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Abstract—This paper studies an incentive structure for co- o Separated Coalescent
operation and its stability in peer-assisted services whethere Rechction R

exist multiple content providers, using a coalition game tkoretic Cost | e :
approach. We first consider a generalized coalition structte

consisting of multiple providers with many assisting peerswhere Peer Peer Peer
peers assist providers to reduce the operational cost in ctent B A iTunes
distribution. To distribute the profit from cost reduction t o cgw

formula for individual payoffs when a “Shapley-like” payof f
mechanism is adopted. We show that the grand coalition is

unstable, even when the operational cost functions are concave, \ 8
which is in sharp contrast to the recently studied case of a

single provider where the grand coalition is stable. We also
show that irrespective of stability of the grand coalition, there
always exist coalition structures which are not convergentto center [1] and IPTVI[[2], where high potential of operational
the grand coalition under a dynamic among coalition structues. s = .

Our results give us an incontestable fact that a provider dog not cqs_t reduction was Qbser\(ed. For instance, there are_z now 1.8
tend to cooperate with other providers in peer-assisted seices, million IPTV subscribers in South Korea, and the financial
and be separated from them. Three facets of the noncooperat sectors forecast that by 2014 the IPTV subscribers is eggect
(selfish) providers are illustrated; (i) underpaid peers, (ii) service to be 106 million [3]. However, it is clear that most users|wil
monopoly, and (iii) oscillatory coalition structure. Lastly, we ¢ jyst “donate” their resources to content providers. Sthu

propose a stable payoff mechanism which improves fairnessf o . . .
profit-sharing by regulating the selfishness of the players s the key factor to the success of peer-assisted servicesais ho

well as grants the content providers a limited right of realistic 0 (economically) incentivize users to commit their valleab
bargaining. Our study opens many new questions such as reatic  resources and participate in the service.
and efficient incentive structures and the tradeoffs betwee One of nice mathematical tools to study incentive-
faimess and individual providers’ competition in peer-asisted compatibility of peer-assisted services is the coaliti@me
Services. theory which covers how payoffs should be distributed and
whether such a payoff scheme can be executed by rational
|. INTRODUCTION individuals or not. In peer-assisted services, the “sysibio
between providers and peers are sustained Jihehe offered
payoff scheme guarantees fair assessment of players’i-contr
The Internet is becoming more content-oriented, and th@tion under a provider-peer coalition afit) each individual
need of cost-effective and scalable distribution of cotstéras has no incentive to exit from the coalition. In the coalition
become the central role of the Internet. Uncoordinated-pegame theory, the notions of Shapley value and the core have
to-peer (P2P) systems,g, BitTorrent, have been successfubeen popularly applied to addre§$ and (i), respectively,
in distributing contents, but the rights of the content onNewhen the entire p|ayer5 Cooperate' referred to asgﬂm}d
are not protected well, and most of the P2P contents aredgalition. A recent paper by Misrat al. [4] demonstrates that
fact illegal. In its response, a new type of service, callfle Shapley value approach is a promising payoff mechanism
peer—assisted Sel’ViCé],aS received Significant attention thesg) provide right incentives for Cooperation irB'mg|e-provider
days. In peer-assisted services, users commit a part af theder-assisted service.
resources to assist content providers in content distabut However, in practice, the Internet consists of multiple con
with objective of enjoying both scalability/efficiency in2P  tent providers, even if only giant providers are counted. In
systems and controllability in client-server systems.rBgies the multi-provider setting, users and providers are caliple
of application of peer-assisted services include nano data more complex manner, thus the model becomes much
o . o more challenging and even the cooperative game theoretic
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A preliminary version of this work has been published in thecgedings Less .
of GameNets 2011. The grand coalition is expected to be the “best” coalition

players (i.e., providers and peers), we then establish a generalized }X\*
Assting i

o
&'gd

Fig. 1. Two coalition structures for a dual-provider pessisted service.
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in the peer-assisted service with multiple providers irt tha for self-organizing agent®(g, unmanned aerial vehicles) col-
provides the highest aggregate payoff. To illustrate, see lecting data from arbitrarily located tasks in wirelesswarks
example in Figl 1L with two providers (Google TV and iTunesand proved the stability of the proposed algorithm by using
and a large number of peers. Consider two cooperation typkedonic preferencéand dominance). In this paper, we use the
(i) separatedwhere there exists a fixed partition of peers fostability notion by Hart and Kurz [8] (see alsol [9]) to study
each provider, anli) coalescentwhere each peer is possiblethe dynamics of coalition structures in peer-assistedicesy

to assist any provider. In the separated case, a candidgtéf paThe stability notion in[[8] is based on the preferences of any
scheme is based on the Shapley value in each disconne@sditrarycoalitionwhile the hedonic coalition games are based
coalition. In the coalescent case, the Shapley value is alson the preferences dfidividuals Other subtle differences are
candidate payoff scheme after a worth function of the gramgscribed in[[10].

coalition is defined, where a reasonable worth funftioan

be the total optimal profithaximizedbver all combinations of C. Main Contributions and Organization

peer partitions to each provider. Consequently, the tatgoff We summarize our main contributions as follows:

Lonrl etgs tﬁgatl\zzcsgrttitcigﬁ(se ;xt():gtehd(s:a;hea;t ;?é ;Ziij:giﬁga;f)sq:ollowing the preliminaries in Sectidd Il, in Section, We
. describe and propose the cooperative game theoretic frame-

value is defined by a few agreeable axioms, one of which . . ) . :
is efficiencE meaning that theverycent of coalition worth work of the peer-assisted service with multiple providers.
’ After defining a worth function that is provably the unique

is distributed to players. Since smaller worth is shared out bl th functi tisfving tw tial .
among players in the separated case, at least one individuafeaSI € worth function satistying two essential propesfi
I.e,, feasibility and superadditivity of a coalition game,

is underpaidas compared with the coalescent case. Thus, d losed-f f 2 of the Shapl |
providers and users are recommended to form the grandWe provide a closed-form formuia of the Shapiey value
coalition and be paid off based on the Shapley values. for a general coallt_lon_ W.'th multu_ale prowders and peers,
However, it is still questionable whether peers are williag where we takg a-fIU|d-I|m|t approximation f(.)r mathematical

stay in the grand coalition and thus the consequent Shapley-traCtab'“ty' This is a non-tr|V|a_1I generallz_at|on of thadp-
ley value for the single-provider case inl [4]. In fact, our

value based payoff mechanism is desirable in the multi- ¢ lain Th i1 establishes th | Shal |

provider setting. In this paper, we anatomize incentivacstr ormuiain fheoreril establisnes the general Shapley value

tures in peer-assisted services with multiple contentigerg for d|st|r_1gu|shednult|ple atomic players and |nf|n|teS|m_aI

and focus on stability issues from two different angleditity playe_zrs in th_e context of the Aumann-Shapley (A-S) prices
. [11] in coalition game theory.

at equilibrium of Shapley value and convergence to the eq . . ) .
librium. We show that the Shapley payoff scheme may le In SeCt'orm’ we d|scqss N various ways that the Shapley
payoff regime cannot incentivize rational players to form

to unstable coalition structure, and propose a differetibno ih g It implving thaiai fit-shari d

of payoff distribution schemey value, under which peers and N grtan_ Co?' |?n, 'mplying t st lrdpzo ' -tSh a”an. atn

providers stay in the stable coalition as well as bettenéss opportunismot players cannot stand together. First, we
prove that the Shapley value for the multiple-provider

's guaranteed. case is not in the core under mild conditiomsg, each
provider’s cost function is concave. This is in stark con-
B. Related Work trast to the single-provider case where the concave cost
The research on incentive structure in the P2P systemsfynction stabilizes the equilibrium. Second, we study the
(e.g, BitTorrent) has been studied extensively. To incapagitat dynamic formation of coalitions in peer-assisted servines
free-riders in P2P systems, who only download contents but jntroducing the notion of stability defined by the seminal
upload nothing, from behaving selfishly, a number of ineenti  \work of Hart and Kurz [8]. Finally, we show that, if we
mechanisms suitable for distribution of COpy—free corgent adopt a Shap|ey-||ke payoff mechanism, called Aumann-
have been proposed (Se€ [5] and references therein), usingbraze value, irrespective of stability of the grand caait
game theoretic approaches. Alternative approaches t@iexpl there always exist initial states which do not converge to
the potential of the P2P systems for reducing the distiouti  the grand coalition.
(or operational) costs of the copyrighted contents havebeg) |n SectioiV, we present three examples stating the prob-
recently adopted by [1]. [4]. To the best of our knowledge, th  |ems of the non-cooperative peer-assisted ser(iethe
work by Misraet al. [4] is the first to Study the prOfit-Sharing peers are underpaid Compared to their Shap'ey paxﬁ)'fsy
mechanism (payoff mechanism) of peer-assisted services. g provider paying the highest dividend to peers monopo-
Coalition game theory has been applied to model diverse |izes all peers, andiii) Shapley value for each coalition
networking behaviors, where the main focus in most cases gjyes rise to an oscillatory behavior of coalition struetir
(e.g, [4]) was to study the stability of a specific equilibrium  These examples suggest that the system with the separated
i.e., the grand coalition in connection with the notion of providers may be even unstab'e as We” as unfair in a peer-
core. Recently, Saadt al. [6], [7], discussed the stability  assisted service market.
and dynamics ofendogenougormation of general coalition 4) In Section[Vl, as a partial solution to the problems of
structures. In particular, [7] introduced a coalition gamedel Shapley-like payoffsife., Shapley and Aumann-Dréze),
in SectionTI=A, we establish that this definition drived directly from we propose an altematlv.e p‘?‘yOﬁ S(.:heme’. cajiedalue
an essential property of coalition. [12]. This payoff mechanism is relativefgir in the sense
2To be discussed formally in Sectign 1I-C that players, at the least, apportion the difference batwee



the coalition worth and the sum of their fair shares,, B. Shapley Value and Aumann-&xe Value

Shapley payoffs, anstabilizesthe whole system. Itis also  op the premise that the player set is not partitiories,

practical in the sense that providers are granted a limitgd — (/) the Shapley value, denoted by (not ¢), is

right of bargaining That is, a provider may award anpopylarly used as a fair distribution of the grand coaliton

extra bonus to peers by cutting her dividend, competiRgorth to individual players, defined by:

with other providers in a fair way. More importantly, we B ISI(N|=|S]—1)! ,

show that authorities can effectively avoid unjust rivedri pi(N,v)= Z e (S Ui —(s)). (@)

between providers by implementing a simplistic measure. SCN\{i} o o _

After presenting a practical example of peer-assisted sgapley [L13] gives the following interpretationti)’ Starting
vices with multiple providers in delay-tolerant networks iWlth a single member, the coalition adds one player at a time

Sectior{ V], we conclude this paper. until everybody hag been aplmitte(ii.) The orde_zr in which
players are to join is determined by chance, with all arrange
Il. PRELIMINARIES ments equally probabldiii) Each player, on his admission,
. . . . . . demands and is promised the amount which his adherence
Since this paper investigates a multi-provider case, where . o
- . ; -~ tontributes to the value of the coalition.” The Shapley ealu
peer can choose any provider to assist, we start this sduyion o ; . .
" n : " " guantifies the above that is axiomatized (see Setfion 11,@) a
defining a coal|.t|on game with a peer part|t|0relc a coalition has been treated as a worth distribution scheme. The beauty
structure) and introducing the payoff mechanism thereof. of the Shapley value lies in that the payoff “summarizes” in
A Game with Coalition Structure i(;nz \?eurr;?:(;; Iziatlilotnhitfuocst?rbell|tles of each player’s contribution
A game with coalition StTUCE\lflfe is a tripj\deY,v,P) where  Given a coalition structure® # {N}, one can obtain
N is a player set and) : 2% — R (27 is the set of the Aumann-Dréze value (A-D valu€) [14] of playgralso
all subsets ofN) is a worth function,v(f)) = 0. v(K) denoted byp, by takingC (i), which is the coalition containing
is called the worth of a coalitio’ C N. P is called a pjayeri, to be the player set and by computing the Shapley
coaliion structurefor (N, v); it is a partition of N where yajue of player of the reducedgame(C(i), v). It is easy to
C(i) € P denotes the coalition containing playerFor your  see that the A-D value can be construed as a direct extenfsion o
reference, a coalition structurE can be regarded as a sefhe Shapley value to a game with coalition structure. Naé th
of disjoint coalitions. Thegrand coalition is the partition pgth Shapley value and A-D value are denoted/lecause
P = {N}. For instandg a partition of N = {1,2,3,4,5} the only difference is the underlying coalition structde
is P = {{1,2},{3,4,5}}, C(4) = {3,4,5}, and the grand
coalition is P = {{1,2,3,4,5}}. P(S) is the set of all . . N
partitions of S C N. For notational simplicity, a gameithout C. Axiomatic Characterizations of Values
coalition structurg N, v, {N}) is denoted by(N,v). A value We provide here an axiomatic characterization of the Shap-
of playeri is an operator; (N, v, P) that assigns a payoff to ley value [13].
playeri. We definepx = 3, ¢; forall K C N. Axiom 1 (Coalition Efficiency, CE). 3>, ¢;(N,v,P) =
To conduct the equilibrium analysis of coalition games, the(C), VC € P.
notion of core has been extensively used to study the stabiliixxiom 2 (Coalition Restricted Symmetry, CS). If
of grand coalitionP = {V}: j € C(i) andu(K U{i}) = v(KU{j}) forall K € N\{i,j},
Definition 1 (Core). The core of a gaméN, v) is defined by: then¢;(N,v, P) = ¢,(N, v, P).

Axiom 3 (Additivity, ADD). For all coalition functionsv, v’
{d’(N’“) |3 6i(N,v) = o(N) andi € N, 6,(N, v+ ', P) = 6s(N, v, P) + ¢:(N, v/, P).
en Axiom 4 (Null Player, NP). If v(K U {i}) = v(K) for all

and ) ¢;(N,v) > v(K),VK C N}. K C N, then¢;(N,v,P) = 0.
ieK Recall that the basic premise of the Shapley value is that the

If a payoff vectorg(N, v) lies in the core, no player itV has player set is not partitioned.e., P = {N}. It is well-known
an incentive to split off to form another coalitioi because [12], [13] that the Shapley value, defined [d (1),usiquely
the worth of the coalitionX, v(K), is no more than the characterized byCE, CS ADD and NP for P = {N}. The
payoff sumy .. ¢:;(IN,v). Note that the definition of the A-D value is alsouniquely characterized byCE, CS ADD
core hypothesizes that the grand coalition is already fdrmand NP (Axioms[1f4), but in this case for arbitrary coalition
ex-ante We can see the core as an analog of Nash equilibrisstructureP [14]. In the literaturee.qg, [6], [15], the A-D value
from noncooperative games. Precisely speaking, it shoeld llas been used to analyze thimtic games where a coalition
viewed as an analog aftrong Nash equilibriumwhere no structure isexogenouslygiven.
arbitrary coalition of players can create worth which iggr pefinition 2 (Coalition Independent, CI). If i € C C N,
than what they receive in the grand coalition. If a payoffteec ¢ ¢ P and ¢ ¢ P, theng; (N, v, P) = ¢;(N,v, P').
¢(N,v) lies in the core, then the grand coalition i;_stable With £rom the definition of the A-D value, the payoff of player
respect to any collusion to break the grand coalition. i in coalition C(i) is affected neither by the player s&t nor

3A player i is an elementof a coaliton C = C(3), which is in turn an by coalitionsC' e ,P'. C # C(i). Note that onlyC'(i) contains .
elementof a partitionP. P is an element of°(N) while a subset 02V.  the playeri. Thus, it is easy to prove that the A-D value is



payoff vectors stabilizing grand coalition worth, but only to maximize their bargaining power with
regard to division of the worth of the grand coalition. In eth
words, players form a labor union (coalition) to obtain atdret
bargaining position leading to a larger payoff, implyingth
the coalition efficiency axionCE is also violated. A delicate
premise of this approach is that players must formdrend
Fig. 2. If a payoff vector lies in the core, the grand coalitis stable[[3].  coalition, the worth of which is in fact theargestworth in
superadditive games (See Definit[dn 5), and bargain with eac
coalition independent. Fror@/ of the A-D value, in order to other at the same time. Also, in the context of P2P systems,
decide the payoffs of a game with general coalition str&tufyhether it is more reasonable to nulliE so that a portion of
P, it suffices to decide the payoffs of players within each worth of a coalition (peers and providers)e P becomes

coalition, sayC' € P, without considering other coalitionstransferrable to other coalitior@’ € P, C # C’, remains an
C € P, C # C(i). In other words, once we decide the payoffgpen economic question.

of a coalitionC € P, the payoffs remain unchanged even
though other coalitionsy’ € P, C’ # C, vary. Thus, for any
given coalition structuré?, any coalitionC' € P is just two-
fold in terms of the number of providers @: (i) one provider  In this section, we first define a coalition game in a peer-
or (ii) two or more providers, as depicted in Fig. 1. assisted service with multiple content providers by cfasg)

Yet another reason wh¢/ attracts our attention is that it the types of coalition structures asparategdwhere a coalition
enables us to define the stability of a game with coalitioncludes only one provider, antbalescentwhere a coalition
structure in the following simplistic way: is allowed to include more than one providers (see[Hig. 1). To

Definition 3 (Stable Coalition Structure [8]). We say thata define lthe coalitip_n game, we will define a worth function of
coalition structureP’ blocks P, whereP’, P € P(N), with an arbitrary coalitionS € N for such two cases.
respect tog if and only if there exists som@ € P’ such that

¢i(N,v,{C,---}) > ¢(N,v,P) for all i € C. In this case, A \worth Function in Peer-Assisted Services

we also say that” blocksP. If there does not exist arp’ . )
which blocksP, P is called stable. Assume that playergv are divided into two sets, the set

. . , of content providersZ := {pi,--- ,p¢}, and the set of peers
Due to Cl of the A-D value, all stability notions defined byH .~ {n1,--- ,ny},i.e. N = ZUH. We also assume that the

the seminal work of Hart and Kurz|[8] coincide with the aboveeers are homoueneo the same computing powers. disk
simplistic definition, as discussed by Tutid [9]. Definitih geneoesy, puting p '

can be intuitively interpreted that, if there exists anysattof cache sizes, and upload bandwidths. Later, we discussuhat 0
playersC who improve their payoffs away from the Curren{esults can be re_ad_lly exten_ded to nonhomogeneous pees. Th
coalition structure, thewill form a new coalitionC. In other Set of peers assisting providers is denotediby. 1 where

. " . - x :=|H|/n, i.e, the fraction of assisting peers. We define the
words, if a coalition structur@® has any blocking coalitiot?, - i
) . ; X worth of a coalitionS to be the amount of cost reduction due
some rational players will breaR to increase their payoffs.

. : . L to cooperative distribution of the contents by the playars§'i
The basic premise here is that players are not clairvoyant, .
; D d - . in both separated and coalescent cases.
they are interested only in improving their instant payaffs _
a myopic way. If a payoff vector lies in the core, the grang€parated caseDenote by} (z(S5)) the operational cost of a

coalition is stable in the sense of Definitioh 3, but the cesee Providerp when the coalitiors’ consists of a single provider
is not necessarily true (see Fig. 2). andz(S) - n assisting peers. Since the operational cost cannot

be negative and may decrease with the number of assisting
D. Comparison with Other Values peers, we assume the following to simplify the exposition:

In a particular category of games, calledting games or  * Assumption 2 (z) is non-increasing i for all p € Z.
simple games, Banzhaf value as well as the Shapley vaiete that from the homogeneity assumption of peers, the cost
(also known as Shapley-Shubik index in this context) hasibelinction depends only on the fraction of assisting peersnTh
used in the literature (See,g, [16] and references therein).we define the worth function(S) for a coalitionS having a
While the Shapley value has been extensively studied in magifigle provider as:
papers, there are no similar results for the Banzhaf valoe. F 8(S) == Q1(0) — Q1 (x(S)) 2)
instance, the Shapley value is proven to lie in the core for P P
a special type of games, callebnvexgames, whereas thereVhere €25(0) corresponds to the cost when there are no
is no equivalent result for the Banzhaf value. Moreover, tfgSSIsting peers. For a coaliti¢hwith no provider, we simply
Banzhaf value violates the efficiency axio®E in Section Naved(S) := 0. For notational simplicity;:(5) is henceforth
[I=C] for a certain coalition structur@® = {N}, leading to denoted byz, unless confusion arises.
inefficient sharing of the grand coalition worth. Coalescent caseln contrast to the separated case, where a

As compared with Aumann-Dréze value, a new valuepalition includes a single provider, the worth for the coa-
referred to a®©Owenvalue (Seee.g, [15, Chapter 8.8] o [17, lescent case is not clear yet, since depending on which peers
Chapter XII]) has emerged based onalternativeviewpoint assist which providers the amount of cost reduction magdiff
on coalition, where a coalition forms not to share the cimelit One of reasonable definitions would be the maximum worth

payoff vectors in core

IIl. COALITION GAME IN PEER-ASSISTEDSERVICES



out of all peer partitiond,e., the worth for the coalescent casédy appealing to Bondareva-Shapley Theorém [15, Theorem
is defined by: for a coalition with at least two providers, 3.1.4].

Definition 5 (Superadditivity). A worthv is superadditive if
}, (S, TCNandSNT =0)=v(SUT)>v(S)+v(T).
The following lemma holds by the fact that a feasible worth
(3) function cannot be greater thdd (8., the largest worth.

and v(S) := o(S) for a coalition S with at most one Lemma 1. When the worth for the separated case is given

provider. The definition above implies that wiewa coalition by (@), for the coalescent case, there exists a unique worth
containing more than one provider as the most productifinction that is both superadditive and feasible, giver(®y
coalition whose worth isnaximizedby choosing the optimal Proof: Suppose we have a superadditive warthFirstly,
partition P* among all possible partitions ¢f. Note that[(B) it follows directly from the assumption (the worth function
is consistent with the definitio](2) fofZz N S| = 1, i.e, for the separate case {3 (2)) thdfS) = o(S) if S includes
v(S) =0(S) for |ZN S| =1. one provider.(i) Feasibility: It follows from the definition
Five remarks are in order. First, as opposed[fo [4] wheet feasibility that we havev(-) > v'(-) becausev(S) is
o({p}) = nR — Q7(0) (R is the subscription fee paid bythe maximum over all possible partitior8 € P(S). (ii)
any peer), we simply assume that{p}) = 0. Note that, as Superadditivity In the meantime, since’ is superadditive,
discussed in[[15, Chapter 2.2.1], it is no loss of generality must satisfyv’ (S U T') > v'(S) + o'(T') for all disjoint S,
to assume that, initially, each provider has earned no mon#yC N. This in turn impliesv/(S) > .. v/ (C) for all
In our context, this means that it does not matter how mudh such that? € P(S). The right-hand sid& ., v'(C)
fraction of peers is subscribing to each provider becausk eshould coincide withv(S) for some P = P* such that
peer has already paid the subscription fee to providerante |Z N C| = 1 for all C € P* (See [B)), whereP* is the
Second§?(x) may not be decreasing because, for examplRger partition which maximizes(S). Therefore, we have
electricity expense of the computers and the maintenarste ¢ (S) > v(S). Combining this withv(-) > +'(-) uniquely
of the hard disks of peers may exceed the cost reduction dlgfermines/’(-) = v(-). u
to peers’ assistance in content distributieng, Annualized  In light of this lemma, we can restate that our objective
Failure Rate (AFR) of hard disk drives is over 8.6% for thredd this paper is to analyze the incentive structure of peer-
year old ones[18]. assisted services when the worth of coalition is feasiblk an
Third, the worth function in peer-assisted services can reéJperadditive. This objective in turn implies the form ofréo
flect the diversity of peers. It is not difficult to extend oesult function in (3).
to the case where peers belong to distinct classes. For égamp

peers may be distinguished by different upload bandwidtls aB. Fluid Aumann-Deze Value for Multi-Provider Coalitions
different hard disk cache sizes. A point at issue for the iplelt

provider case is whether peers who ac subscribing to the us distribute the worth to the players for a given coalition

conte:\t OOf athprowder mtgy bteh TIE\]N ed tot asts!st t.h eh pro&"dg{ructurep. Recall that the payoffs of players in a coalition
ortn(;). . rr: EI asbsug:p lon tha h edcon ?rll IS C.'tp ere agge independent from other coalitions by the definition of A-
not decipherable Ly the peers who do Nt KNOW 1S passwqy payoff. Pick a coalitionC' without loss of generality, and
which is given only to the subscribers, providers will a"OV‘ﬁenote the set of providers i@ by Z C Z. With slight

those peers to ass_|st. the CO“t?rPt .dIStI’IbutIOI’]. C_)thermsae, notational abuse, the set of peers assistthgs denoted by
can easily reflect this issue by dividing the peers into a nrermby;

£ ol h h ol . s of bscribi fg){ Once we find the A-D payoff for a coalition consisting of
geri;isfsn\:én?re each class IS a set of peers subscribing rtﬁtrary provider se¥ C Z and assisting peer sét C H, the

ayoffs for the separated and coalescent cases iflFig.dfoll
Fourth, it should be clearly understood that our worth fun r'o}r/n the substitutFi)onsZ — ZandZ = {p} respeEivgly In
tion (3) does not encompass more than just the peer-partitigyyy of our discussion in Sectidn 1B, it is more reasorebl
optimization. That is, we speculate that cooperation amo call a Shapley-like payoff mechanism ‘A-D payoff’ and
providers might lead to further expenses cut by optimizing;h(,mley payoff’ respectively for the partitioned and non-

their network resources. We recognize the lack of this ‘ddd o 501 i
artitioned game ZUH,---})and(N ZUH}A.
bonus’ to be the major weakness in our model. P games, v, { o) (.. { VB

Lastly, it should be noted that the worth function [d (3;:7]1UId L|mt|t - We adoptttr:le limit axtlotms f?rha Izrge po?cutlr?t'?D
is selected in order to satisfy two properties. First of #ll, ot users 1o overcome the computational hardness ot the A-

follows from the definition ofv in (@) that no other coalition payoffs: _ _ _

function v/(-) can be greater tham(-), i.e, v(-) > /() limy 0o QP() = Qp(-)  whereQ(-) = 1QI(-)  (4)
becausev is the total cost reduction that imaximizedover \yhich is the asymptotic operational cost per peer in the
all possible peer partitions to each provider. system with a large number of peers. We drop superscript

Definition 4 (Feasibility). For all worth function v’(-), we 7 from notations to denote their limits as— oo. From the

havev(S) > +/(S) for all S C N.
L . 40n the contrary, the term ‘Shapley payoff’ was used in [4]eter to the
The second property, superadditivity, is one of the MOSLyoff for the gaméN, v, {Z U H,--- }) where a proper subset of the peer

elementary properties, which ensures that the core is nptyemset assists the content distribution.

v(S):—maX{Z@(C’)’PEP(S) s.t.|ZNnC|=1, YCeP
ceP

So far we have defined the worth of coalitions. Now let



~77 ~ 1 Z1_1_ =
B2 (@) = 0y(0) = Cscin gy Jy w1 = w) 271181 (MU () — M (ua) ) du, for p e Z

i ; s ' (FluidAD1)
PE(x) = =Y gcz Jy w1 — w7181 S22 (uz) du, forn e H.

G () = Q,(0) — fol uME? (uz)du — fol(l — )M (uz)du + fol uMA? (uz)du, (p, q are interchangeable)
~{p,q} _ 1 2dM§{2p,q} 1 dl\lé;} _
oV (a) = = [y v —g—(uw)du = 3,0, iy Jo w1 — u) =32 (uz)du, forn e H.

’ (FIuidAD2)

Fig. 3. Fluid Aumann-Dreze payoff formula for multi-praldr coalitions, construed as an extension of Aumann-Shaplees to multiple atomic players.

assumptior2 (x) > 0, we haveﬁp(:c) > 0. To avoid trivial marginal cost reduction of each peer on the cc{>r;dition thigt on
cases, we also assunig,(z) is not constant in the interval one provider is in the coalition is-u(1 — u)dl‘jgp (ux).

x € [0,1] for anyp € Z. We also introduce the payoff of each

provider per user, defined g§ := lgog. We now derive the

fluid limit equations of the payoffs, shown in F[d. 3, whicinca _ . - -
be obtained ag — oo. The proof of the fo”owing theorem In this SeCt|0n, we Study the Stab|l|ty of the grand coatitio
is given in AppendiiA. to see if rational players are willing to form the grand

Theorem 1 (A-D Payoff for Multiple Providers). As n — coalition, only under which they can be paid their respectiv

oo, the A-D payoffs of providers and peers under an arbitrarsﬁIr Shapley payoffs. The key message of this section is

. 2 FIGdADT) in Fi at the rational behavior of the providers makes the Skaple
coalition C' = Z U H converge toEIUADT) in Fig. @ where value approaclinworkablebecause the major premise of the

S i Q. (1 . )
Mg (z) := min {Zies Q(yi) | Yiesyi <@, >0 and Shapley value, the grand coalition, is not formed in the mult

IV. INSTABILITY OF THE GRAND COALITION

MY (x) := 0. Note thatM P} (z) = Q,(z). provider games.

The following corollaries are immediate as special cases of

Theorent]L, which we will use in Sectign V. A. Stability of the Grand Coalition

Corollary 1 (A-D Payoff for Single Provider). As7 — oo, Guaranteeing the stability of a payoff vector has been
the A-D payoffs of providers and peers who belong to a singlgs jmportant topic in coalition game theory. For the single-
provider coalition,i.e, Z = {p}, converge to: provider case|Z| = 1, it was shown in[[4, Theorem 4.2] that,

if the cost function is decreasing and concave, the Shapley

~{p} —_ 0 1 {p}
{ o (@) = 0p(0) — Jo MG" (uz)du, (5) incentive structure lies in the core of the game. What if for

P (@) = — fol w8 (uz)du, forn e H. |Z| > 2? Is the grand coalition stable for the multi-provider
5 pri ) . . . .
Corollary 2 (A-D Payoff for Dual Providers). Asn — oo, fca}lsoev\./mPﬂor to addressing this question, we first define the
the A-D payoffs of providers and peers who belong to a dual 9

rovider coalition,i.e, Z — {p,q}, converge toFluidAD?).  Definition 6 (Noncontributing Provider). A providerp € Z
P tp.a} . 9 .__is called noncontributing if\/Z (1) — Mg\{”}(l) = Q,(0).

Note that our A-D payoff formula in Theorelmh 1 generalizes ) o
the formula in Misraet al. [4, Theorem 4.3]i(e. |Z| = 1). To understand this better, note that the above expression is

It also establishes the A-D values for distinguisheditiple €duivalent to the following:

atomic players (the providers) and infinitesimal playere (t Zﬁi(o) —MZ(1) = Z 0,(0) — MZ2\P 1) (6)

peers), in the context of the Aumann-Shapley (A-S) prices jcz ieZ\{p}

[11] in coalition game theory. ) which implies that there is no difference in the total cost
Ourfo_rmula for the peers is interpreted as follows: Take_ _th%duction, irespective of whether the provideris in the

second line of (FIuidADP) as an example. Recall the definitio,o\ider set or not. Interestingly, if all cost functionsear

of the Sdhap_ley vglue[[l). The %ayorff of peers the(rjnargma}ll concave, there exists at least one noncontributing pravide

cost reduction(S U {n}) — U.( ) that is averagedover a . Lemma 2. SupposgZ| > 2. If Q,(-) is concave for allp €

equally probable arrangemenitg,, the orders of players. It is 7. there existlZ| — 1 noncontributing providers

also implied by[(l) that thexpectationof the marginal cost ~’ ) . 70 '

is computed under the assumption that the eviits- y and 10 Prove this, recall the definition af/¢ (-):

|S| = ¢’ for y # y' areequally probablei.e, P(|S| = y) = ME () = mingey () D ie s Qlyi)

P(|S| = y'). Therefore, in our context of infinite player game h .

in TheorentlL, for every values efr along the interval0,z], ereY (z) == {(y1,- . yz) | Liezvi <, yi =0}

the subset’ C ZU H containsux fraction of the peers. More gjnce the summation of concave functions is concave and the

importantly, the probability that each provider is a memtr minimum of a concave function over a convex feasible region

S is simply u because the size of peers$Qrjuz, is infinite y(;) is anextremepoint of Y () as shown in[[19, Theorem

asn — oo so that thesizeof 5 is not affected by whether 3 4 7] we can see that the solutions of the above minintizati

a provider belongs t&' or not. Therefore, the marginal coStyre the extreme points éfy, - - - z) | Siervi <, yi >

reduction of each peer on the co{ndi;cion that both provide@’ which in turn implyy; — 0 for |Z]| — 1ZEer6viaers S

are contained inS becomes—uQ%(ux). Likewise, the Note that the conditiofZ| > 2 is necessanhere.
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Fig. 4. Exampldll: A-D Payoffs of Two Providers and Peers foné@x Cost Functions.

We are ready to state the following theorem, a direct « The A-D payoff of providep in coalition {p} U H is
consequence of Theordm 1. Its proof is in Apperidix B. larger than that in all coalitionT U H for {p} C T C Z.
Theorem 2 (Shapley Payoff Not in the Core).If there ex-  « The A-D payoff of peen in coalition {p} U H is smaller
ists a noncontributing provider, the Shapley payoff for the than that in all coalitonT' U H for {p} C T C Z.
game(Z U H,v) does not lie in the core. In plain words, a provider, who is in cooperation with a peer

It follows from Lemmal2 that, if all operational costset, will receive the highest dividend when she cooperats o
functions are concave arnd| > 2, the Shapley payoff doesWwith the peers excluding other providers whereas each peer
not lie in the core. This result appears to be in good agreem#ants to cooperate with as many as possible providers. It is
with our usual intuition. If there is a provider who does nosurprising that, for the multiple provider cases., [Z| > 2,
contribute to the coalition at all in the sense bf (6) and ®ach provider benefits from forming a single-provider daaii
still being paid due to her potential for imaginary conttibn whetherthe cost function is concaver not There is no
assessed by the Shapley formdla (1), which is not actuafigsitiveincentives for providers to cooperate with each other
exploited in the current coalition, other players may inyaro under the implementation of A-D payoffs. On the contrary, a
their payoff sum by expelling the noncontributing provider peer always looses by leaving the grand coalition.

The condition Z| > 2 plays an essential role in the theorem. Upon the condition that each provider begins with a single-
For |Z| > 2, the concavity of the cost functions leads to thgrovider coalition with a sufficiently large number of peers
Shapley value not lying in the core, whereas, for the cagge cannot reach the grand coalition because some single-
|Z| = 1, the concavity of the cost function is proven to makgrovider coalitions are alreadgtable in the sense of the
the Shapley incentive structure lie in the coré [4, Theorestability in Definition[3. That is, the grand coalition is not
4.2]. the global attractor. For instance, taRe= {{p} UH,---} as

the current coalition structure where all peers are possess
B. Convergence to the Grand Coalition by providerp. Then it fqll_ows from Theoreril3 that players
cannot make any transition fror® to {® U H,---} where

The notion of the core lends itself to the stability analysig - , ;g any superset ofp} because providep will not
of the grand coalitioron the assumptiothat the players are agr_ee to do so.

already in the equilibriumi.e., the grand coalition. However,

Theoren 2 still leaves further questions unanswered. In P&y CRITIQUE OF A-D PAYOFF FOR SEPARATE PROVIDERS
ticular, for the non-concave cost functions, it is uncldahée
Shapley value is not in the core, which is still an open prnoble
We rather argue here that, whether the Shapley value liézin S o i AR
core or not, the grand coalition is unlikely to occur by shagvi is a noncontributing (fr_ee-rldlng) pro_wder, Wh,'Ch Is traeen
that the grand coalition is not a global attractor under sonf@y concave cost functions for multiple providers, the gran
conditions. coalition will not be formed. The situation is aggravated by

To study the convergence of a game with coalition structu?—@eorem@’ Sta“”g thaﬂ;mglg-prow_der coalltlons(l.e., the
to the grand coalition, let us recall Definitibh 3. Itis irgeting SeParated case) will persist if providers are rational. \We n

that, though the notion of stability was not used [ih [4], onlustrate the weak points of the A-D payoff under the sirgle

main argument of this work was that the system with orfyovider coalitions with three representative examples.
provider would converge to a full sharing mode,, the grand

coalition, hinting the importance of the following converge A. Unfairness and Monopoly

result with multiple providers. The proof of the followingExample 1 (Unfaimess). Suppose that there are two
theorem is given in AppendixIC. providers,i.e, Z = {p, ¢}, with Q,,(z) = 7(z — 1)**/8+1/8
Theorem 3 (A-D Payoff Doesn't Lead to Grand Coalition). and ,(z) = 1 —x, both of which are decreasing and convex.
SupposdZ| > 2 and Q,(y) is not constant in the interval All values are shown in Fig.]4 as functions of In line with

y € [0,z] for anyp € Z wherex = |H|/|H|. The following Theoren{B, providep is paid more than her Shapley value,
holds for allp € Z andn € H. whereas peers are paid less than theirs.

The discussion so far has focused on the stability of the
grand coalition. The result in Theorédmh 2 suggests that ifethe
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Fig. 5. ExampléR: A-D Payoffs of Two Providers and Peers fon€ve Cost Functions.

We can see that each peerwill be paid 21/32 @ (0)) {p., i} blocked by p,n,n,
when he is contained by the coalitigmp,n} and the payoff  blocked by p;n, —
decreases with the number of peers in this coalition. On the blocked\by p,n,n,
@um@

blocked by p,n,

other hand, providep wants to be assisted by as many peers @ E

as possible becaus’ép} (x) is increasing inz. If it is possible t> Dol

for n to prevent other_ peers from joini_ng the coalition, he can  ,cked by p,n) -
get 21/32. However, it is more likely in real systems that no @1,172,
peer can kick out other peers, as discussed_in [4, Sectign 5.1 —
as well. Thusp will be assisted by: = 0.6163 fraction of Fig. 6. ExampldéB: A-D Payoff Leads to Oscillatory CoalitiSitructure.
peers, which is the unique solution @ﬁp}(x) = @{ﬂ}(x)

- . . ) eer is supposed to be$Hue to smaller contents as
while ¢ will be assisted byl — = = 0.3837 fraction of peers. P PP of:

opposed to those qf;.

Example 2 (Monopoly). Consider a two-provider system For simplicity, we omit the computation of the A-D payoffs
Z = {p, q} with Q,(z) = 1—-23/? andQ,(z) = 1-2x/3, both  for all coalition structures and stability analysis (segpdix

of which are decreasing and concave. Similar to Exaple 1, W& [20] and Table 1 in[[20] for details). We first observe that
can obtain@." SI) = 243/2/5, 3% () = 2/3, 3P} (2) = the Shapley payoff of this example does not lie in the core. As
32'/2/5 and cﬁ;{f’ (z) = 1/3. All values including the Shapleytime tends to infinity, the A-D payoff exhibits an oscillatio
values are shown in Figl5. Not to mention unfairness in liff the partition’? consisting of the four recurrent coalition
with ExamplelL and Theoref 3, providemonopolizes the structures as :5h0vyr1 in Figl 6, \{vhere, for n.o_tat|0nal sinitglic
whole peer-assisted services. No provider has an incenti{/€ adopt a simplified expression for coalitional structée

to cooperate with other provider. It can be seen that aft coalition{a,b,¢} € P is denoted by.bc and each singleton
peers will assist providep because&,{f} (r) > (57{111} (z) set{i} is denoted byi. The evolution of coalition structure is

for = > 25/81. Appealing to Definitior13, if the providersgovemeol_ by a simple rule:_ if there exibtocking.coalitions
are initially separated, the coalition structure will caenge (S€€ DefinitioriB), then arbitrary one of them will be formed.
to the service monopoly by. In line with Lemma and €t US begin with the partition{py, paninz}. Player py
Theoreni R, even if the grand coalition is supposed to be theuld have achieved the maximum payoff if he had formed

initial condition, it is not stable in the sense of the corbeT ahcoalltlon Onlyl_"_‘”th’él' Howe\r/]er,dplayemllwnl remain mf
noncontributing provider (Definitiof]6) in this examplegs € current coalition because he does not improve away from
the current coalition. Instead, Playes breaks the coalition

panine SO thatns and p; can form coalitionpins for their
B. Instability of A-D Payoff Mechanism benefit. As soon as the coalitignnns is broken,p; betrays
ng to increase his payoff by colluding withy . It is not clear

The last example illustrates the A-D payoff can even indugRyy this behavior will be in large-scale systems, as replorte
an analog of the limit cycle in nonlinear systems,, a closed in the literature[[9].

trajectory having the property that other trajectoriesalpiinto

it as time approaches infinity. VI. A FAIR, BARGAINING, AND STABLE PAYOFF

Example 3 (Oscillation). Let us consider a game with two MECHANISM FORPEER-ASSISTEDSERVICES

providers and two peers whef€ = {p1,p2,n1,n2}. If {n1}, The key messages from the examples in Sediibn V imply
{n2} and {ny,no} assist the content distribution ¢f;, the that the A-D value of the separate case gives rise to unfssine
reduction of the distribution cost is respectively$l®@$ and monopoly, and even oscillation. Also, it turns out that some
11$ per month. However, the hard disk maintenance coplayers’ coalition worth exceeds their Shapley payoffsahhi
incurred from a peer is 8 In the meantime, ifn,}, {n2} and they are paid in the grand coalition (Theoréin 2). Thus, the
{n1,n2} assist the content distribution @, the reduction of Shapley payoff scheme does not seem to be executable in
the distribution cost is respectively$63% and 13 per month. practice because it is impossible to make all players happy,
In this case, the hard disk maintenance cost incurred fromumequivocally. That being said, the fairness of profit-sitar



7 ~ w! 5 - - w;, foric Z,
X (@) =07 () + o (ZjeZ ;(0) = MF () — (Wf(l) +2jez ‘F’JZ(U)) wherew; = { 1, foried,

cz Wi
(FluidChi)

Fig. 7. Fluid x payoff formula for multi-provider coalitions.

and the opportunism of players are difficult to stand togetharbitrary coalition C = Z U H converge tofFIuidChi) in Fig.
Then, it is more reasonable to come up with a compromisilgwhere the Shapley payoff& (1) are given in(EluidADT)
payoff mechanism thafi) forces players toapportion the in Fig.[3.

difference between the coalition worth and the sum of their To intuitively interprety value, it is crucial to know the roles
fair shares(ii) grant providers a limited right abargaining of Axiom WSPand its weightsw;. In our context, because
and (III) stabilize the whole system. We will use a S|Ight|y dif- of fairness between peers, it is more reasonable tawset 1
ferent notion of payoff mechanism, callgdvalue, originally for i ¢ H. It does not make sense to differentiate payoffs

proposed by Casajus [12]. between peers due to the peer-homogeneity assumption in
Section[l-A. On the contrary, we will clarify in Sections
A. An Axiomatic Characterization of Value VI-Cl and[VI-D why the weights of providers;, i € Z do

The y value is characterized by a similar set of axiom ot necessarily have to be The essential difference between
,%-D value andy value lies inWSRP

used for the A-D value. The only difference is that (i . o .
NP is weakenedo GNP, causing a deficiency in axiomaticInterpretation of WSP: It implies that, if peeri loses, say

characterization, which is made up bySP: A;, when the coalition structure changesy, from the grand
Axiom 5 (Grand Coalition Null Player, GNP). If v(k U coaliion? = {N} to a finer coalition structur@”’ 7 {N7},
{i}) = v(K) for all K C N, then¢;(N, v, {N}) = 0. the providerp € C(i) will lose A; x w,. There are two

implications of this weighted splitting. First, since thaypff
of each player is computed based on the baseline, the
; , Shapley value, and the surplus or deficit incurred by foromati
¢i(N,v,P)—¢i(N,v,P") _ ¢j (N0, P)— ¢;(N,0,P ). of the coalition C’(:) are equally distributed forw, = 1,
wy wj x Vvalue leads to a fair share of the profit. Secondly, now a
The cornerstone of value is the very observation that, aprovider maybargain with peers over the dividend rate by
the grand coalitior’? = {N} is broken into two or more settingw, to any positive number. We elaborate on these two
coalitions, playeri now has another option to ally with otherimplications in the following subsections.
coalitions thanC(i) € P and thisoutside optionmust be
assessed. Tallow the assessment of the outside options,
is inevitable to weakerNP (See Sectiom 1I-C) toGNP, by
Satisfying Oniy Which’ a piayer may receive positive pamff On the basis of the first implication dﬂ/SP, X value is
far as he contributes to the worth of the grand coalitionpevéairer than A-D value in the following sense:
though he does not to that of the current coalitioe, NP. Definition 7 (Surplus-Sharing). A value ¢ of game
In the end, it is all about how twaluate the outside option, (N,v,P) is surplus-sharing if the following condition
the x value’s choice of which is to stick to the Shapley valubolds: if the coalition worth of coalitionC' € P is greater
by equally dividing the difference between the coalitiorrtio than, equal to, or less than the sum of Shapley values of
and the sum of Shapley valugs., WSPfor P = {N}. players in C, i.e, > ,cc ®:i(N,v,P) = > ccei(N,v),
Recalling the definitionpx (N,v) = > ., @i(N,v) in then the payoff of playei € C is greater than, equal to,
Sectior 1I-4, we present the following theorem (seel [12][][2 or less than the Shapley value of playierrespectivelyj.e.,

Axiom 6 (Weighted Splitting, WSP). If P’ is finer thanP
(e, C'(i) C C(i), Vie N)andj € P'(i),

&. Fairness: Surplus-Sharing

AV

for the proof): ¢i(N,v,P) % vi(N,v), for all i € C and for all C € P.
Theorem 4 (y Value). They value is uniquely characterized Since we proved in Theore 3 that, fidf| > 2, the payoff
by CE, CS ADD, GNP and WSPas follows: of providerp in coalition {p} U H exceeds her Shapley value

w; , and that of peen € H is smaller than his, it is clear from this
i(N,v, P) =i+ = (v(C(1)) — vci - : '
XilN,v0,P) =i+ 2 okec() Wk (v(C@) = vew) ) definition that A-D value isnot surplus-sharing fofZ| > 2,
wherey; is Shapley value of playerfor non-partitioned game Whereasy value is surplus-sharing for ar, e.g, see[(¥) and
(N,v) = (N, v, {N}). (FuidChi). For reference, both A-D angd values are surplus-
sharing if|Z| = 1.
: : . " The corresponding payoffs of ExampleEl1 arid 2 far; =
B. Fluid x Value for Mlﬂlt|—PrOV|Ejer Coalitions i 1, Vi € Z, are shown in Fige]8 arid 9. As was the case of
Recall N = ZUH, Z C Z, H C H andxz = |H[/n. TO the A-D payoffs in ExampleEl1 arid 2, the grand coalitions
compute they payoff for the multiple provider case, we firstare not stable. However, due to the surplus-sharing prppert
establish in the following theoréha fluid x value in line with

the analysis in Sectidn I[[4B with the limit axioms: 5In order to computey payoff of playeri, we need to know not only the

. . current coalitionC'(¢) but also Shapley values of players @¢). However,
Theorem 5 (X PaVOﬁ for MUIt'pIe Prowders). As n tends x payoff still satisfies Definitiofi]2. Therefore, we can congptite payoff of

to infinity, the y payoffs of providers and peers under amlayeri in coalition C(3) irrespective of other coalitions.
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Fig. 8. ExampléIlyy Payoffs of Two Providers and Peers for Convex CosFig. 10. Examplé&lly Payoffs of Two Providers and Peers for Convex Cost
Functions withw, = wq = 1. Functions withw, = 0.1 andwg = 3.

% Payoffs of Providers x Payoff of Each Peer SatiSfying the fOHOWing condition:
4] 191 { wy > w,, if v(C(p)) < vow),
' 0 <wp <y, if (C(p)) = o)
Two bounds,gp and w, can be viewed as a preventive
measure taken by the authorities to avaidfair rivalries
between providers.

Adopting non-identical weights,, = 0.1 andw, = 3, we
revisit Examplé&lL. Unlike Fid.18 where providgmonopolizes
—Femwity  ——penwing  all peers becausgi” (1) and Y!” (1) for i € H is the
""" Lrcto wih b il biggest possible payoffs fay and any peers, the monopoly
Fig. 9. ExampléRy Payoffs of Two Providers and Peers for Concave Codor this set of weights is broken as shown in Hig] 10. Now
Functions withw;, = wq = 1. providersp and ¢ will possess).6994 and0.3006 fraction of

peers, respectively. It is remarkable that hpayoffs are still
of the x payoff, whenever the coalition worth is larger tharsurplus-sharing as in Figsl 8 ahd 9.
the Shapley sum of players in the coalitial, players in the
coalition are paid more andce versa For instance, we can
see from Fig[B that if the coalition is formed by provider i ) )
andz > 0.5625 fraction of peers, all members of the coalition The x value of the game in Examplé 3 with equal weights
are paid more than their respective Shapley payoffs. w; =1, for all i € N, is shown in Tabléll. As discussed in

As shown in Fig[®D, the monopoly phenomenon of Examp[élz]- NP s not suitable fo_r a value reﬂgctmg outside options.
for the case of A-D payoff is still observed for the case dfor €xample, let us consider the partitiom p;, n1, n}. For

y value. Regarding Examplg 1, as shown in Figx8payoff the case of the A-D value, payoffs of both providgisand
even induces the monopoly ly which did not exist for the P2 are0. However, as we observe from Example 3, the best
case of A-D payoff. p1 can do is to ally withn; to reduce her operational cost by

v({p1,n1}) = 5 whereas the begt can do to reduce hers by
v({p2,n1,n2}) = 9. In other wordsp; should releas@, so

0.37

0.27

0.1+

0=

X
— p (Separated) — — g (Separated)
p (Coalescent) =" = g (Coalescent)

E. Stability of Coalition Structures

D. Bargaining over the Dividend Rate thatp, can create her worth becausehas aworthier outside
Another implication ofWSPis that a provider bargains with option, to reflect whichy value implementation “punisheg}
peers over the division of the profit and loss by settimgto by giving her anegativepayoff x,, = —1.

a nonnegative real value. For instance, consider the casa wh We also observe from Tablk | that players who can be better
the coalition worth exceeds the Shapley sum of players in tb# by leaving the current coalition are pamdorethan others.
coalition, e.g, v(C(p)) > ¢c(p) In (@), wherep € Z is the For example, consider the partitiofpina, p2,n1}. For the
only provider in coalitionC(p). In this case, a provider may case of A-D payoffsp; andn. received the same paydif
award an extra bonus to peers by setting < 1, or make (See Table 1 in[[20]). However, in Talle #; is paid more
more profit by settingv, > 1. For the coalition worth smaller thanp; because:, has the potential for creating the worthiest
than the sum of Shapley payoffs, a provider may compensat&lition p;panins Or paning, i.e, v(-) = 9. Thoughns will
peers for loss by using), > 1. Settingw, = 1 guarantees not be able to break the partitiofp;ns, p2,n1} according
the fair profit-sharing between providgrand peers, whereasto the stability defined in Definitioh] 3;» is paid more than
providerp may be willing to usew, # 1 for bargaining. p1 essentially for itsassessegbotential. In this case, the final
Althoughw, can be viewed as fiexible knolto balance the form of coalition structure after its endogenous evolutisn
fairness of the system and the bargaining powers of prosidethe state{pins,pani}. There are now twabsorbingstates
regulators need to control the providers by introducingaspp{pini, p2,n2} and{pins, pan1}, as shown in Tablg I, which
and lower bounds onv, which may depend on whetherare stable in the sense of Definitibh 3. On the contrary, there
v(C(p)) > wc(p) OF NOt, because, have opposite meaningsdoes not exist any stable state for the case of A-D payoff as
for the two cases. For example, providers may use weiglstsown in Fig[ 6 (See also Sectibn V-B and Table 17in [20]).



TABLE |
EXAMPLE[3] x PAYOFF AND BLOCKING COALITION C
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{p1p2, n1n2} {p1p2,n1,n2} {p1n1,p2,n2} {p1,p2,n1,m2} {p1n1,pana}
Xp1 -1 -1 5/3=1.67 0 5/3=1.67
Xpa2 1 1 0 0 716=1.17
Xni 1/2=0.5 0 10/3=3.33 0 10/3=3.33
Xno -1/2=-0.5 0 0 0 -1/6=-0.17

Pp1,n2,p1N1,p2n2,pinz,p2mi P1,p1n1,pinz,p2mi pini1,pinz,p2ni
¢ pip2ninz,p1p2mni,pi1p2mn2 P1p2nin2,p1p2ni1,p1p2n2 - P1p2n1n2,p1p2n1,pip2n2 n2
pininz,p2ningz,pip2ninz | p1ninz,p2ninz,pip2mninz b2nin2,pip2ninz

{p1p2n2,n1} {p1p2n1,na} {p2ninz,p1} {p1p2nina} {pin2, p2,n1 }]
Xp1 4/9=0.44 4/9=0.44 0 716 = 1.17 5/3=1.67
Xpo 22/9=2.44 22/9=2.44 32/9=3.56 19/6 = 3.17 0
Xni 0 19/9=2.11 29/9=3.22 17/6 = 2.83 0
Xna 10/9=1.11 0 20/9=2.22 11/6 = 1.83 713=2.33
C pini,pip2ninz,p2ninz,pinz pini,paninz,pinz pinz, pini pini,p2ninz,pinz pani

{pinana, pa} {p1,p2,m1n2} {p1,n1, panay {p1,n2, pona} {p1n2, pani}
X1 -4/9=-0.44 0 0 0 5/3=1.67
X p2 0 0 716=1.17 13/6=2.17 13/6=2.17
Xny 11/9=1.22 1/2=0.5 0 11/6=1.83 11/6=1.83
Xna 2/9=0.22 -1/2=-0.5 -1/6=-0.17 0 713=2.33

Pp1,pini,pinz,p2ni, n2,p1M1,p2n2,P1M2,pP2Mn1 pini,pinz,p2ni, pini,pinz,
¢ Dp2n1n2,p1p2ning pi1p2ni1n2,p1p2ni,pip2n2 | P1p2ninz,pip2ni Pbip2ninz,pip2n2 -
p1p2n1,pip2n2 Pp2ni1n2,pip2nin2 p2ni1n2,pip2mnz2,n2 p2ninz,pip2ni

A more general result [12, Theorem 6.1] is that, if we adopt Cost Functions (normalized by A)

x value to distribute the profit of the peer-assisted seryices 0.0257

the system always has at least one stable coalition stejctur 0,020

irrespective of the number of providers. It it also rematkab

that the following theorem holds without any restriction on 0.0157

operational cos®, (-), whereas we assumed tifa§(-) is non-

. __ N 0.0104

increasing in Sectiop I

Theorem 6 (Stability of x Payoff). For x value, there al- 0.0054-_ _

ways exists a stable coalition structure \T“~~7 _____ ‘
0 0.1 0.2 0.3

Also, it follows from [12, Corollary 6.4] that the instahii
of the grand coalition cannot be improved:
Corollary 3 (Stability of Grand Coalition Preserved).

The grand coalition ofy value is stablef and only if the
Shapley value lies in the core. [22, Section 5.1] that, if;, > ) fraction of users are assisting
To summarize, even if we adogtvalue, the instability of Providerp, for a user who is subscribing to provider the
the grand coalition for the Shapley payoff which we observeaxpected age of the content and the outage probabilityltieat t

in Theoren(2 remainsnchangedHowever, it is guaranteed age is larger thad-** are:
that there exists a stable coalition structure fovalue. o 1z + pe _
TpA tp Tp + ppe
VII. A PPLICATION TO DELAY-TOLERANT NETWORKS The above two expressions can be easily derived by using
In this section, we present a concrete example of the peitegration by parts. A provider may guarantee subscribers
assisted services in delay-tolerant networks where mobdlertain level of quality of service by imposing constraistsh
users share certain contents with each other in a peereto-pas (i) G, < 1min or (ii) Ppc < 0.01 for G;*** = 10min, of
fashion [22]: whenever two mobile users meet, a user whostich we use the former here.
content is more recent pushes it to the other whose contenFor instance, the cost function of providercan be com-
is outdated. We consider here a single class case, using phiéed by solving the following optimization problem ovey:
method in [22].

x
‘— Provider p — — Provider q‘

Fig. 11. Cost Functions of Two Providers in the Delay-Tatersletwork.

TpA + Ly
(pptapX)Gpax”

In

min, z,u, sSubject to Gy < gp

We assume that there exist two providersand ¢, whose
. o here z,1, corresponds to the average cost per user. The
contents differ. Users who are subscribing to the conterat o . : . . L
olution of this problem yields providers cost function:

provider are assumed to assist the provider in any case. e )
fraction of users subscribing to each provider is denoted by I, S

29 and 2. As discussed in Sectidi [[HA, we also assume exp (zAgp) — 1

that a non-subscribing user is allowed to assist at most ombere we dropped the subscriptfrom x,,. Supposez:g
provider. Suppose that the content provideraind ¢ push 0.4 and acg = 0.3. If providersp and ¢ useg, = 5/\ and
content updates to users, who are assisting providers théth g, = 10/, i.e., providerp has decided to maintain a lower
rate i, and 4, respectively, and every user meets other useagerage age of the content than that of providewe get
with the aggregate rate. Then it follows from the analysis in the cost function$2,,(x +z9)/X andQ,(x +z)/A as shown

ﬁp(x) =T, =



in Fig.[11. By computing the equations ih (FIuidAD2) and 3]

(EIuidChI), it is not difficult to see that providermonopolizes

the remaining fraction of users,— ) — ) = 0.3, whether

we adopt the A-D payoff o payoff. Nonetheless, users can

receive more under thg payoff than under the A-D payoff
due to the surplus-sharing property discussed in Sectie@l.VI

VIII. CONCLUDING REMARKS AND FUTURE WORK
A quote from an interview of BBC iPlayer with CNET UK

[23]: “Some people didn't like their upload bandwidth being
used. It was clearly a concern for us, and we want to make

sure that everyone is happy, unequivocally, using iPlayer.
In this paper, we have first studied the incentive structu
in peer-assisted services with multiple providers, whére t

popular Shapley value based scheme might be in conflic

with the pursuit of profits by rational content providers an
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traffic engineering, which wiltransformtheir cost functions.

The question remains open how the ramifications of this type

of cooperation can be quantified in peer-assisted services.
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which is thenormalized(which we did in [(4)) total coalition where we used the change of variahie = 7 and changed
worth created by the coaliticf’ UH . Another axiom we apply the order of the double integration with respectut@nd .
is Axiom FAIR (fairness) which was used by Myersdn [24Plugging [I6) into[(1b) yields

to characterize the Shapley value. It follows frédtAIR that fl e+l S 5=\ (u)du

@) - & ) = 65 (@), forallpe=. @) _ 3 Z

Summing up[(P) for alp € =’ and dividing the sum by='| =
£+ 1, we obtain

72 (@) = e Tpex (77 P @) + £85 (@)

_ =\ {p}
= £ Lpez P (@) + g

1 g dMS
m Jo w191 S8 (u) du
peE’ SCE\{p}

— Yscmspz Jy w11 = w)s IS (uz)du. (17)
where the last equality holds because
P Spee Sscan o F8): Soczspm 18)
=E+1)- (\S\) (£|J§|1) E+1-15]:1
Plugging [(1¥) into[(1K4) establishes the following desiresiit:
SZE/ (x) = — ngaf fol U‘S‘(l - U)gﬂ_lsl%(?ﬂ)du (18)
from which it follows

D“|D..

Plugging [10) into[(B), we obtain
EFDpem 75 (@) + i Y ez 75 (2)
~(6+1) (Zyez B0) = MF @) =0T ez &0 (@),

(11) _, =
. ="\{p} @i (CL‘) —én \{p}(x) =
Since we know the form op;, ‘"' (z) for all p € = from the g LS| AME
assumption-( |Z"\ {p}| = &), (lﬂ) is an ordinary differential - Dscz o ul¥I(1 = u)sH-| ‘d—;’(uv”f)du
equation of the functior)_ -, o, '(). Denote the RHS of ~ LIS (1 — 6151 M3 d
(1) by G(z). Appeallng 0! [4, Lemma 3], we get _+ZSC \p} Jo w1 =) 3 (ue)du. )
The first term of the RHS can be decomposed into the
> pez P <Pp fo u*G(ux)du following:
=3 ez 0(0) — [5 us(€ + 1)MF (uz)du — Sseeny }fol ST — u)£+1—(\s\+1)7dM§:{p} (uz)du
— uerlx Z Pn \{p} (ux)du, 1 AMS
f - pes L LaME - nga/\{p} fo U‘S‘(l - U)fﬂ_‘s‘ cji\iﬁ‘(ux)d“-
L e & (@) =—(E+1) fy ust dQ (uz)du Thus, we can obtain
— Jo st o Pn \{p}(u:c)du 5 (2) — 5\ P} () =
_ £+2 \{P} su{p} s
Jo u ffzpe~ (uz)du (12) _ Z i ws s <%(ux) - 45 (um)> du.
ubt1dMg dM(Z SCE\{p}
—(&+1) f (ux)du (19)

~="\{p} ~="\{p}
HE+D) [t Y o Bn P ur)du — Y ez Pn (1;3) Integrating [9) with respect to and from [I9), we get

where the last expression follows by integrating the lashte 7 (@) = y—u
of (12) by parts. From(10) an@(N3pZ (=) is rearranged as — Z folu\sw(l_u)s—m [Mgu{p}( ) — MS (y)} o du.
(uz)du SCE"\{p}
BecauseM/ 5 P} (0) — M5(0) = 9,(0), the above equation
£+1 ~~ \{p} Q Q p\Y)
+ f ut Y e (uz)du. (14)  combined with [(IB) finally establishes thaf (FIuidAD1) also

From the assumption; \{p}( ) is given by [EIIADY) for holds for all=' C Z where|Z/| = ¢ + 1, hence completing
Z = ='\ {p}, which is plugged into the last term df{14) tothe Proof.
yield

f uEH Zpe~ ~= \{p}( )du B. Proof of Theorerhl2

— —f ubt1dMg dMg

_ 1181 (1 — ut)-1S] dM To prove the theorem, we need to show that the condition
== Z Jo Jo (t)! ) (u — )19 S50 (utrjudidu. for the core in Definitiofil is violated, implying that it siféis
PEE! SCEN{p} to show the following:

(15)
To reduce the double integral df {15), we use the followingz ZQ _MZ( Z ?2»(0) _ Mé\{p}(l)
. p (2
fact fl fl 1151 (u — )6~ 151 f (ute)udtd i€z i€Z\{p}
u - utx)udtdu ~
b |S| )E-1S =Q,(0) — (Mg(l) - Mg\{p}(l)) - (20)
= fo fo T f(rz)drdu

This means that the payoff gf € Z is greater than the
marginal increase of the limit worth.e.,

. e (1= ) f (ra)dr (16) limyee 20(Z U H) — limy e 20((Z)\ {p}) U H).

:fo fT sl u—T)£ IS| f (1) dudr
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Subtracting the RHS of (20) from the LHS f {20) and usingecomesstrict whenS = () over some interval iff0, 2] whose
the expression op7 (1) in (EluidADI), we have length is positive due to the assumption tlgj(y) is not
tant in the intervaj € [0,2] and non-increasing. From
MZQ) - MZMPY (1 cons . i
a(l) fi (1) B this inequality, we havMSUJp}(y)—Mg(y) > Mép}(y) and
- Y Jyulsl = w)lZImls] (MQU{p}(“) — M§ ) ) du. the inequality is strict over some interval of positive lémg

SCZ\{p} Plugging this relation into{22) yields'" (z) — er (z) > 0.
(21)  Note that from[(B), we have:
We see from Definitiofil6 that/Z (1) — M5 7* (1) = Q,(0). lim,, o0 v({p} U H) /0 = 0, (0) — M (2)

From the assumption, there exists a noncontributing pesvid < (0) — MT(2) = I TUH
which we denote by. To show that[(21) is strictly positive, ~ ~ 2ier Ul )_ @ _(x){ , iy oo 0 _ )/7_7
we rewrite the last factor of the integrand as follows: which, when combined withp;” (z) > ¢l (z), implies the
s second part of the theorem.
Mo P (y) - M§ () =

min {ZiGSU{p} Qiys) | Dicsu(py Yi S Y. Yi > 0}

— min {Zies Qi) | Ciesvi <viyi > 0}
where the first term in the RHS can be rearranged as

min {Ziesu{p} ﬁl(yl) | Z’LGSU{p} Yi <Y, Yi 2 0}
< 0p(0) + min {5 Dilo) | oo s < >0}

where the inequality holds from thaNL-(y), i € Z, are non-
increasing. It can be easily seen that the inequality hoilds P

considering two caseg, = 0 andy, > 0. The inequality School of Computer and Commun ey
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0

SCZ\{p}
which established (20), hence completing the proof.

C. Proof of Theorer]3

To prove Theorerhl3, it suffices to show that the following
is positive for{p} C T such thatl" C Z:

1
o (z) — or(x) =— [y M (uzydu

Z fol ulSI(1 — )| T1=1-18] (Mgu“’}(w) B Mg(w)) du
SCT\{p}
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