also need the following lemmas in our proof..

Lemma B.1: For every € > 0, there exists a 7. such that for

0 0.05 0.1 0.15

Fig. 7. An illustration of the trajectories of the controlled CTMC and the
corresponding ODE, and the associated variables.



alt >0, 0<u<r,
P (|E5(t+u) — Z5(1)]| > €) = O(K™Y).
Proof: Observe that
125 (t 4+ u) = 25 (1)
< 2R @) — 2@ + 125 (¢ + u) — 2(t + w)|
+[12(2) — 2(t + v |
<IZE (@) — 2@)|| + |25 (t +u) — Z(t + )| + V2Au
Hence, for all £ > 0, u > 0,
P (1125t + ) 25 (0] > V2Au + £)
<P (50 - 2Ol + 155t +w) - 2t +w)| > 5)

_ _ €
sp( sup ||zK<s>—z<s>||>4)
t<s<t+u

=0O(K™h
where the last equality follows from [11, Theorem 2.8]. Setting
izﬁ,foralltzo,ogugﬁ
P (||ZK(t+u) — K@) > e)
<P (17 +u) - 20 > V2Au+ 3)
=0(K™).
|
Lemma B.2: Suppose u is a fixed time and u*€ is a random
time that satisfies P (ju — u”| > §) = O(K ') for every § >
0. Then, for every € > 0,
P (|25 (u) — 25 (uAu)| > €) = O0(K ™)
Proof: Fix a 6 > 0. Then,
P([|25 () = 25 (u A u™)| > €)
=P(u —uf > 6)
P (|25 (u) — 25 (uAu™)| > elu— u” > §)
+ P(u— uf < 0)
P (|25 (u) — 25 (uAu™)| > elu— u® < 6)
<O N +P (25 w) — 25 (wAu)|| > elu—u < 6)
<OK M) +P (|25 w) — 25 (u—106)| > elu—u™ <)

where the last inequality holds because zX (¢) is a monotone
increasing function. Setting § = 7. (see Lemma [B.1)),

P(|2% (u) = 2% (u A u")| > €)

SOEK ) +P (25 w) — 25 (u—7)|| > elu—u < 7)
=OK N +P (|25 w) — 2K (u—7)| > ¢)
<OKH+O0(K™)
=O0(K™ )

where the last inequality follows from Lemma [ |

Following is the proof of Theorem (.1}

(a) First, we prove the convergence of 2% (t) to z(t) over
[0,7,]. Fix a v > 0. Then Corollary implies that 2% (t)
converges to z(t) in the region S,. Following [11, Theo-

rem 2.8] we have, for all ¢,6 > 0,

P ( sup |25t ATE) —2()] > e) =0(K™)
0<t<7,

and P(|75 — 7| > §) = O(K ™).

(21a)

(21b)
Since, for all ¢ > 0,

125 () =2 @)l < 15 (AT ) =21+ 15 () =" AT,
we obtain

sup ||z (1) — 2(t)]| <
0<t<r,

sup [|25(EATS) = 2()]|
0<t<r,

+ sup ||ZK(t)—ZK(t/\Tj{)H.
0<t<r,

If the left side is larger than e, at least one of the two terms on
the right side is larger than €/2, and so by the union bound,
we get

P ( s 1560 - 201> <)

0<t<r,

<P < sup HZK(t/\TIf(> —z(@)| > 6)
0<t<t, 2

—HP’( sup |zK(t)—zK(t/\T,f()||>€>
0<t<r, 2
<OK ™) +P(I5m) - m At >5) @

where the first term in the last inequality follows from (21a).
Also, from corollary for K > K, X (5 (rF)-) >0,
i.e., the process 2% (t) follows uncontrolled dynamics until
7K. Thus, for K > K,,, 2X(7F) = 25(7K) and

125 (1) = 25 (r AT < (125 () = 25 (1 AT
sample path wise. The inequality is an equality if 7, < 75;

both sides equal 0 in this case. Otherwise, it is an inequality

because the possible change in dynamics of 2% (t) after 75

makes it increase (in both its components) at a slower pace
than the uncontrolled z%(¢). Thus

K K K €
B (JI5(r) = (n A7) > £)
<P (5 (n) - 2 A7) > 5)
<O(K™)
where the last inequality follows from (21b) and Lemma [B.2]
Using this in 22) we get
P (s 1560 - (0] > €] <O +0(K)
0<t<r,

=0(K™)

(b) Now we prove the convergence of 2% (t) to z(t) over
[T, 7—,]. Observe that, for t € [1,,7_,],

125 () = ()l
< 12" (7)) = 2(m)ll + 125 (1) = 2% ()l + 12(t) = 2(7)l-



Hence,
sup  [|2% (1) — z(t)
T, <t<T_,
<|25(nm) —z(m) + sup  [l25() = 25 (7))l
T, <t<T_,
+ sup  [[2(t) — 2(n)||
T, <t<T_,

= [12% (1) = 2(m)ll + 125 (7=) = 2% (1)
+12(7-0) = 2(7)
< [125(r) = 2 (@)l + 1125 (7-) = 25 (r) | + V2Aby
where the equality follows because the z(¢) and z(t) are

nondecreasing. The last inequality holds because ||dz/d¢|| <
|dz/dt|| < v2A and 7_, — 7, < bv. Moreover,

P ( sup [|2(0) — 2(0)]] > V2AbY + ;)
<P (l:5(n) - =)l > 1)

4

+P (I () = @)l > 1)

= O(K™) + P (|I-5(7) = (n)] > 7)

where the equality follows from the result of part (a). We
now redefine the Markov process zX (t) = (2% (¢), 5 (t)) for

t > 1,, to be the uncontrolled dynamics with initial condition

zK(7,) = 2K (7,). Again, it can be easily observed that

125 (=) = 2 ()| < (125 (7)) = 25 ().

Thus
P sup [|25(t) = 2(t)]| > V2Aby + =
T, <t<7_, 2

< O(K™) +P (|25 (7-) - ()l > 5)

<O + P (|5 (m +bv) =25 (n)] > )

Set v = min{m, T< }, and apply Lemma to get

P( sup |zK<t>—z<t>||>e>
T, <t<T_,

<P sup 25 (t) — z(b)]] > V2Abv + <
T, <t<7_, 2

<OK™ N +O(K™)
=0(K™).

(c) Finally, we prove the convergence of z%(t) to z(t)
over [7_,,7]. Reconsider the process #%(t),t > 7, and
the associated function Z(t). Recall that, for any v > 0,
ZK(t) and Z(t) exit S_,, at 7X, and 7_, respectively. Clearly,
Ty < Toys SQy Ty — T2 = 0,. Also, using [11}
Theorem 2.8],

F (7{(,//2 —T_y2 > 6,,) = O(K™")

ie, P (%ﬁ/g > %7,,) =O(K™1)

Furthermore, we have that 75 /g < 7K /o sample path wise.
The inequality holds because 2 (¢) may continue to increase
(in both its components) at a higher pace than ¥ (¢) even after
7,. Thus

P (55> 7)) =O(K™),

implying that the probability that 2% (¢) has changed its
dynamics by 7_, approaches 1 as K approaches co. In
these realizations, the dynamics of z¥(¢) and z(t) match for
t > 7_,. We restrict ourselves to only these realizations. We
also have from part (b) that, for every € > 0,

P (2" (7)) = 2(7=p)ll > €) = O(K ™)

Once more using [[11, Theorem 2.8], for any €, > 0

P (fsglgﬁ 125 () = ()] > 6) =O0(K™)

and P (|75 — 7| > §) = O(K1).

APPENDIX C
PROOF OF THEOREM

For the optimal policy u*, the total expected cost
Eg{Ta+7E} =Eg{r" + T(X + ¢ (7))}

since Ty = 75 by definition (see (T1)); we use the subscript u*
to show dependence of the probability law on the underlying
policy. Under the deterministic policy ©>°, copying to relays
is stopped at the deterministic time instant 7* < 7, implying
yX(7*) = y¥ (7). Thus, the total expected cost

Egoe {Ta +7€c} = Efee {7 + T(X + 5" (7))}

Also observe that for (z¥(t),y®(t)) under u>, the corre-
sponding fluid limits are the same deterministic dynamics
(x(t),y(t)) defined in Section (i.e., solutions of (9a)-
©B). (z%(t),y"(t)) and (z(t),y(t)) satisfy the hypotheses
assumed in Darling [L1] over the intervals [0, 7*] and [7*, 00).
Thus [[L1, Theorem 2.8] applies, and we conclude

i P (s 165 0,050) - 60 p0)] > €) =0

K—oo

0<t<r
lim P (7% — 7| > §) =0.
K—oo

Furthermore, it can be easily shown that under both the
controls u* and u*, the delivery delays 7/ have second
moments that are bounded uniformly over all K. To see this,
consider a policy u° that never copies to relays. Clearly,

Ex (r5)? <EL (75)?,
EE. (75)% <EE, (752

for each K. Then is suffices to show that

sup EX (75)? < 0. (23)

K
9 Applying [111 Theorem 2.8] over [0,7%] yields
lim o B (|5 (), 45 (%) — (@(77),y(r)]| > €) = 0 which

is a necessary condition to apply [L1l Theorem 2.8] over [7*, c0).



Note that
ME-1

T = Om

[}

m=

where 6, is the time duration for which m(t) = m; 6,,,m =

0,1,... are independent, and &,, is exponentially distributed
with mean ,\K(m+N01})(MK—m) under policy u". Thus
ME 1 1
K _K
Bt = m; NE (m + NE)(ME —m)
ME -1 1
S 2 WNFOTF = M)
_ M
TNKNE (MK~ ME)
— Xa
TAYo(X - Xa)
<00
Similarly,
ME -1
VarffoTK = ! 5
=0 (VS m+ NI (MK = m))
MK
< a
T (NG (MK - M)
— Xa
CKA2YR(X - X,)2
—0

as K — oo. These results together imply (23).

Following [19, Remark 9.5.1], under both u* and u*°, K
are uniformly integrable. Since, 7% under both v* and u®®,
converge to 7 in probability and hence in distribution, [19}
Theorem 9.5.1] yields

lim EE 7K = lim EE.7%
u u
K—oo K—oo

(24)

=T.

Next, it is easy to show that under the control u*, y* (75)

converges to y(7) in probability. To see this, observe that
[y (r5) —y(m) < " (7)) =y (D) +1y" () —y(7)]. 25)

From Theorem yX(7) and 7% converge to y(7) and T
respectively, in probability. The latter result, along with the
arguments similar to those in the proof of Lemma [B.2] implies
that

P (|y" (r%) - y¥(7) > ¢) = O(K ")

for every € > 0. Using these facts in (23), we conclude that
P (ly™ (%) —y(r)| > €) = O(K™).

for every ¢ > 0. Since y®(7%) is bounded, and hence
uniformly integrable, [19, Theorem 9.5.1] implies that

lim EUK* yK('rK) = y(7). (26)
K—oo

Similarly, under the control u> also, yK (1) is bounded, and
hence is uniformly integrable. It also converges to y(7) in

probability. Once more using [19) Theorem 9.5.1], we get

lim EE_y% (1) = y(7). 27
K—o00
Combining and
lim EEy5(75) = lim EE 5 (7). (28)
K—oo K—o0

Finally, combining (24) and (28), we get that
lim EE{Tg++E) = lim BE {Ty++E.} =7+ Ty(r").
K—oo K—oo
APPENDIX D

THE HAMILTONIAN FORMULATION AND THE SOLUTION

In this section we consider the limiting deterministic (fluid)
system and study its optimal control. The limiting controlled
system is: z(0) = 0, y(0) = Yy, and for ¢t > 0,

d:fistt) = Aa(t) +y()(X —a(t)), (292)
di/Tg) = A@(t) +y())(Y —y(®)u(t)  (29b)

where u(t) € [0,1] is the control at time ¢. Our objective is
to minimize
T
Ty(T)+T =Ty(T) + / 1.dt (30)
0
where T is the terminal time when z(7T") = X,,; dependence
of T on the underlying control is understood, and is not shown
explicitly.
Theorem D.1: The optimal policy for the deterministic sys-

tem (29a)-(29b) with cost (B0) is
u*(t) = 1p, = (t)

with 7* as in (T3). Furthermore, the optimal cost is 7+ Ty(7*)
with 7 as in (12).

Proof: Following [18, Section 3.3.1], we define the
Hamiltonian for the system

H(x7y7u7p17p2)
=1+pAX —2)(x +y) +pAY —y)(z +y)u

— 1+ A+ 9)[p1(X —2) + pa(¥ — y)u] (31)

where p; : Ry — R,¢ = 1,2 are the cojoint functions
associated with x(t) and y(¢) respectively. Let u*(¢),t > 0,
be an optimal control trajectory. Let T be the correspond-
ing terminal time, and let (z*(t),y*(¢)),t € [0,7%] be the
corresponding state trajectory.

a) Adjoint equations: By [18, Section 3.3.1, Proposi-
tion 3.1], the functions p;(t) are solutions of the following
adjoint equations:

dpét(t) == %H(xvy*ﬂ*,phm) . =

= Alp1(0)(X = 227(t) — y" (1)) + p2() (Y — y™(£))u" ()],
(32)

dpjt(t) = - %H($*7y7U*,p1,pz) . =

= Alp1()(X = 27(1)) + p2() (Y — 2™(t) — 2y"(1))u"(1)].
(33)



b) Boundary condition: Observe that the terminal cost is
Ty*(T*). Thus, by [I8] Section 3.3.1, Proposition 3.1],

=T.
y=y*(T*)

0
)= — (T 34
Pa(T) = 5 (T) (34)
¢) Minimum principle: Moreover, the optimal control u*
satisfies

u*(t) = arg min H(x

u€lo,1] “(),y7 (1), u, pa(2), p2(1))

for all ¢ € [0, T*]. From (BI)), it is immediate that the optimal
policy is a bang-bang policy.

s | 1, ifpa(t) <0
wi(t) = { 0, if pa(t) > 0 (33)
In particular, our observation (34) implies that u*(7T*) = 0.

d) Free terminal time condition: Since the terminal time
is free, we also have from [|18, Section 3.4.3] that

H(z™(t),y"(t),u"(t), p1(t), p2(t)) = 0
for all ¢ € [0,7*]. In particular, equality at ¢ = T* im-
plies (see (BI))

14+ AMXo +y(T7))[p (T
Since X — X, > 0, we must have

P1 (T*) < 0.

)X - Xa)] =0.

(36)

We will find this observation useful later.

Our characterization of the optimal control consists of two
steps. First we show that the optimal control trajectory is of
threshold type, i.e.,

mwz{

This is done in the next subsection. In the subsequent subsec-
tion, we obtain the threshold t*.

1, if t € [0,

0, if t € (t*,T*). (37

A. Optimal control is of threshold type

We show that po(¢) is negative for ¢ € [0,¢*] and strictly
positive for ¢t € (t*,7%*] for some t* > 0. It then follows
from (33)) that u*(¢) is as in (37). Recall dde—t(t) in (32). We
consider two scenarios.

1) Case 1: Let X —2X, — y*(T*) > 0. Since z*(t) and
y*(t) both are non-decreasing in ¢, we have

X — 22*(t)
Moreover, from (33),

—y*(¢t) > 0 for all ¢t € [0,T7].

po(t)u™(t) < 0 for all ¢ € [0,T7]
with equality at t = T*. Thus, from (32),
dpl(t) > 0
dt —

for all ¢ € [¢/,T*] at which p;(¢) < 0. But, using the
observation p1(7T7*) < 0 (see (3)), it immediately follows
that
dpl(t)
dt

>0 for all ¢ € [0,T%],

and so, p1(t) < 0 for all ¢ € [0, T*]. Now, from (33),

dpg (t)
dt
for all t € [0,77*] at which pa(¢) > 0. Again, using the
observation po(T*) =T > 0 (see (34)), it follows that either
p2(t) > 0 for all ¢ € [0, 7], or there exists a t* € [0,T%]
such that po(t*) = 0, and

pz(t){ <0, if t €[0,t)

>0, if t € (£, T%].

2) Case 2: Let X —2X, — y*(T") < 0. Observe that
X —2x*(t) —y*(t) is decreasing in t. Thus, tracing back from
t = T*, there exists a t; such that X —2z*(¢1) — y*(t1) = 0;
we set t7 = 0 if X — 2z*(¢) — y*(¢) < 0 for all ¢ € [0,T™%].
Clearly, X —2z*(t) —y*(t) <0 for all ¢t € [t1,T*].

We claim that p;(¢) < 0 for all ¢ € [¢t;,T™]. Suppose not,
i.e., there exists a to € [t1,T*] such that p;(t2) > 0. Then,

from (32),

>0

dp1 (t)
dt
and so, pi(t) increases with ¢ in this interval. But this
contradicts the assertion in (36) that p; (7*) < 0. Hence the
claim holds.

Now, X — 2z*(t1) — y*(t1) = 0, and p1(t1) < 0. An
argument similar to that in Case I yields that
dp1 (t)
dt

and so, p1(t) < 0 for all ¢ € [0,T*]; recall that it is readily

seen that p;(t) < O for all ¢ € [t;, T*]. Consequently, as in

Case 1, either py(t) > 0 for all t € [0,T*], or there exists a
€ [0, 7*] such that py(t*) = 0, and

) <0, ift €0,t%)
P2 >0, if t € (¢*, 7.
To summarize, in both the cases there exits a t* €

such that
<0, if t € [0,t*)
pQ(t){ >0, if t e (%, 77

>0 for all t € [ty, T,

>0 for all t € [0,4],

[0, 7]

B. Optimum Threshold

We now characterize the optimal threshold ¢*. Consider a
threshold policy
)= {

Let the corresponding state trajectory be (a:’?(t)7 yi (1)), t
and let the terminal time be T'(f). Let z := z'(f) and
t_) be the values at the threshold time ¢. Clearly,

1, ifte€[0,7]
0, if t € (£,T).

>0,
g =

dz
dig = AT +7)(X — 7). (38)

The associated cost is
C(t)=T(t) +Ty, (39)



and™

t* = argmin C(7).

>0
For any t > 0 and ¢ € (,00),
y'(t) =7
and 20— AT 4 ) -21(0)
and so

_ 1 X dz
Tt)=t+ 7/ —_—.
D=5 G
Its substitution in (39) yields

X z
cO=r+15+ 3 | =

Using Leibniz rule of differentiation, we get

dC(t) dg 1 |dy / dz
— 0 = ].—‘77 - - — T — 5, < <
dt At A|dtJ; (49X —=2)

TEGrx D

_dy F1/X°‘dz
o dt Al (494X -2)

where the last equality uses (38). Deﬁning
=T - =
90t / (z+79) (X z)’

we get (3

dc(h)  dg

— = —=g(?).

i~ ar!®

Note that 5 > =5, 52 > 0, G > AYo(X ~ Xa). G >0,

and so g( t_) is also strlctly increasing in ¢ with slope bounded
away from 0. Thus, the optimal threshold is given by

. _Jo if g(0) > 0,
! ‘{ g1(0)

otherwise
which is identical to 7* in (T3). [ ]
Remarks D.I1: Combined with Theorem [£.2] we now have
that the limit of the optimal cost (of the finite problem) equals
the optimal cost of the limiting system. This does not hold in
general (see Remark [4.2).
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